ON THE STEP SIZE IN
KARMARKAR'S ALGORITHM

by

C. M. Shetty
Mohammed Ben Daya

PDRC 85-02

PRODUCTION and
DISTRIBUTION RESEARCH
CENTER

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

SCHOOL OF INDUSTRIAL
AND SYSTEMS
ENGINEERING
GEORGIA INSTITUTE OF TECHNOLOGY
A UNIT OF THE UNIVERSITY SYSTEM
OF GEORGIA
ATLANTA, GEORGIA 30332
ON THE STEP SIZE IN
KARMARKAR'S ALGORITHM

by

C. M. Shetty
Mohammed Ben Daya

PDRC 85-02

School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

This work was supported by the Office of Naval Research under Contract No. N00014-83-K-0147. Reproduction is permitted in whole or in part for any purpose of the U. S. Government.
The recently proposed algorithm of Karmarkar [1] for solving linear programs uses the following step: suppose $a = (a_1, \ldots, a_n)^T$ is an interior point to the feasible region of the following linear program P:

$$P: \quad \begin{array}{l}
\text{minimize} \quad c^T x \\
\text{subject to} \quad Ax = 0 \\
\quad \quad e^T x = 1 \\
\quad \quad x > 0
\end{array}$$

A projective transformation maps the point a to the center of the simplex a_0 and leads to the following nonlinear program:

$$TP: \quad \begin{array}{l}
\text{minimize} \quad f(x') = \frac{c^T D x'}{e^T D x'} \\
\text{subject to} \quad ADx' = 0 \\
\quad \quad e^T x' = 1 \\
\quad \quad x' > 0
\end{array}$$

where D is a diagonal matrix with $d_{ii} = a_i$. TP is approximated by the following program:

$$AP: \quad \begin{array}{l}
\text{minimize} \quad c^T D x' \\
\text{subject to} \quad ADx' = 0 \\
\quad \quad e^T x' = 1 \\
\quad \quad x' > 0 \\
\quad \quad \|x' - a_0\| < \varepsilon
\end{array}$$
where \(r = \left[\frac{n(n-1)}{n} \right]^{-1/2} \), \(a_0 = (1/n, \ldots, 1/n) \) and \(0 < \alpha < 1 \).

The trivial solution to AP is \(a_0 - \operatorname{arc}_p \hat{c} \) where \(\hat{c} = \frac{c_p}{|c_p|} \) where \(c_p \) is the vector obtained by the orthogonal projection of \(Dc \) onto the region \(\{ ADx' = 0, e^{x'} = 1 \} \). Thus we move from the center of the sphere \(B(a_0, \alpha \hat{r}) \) to the boundary in the direction of \(-\hat{c}_p \).

Current literature suggests use of small values of \(\alpha \) (say, \(\frac{1}{4} \)) to solve the problem for mainly three reasons:

1. \(c^T D x' \) in (AP) approximates the objective function of TP better for smaller values of \(\alpha \).

2. The choice of \(\alpha = \frac{1}{4} \), for example, allows the complexity argument to go through without adversely affecting the order of complexity.

3. Problems associated with round-off errors.

Now consider the bound on the decrease of the "potential function" derived in [1, theorem 4]

\[
f(a_0) - f(a_0 - \alpha \hat{r}) \geq \delta(n)
\]

where \(\delta(n) = \alpha - \frac{\alpha^2}{2} - \frac{\alpha^2 n}{\sqrt{n}} \frac{1}{(n-1)[1-\alpha + \frac{n}{n-1}]} \) (1)

\[
\delta = \lim_{n \to \infty} \delta(n) = \alpha - \frac{\alpha^2}{2} - \frac{\alpha^2}{1-\alpha}
\]
Note that δ_{max} occurs at $\alpha = 0.2451$. Further, for $\alpha = 1/4$ we have $\delta > 1/8$ so that $f(a_0) - f(a_0 - \alpha \hat{c}_p) > 1/8$. However one might note that $f(x') = \frac{c^T d x'}{e^T d x'}$ is quasiconcave over the positive orthant and the feasible region of (TP) is convex and compact. Hence, the optimal solution to (TP) is a boundary point. Consequently it seems logical that we should solve AP for the maximum possible value of α gaining a greater reduction of the objective function.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Bound δ given by (1)}
\end{figure}

Note that even though δ gives a good approximating bound for the decrease in the objective function for $\alpha < 1/4$, the bound for $\alpha = 1/4$ is valid for all $\alpha > 1/4$. Hence, the order of complexity is not adversely affected.

A second logical approach is to use the maximum value of α but to
proceed along the negative gradient direction of the objective function in TP. It seems probable that this will yield faster convergence even though it is not guaranteed to do so.

EXAMPLE

To illustrate the points made above we solved a simple problem proposed by Charnes et al. [2] using each of the above approaches and with different values of \(a \).

Here, the original problem is

\[
P: \minimize x_2 \quad \text{s.t. } x_1 + x_2 + x_3 = 1, \quad x_i > 0 \quad i = 1, 2, 3 \text{ and under a projective transformation } T_a \text{ which maps an interior point } a = (a_1, a_2, a_3) \text{ of the feasible region of } P \text{ to the center of the simplex } S = \{(y_1, y_2, y_3): y_1 + y_2 + y_3 = 1, y_i > 0 \text{ for } i = 1, 2, 3\} \text{ we get}
\]

\[
TP: \minimize \frac{a_2 y_2}{a_1 y_1 + a_2 y_2 + a_3 y_3} \quad \text{s.t. } y \in S
\]

Alternative 1: Proceed along the projected negative gradient \(-c_p \) of AP:

Following Karmarkar's notation, we have \(B = [1, 1, 1] \) so that \(c_p = [1 - B^t(BB^t)^{-1}B] DC \). Letting \(\hat{c}_p = c_p / ||c|| \), and noting that the current point is \(b = T_a(a) = (1/3, 1/3, 1/3)^t \), we have the new point

\[
y = b - \alpha \hat{c}_p = \left(\frac{1}{3} + \frac{a}{6}, \frac{1}{3} - \frac{a}{3}, \frac{1}{3} + \frac{a}{6}\right)^t
\]

where \(0 < a < 1 \) and \(r = 1/\sqrt{n(n-1)} = 1/\sqrt{3} \). In the original space this point is
where $\Delta = e^{tDy} = \frac{1}{3} + \frac{a}{6} (a_1 - 2a_2 + a_3)$

Alternative 2: Proceed along the projected negative gradient $-\hat{d}_g$ of TP:

Here we have the projected gradient

$$d_g = [I - B^t(BB)^{-1}B]v_f(b) = \begin{cases} -3a_1a_2 \\ 3a_2(a_1+a_3) \\ -3a_2a_3 \end{cases}$$

where again the current point $b = (1/3,1/3,1/3)^t$: Letting $\hat{d}_g = d_g/\|d_g\|$, the new point is

$$y = b - \alpha \hat{d}_g = \begin{cases} \frac{1}{3} + 3a_1a_2/\|d_g\| \\ \frac{1}{3} + 3a_2(a_1+a_3)/\|d_g\| \\ 1/3 + 3a_2a_3/\|d_g\| \end{cases}$$

The corresponding point in the original space is then
\[
\begin{align*}
x &= \frac{Dy}{e^t Dy} = \begin{cases}
\frac{a_1}{3} + 3a_1a_2/\|g\| & /\bar{\Delta} \\
\frac{a_2}{3} + 3a_2(a_1+a_3)/\|g\| & /\bar{\Delta} \\
\frac{a_3}{3} + 3a_3a_2/\|g\| & /\bar{\Delta}
\end{cases}
\end{align*}
\]

where \(\bar{\Delta} = e^t Dy = \frac{1}{3} + (3a_2/\|g\|)\{a_1^2-a_2(a_1+a_3)+a_3^2\}\). The computational results for the two alternatives are shown in Tables 1 and 2 for \(\alpha = 0.1, 0.25, 0.50, 0.80, \) and 0.90. The entries in the tables are the objective function values. The starting point in each case is \((0.10, 0.30, 0.60)^t\). This simple example strongly supports the use of \(\alpha\) value of the order of 0.90. The results using the direction \(-d_\hat{g}\) is comparable with that obtained using \(-c_\hat{p}\). Clearly further computational testing is needed before any firm conclusions can be drawn. The order of complexity under alternative 2 also needs to be investigated.

References

Table 1.

<table>
<thead>
<tr>
<th>Iteration #</th>
<th>= 0.10</th>
<th>= 0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternative 1</td>
<td>Alternative 2</td>
</tr>
<tr>
<td>1</td>
<td>.2686567164</td>
<td>.2666316506</td>
</tr>
<tr>
<td>6</td>
<td>.1452687100</td>
<td>.1329111912</td>
</tr>
<tr>
<td>11</td>
<td>.0729011799</td>
<td>.0594067529</td>
</tr>
<tr>
<td>16</td>
<td>.0351038815</td>
<td>.0253844452</td>
</tr>
<tr>
<td>21</td>
<td>.0165535577</td>
<td>.0106779681</td>
</tr>
<tr>
<td>26</td>
<td>.0077274757</td>
<td>.0044705145</td>
</tr>
<tr>
<td>31</td>
<td>.0035901348</td>
<td>.0018695841</td>
</tr>
<tr>
<td>36</td>
<td>.0016642379</td>
<td>.0007818099</td>
</tr>
<tr>
<td>41</td>
<td>.0007706728</td>
<td>.0003269792</td>
</tr>
<tr>
<td>46</td>
<td>.0003567105</td>
<td>.0001367727</td>
</tr>
<tr>
<td>51</td>
<td>.0001650689</td>
<td>.0000572162</td>
</tr>
<tr>
<td>56</td>
<td>.0000763373</td>
<td>.0000239366</td>
</tr>
<tr>
<td>61</td>
<td>.0000353390</td>
<td>.0000100143</td>
</tr>
<tr>
<td>Iteration #</td>
<td>= 0.50</td>
<td>= 0.80</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>Alternative 1</td>
<td>Alternative 2</td>
</tr>
<tr>
<td>1</td>
<td>0.0425531915</td>
<td>0.0425452529</td>
</tr>
<tr>
<td>2</td>
<td>0.0174672489</td>
<td>0.0167066197</td>
</tr>
<tr>
<td>3</td>
<td>0.0070609003</td>
<td>0.0063472042</td>
</tr>
<tr>
<td>4</td>
<td>0.0028363765</td>
<td>0.0023815758</td>
</tr>
<tr>
<td>5</td>
<td>0.0011364847</td>
<td>0.0008895885</td>
</tr>
<tr>
<td>6</td>
<td>0.0004549041</td>
<td>0.0003317606</td>
</tr>
<tr>
<td>7</td>
<td>0.0001820113</td>
<td>0.0001236585</td>
</tr>
<tr>
<td>8</td>
<td>0.0000728125</td>
<td>0.0000460834</td>
</tr>
<tr>
<td>9</td>
<td>0.0000291263</td>
<td>0.0000171728</td>
</tr>
<tr>
<td>10</td>
<td>0.0000116507</td>
<td>0.0000063992</td>
</tr>
</tbody>
</table>