The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.

VOLUME III

CONTRACT NO. MDA-903-84-C-0202

SEPTEMBER 24, 1984
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
September 24, 1984

Lieutenant General Benjamin F. Register, Jr.
Deputy Chief of Staff for Logistics
Department of the Army
Washington, DC 20310

Dear General Register:

Arthur Young & Company is pleased to submit this report on our review of the U. S. Army Information Systems Command (USAISC) supply system.

The study addressed the dedicated retail supply support system for communications-electronic (C-E) systems and equipment organic to and operated by USAISC. In the process we developed a description of the ISC supply system and its operating environment; examined the rationale behind its establishment; compared it with the standard system; and evaluated its procedures. Analysis was extended from the user level through the direct support level to the interface with the wholesale level.

During the study we defined the unique characteristics of the ISC system -- use of high technology equipment, dependence on nondevelopment items (NDI) to meet needs, very high operational readiness requirements, low density and often remote locations which has led to a large percentage of non-demand supported parts stockage and substantial use of local purchase. This environment has necessitated intensive management. We determined that this need for special management still exists; and, in our opinion, will continue to be needed as long as high technology and state-of-the-art requirements drive NDI acquisition.

In addition to recommending that the intensively managed USAISC supply system be retained, we made a number of additional observations, conclusions and recommendations relating to the supply system to include comments on such issues as materiel acquisition, the authorization process, asset visibility, and cataloging procedures.
September 24, 1984
Lieutenant General Benjamin F. Register, Jr.
Page 2

We believe the implementation of our recommendations will improve the supply system from the standpoint of both the Department of the Army and the Information Systems Command and will result in enhanced capability to manage the Army's assets.

If you have questions about this report or need additional information, please contact either me or E. J. Delaune, Director of Defense Management Services, at (202) 828-7000.

Very truly yours,

ARTHUR YOUNG & COMPANY

By: Henry J. Steininger
CONTRACT INFORMATION SHEET

Contract No. MDA-903-84-C-0202

Term of Contract (Phase II): Through 24 September, 1984

Title: OFF LINE LOGISTICS SYSTEMS

Contractor: Arthur Young & Company
1025 Connecticut Ave, N.W.
Washington, D. C. 20036

Project Director: Elton J. Delaune
Tel: (202) 828-7000

Report Prepared By:

Richard L. West, Lt Gen, USA (Ret.)
Richard G. Trefry, Lt Gen, USA (Ret.)
Duane H. Stubbs, Maj Gen, USA (Ret.)

* *

VOLUME I Executive Summary
VOLUME II Phase II Study Report
VOLUME III Appendices
Table of Contents

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A. Extract from Contract</td>
<td>A-1</td>
</tr>
<tr>
<td>B. Study Work Plan</td>
<td>B-1</td>
</tr>
<tr>
<td>C. Trip Reports</td>
<td>C-1</td>
</tr>
<tr>
<td>1. Fort Ritchie, Maryland</td>
<td>C-2</td>
</tr>
<tr>
<td>2. Fort Huachuca, Arizona</td>
<td>C-3</td>
</tr>
<tr>
<td>3. Fort Monmouth, New Jersey</td>
<td>C-4</td>
</tr>
<tr>
<td>4. Fort Ritchie, Maryland</td>
<td>C-5</td>
</tr>
<tr>
<td>5. Fort Gordon, Georgia</td>
<td>C-6</td>
</tr>
<tr>
<td>6. Installation (PLL) Sites</td>
<td>C-7</td>
</tr>
<tr>
<td>D. List of Key Contacts</td>
<td>D-1</td>
</tr>
<tr>
<td>E. ISC Organization and Functions</td>
<td>E-1</td>
</tr>
<tr>
<td>F. Supply Flow Charts</td>
<td>F-1</td>
</tr>
<tr>
<td>G. Statistical - Performance Data</td>
<td>G-1</td>
</tr>
<tr>
<td>1. LOGMIS Quarterly Asset Report</td>
<td>G-2</td>
</tr>
<tr>
<td>2. LIF - OST Analysis</td>
<td>G-3</td>
</tr>
<tr>
<td>3. Performance Data SRA Fort Ritchie (CSSF)</td>
<td>G-4</td>
</tr>
<tr>
<td>4. Performance Data CSSF</td>
<td>G-5</td>
</tr>
</tbody>
</table>
5. Performance Data
 Fort Huachuca (DX) G-6
6. Performance Data AMSF-Europe G-7
7. Performance Data AMSF-Pacific G-8
8. ISC Supply Information G-9
H. References H-1
I. Acronyms I-1
APPENDIX A

EXTRACT OF CONTRACT NO

MDA-903-84-C-0202

SECTION C: DESCRIPTION/SPECIFICATIONS

STATEMENT OF WORK

C-1. OBJECTIVE: To determine performance of those Army managed supply systems that are outside standard Army policies and procedures, isolate those instances where such systems do not significantly improve standard supply system performance, readiness, or convertibility to a wartime situation and provide recommendations as to their continuance, in whole or in part, or integration with standard systems.

C-2. BACKGROUND:

 a. For a number of years, the thrust of the Department of Army Deputy Chief of Staff for Logistics (DA DCSLOG) has been to improve performance of the various logistics segments of the supply pipeline through application of computer technology and other logistics state-of-the-art advances. As the DA DCSLOG has overall logistics responsibility for the total Army, he is concerned that various "stovepipe" systems have been developed to address specific deficiencies in
narrowly defined applications that are no longer justified based on original rationale. Where there is reasonable expectation that the standard Army systems will not degrade performance or readiness to any significant degree, the standard Army systems should be reinstated to ensure that the Total Army can transition to war with minimum turmoil.

b. There have been two recent in-house actions addressing "stovepipe" systems. The first was completed by USA Logistics Evaluation Agency (USALEA) in May 1982 which evaluated the Centralized Supply Support Facility (CSSF) at Fort Richie, MD. The study concluded that the CSSF was cost effective, had a lower order ship time than the standard system by 10 days, and recommended continuation of CSSF until standard systems could be made as responsive. The second "stovepipe" system addressed was the Electronic Material Readiness Agency (EMRA) support of two USA intelligence and Security Command (USAINSCOM) field stations. This "stovepipe" system was dissolved by adding the two field stations as customers to Defense Supply System Airline of Communication through an established Material Management Center (MMC).

C-3. **TASKS** This study will be developed in three phases:

a. **Phase I.** Through research of existing logistics policy and procedures, together with interviews with top level Army logisticians and managers, identify unique "off line" logistics systems
operating within the Army and prepare an analysis which depicts the projected length of time required to evaluate each system; what parts of those systems, if any, have the potential of operating more effectively and efficiently within the Standard Army Supply System; evaluate size and scope of each system; and rank list, in descending order of priority, which studies should be undertaken to provide the greatest payoff to the Army. Three representative operations that we believe will come under the "off-line" logistics system category are Facility Engineers, Medical (Class VIII) support and Army Communications Command's (ACC) supply support of ACC unique end items. These three examples can be used to prepare cost factors for analysis performed during Phase II and Phase III. It is assumed that travel will not be required during the course of this contract.

b. Phase II. The systems selected by the Office of the Deputy Chief of Staff for Logistics (DCSLOG) during this phase will be reviewed by laying out unique systems operational policy and procedures against current standard policy and procedures, determining the areas of similarity and differences and evaluating what is critical for customer support. Determine cost effectiveness "offline" systems to a wartime environment. This phase must result in fully justified recommendations in terms of operational effectiveness and efficiency as to which system, or part thereof, should be integrated in the standard Army system.

c. Optional Phase III. This phase will be implemented at the option of the government and will
consist of any additional systems selected by the DCSLOG from a candidate list developed in Phase I that can be analyzed within three (3) months. Systems selected for this phase will be subjected to the same in-depth analysis as those systems studies under Phase II. The deliverables will also remain the same. The following three "off-line" logistics system category can be used to prepare cost factors: Facility engineers, Medical (Class VIII) Support, and Army Communications Commands (ACC).

C-4. GOVERNMENT FURNISHED SUPPORT

a. Documents, data, and access to Army activities and personnel will be made available on an "as required" basis.

b. Onsite office and filing space in the Pentagon.

c. Administrative support to include office supplies, typing (word processing) reproduction, aids, etc.

d. Printing or reproduction of study reports, including art work, graphics, and slides as needed.

C-5. REPORTS

a. The contractor shall submit the following reports in accordance with the delivery schedule set forth in Section F, Article 3.
A Study Work Plan - A study work plan will be made available to the COR within seven calendar days of contract award. The study work plan will include a description and explanation of the study methodology and list of candidate measures of effectiveness.

A Detailed Briefing - A detailed briefing of systems identified as "stovepipe" will be presented to the DCSLOG at the end of Phase I. The briefing will provide estimated time required to analyze each system, whether more than one system can be analyzed at a time, and which system should be and can be analyzed within the 90-day limitation of Phase II. The briefing will be a decision briefing at which time the DCSLOG will identify those systems to be studied during Phase II, based on Phase I recommendations.

A Biweekly Statement - During Phase II a biweekly statement of progress will be in summary form of actions taken and study milestones met or slipped.

A briefing will be given to the DCSLOG no later than 45 days after initiation of Phase II. The briefing will provide sufficient depth for a determination to be made that the appropriate elements are being studied in each system. The DCSLOG will provide additional guidance, if required.
A Detailed Briefing - A detailed briefing of Phase II results will be presented to the DCSLOG within 90 calendar days after the study commences. The briefing will provide evaluation of each system studied in relation to discrete performance factors including, but not limited to, cost effectiveness, order ship time, and capability to be operated in a wartime environment. The briefing will recommend which unique systems should be continued and/or which systems, in whole or in part, should be integrated with Army standard systems. Recommended changes must be specific as to improvement expected and time required to effect changes.

Draft Final Report - A draft final report will be submitted 15 days after the Phase II briefing. This report will be structured to support the conclusion of all tasks.

OPTION (Phase III)

A Biweekly Statement - A biweekly statement of progress will be developed beginning 14 calendar days after notification of the Phase III commencement.

A Detailed Briefing - A detailed briefing of Phase III results will be briefed to the DCSLOG 90 days after the Phase III option is exercised. This briefing will be structured identical to the Phase II final briefing.
A Draft Final Report - A draft final report will be submitted concurrent with the Phase III briefing. The Phase III report will replicate the Phase II final draft report for those systems studied during Phase III.

b. Reports delivered by the contractor in the performance of the contract shall be considered "Technical Data" as defined in the applicable Rights in Technical Data clause of the General Provisions.

c. Bulky reports shall be mailed by other than first-class mail unless the urgency of submission requires use of first-class mail. In this situation, one (1) copy shall be mailed first-class and the remaining copies forwarded by less than first-class.

d. The heading of all reports shall contain the following information:

<table>
<thead>
<tr>
<th>CONTRACT NUMBER</th>
<th>NAME OF CONTRACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTRACT EXPIRATION DATE</td>
<td>CONTRACTOR'S PROJECT</td>
</tr>
<tr>
<td>SHORT TITLE OF CONTRACT WORK</td>
<td>DIRECTOR</td>
</tr>
<tr>
<td></td>
<td>PHONE NUMBER</td>
</tr>
</tbody>
</table>

C-6. DISCLAIMER STATEMENT

All reports resulting from this study will contain the following disclaimer statement on the cover of such reports:

"The views, opinions, and findings contained in this report are those of the author(s) and
should not be construed as an official
Department of the Army position, policy, or
decision, unless so designated by other
official documentation".
APPENDIX B

PHASE II STUDY WORKPLAN

The Phase II Study Workplan was prepared as a contract deliverable on June 8, 1984.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>II. Summary of Phase I Actions</td>
<td>2</td>
</tr>
<tr>
<td>A. What we did</td>
<td>2</td>
</tr>
<tr>
<td>B. Time Limitation</td>
<td>3</td>
</tr>
<tr>
<td>C. Briefing and Decision</td>
<td>3</td>
</tr>
<tr>
<td>III. Description of Phase II</td>
<td>3</td>
</tr>
<tr>
<td>A. Objective</td>
<td>3</td>
</tr>
<tr>
<td>B. Scope</td>
<td>4</td>
</tr>
<tr>
<td>IV. Phase II Execution</td>
<td>4</td>
</tr>
<tr>
<td>A. General Approach</td>
<td>4</td>
</tr>
<tr>
<td>B. Task Breakout</td>
<td>4</td>
</tr>
<tr>
<td>C. Time Phasing</td>
<td>6</td>
</tr>
<tr>
<td>D. Travel Plan</td>
<td>6</td>
</tr>
</tbody>
</table>

Inclosures

A. Project Organization
B. Master Schedule (Phase II)
C. Travel Plan
D. USACC Logistics (An ACC Information Briefing)
I. INTRODUCTION

- Contract MDA 903-84-C-0202, dated 11 April 1984, was awarded to Arthur Young and Co., to conduct a study on off-line or stovepipe supply systems for the DCSLOG, Department of the Army.

- Phase I started 14 May 1984 and ended with a decision briefing to the DCSLOG on 29 May 1984.

- This study work plan covers Phase II, which starts 11 June 1984 and is scheduled to end on 24 September 1984. It covers the project objectives and scope, and planned execution to include task breakout, schedule, and travel.

- The Arthur Young Study Team is comprised of recently retired senior officers who possess a broad understanding of Army doctrine, organizations and operating procedures: LTG Richard L. West, USA (Ret); LTG Richard G. Trefry, USA (Ret); MG William E. Eicher, USA (Ret); and MG Duane H. Stubbs, USA (Ret).

- The study team is located in Room 1D600, the Pentagon, tel 694-4782. The designated COR is Mr. Jay Briggs, DALO-SMP-S, Room 1D573, the Pentagon, tel 694-6758.

II. SUMMARY OF PHASE I ACTIONS

A. What we did.

1. Objective. The objective of Phase I was to identify off-line or stovepipe supply systems managed by the Army; assess them in terms of size and scope; and rank order them based upon the potential for pay off to the Army with a subsequent recommendation to the DCSLOG of the system(s) meriting more detailed evaluation in Phase II.

2. Approach. Our approach to Phase I was to inventory stovepipe systems throughout the Army by seeking the professional views (interviews/discussions) of knowledgeable logisticians and senior managers throughout the Army and through qualifying documentation pertinent to the subject. Institutional knowledge of the study team and those interviewed was a significant factor in the process.

3. Interviews/discussions. We talked with key and relevant people from 21 organizational elements that represented all appropriate major commands and headquarters of the Army, and which constituted a near-worldwide geographical coverage. Included in our contacts were 15 general officers and a U. S. Air Force officer at an aerial port.

4. Findings. We learned that there were many systems, subsystems, or segments of operating supply systems that were or were perceived to be stovepipe supply systems. They could be categorized in terms of function, organization, and commodity. In reality, most did not fit the definition of a stovepipe system as set forth in the ODOLLOG Request For Proposal. However, we felt it worthwhile to capture and present to the DCSLOG the unstructured, unfiltered views and perceptions that exist on this subject throughout the Army. We also made some general observations that are germane to the study:
There is a lack of uniformity in the organizational structure of certain logistical units, principally the material management centers of the Divisions and the Corps.

There is not a well balanced understanding of how the Army's standard supply system works.

Many people do not understand nor appreciate the relationship of doctrine to requirements to authorizations and, in fact, we believe the Army school system should do a better job of educating the rank and file in this area in order to facilitate logistics planning and execution at all levels.

5. Recommendation. We developed a candidate list of systems for further study in Phase II and presented the list with our recommendations in a phase I briefing to the DCSLOG on 29 May 1984. The Phase I briefing has been submitted under separate cover.

B. Time Limitation.

It should be noted that the time-frame for Phase I was established in the contract as a two week period. In conjunction with the no travel provision of the contract, the study team reasoned that the identification and assessment of stovepipe systems would require the widest contact base possible within the afforded period of time in order to properly identify most, if not all, such systems in existence. While the relative assessment process was constrained somewhat by the parameters of Phase I, we believe that we did identify all significant stovepipe systems in the Army today.

C. Briefing and Decision.

1. Briefing. A briefing was presented to the DCSLOG on 29 May 1984 which contained a summation of our Phase I efforts and a candidate list of stovepipe supply systems with a rank ordering of our recommendation for further study in Phase II.

2. Decision. The DCSLOG accepted the candidate list of stovepipe systems, with modification, and made the decision to study in Phase II the #1 priority on the candidate list, the U. S. Army Communications Command (excluding computers and automation systems which have been recently integrated into ACC by reorganization). Note: while it is understood that the U. S. Army Communications Command (ACC) has been reorganized and redesignated as the U. S. Army Information Systems Command, this document will make reference to ACC.

III. DESCRIPTION OF PHASE II

A. Objective

The objective of Phase II is to conduct a comparative analysis of the ACC stovepipe system and the standard Army system to isolate those instances where the ACC system, or subsystems, do not significantly improve standard supply system performance, relative economy, or convertibility to a wartime
situation, and provide a recommendation concerning the continuance, discontinuance, modification, or possible integration into the standard Army system of the ACC system/subsystem concerned.

B. Scope

- The comparative analysis of the ACC system will focus on the dedicated retail logistics support system (Class IX) for communications - electronics (C-E) systems and equipment (Class VII) organic to and operated by USACC. The analysis will extend from the user level (PLL) through the direct support (ASL) level to the interface with the wholesale level at the CECOM NICP. We will observe similarities to and differences from the standard system. We will note any benefits or objectives of the standard system which are not being realized as well as highlighting those features of the ACC stovepipe that merit special recognition. To do this will require a modest modification in the scope of the contract to provide a requisite travel authorization.

IV. PHASE II EXECUTION

A. General Approach. In carrying out the comparative analysis of the ACC stovepipe, we will compile a description of the ACC system and its operating environment. We will examine the rationale behind its establishment with particular attention to factors of responsiveness bearing on mission or readiness. The purpose of the comparative analysis is to determine the efficiency and effectiveness of the ACC system with special consideration to a wartime environment, and to recommend whether the system, or parts thereof, should be integrated into the standard Army system along with ancillary recommendations related thereto.

B. Task Breakout. Task 3, encompassing Phase II, (as identified in the Arthur Young proposal and subsequently referred to in the study workplan submitted in conjunction with Phase I) consists of nine sub-tasks as follows:

3.1 Develop a Detailed Phase II Workplan Based on the Phase I Decision. This document constitutes the Phase II Workplan and includes the calendar of key events and proposed travel schedule.

3.2 Establish measures of merit and analysis criteria. Our evaluation and analysis of ACC will be in terms of performance, relative economy, and the transition to and survivability during wartime.

- We will evaluate the operating performance of the ACC system against the backdrop of the availability (OR) rates as established by DCA and the performance objectives and management levels established by DA for DSU ASL operation. Additionally, we will compare ACC pipeline performance against standard system objectives and operating performance. We will base our analysis on the following factors:
 - pipeline objectives - order ship time
 - demand accommodation
 - demand satisfaction
 - zero balance with dues-out
 - material release denial rate
We recognize the importance of the availability (OR) rates and its direct bearing on mission readiness in peacetime and sustainability in wartime. We will also make observations concerning audit trails and asset visibility as they impact accountability and internal control.

Our evaluation of relative economy will focus on people, inventory, transportation, and systems. We will use the LEA Evaluation of the CSSF at Fort Ritchie, April 1982, as a model to develop an approach to relative cost factors. We will also make observations concerning the training of the people involved in their supply system and the doctrine on which it is based.

Transition to and survivability during wartime will be judged in terms of whether the ACC system is compatible with established logistics doctrine, i.e., is it postured to make the transition in terms of institutionalization. The vulnerability of the system and its component parts will entail qualitative judgments concerning sites, procedures, transportation and the support of mechanisms associated with the current operation.

3.3 Analyse the ACC system. This will be the execution of sub task 3.2.

3.4 Conduct additional interviews as needed.

As noted in II A3 above, we made contact with 21 organizational elements during Phase I. On the preparation of the work plan for Phase II, and as a logical consequence of the DCSLOG's decision at the end of Phase I, we have determined the need to visit Ft Ritchie, Ft Huachuca, Ft Monmouth and Ft Gordon, as well as local travel to Ft Belvoir and within the MDW area. This is to examine the ACC system from user/PLL level thru the ASL level to the NICP, as well as to observe the doctrine and training aspects in support of the system. We will also re-visit certain of those persons originally contacted.

3.5 Prepare and Conduct a Briefing 45 days After Start of Phase II. This will be in the form of an in-process review and is tentatively scheduled for O/A 25 July 1984. We have planned the timing of our Phase II travel so as to be compatible with this event.

3.6 Evaluate Against Established Criteria. It is visualized that the mid-course briefing will be held during the analysis portion of the task, but prior to final evaluation. Some fact finding will be conducted following mid-course and we then will be involved in the process of comparing and contrasting in the evaluation process leading to the development of recommendations.

3.7 Develop Recommendations Concerning the ACC System. We will develop specific recommendations to continue, or discontinue and integrate into the standard system, the ACC system or parts of the system. These recommendations will address expected results and the costs and time associated with implementation.

3.8 Prepare and Conduct a Detailed Briefing 90 Days After Start of Phase II. This briefing will present our findings, conclusions and recommendations to the DCSLOG and is tentatively scheduled for O/A 10 September 1984.
3.9 Prepare and Submit a Draft Final Report 15 Days After the Detailed Briefing. The draft final report is tentatively scheduled for submission O/A 24 September 1984. It will document our entire study effort.

C. Time Phasing. See Tab B

D. Travel Plan. See Tab C
PROJECT ORGANIZATION

DA DCSLOG

Contracting Officers Representative

ARTHUR YOUNG & COMPANY

Partner-in-Charge
Henry J. Steininger

PROJECT DIRECTOR
Elton J. Delaune, Jr.

STUDY TEAM
Richard L. West
William E. Eicher
Duane H. Stubbs
Richard G. Trefry

COR
Jay W. Briggs

Army Provided Administrative Support

1. Full time
2. Part time

Tab A

B-7
PROJECT MASTER SCHEDULE

<table>
<thead>
<tr>
<th>TASKS</th>
<th>TIME AFTER 14 May 1984</th>
<th>TIME AFTER EXERCISING OPTION (DAYS), PHASE III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 28 42 56 70 84 98 112 126 134</td>
<td>14 28 42 56 70 84 90</td>
</tr>
<tr>
<td>1 Initiate Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Identify Systems</td>
<td></td>
<td>End Phase I</td>
</tr>
<tr>
<td>3 Analyze and Evaluate Selected Systems (Phase II)</td>
<td>Start Phase II</td>
<td>End Phase II</td>
</tr>
<tr>
<td>4. Analyze and Evaluate Selected Systems (Phase III)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REPORTS AND DELIVERABLES

- Study Work Plan
- Scheduled Briefings
- Draft Final Reports
- Biweekly Statements

First Biweekly 14 Days after Start of Phase II
TRAVEL PLAN - PHASE II

Week of 18 June 1984 Ft Ritchie
- 2 people/1 day
- no overnight
- POV

Week of 25 June 1984 Ft Huachuca
- 2 people/3 days
- Commercial air
- rental car
- accommodations for 2 nights

Week of 9 July 1984 Ft Monmouth
- 2 people/2 days
- Commercial air
- rental car
- accommodations for 1 night

Week of 6 Aug 1984 Ft Gordon
- 2 people/2 days
- Commercial air
- rental car
- accommodations for 1 night

Week of 13 Aug 1984 Ft Belvoir, MDW
(Local travel as required)

Purpose: To evaluate the USACC supply system from the PLL through ASL to NICP level, and the doctrine and training in support of it.
USACC LOGISTICS

PUTS IT ALL TOGETHER

- LOC
- ILS
- LEASE COMM
- CONTR ADJ
- PROCUREMENT
- SUPPLY
- ASL/PLL
- MAINTENANCE
- TMDE
- TRANSPORTATION
- MMCT
- CALIBRATION
- ASR
- SERVICES
SLIDE 1 - ON

(DCSLOG PUTS IT ALL TOGETHER)

GREETINGS

THIS BRIEFING DESCRIBES THE USACC LOGISTICS SYSTEM WHICH SUPPORTS THE WORLDWIDE COMMUNICATIONS ACTIVITIES OF THE COMMAND.

SLIDE 1 - OFF
USACC LOGISTICS FUNCTIONS

- MAINTAIN ALL ASSIGNED ARMY COMMUNICATIONS ABOVE CORPS LEVEL. ARMY'S PART OF THE DCS, BASE COMMUNICATIONS, AND ARMY ATC FACILITIES.

- OPERATE A DEDICATED RETAIL LOGISTICS SUPPORT SYSTEM FOR C-E SYSTEMS AND EQUIPMENT ORGANIC TO USACC.

- PROVIDE RETAIL COMSEC LOGISTICS SUPPORT TO OVERSEAS ARMY COMPONENT COMMANDS, UNIFIED COMMANDS, AND ALLIED FORCES WHERE APPROPRIATE.
SLIDE 2 - ON

(USACC LOGISTICS FUNCTIONS)

THIS COMMAND PROVIDES C-E LOGISTICS SUPPORT DESCRIBED IN ARMY REGULATIONS AND FIELD MANUALS. THE THREE FUNCTIONS SHOWN ON THIS SLIDE, EXTRACTED FROM AR 10-13, ARE THE BASIS FOR OUR ESTABLISHMENT AND ORGANIZATION. THE SECOND BULLET IS THE EXACT WORDING OF THE REGULATION. USACC PRIMARILY MAINTAINS C-E SYSTEMS FOR WHICH WE ARE THE SOLE USER; BUT, WE DO HAVE COMMON C-E SYSTEMS THAT ARE MOSTLY SUPPORTED BY THE HOST COMMAND. THE THIRD BULLET WILL CHANGE AS DECISIONS ARE MADE FOR THE IMPLEMENTATION OF THE COMSEC LOGISTICS REVIEW. USACC WILL RETAIN RESPONSIBILITY TO SUPPORT THIS COMMAND’S COMSEC SYSTEMS DEPLOYED TO OTHER ARMY USERS.

SLIDE 2 - OFF
SLIDE 3 - ON

(USACC LOGISTICS STRUCTURE)

THIS SLIDE PROVIDES AN OVERVIEW OF USACC NON-COMSEC LOGISTICS ORGANIZATIONS. I WILL COVER THE COMSEC ORGANIZATIONS LATER IN THE BRIEFING.

(PAUSE)

IN CONUS WE HAVE A DIRECT EXCHANGE AND MAINTENANCE ACTIVITY HERE AT FORT HUACHUCA, AN AREA MAINTENANCE FACILITY AT FORT RUCKER, ALABAMA; AND THE 256TH SIGNAL COMPANY, ALSO LOCATED AT FORT RUCKER. IN EUROPE WE HAVE AN AREA MAINTENANCE AND SUPPLY FACILITY IN GERMANY AND A FORWARD AREA SUPPORT TEAM IN ITALY. IN THE PACIFIC WE HAVE AN AREA MAINTENANCE AND SUPPLY FACILITY (LOCATED IN OKINAWA), WITH A DETACHMENT IN KOREA, AND THE 257TH SIGNAL COMPANY WHICH OPERATES FORWARD AREA SUPPORT TEAMS IN KOREA. I WILL DISCUSS THE MISSIONS OF THESE ORGANIZATIONS IN MORE DETAIL AS I GO ALONG.

SLIDE 3 - OFF
<table>
<thead>
<tr>
<th>USACC SYSTEMS</th>
<th>% AVAILABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIOS (DCS)</td>
<td>> 97. - 99.5</td>
</tr>
<tr>
<td>MICROWAVE (DCS)</td>
<td>> 99.5</td>
</tr>
<tr>
<td>TROPOSCATTER (DCS)</td>
<td>> 99.5</td>
</tr>
<tr>
<td>CABLE/LANDLINE (DCS)</td>
<td>> 99.0</td>
</tr>
<tr>
<td>SATELLITE TERMINALS (DCS)</td>
<td>> 99.5</td>
</tr>
<tr>
<td>AUTODIN (DCS)</td>
<td>> 99.5</td>
</tr>
<tr>
<td>AUTOVON (DCS)</td>
<td>> 99.9</td>
</tr>
<tr>
<td>AUTOSEVOCOM (DCS)</td>
<td>> 99.5</td>
</tr>
<tr>
<td>ATC</td>
<td>> 95.0</td>
</tr>
<tr>
<td>OTHER NON-DCS</td>
<td>> 94. - 99.8</td>
</tr>
</tbody>
</table>
SLIDE 4 - ON
(AVAILABILITY REQUIREMENTS)

THE COMMAND OPERATES AND MAINTAINS VITAL NATIONAL AND ARMY COMMUNICATIONS LINKS WORLDWIDE. IT IS ESSENTIAL THAT OUR LOGISTICS SUPPORT BE HIGHLY RESPONSIVE IN ORDER TO ACHIEVE THE HIGH AVAILABILITY STANDARDS DIRECTED BY THE DEFENSE COMMUNICATIONS AGENCY AND BY TRADOC. THE WIDE RANGE AND TYPES OF COMMUNICATIONS EQUIPMENT SUPPORTED IN THE BASE COMMUNICATIONS SYSTEM, DEFENSE COMMUNICATIONS SYSTEM, ECHELONS ABOVE CORPS, AND THE ARMY AIR TRAFFIC CONTROL FACILITIES, COUPLED WITH THE HIGH AVAILABILITY STANDARDS, REQUIRE INTENSIVE LOGISTICS MANAGEMENT.

SLIDE 4 - OFF
HQ USACC
OFFICE OF THE DCSLOG ORGANIZATION

DCSLOG

LOGISTICS SUPPORT DIVISION

LOGISTICS OPERATIONS DIVISION

LOGISTICS DEVELOPMENT DIVISION

TRANSPORTATION OFFICE
LOG SYSTEMS AUTOMATION OFFICE
FOOD SERVICE
ADMINISTRATIVE OFFICE

SUPPLY BRANCH
MAINTENANCE BRANCH

INTEGRATED LOG SUPPORT BRANCH
LOG DEVELOPMENT AND PROGRAM MANAGEMENT BRANCH
SLIDE 4 - ON

(OFFICE OF THE DCSLOG ORGANIZATION)

THE OFFICE OF THE DCSLOG IS AUTHORIZED 66 PEOPLE, ORGANIZED INTO THREE DIVISIONS. THE LOGISTICS SUPPORT DIVISION IS RESPONSIBLE FOR TRANSPORTATION, LOGISTICS SYSTEMS AUTOMATION, FOOD SERVICE AND THE DCSLOG ADMINISTRATIVE OFFICE. THE OPERATIONS DIVISION IS DIVIDED INTO TWO FUNCTIONAL BRANCHES, SUPPLY AND MAINTENANCE. THE THIRD DIVISION IS THE LOGISTICS DEVELOPMENT DIVISION, RESPONSIBLE FOR INTEGRATED LOGISTICS SUPPORT AND THE DEVELOPMENT OF LOGISTICS CONCEPTS AND SYSTEMS.

(PAUSE)

I WOULD NOW LIKE TO GO INTO EACH DIVISION IN DETAIL.

SLIDE 4 - OFF
OFFICE OF THE DCSLOG, HQ USAACG

LOGISTICS SUPPORT DIVISION

TRANSPORTATION OFFICE
 VEHICLE MANAGEMENT
 TRANSPORTABILITY PLANNING
 FREIGHT MOVEMENT
 PERSONAL PROPERTY & TRAVEL

LOG SYSTEMS AUTOMATION OFFICE
 AUTOMATION OF SUPPLY/MAINTENANCE OPERATIONS (TACTICAL/NONTACTICAL)
 LOGISTICS OFFICE AUTOMATION

ADMINISTRATIVE OFFICE
 INTERNAL OFFICE SUPPORT

FOOD SERVICE
SLIDE 5 - ON
(LOGISTICS SUPPORT DIVISION)

THE LOGISTICS SUPPORT DIVISION IS AUTHORIZED A LIEUTENANT COLONEL DIVISION CHIEF, TWO
ENLISTED MEN, SIX ACTION OFFICERS AND ONE SECRETARY. THESE PEOPLE PERFORM THE MANAGEMENT
TASKS LISTED ON THIS SLIDE.

(PAUSE)

THE FOOD SERVICE FUNCTION IS UNUSUAL. MANY OF OUR 1400 SITES HAVE THEIR OWN DINING
FACILITIES AND BECAUSE THEY ARE RELATIVELY SMALL, WE HAVE BEEN WORKING CLOSELY WITH THE
SOLDIER SUPPORT CENTER TO DEVELOP STANDARD SMALL KITCHENS FOR USE BY THE ARMY.

SLIDE 5 - OFF
OFFICE OF THE DCSLOG, HQ USACC

SUPPLY BRANCH

LOGISTICS OPERATIONS DIVISION

COMMAND LOGISTICS REVIEWS
SUPPLY POLICY
LOGMIS
COMMAND SUPPLY ASSISTANCE
HAZCONS

MAINTENANCE BRANCH

TMDE MANAGEMENT
MAINTENANCE POLICY
RELIABILITY, AVAILABILITY, MAINTAINABILITY
MAINTENANCE EVALUATION TEAM
(LOGISTICS OPERATIONS DIVISION)

THE LOGISTICS OPERATIONS DIVISION PROVIDES STAFF SUPERVISION OVER THE DAY TO DAY LOGISTICS OPERATIONS OF THE COMMAND. IN ADDITION, THE SUPPLY BRANCH SUPERVISES THE COMMAND LOGISTICS REVIEW PROGRAM OF USACC. THEY ALSO PROVIDE COMMAND ASSISTANCE IN FINDING URGENTLY NEEDED REPAIR PARTS. THE MAINTENANCE BRANCH SUPERVISES THE MANAGEMENT OF THE TEST, MEASUREMENT AND DIAGNOSTIC EQUIPMENT PROGRAM OF USACC. WE NOT ONLY DEPEND ON TMDE FOR MAINTENANCE ACTIVITIES, BUT IT IS CRITICAL TO THE DAY TO DAY OPERATION OF OUR COMMUNICATION SYSTEMS.

LOGISTICS OPERATIONS DIVISION HAS A GM-13 CHIEF, TWO OFFICERS, THREE WARRANT OFFICERS, FIVE ENLISTED MEN, SIXTEEN CIVILIAN ACTION OFFICERS AND FOUR CLERICAL STAFF.

SLIDE 6 - OFF
OFFICE OF THE DCSLOG, HQ USACC

INTEGRATED LOGISTICS SUPPORT BRANCH

LOGISTICS DEVELOPMENT DIVISION

ILS MANAGEMENT
LIFE-CYCLE SUPPORT ANALYSIS
RELIABILITY, AVAILABILITY, MAINTAINABILITY
MONITOR USER TESTS
STUDIES

LOGISTICS DEVELOPMENT AND PROGRAM
MANAGEMENT BRANCH

LOGISTICS POLICY AND DOCTRINE
STOCK FUND MANAGEMENT
AUTHORIZATION DOCUMENT REVIEWS
STUDIES
LOGISTICS PLANNING
CONTINGENCY WAR PLANS
LOGISTICS DEVELOPMENT DIVISION IS AUTHORIZED A GM-14 CHIEF, TWO BRANCH CHIEFS, SIXTEEN CIVILIAN ACTION OFFICERS, ONE COMMISSIONED OFFICER AND THREE SECRETARIES. THE INTEGRATED LOGISTICS SUPPORT BRANCH IS RESPONSIBLE FOR THE LOGISTICS PORTION OF MATERIAL FORCE MODERNIZATION, INSURING THAT NEWLY FIELDED SYSTEMS ARE BACKED UP BY A WELL PLANNED LOGISTICS SYSTEM. THE LOGISTICS DEVELOPMENT AND PROGRAM MANAGEMENT BRANCH IS RESPONSIBLE FOR MANAGEMENT OF THE ARMY STOCK FUND USED BY THE TWO USACC POSTS, FORT HUACHUCA AND FORT RITCHIE, STUDIES, AND THE LOGISTICS ANNEXES OF OPERATIONS PLANS.

THIS CONCLUDES MY BRIEFING. ARE THERE ANY QUESTIONS?

SLIDE 7 - OFF
SLIDE 5 - ON

(OCONUS LEVELS OF SUPPORT)

This describes the logistics support overseas. Site O&M personnel perform maintenance necessary to meet the needs at each site. To support this effort, each site must have the proper type and quantity of repair parts, test equipment, and system documentation. The sites obtain intermediate level support from the area maintenance and supply facilities. The DARCOCM depot system and/or the commodity command supports the AMSFs.

SLIDE 5 - OFF
ONSITE SUPPORT

- MAINTENANCE CATEGORIES
 1. VERY LIMITED.
 2. MODULE REPLACEMENT.
 3. REPAIR OF COMPONENTS.

- SUPPLY - PRESCRIBED LOAD LIST (PLL)
 1. DEMAND SUPPORTED.
 2. NON-DEMAND SUPPORTED.
APPROXIMATELY 1400 USACC SITES ARE ASSIGNED MAINTENANCE RESPONSIBILITY WHICH VARIES FROM VERY LIMITED MAINTENANCE UP TO THE REPAIR OF COMPONENTS. THE CATEGORY OF MAINTENANCE ASSIGNED WILL DETERMINE THE TEST EQUIPMENT AND REPAIR PARTS AUTHORIZED FOR THE SITE. SUPPLY SUPPORT FOR THE SITE CONSISTS OF A PRESCRIBED LOAD LIST MADE UP OF DEMAND SUPPORTED STOCK AND THOSE NON-DEMAND SUPPORTED PARTS NEEDED TO KEEP THE SYSTEM FAIL-SAFE. THE CATEGORY OF MAINTENANCE ASSIGNED TO A SITE IS BASED ON THE SIZE AND MISSION OF EACH SITE.
AUTOSEVOCOM TERMINAL

ORGANIZATIONAL (UNIT)

ON-SITE MAINTENANCE CRITERIA
SLIDE 7 - ON

(ONSITE MAINTENANCE CRITERIA - ORGANIZATIONAL)

ORGANIZATIONAL, OR UNIT MAINTENANCE, WOULD BE ASSIGNED TO A SITE WHICH IS SMALL AND PERHAPS USER OPERATED, SUCH AS AN AUTOSEVOCOM TERMINAL LOCATED IN A MAJOR HEADQUARTERS STAFF OFFICE. IN THIS CASE THE USER WOULD DO NO MORE THAN KEEP THE EQUIPMENT CLEAR AND MAYBE CHANGE THE KEY, REFERRING ALL OTHER MAINTENANCE TASKS TO A SUPPORTING ORGANIZATION.

SLIDE 7 - OFF
DIRECT SUPPORT MAINTENANCE, OR INTERMEDIATE FORWARD, IS NORMALLY AUTHORIZED AT LARGE C-E SITES, SUCH AS MICROWAVE RADIO STATIONS. THESE MUST HAVE A GREATER DEGREE OF SELF-SUFFICIENCY DUE TO THEIR ISOLATED LOCATION AND HIGH RELIABILITY REQUIREMENTS. TEST EQUIPMENT, PARTS, AND DOCUMENTATION ARE AUTHORIZED TO SUPPORT THIS LEVEL OF MAINTENANCE.
AUTODIN SWITCHING CENTER

COMMON MICROWAVE RADIO INSTALLATION

DIRECT SUPPORT (INTERMEDIATE-FORWARD)

AUTOSEVOCOM TERMINAL

GENERAL SUPPORT (INTERMEDIATE-REAR)

ON-SITE MAINTENANCE CRITERIA
LARGE, COMPLEX, AND/OR REMOTE SITES WHICH MUST HAVE THE HIGHEST LEVEL OF SELF-RELIANCE ARE AUTHORIZED TO PERFORM GENERAL SUPPORT MAINTENANCE ON LOCATION. THESE SITES HAVE LARGE QUANTITIES OF EQUIPMENT, PERMITTING ECONOMIES OF SCALE, OR COMPLEX, LOW DENSITIES OF EQUIPMENT, WHICH WOULD NOT JUSTIFY THE ESTABLISHMENT OF AN EXTERNAL SUPPORT CAPABILITY. EXAMPLES ARE AUTODIN SWITCHING CENTERS WITH LOW DENSITIES OF COMPLEX EQUIPMENT OR AN AUTOSEVCOM SWITCH.

SUPPLY SUPPORT IS PROVIDED BY THE SITE PRESCRIBED LOAD LIST, THE PLL. DUE TO LOW DENSITY, HIGH AVAILABILITY REQUIREMENTS, AND CRITICALITY OF THE OPERATIONS, MOST PLL ITEMS ARE NOT NEEDED OFTEN ENOUGH TO MEET NORMAL DEMAND CRITERIA. THESE PLL'S CONSIST PRIMARILY OF MODULES AND PRINTED CIRCUIT BOARDS WHICH CAN BE QUICKLY PLugged INTO THE EQUIPMENT TO RESTORE SERVICE.

SLIDE 9 - OFF
OFFSITE SUPPORT

- AMSF PROVIDES IMMEDIATE LEVEL SUPPORT THROUGH:

 FIXED SHOP OPERATIONS
 FORWARD AREA SUPPORT TEAMS (FAST)
 MOBILE MAINTENANCE CONTACT TEAMS (MMCT)

- AMSF SUPPORTS SITES WITH:

 AUTHORIZED STOCKAGE LIST (ASL)
 DIRECT EXCHANGE (DX)
 OPERATIONAL READINESS FLOAT (ORF)
 GS REPAIR
 PROJECT STOCKS
 TMDE CALIBRATION AND REPAIR

- DARCOM PROVIDES CALIBRATION AND REPAIR OF TMDE OVERSEAS.
OFFSITE SUPPORT IS PROVIDED BY THE AREA MAINTENANCE AND SUPPLY FACILITIES. FORWARD AREA SUPPORT TEAMS TAKE THE AMSF FIXED SHOP CAPABILITY INTO REMOTE AREAS SUCH AS ITALY AND KOREA. MOBILE MAINTENANCE CONTACT TEAMS, OPERATING OUT OF THE ‘MSF OR THE FAST, TAKE THE AMSF CAPABILITY DOWN TO THE SITE LEVEL. THE AMSF KEEPS AN AUTHORIZED STOCKAGE LIST TO SUPPORT IN-HOUSE SHOP OPERATIONS AND TO BACK UP THE SITE PLL’S. THE AMSF’S PROVIDE DIRECT EXCHANGE FOR HIGH DEMAND MODULES AND OPERATIONAL READINESS FLOAT END ITEMS AND COMPONENTS. WE USUALLY THINK OF THE AMSF AS PROVIDING GENERAL SUPPORT MAINTENANCE, OR INTERMEDIATE REPAIR. THEY MAINTAIN PROJECT STOCK ACCOUNTS TO SUPPORT INSTALLATION OF NEW SYSTEMS AND THEY COORDINATE DEPOT SUPPORT. THE AMSF’S ALSO HAVE THE CAPABILITY FOR QUICK REACTION LOCAL PROCUREMENT OF NON-STANDARD REPAIR PARTS. THIS DEDICATED SUPPORT IS BACKED UP BY THE DARCOM DEPOT. EQUIPMENT, MODULES, AND PRINTED CIRCUIT BOARDS WHICH CANNOT BE REPAIRED BY THE AMSF ARE EVACUATED TO THE DEPOT OR TO THE MANUFACTURER, AS APPROPRIATE. EQUIPMENT OVERHAUL AND REBUILD IS PERFORMED BY DARCOM.
THIS IS AN AERIAL PHOTOGRAPH OF THE AMSF IN MANNHEIM, GERMANY.
SLIDE 12 - ON
(USAC(GOCO - AMSF EUROPE)

THIS SHOWS THE AMSF-EUROPE ORGANIZATION. IT IS GOVERNMENT OWNED AND CONTRACTOR OPERATED BY FEDERAL ELECTRIC INTERNATIONAL, INCORPORATED. PRIOR TO 1976 THE AMSF WAS SOLDIER OPERATED, BUT CONTRACTING THIS OPERATION SAVED USAREUR APPROXIMATELY 400 MILITARY COMBAT SPACES. THERE IS WIDESPREAD CONCERN THAT THE CONTRACTOR WILL NOT MAN THE FACILITY DURING HOSTILITIES. THERE IS NO HISTORICAL PRESIDENCE FOR THESE FEARS SINCE CONTRACTORS HAVE ACCOMPANIED US IN ALL PREVIOUS WARS. WE DO HAVE PLANS FOR MILITARY MANNING OF THE AMSF AND THE CONTRACTOR HAS BEEN AN ACTIVE PARTICIPANT IN DEVELOPING THESE PLANS.

SLIDE 12 - OFF
AMSF-EUROPE
SCOPE OF OPERATIONS

CONTRACTOR OPERATED

332 PERSONNEL AUTH
331 PERSONNEL ON HAND

ANNUAL BUDGET
FY 84 (3C) $8.4M

AUTHORIZED STOCKAGE LIST
16,064 LINES

MAINTENANCE WORKLOAD
2,006 ITEMS PER MONTH

DEMAND ACCOMODATION
90%

DEMAND SATISFACTION
85%

DIRECT EXCHANGE SATISFACTION
97%

AS OF MAR 84
NON-TACTICAL & ATC EQUIPMENT SUPPORT
SLIDE 14 - ON

(NON-TACTICAL AND ATC EQUIPMENT SUPPORT)

THIS SHOWS THE FLOW OF LOGISTICS SUPPORT OVERSEAS AND THE INTERFACE WITH THE DARCOM
DEPOT SYSTEM. THE AMSF IS THE HEART OF THE USACC RETAIL LOGISTICS SYSTEM. THE AIR
TRAFFIC CONTROL ACTIVITIES AND USACC FIXED SITES REQUISITION PARTS AND RECEIVE MAINTENANCE
SUPPORT FROM THE AMSF. IN TURN, THE AMSF RECEIVES SUPPLY AND MAINTENANCE SUPPORT FROM
THE DEPOTS. AN EXCEPTION TO THIS FLOW IS THE COMMUNICATIONS SECURITY COMMODITY, WHICH
I WILL COVER PRESENTLY.

SLIDE 14 - OFF
TACTICAL EQUIPMENT SUPPORT

AREA SUPPORT GROUP

THEATER ARMY
AREA COMMAND
GENERAL SUPPORT
(INTERMEDIATE-REAR)

DARCOM
DEPOT SYSTEM

ORGANIC
DIRECT SUPPORT
(INTERMEDIATE-FORWAR)
USACC TACTICAL UNITS, SUCH AS THE 304TH SIGNAL BATTALION, OF THE 1ST SIGNAL BRIGADE, IN KOREA, AND THE 7TH SIGNAL BRIGADE IN GERMANY, OBTAIN BOTH C-E AND NON C-E LOGISTICS SUPPORT FROM THE HOST THEATER. THIS SUPPORT IS PROVIDED BY THE AREA SUPPORT GROUPS OF THE THEATER ARMY AREA COMMAND AND DARCOM PROVIDES THE BACK-UP DEPOT SUPPORT. ALTHOUGH MOST OVERSEAS AIR TRAFFIC CONTROL EQUIPMENT IS TACTICAL, USACC PROVIDES SUPPORT BECAUSE WE ARE THE ONLY USER OF THIS EQUIPMENT.
SLIDE 16 - ON

(USACC CONUS LOGISTICS STRUCTURE)

SLIDE 16 - OFF
THIS IS THE COMSEC LOGISTICS ORGANIZATION. USACC OPERATES EIGHT COMSEC LOGISTICS FACILITIES WORLDWIDE. IN CONUS WE HAVE A DIRECT EXCHANGE AND MAINTENANCE ACTIVITY IN THE PENTAGON. IT SUPPORTS STRATEGIC APPLICATIONS WHICH ARE OPERATED BY THE ARMY. OUR OVERSEAS RESPONSIBILITY IS LARGER, ENCOMPASSING SUPPORT TO THE ARMY COMPONENT COMMANDS. THE NUMBERS IN PARENTHESIS ARE THE NUMBER OF PEOPLE ASSIGNED TO EACH ACTIVITY. THE THEATER COMSEC LOGISTICS SUPPORT CENTER - EUROPE IS LOCATED IN WORMS, GERMANY. IT HAS TWO SUBORDINATE SUPPORT UNITS TO SUPPORT EACH CORPS. THE SUPPORT CENTER IN KOREA SUPPORTS ALL THE UNITS IN KOREA. THE SUPPORT UNITS IN HAWAII, ALASKA, AND PANAMA SUPPORT ARMY UNITS IN THEIR RESPECTIVE AREAS.
SLIDE 18 - ON

(OCONUS COMSEC LOGISTICS)

THIS CONCLUDES THE WORLDWIDE USACC LOGISTICS PORTION OF MY BRIEFING. ARE THERE ANY QUESTIONS BEFORE I PRESENT THE DLSLOG ORGANIZATION BRIEFING?

SLIDE 18 - OFF
APPENDIX C

TRIP REPORTS

<table>
<thead>
<tr>
<th>DATE</th>
<th>LOCATION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 18 June 1984</td>
<td>Fort Ritchie, Maryland</td>
<td>C-2</td>
</tr>
<tr>
<td>2. 25-28 June 1984</td>
<td>Fort Huachuca, Arizona</td>
<td>C-3</td>
</tr>
<tr>
<td>3. 10-12 July 1984</td>
<td>Fort Monmouth, New Jersey</td>
<td>C-4</td>
</tr>
<tr>
<td>4. 20 July 1984</td>
<td>Fort Ritchie, Maryland</td>
<td>C-5</td>
</tr>
<tr>
<td>5. 8-9 August 1984</td>
<td>Fort Gordon, Georgia</td>
<td>C-6</td>
</tr>
<tr>
<td>6. 17 August -</td>
<td>Various ISC installation</td>
<td>C-7</td>
</tr>
<tr>
<td>4 September 1984</td>
<td>detachments (PLL sites)</td>
<td></td>
</tr>
</tbody>
</table>

MEMO

The Arthur Young study team prepared each trip report as a stand-alone document to record observations and findings made during the particular trip concerned. Observations and findings were recorded/documentated as they were known/understood at the time. In isolated cases, observations and findings were modified in subsequent trip reports as a result of new information or perspective on the issue concerned.

C-1
TRIP REPORT

FORT RITCHIE, MARYLAND

18 June 1984

ARTHUR YOUNG AND CO.
1. **PURPOSE OF VISIT:**

 A visit was made to the Central Supply Support Facility at Fort Richie, Maryland in order to gain a first hand overview and description of the mission and functions in support of the 7th Signal Command, USACC. We inquired about the requisition procedure, stockage levels, interface with the wholesale system, distribution/delivery of issue items, and local purchase procedures.

2. **ACTIVITIES VISITED:**

 We visited the Deputy Chief of Staff for Logistics; the Consolidated Property Office (which operates the CSSF) within the Directorate for Industrial Operations (DIO); and the Office of Acquisitions.

3. **DATE OF VISIT:**

 18 June 1984.

4. **NAMES OF PERSONS VISITED/CONTACTED:**

 See Enclosure 1.

5. **NAMES OF TEAM MAKING TRIP:**

 LTG Richard L. West USA,(Ret)
 MG Duane H. Stubbs USA,(Ret)
6. OBSERVATIONS AND FINDINGS:

a. We paid a Courtesy Call on the Acting Chief of Staff and the DCSLOG, 7th Signal Command, and were subsequently given the Command Briefing, the DCSLOG Logistics Briefing, and an overview on the CSSF. An informal presentation was made on acquisition policy and the procedures concerning local procurement.

b. In accordance with para 5z, AR 10-13, the CSSF provides retail supply support for ACC unique CE items to ACC operating units in CONUS, Panama, Alaska, Hawaii and Puerto Rico. The CSSF Authorized Stockage List (ASL) is composed of approximately 8600 lines (June 1984) in support of 138 PLL sites at 122 different locations which have an aggregate of approximately 29,600 lines of Class IX repair parts. An overview of the CSSF is at Enclosure 2.

c. The CSSF was established after a study by Braddock, Dunn and McDonald (BDM), which concluded that a centralized supply facility at Ft Richie and a DX at Ft Huachuca would provide the most responsive retail logistics support for ACC in CONUS. Previously, the CONUS operating system in support of ACC consisted of large PLL's at each CONUS installation which placed requisitions upon the respective Installation Supply Office; however, installations did not stock the largely non-demand supported repair parts to back up the PLL's. Since the majority of the required items were non NSN repair parts for low density, non-standard commercial/off-the-shelf equipments, it resulted in fragmented local purchase efforts throughout CONUS in addition to the large mainly non-demand supported PLL's. The BDM study was concluded in 1974, and the CSSF was established over the 1975-1976 time frame. It was installed on
a test basis and subsequently approved as a result of a USA Logistics Evaluation Agency (LEA) evaluation. It was again validated by LEA in the 1981-82 time frame. The principal factor was that the CSSF provided support to CONUS facilities with an overall average order and ship time OST of 27.93 days versus an OST of 37.69 for the standard system. In addition, the LEA study indicated that the CSSF was cost effective. A copy of the BDM Study and the LEA Evaluation are on file with this team's study documentation.

d. CSSF stocks many items which are not demand supported; some are provided by the wholesale system, but the majority are obtained through local purchase. The Command policy on stockage of non demand supported items is: $1.20 worth or one each for those items $200.00 or under. There is no stockage for items over $200.00. (Note: we subsequently were advised by the ODCSLOG, USA ISC that Headquarters USAISC does not concur with this constraint in the CSSF stockage policy).

e. CSSF Computes OST by manually extracting dates from the document registers at the individual PLL sites. A PLL reduction program is in effect and the aggregate number of lines has been reduced from approximately 50,000 lines in June 82 to approximately 29,600 lines in June 84. In addition, there is a quarterly reconciliation between the PLL sites and their host installations so that the PLL's can identify and drop items stocked by the host installation.

f. The CSSF passes all requests (requisitions) to the wholesale system for demand supported stockage items which they are unable to fill, for direct shipment to the PLL site, as opposed to high priority only as in the standard
system. When prescribed demands are recorded for a non stockage item, catalogue support/assignment of a national stock number (NSN) is requested from the wholesale system. To date, the CSSF has experienced approximately a 50% response from the NICP's.

g. The CSSF is integrated with the Consolidated Property Office, and there is a single ASL at the installations level; we were advised that performance statistics (demand satisfaction, etc.) pertain to the entire ASL, and that performance pertaining strictly to the CSSF requires off-line preparation/analysis.

h. The Office of Acquisition (OA) is an independent activity reporting to the Chief of Staff, 7th Signal Command. They receive approximately 500 local purchase requests monthly from the Consolidated Property Office, of which 60% are for the CSSF. Since much of their CSSF local purchases are in support of old, low density NDI items, they have built up an in-depth knowledge of the vendors and the CE commodity. They make use of the Thomas Register, a compilation of dealers and manufacturers of CE items. Courses in procurement are periodically taught on post on a contract basis by Acquisition Management Inc., which is certified by ALMC and the Navy.

i. Currently, the OA is running a test on direct vendor delivery to PLL sites at six installations, but intends to increase it to twenty installations. Payment is on vendor invoice. All other LP deliveries are to Ft Ritchie for reshipment to PLL site, using Parcel Post or United Parcel Service.

7. SUMMARY OR DECISIONS RENDERED:

- ASL at Ft Ritchie is co-mingled.
- All requests for stockage items not filled are passed (not just hi-pri's).
- NICP turns down 50% of requests for cataloging action.
- CSSF personnel perceive themselves as "standard"; they use SAILS; their regulatory guidance is AR 710-2, etc.

8. **RECOMMENDATION OR FOLLOW-ON REQUIREMENTS:**

- Col Beckman, DCSLOG 7th Signal Command, is to provide us with operating statistics and flow diagrams pertaining to requests, requisitions, and delivery of supplies. Current CSSF (Consolidated Property Office, Fort Ritchie) operating supply performance statistics, are at Enclosure #3.
- Our team will next visit Hqs, USAISC, Ft Huachuca for additional study on this subject.

3 Enclosures:

1. Names of persons visited/contacted
2. CSSF overview (charts)
3. Supply performance statistics (Ft Ritchie)
NAMES OF PERSONS VISITED/CONTACTED

COL Koehler Acting Chief of Staff
COL C. Beckman DCSLOG
COL H. Meininger DIC
Mr. D. Hattersly Comptroller
Mr. B. Schwartzman OA
Mr. F. Call ODCSLOG, USACC
Mr. R. Heck ODCSLOG
Mr. J. Gallagher ODCSLOG
Ms. M. Thomas ODCSLOG
Mr. H. Cameron CPA

C-207
CENTRALIZED SUPPLY SUPPORT FACILITY (CSS)

C-2.8
MISSION

OPERATE A DEDICATED RETAIL LOGISTIC SUPPORT SYSTEM FOR
USAISC PECULIAR COMMUNICATIONS - ELECTRONICS SYSTEMS AND
EQUIPMENT IN CONUS, PANAMA, PUERTO RICO, ALASKA AND HAWAI"
RESTRICTIONS

- ONLY SUPPORT WITH REPAIR PARTS EQUIPMENT WHICH USAISC IS THE SOLE OWNER/OPERATOR AT A GIVEN POST, CAMP OR STATION

- DO NOT STOCK REPAIR PARTS THAT ARE COMMON TYPE ITEMS THAT WOULD BE DEMAND SUPPORTED FOR STOCKAGE AT HOST INSTALLATIONS
BACKGROUND

JULY 73 USAISC ASSUMED O & M MISSION FOR NON-TACTICAL C-E SYSTEMS AND EQUIPMENT

- Low density, nonstandard commercial off-the-shelf equipment
- Not supported by Army wholesale system
- Installations did not stock repair parts to back-up the PLL
- Large unit PLL's (10,000)
BACKGROUND

June 74 Braddock, Dunn and McDonald Study

- Conclusion: Centralized system could provide increased efficiency and responsiveness
- Recommendation: Implement a centralized system of supply support
BACKGROUND

SEP 75 HQDA APPROVED ESTABLISHMENT OF CSS AT FT. RITCHIE AND DX AT
 FT. HUACHUCA FOR A ONE YEAR TRIAL

JUN 76 - JUN 77 CSS ESTABLISHED (PHASED IN)
 . 42,000 LINE ASL

JUN 78 HQDA APPROVED CONTINUATION BASED UPON USALEA EVALUATION
BACKGROUND

SEP 80 - MAR 81 ARMY AUDIT AGENCY REVIEW

- COST AND OPERATIONAL OBJECTIVES NOT ACHIEVED
- SUPPORT NOT SIGNIFICANTLY IMPROVED (35 DAYS OST)
- DUPLICATES EXISTING SUPPORT SYSTEMS
- RECOMMEND DISCONTINUE CSS

APR 81 DA NONCONCURRED

- PREMATURE
- NEED TO EVALUATE AGAINST WHOLESALE SYSTEM FOR RESPONSIVENESS, COST EFFECTIVENESS, AND OVERALL CUSTOMER SUPPORT
BACKGROUND

JUL 81 - APR 82 USALEA EVALUATION

- CSS IS COST EFFECTIVE
- UNIT PLL'S REDUCED BY 80 PERCENT
- OSTD 28 DAYS VERSUS 38 FOR STANDARD SYSTEM
- PROCUREMENT OF PART NUMBERED LINES 40 - 45 DAYS
 VERSUS 90 - 120 FOR CECOM
- HIGH DEMAND SATISFACTION

JUL 82 DA APPROVED CONTINUATION
<table>
<thead>
<tr>
<th>PERIOD COMPUTED</th>
<th>CSSF</th>
<th>HOST</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARLY 1974</td>
<td>N/A</td>
<td>47.0</td>
</tr>
<tr>
<td>1 JAN - 30 SEP 81</td>
<td>27.9</td>
<td>37.7</td>
</tr>
<tr>
<td>1 DEC 81 - 31 MAY 82</td>
<td>20.8</td>
<td>35.8</td>
</tr>
<tr>
<td>1 JUL - 31 DEC 83</td>
<td>19.4</td>
<td>39.4</td>
</tr>
</tbody>
</table>
CURRENT STATUS

- IMPROVED OST (19 DAYS VERSUS 39)
- 138 CUSTOMERS PLUS 80 NON-CSS CUSTOMERS
- RESPONSIVE TO EMERGENCY REQUISITIONS
- 8616 ASL LINES ($2,970,000)
- REDUCED UNIT PLL'S
- JUN 82 50,237 LINES
- JUN 84 29,659 LINES

C-2017
TRIP REPORT

FORT Huachuca, Arizona

25-28 June 1984

ARTHUR YOUNG AND CO.
1. PURPOSE OF VISIT:

A visit was made to Fort Huachuca, Arizona to further explore the supply system of the US Army Information Systems Command (formerly USA Communication Command). We were hosted by the USAISC Deputy Chief of Staff for Logistics. Our inquiries covered supply policy, operations, and performance of the Consolidated Supply Support Facility (CSSF) at Ft Ritchie, Md., and the two overseas Area Maintenance and Supply Facilities (AMSF) at Mannheim, Germany and Okinawa. In addition, there were a number of functional areas that were of interest to us, such as funding, training, combat development (doctrine), materiel development (acquisition) and local procurement.

2. ACTIVITIES VISITED:

 a. We visited the Deputy Chief of Staff for Logistics, and received briefings and had discussions with the Principal Assistant for Procurement, and personnel from the Deputy Chief of Staff for Operations. We also toured the DX and maintenance facility which is engaged mainly in the support of printed circuit boards.

 b. We paid a courtesy call on BG Bruce R. Harris, the CG of the Communications Systems Agency and the Communications Electronic Engineering and Installations Agency; he is also the acting DCG of USAISC. We had an exceptionally good exchange with General Harris on a wide ranging discussion that ran the width and breadth of the USAISC command and logistics systems.

 c. We also had in-depth discussions with LTG Clarence E. McKnight, CG of USAISC, and MG(P) Emmett Paige, the CG Designee. While these two discussions were not held at Fort Huachucha because of the duty and travel status of the two individuals concerned, we consider them a part of this trip. General Paige was able to give us his firsthand historical account of the birth of the AMSF system since he was the original PM of the Integrated Wide Band Communication System - Vietnam. The genesis for the concept was a DARCOM (then Army Materiel Command) study, chaired by MG Hugh Foster, in response to a tasking by the DA DCSLOG. The study was released in October 1968. Both Generals (independently) described the ISC environment in terms of NDI: low density, high cost, non-standard, often aging equipment, generally of commercial design.

3. DATES OF VISIT:

 25-28 June 1984

4. NAMES OF PERSONS VISITED/CONTACTED:

 See Enclosure 1

5. NAMES OF TEAM MAKING TRIP:

 LTG Richard L. West USA, (Ret)
 MG Duane H. Stubbs USA, (Ret)
6. OBSERVATIONS AND FINDINGS:

a. We started with the Command Briefing of the worldwide missions and responsibilities of the USAISC. The remaining briefings were informal in nature and afforded the team the opportunity to pursue both specific and general subject areas.

b. Operational availability requirements are, for the most part, established by the Defense Communications Agency (DCA). A representative listing is at enclosure 2. These requirements are structured around a concept known as link availability, with a 99 percent + up-time. Management of the various systems translates into a 15-20 minute window for downtime before it necessitates intensive/crisis action. Scheduled preventive maintenance is by permission only and is not considered downtime. There have been challenges to the availability rates as a driver of the system, but the consensus is that they are valid and that stockage policies, or redundancy, or some other variable in the system must be engineered to meet them. In this regard, alternative models have been developed which link PLL and ASL stockage to availability rates.

c. ISC is both a combat developer and a materiel developer. Their doctrine responsibility encompasses communications in echelons above the Corps (EAC). They interface with TRADOC (Ft Leavenworth, Logistics Center, The Signal School) on doctrine matters, and have an MOU aimed at the development of integrated doctrine for the employment and utilization of communication systems. ISC has the responsibility for FM11-23, Theatre Communications. Their materiel development responsibility is discharged by their subordinate organization, the Communications Systems Agency (CSA). Commander of CSA is also the commander of the USA Electronics Engineering and Installation Agency, and is the PM, DCS (Army).

d. The ISC training responsibility encompasses new equipment training as well as training on CE equipment for which there is no DA training base. In both cases training is for equipment and systems used only by ISC. Generally, ILSI includes a training package by a contractor, either on site or at the contractor's facility. Contractor new equipment training also is used to established the TRADOC base (Ft Gordon Signal School) for follow-on sustaining training. It appears that there is a problem in the coordination required when there is a new equipment or new technology fielded which requires a corresponding re-alignment in the MOS and training structure.

e. A funding diagram and summary review documentation was provided. In CONUS, consumer funds are provided from HQ USAISC to the Consolidated Property Office at Fort Ritchie where interface occurs with STANFINS during the SAILS Cycle. There is no stock fund involvement at the individual PLL site installations. In the two oversea areas, AMSF funding interface is handled by the host command, USARJ and USAREUR, respectively.

f. Although ISC receives the largest volume of wholesale support from the Defense Electronic Support Center (DESC), they consider CECOM to be their principal MICP because of their end items responsibility. The Communication
Systems Agency, which is ISC's major item procurement agency and materiel developer, is co-located with CECOM at Fort Monmouth. The Commander of CSA is the Project Manager for DCS (Army). They perform all of the materiel development functions associated with integrated logistics support and initial provisioning. A problem area cited concerns the Communications Satellite Agency (SATCOMA), which fields new systems (hand off to ISC for operation and maintenance) which we were told never have adequate initial provisioning. ISC ODCSLOG personnel comment was that the Logistics Support Assessment (LSA) input to models for repair parts stockage needed better maintenance engineering because predicted stockage requirements for low density, high cost items was frequently inadequate.

An example was given in reference to AMSF support versus the standard system. The ANTSC-85 and 93 Tactical Satellite Terminals were designed to be supported by the standard system (Germany/Europe). The best the standard system (supply and maintenance through normal channels) was able to do was to keep seven out of twelve in an operating condition. The terminals were shifted to the AMSF with the concurrence of DA DCSLOG, which is able to keep eleven out of twelve in an operating condition. ISC ODCSLOG personnel stated that this was not an unusual circumstance.

Local purchase is handled for the oversea AMSF's by the office of the Professional Assistant for Contracting (PARC), although the oversea commands have both procurement and contract administration authority and capability. Their LP actions constitute about 10-15 percent of their dollar volume but 85-90 percent of the transaction volume. The reciprocal pertains to OPA funded major items. They are very responsive to requirements and have a 24 hour, 7 day a week capability. For example, in the event of a hazardous condition (Haz Con), when a mission essential system is down, the requirement will come into the headquarters by electronic means; PARC LP will initiate purchase action within 4 hours unless stopped by the Supply Management Division. The AMSF's also have local purchase authority for items available on the economy.

Headquarters ISC has a Command Review Logistics Team (CCRT) (ad hoc) which visits every ISC subcommand on an annual basis, and which is instrumental in the PLL development program. They cover the spectrum of supply management, maintenance, provisioning, safety etc and have special emphasis on accountability, especially Bill of Materials (BOM) tracking through the initial fielding and installation process. There have been problems in this area, most owing to a training deficiency in property book operation.

TMDE is centrally managed. A "preferred items list" has been developed which lists the unique equipment to be tested and repaired within ACC facilities. A "base line" of the minimum essential TMDE equipment for ACC maintenance facilities is also used. Identification and fielding of new TMDE items is a part of the ILSP for new equipment; subsequent replacement action is a responsibility of the TMDE Team, Maint Br, ODCSLOG, HQ USAISC. They are also involved in command screening for excess TMDE to satisfy internal (lateral) requirements.

There are two schools of thought within USAISC pertaining to transition to war for the oversea AMSF's. The AMSF in Mannheim is contractor operated by

\[
\begin{align*}
C & = 3.4
\end{align*}
\]
Federal Electric, Inc. The AMSF in Okinawa is a military TDA unit. One theory is that fixed sites are targeted and will be destroyed early on; hence no requirement for a wartime AMSF will exist. The other theory is that reconstitution (Mannheim) will be by: 1) a continuation of the contractor; 2) call to active duty via hip pocket orders of the many retired military personnel within the contractor contingent and augmentation with in-country personnel from the USACEEIA; 3) replace by a National Guard unit organized under draft TOE 11-447, Signal Support Company. It appears that this is currently an undefined, unresolved issue involving doctrine and force development within USAISC. The command is actively working this issue. (Note: In a subsequent meeting with logistics and operations personnel of the Defense Communications Agency, there was no such ambivalence on this subject; it is the DCA view that the requirement will continue to exist.)

1. At the current time, logistical support for Air Traffic Control (ATC) in a wartime environment is an unresolved matter as it pertains to CONUS TOE units. The 256th Signal Support Co. at Fort Rucker is scheduled to deploy with a National Guard ATC group. Currently the 256th performs piece part maintenance (with shop stock) and DX for CONUS based TOE ATC units with back up support from the ASL at Fort Ritchie; however the ASL at Ft Ritchie is co-mingled within the Consolidated Property Office so the actual deployability of the 256th is unclear. We were advised that this issue is being worked by ISC headquarters and the 7th Signal Command.

m. Considerable documentation was provided by various elements of the command. This documentation constitutes valuable source and reference data and cuts across the spectrum organizationally and functionally. In particular, two documents provided an excellent historical insight into the evolutionary development of the USAISC retail logistics system: A history of AMSF Concepts and Doctrines, (a briefing manuscript with accompanying vu-graphs, dated 17 October 1972), and the USACC Implementation Plan for the Establishment of a Centralized Supply Capability at Fort Ritchie and a DX Capability at Fort Huachuca. All documentation is on file with the study team.

7. SUMMARY OF DECISIONS RENDERED:

- ISC is both a combat developer and a materiel developer.
- NDI is the cheapest and fastest way to acquire state-of-the-art technology.
- The pre-planned product improvement concept (P3I) accelerates the acquisition cycle and lowers costs for NDI.
- CSA is a joint ISC - DARCOM organization.
- Low density items require an engineered stockage policy in lieu of demand support.
- Initial training for NDI equipment is generally provided by the contractor.
- Missile launch time is the key driver on availability requirements (99 percent+)
- The high availability rates set by DCA are considered valid by the ISC command structure.
8. RECOMMENDATION OR FOLLOW-ON REQUIREMENTS:

- Our next visits will be to CECOM and CSA at Fort Monmouth, NJ where we will pursue materiel development and acquisition and the wholesale level of support for the ISC supply system.

- We will visit DCA to discuss requirements, availability rates, and the interface with ISC (DCS (Army)).

2 Enclosures:

1. Names of persons visited/contacted
2. Availability requirements
Persons Contacted/Visited

LTG Clarence E. McKnight Commander
MG(P) Emmett Paige Commander (des)
BG Bruce Harris DCG
LTC (P) Gary Wilde DCSLOG
Dr. Forry ODCSLOG
LTC Gooding ODCSLOG
LTC Bobar ODCSLOG

DCSLOG, USAICS BRIEFERS

MAJ Owen Hammett, Acting Chief, Program Management Branch

AMSF Transition to War
AMSF Funds Flow
ATC Logistics

Mr. Earl Brown, GS-12, Logistics Management Specialist

Logistics Doctrine

Mr. John Heilman, GS-12, Logistics Management Specialist

AMSF/FAO Interface

Mr. Joe DiMatteo, GS-12, General Supply Specialist

DX/Repair Operations

Mr. Dick Stepanek, GS-11, Supply Systems Analyst

AMSF Supply Procedures

Mr. Philip Chinn, GM-13, Chief, Supply Branch

NICP Relationships
Order, Ship Time
LCA Relationships
CLRT

CW4 Thomas Chaffee, Chief TMDE Team

TMDE C-3.7

End
DCSLOG, USAICS
BRIEFERS

Mr. D. J. LaBlanc, GS-13, Chief, Maintenance Team
PCB Repair

Mr. George Crocker, GM-13, DCSOPS
New Equipment Training

Mr. John Maliniak, GM-15, Chief, Office of the PARC
Procurement

C-3.8
<table>
<thead>
<tr>
<th>USACC SYSTEMS</th>
<th>% AVAILABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIOS (DCS)</td>
<td>> 97 - 99.5</td>
</tr>
<tr>
<td>MICROWAVE (DCS)</td>
<td>> 99.5</td>
</tr>
<tr>
<td>TROPOSCATTER (DCS)</td>
<td>> 99.5</td>
</tr>
<tr>
<td>CABLE/LANDLINE (DCS)</td>
<td>> 99.0</td>
</tr>
<tr>
<td>SATELLITE TERMINALS (DCS)</td>
<td>> 99.5</td>
</tr>
<tr>
<td>AUTODIN (DCS)</td>
<td>> 99.5</td>
</tr>
<tr>
<td>AUTOVON (DCS)</td>
<td>> 99.9</td>
</tr>
<tr>
<td>AUTOSEVOCOM (DCS)</td>
<td>> 99.5</td>
</tr>
<tr>
<td>ATC</td>
<td>> 95.0</td>
</tr>
<tr>
<td>OTHER NON-DCS</td>
<td>> 94 - 99.8</td>
</tr>
</tbody>
</table>
TRIP REPORT

Fort Monmouth, New Jersey

10-12 July 1984
1. **PURPOSE OF VISIT:**

A visit was made to the US Army Communications and Electronics Command (CECOM) to acquire a firsthand overview and description of the wholesale level of support to the US Army Information Systems Command (ISC). In conjunction with the visit to CECOM, we visited the Satellite Communications Agency (SATCOMA) and the Communications Systems Agency (CSA), also located at Fort Monmouth. Within CECOM, we were principally interested in the operations of the Material Management Directorate which is the National Inventory Control Point (NICP) for CE items in the Army. We specifically pursued materiel acquisition, provisioning, cataloging, and fielding of ISC unique items which are largely nondevelopment (NDI), of commercial design, low density, high cost equipments and systems employed in strategic communications. We also looked into the interface between ISC, CSA, SATCOMA, and CECOM.

2. **ACTIVITIES VISITED:**

We visited Headquarters CECOM and the Material Management Directorate; Headquarters CSA; and Headquarters SATCOMA. We also toured the Satellite Communications Integrated Test Facility operated by SATCOMA which is engaged in the advancement of military satellite communications technology.

3. **DATES OF VISIT:**

10-12 July 1984

4. **NAMES OF PERSONS VISITED/CONTACTED:**

See Enclosure 1.

5. **NAMES OF TEAM MAKING TRIP:**

LTG Richard L. West, USA (Ret)
LTG Richard G. Trefry, USA (Ret)
MG Duane H. Stubble, USA (Ret)

6. **OBSERVATIONS AND FINDINGS:**

a. We paid a courtesy call on BG Robert D. Morgan, CG CECOM. General Morgan discussed issues associated with an NDI environment. We were given the CECOM Command Briefing which presented an excellent overview of how CECOM focuses on the rapid change in the military communications systems and the impact of electronics technology. Enclosure 2 is the manuscript of the Command Briefing.

b. The Material Management Directorate gave us an overview of the NICP with emphasis on wholesale support, cataloging and stockage, provisioning, and total systems fielding. The orientation was on ISC. Enclosure 3 is the NICP briefing. We were particularly interested in the catalog support area because of the large number of nonstandard items in the ISC inventory.

C-4-2
When we visited the CSSF at Fort Ritchie, we were briefed on their local purchase (LP) program, and their efforts to capture history on non-demand supported items so that part numbers could be converted to NSN, and a central management (procurement and stockage at the wholesale level) determination could be made. (The CSSF has a high volume LP operation in support of ISC CONUS operations.) We were advised by the NICP that:

- All maintenance significant items are managed centrally.

- CECOM policy is to process for part number conversion (to NSN) in all cases when there have been 3 demands in 180 days; only when identification is inadequate will NSN request fail, and CECOM averts that they followup off-line with the customer. CECOM will initiate a PN conversion based on demand history provided by the LIF, or upon request of the customer using DA form 1988.

- CECOM will buy (small purchase, off-line) for a part number requisition if $300 or over or a nonstocked NSN requisition if $500 or over. Normally, the item manager provides off-line advice back to the requisitioner to purchase locally if the requirement is below the stated thresholds.

c. We discussed the responsibility for definitive action involving a HAZCON (a hazardous condition within the ISC involving an inoperative strategic communications system of the DCSC or the Air Traffic Control system.) CECOM believes they have this responsibility and provided a flow chart on the subject. This is an area that requires resolution as it is unclear which agency or command has operating and/or coordinating responsibility for a HAZCON. See Encl 4.

d. The Satellite Communications Agency (SATCOMA), an operating element of CECOM, is the Army PM for satellites and satellite terminals, ie satellite communication systems. The programs are all tri-Service. Tactical requirements are received from TRADOC and strategic requirements are received from DCA. In a typical scenario, SATCOMA is the PM, CECOM procures, CEEIA installs, and ISC operates.

- There are significant supply and maintenance problems associated with fixed site satellite equipment currently in the field. Much of it is old; there are terminals in use today which were in the R&D stage in the 1960s (Vietnam War) which were abruptly made operational. Typically, when an old system is scheduled to be phased out, NSA directs that it be kept on line.

- Initial provisioning for NDI poses problems; budget vagaries, tradeoffs, and the imprecision of models to determine parts requirements all impact adversely. It takes about 5 years to stabilize a fielded system and establish a demand supported stockage posture. One of the determinations of the PM concerning NDI logistical support is whether to acquire life time contractor support or to develop an organic capability.

- Satellite communications equipment used in the fixed site, strategic systems typifies the NDI arena - and presents a strong argument for the procedures used in the acquisition process to acquire current technology. If you pursue the normal engineering development process, you incorporate 10-15 year
old technology, and/or you have an 8-10 year delay in fielding a needed system. If you acquire NDI you can field in 2 years or under, you have state of the art technology, and you avoid the costs of engineering, development, technical package preparation, manual writing and publication, etc.

e. CSA performs as the PM for DCS (Army) for strategic (nontactical) telecommunications systems. Their requirements come down through DCA and may originate in Unified Commands, JCS, the Military Departments, or the intelligence community. NDI predominates in their acquisitions, and they field in 2 years or less as opposed to an 8-10 year normal development cycle. They employ a concept described as an Adaptive Acquisition Strategy, which encompasses a permissive interpretation of regulations in order to capture existing and emerging technology. It is bold and imaginative in that the interface with the marketplace is both open and candid: requirements are stated, the timing is announced, and competitors are encouraged to work toward a prototype and demonstration with the payoff being a production contract. The contractor assumes the risk and costs associated with engineering development and the fielded system embodies current technology. CSA is clearly progressive and responsive in this highly volatile, fast moving environment of communications and they are indeed a unique organization. They either buy off-the-shelf equipment, or existing equipment which can be modified for a specific telecommunications system or purpose (pre-planned product improvement).

7. SUMMARY OR DECISIONS RENDERED:

- The NICP is designed to logistically support high density, demand supported equipment; it is not structured to support low density, nonstandard, nondemand supported equipment.

- Electronics technology changes so fast that it quickly outdistances the conventional acquisitions cycle (research, development, engineering, etc).

- The procurement of NDI, either commercial design off the shelf, or one that can be modified easily, is an optimum approach to capture current technology.

- Low density, high cost, high availability equipment operating in the ISC environment (tactical and strategic communications, air traffic control, computer based technology) requires intensive management.

- CECOM projects a 48 percent increase in the number of items managed in the next 5 years.

- The biggest problem of the provisioning process in total systems fielding is insufficient repair parts.

8. RECOMMENDATIONS OR FOLLOW ON REQUIREMENTS:

- We intend to pursue further the interface between the CSSF and the NICP in terms of catalog support, part number conversion (to NSN) requests, and the extent of local purchase at Fort Ritchie. At issue is whether demands are
being recorded, part number conversion is being requested, and central management determination is being made (i.e., does Ft. Ritchie have a closed loop LP program?).

- We will clarify the HAZCON responsibilities.

Enclosures:

1. List of persons visited/contacted
2. Meeting the Challenge of Change (CECOM) w/ in part
3. NICP Overview w/ in part
4. HAZCON Requisition Flow Chart
5. CSA - description w/ in part

\[\text{C - 4.5} \]
Persons Visited/Contacted

BG Robert D. Morgan
COL Edward B. English
Mr. Jack Tolstonog
Mr. Thomas W. Soper
Mr. Jerome D. Ayers
Mr. Robert Schlembach
Ms. Corinse McGhee
Mr. Robert Goldsberry
MAJ(P) Andrew Follmer

COL Charles Lindberg
Mr. William Tobias
Mr. A.J. Consentino

COL Huntly E. Shelton Jr.
Mr. Feliciano Giordano
MAJ Raymond Olszewski
Mr. Ira McNally
Mr. Tom Young
Mr. Max Hitschmann

Ms. P. Lynch
CPT Robert Swackhamer

CG, CECOM
Dep Comptroller, CECOM
Dep Dir, N/CP
Ch, Cat & Prov Div
Ch, Cat & Prov Div
Ch, Cat & Prov Div
Ch, Ground Veh Spt Br

XO, CECOM

CO, SATCOMA
Tech Dir, SATCOMA
Dev Ops, SATCOMA

Dep Cmdr, CSA
Tech Dir, CSA
XO, CSA
Dep, PM Transmission Systems
AO, PM Transmission Systems
Dir of Logistics, CSA

Ch, Protocol, CECOM
Escort Off
NICP (B16) PROFILE

ITEMS MANAGED (FY-84)

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA PRINCIPAL</td>
<td>9,864</td>
</tr>
<tr>
<td>PA SECONDARY</td>
<td>18,434</td>
</tr>
<tr>
<td>STOCK FUND</td>
<td>59,877</td>
</tr>
<tr>
<td>TOTAL</td>
<td>88,175</td>
</tr>
</tbody>
</table>

ANNUAL NICP MISSION PROGRAM MAGNITUDE (FY-84)

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA PRINCIPAL</td>
<td>$111.9M</td>
</tr>
<tr>
<td>PA SECONDARY</td>
<td>$436.8M</td>
</tr>
<tr>
<td>STOCK FUND</td>
<td>$237.7M</td>
</tr>
<tr>
<td>DEPOT OVERHAUL</td>
<td>$217.2M</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$1,003.6M</td>
</tr>
</tbody>
</table>

REQUISITIONS PROCESSED

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY-83</td>
<td>438,242</td>
</tr>
<tr>
<td>FY-84 (PROJ)</td>
<td>460,000</td>
</tr>
</tbody>
</table>
FORCE MODERNIZATION

PROVISIONING DOLLARS

$ MILLIONS

650 600 550 500 450 400 350 300 250

C-48
END ITEM CONTRACT AWARD

- DLSC PRESCREENING OF PROVISIONING PARTS LIST (PPL) BY CONTRACTOR (ASSIGNMENT OF EXISTING NSN'S)
- PROVISIONING CONFERENCE
- CECON RECEIVES PPL FROM CONTRACTOR
- MAINTENANCE ENGINEERING REVIEWS ASSIGNMENT OF CODES FOR MAINTENANCE CONCEPT
- LOAD THE PROVISIONING MASTER RECORD
- HAND OFF TO DMM
MATERIEL MANAGEMENT

- Cataloging Provisioning System - Part Number Screening and Assignment of New NSN's
- File Build-up of NSNMDR
- Requirements Computation (SESAME/ARCSIP)
 - Supply Support Request for Consumable Items
 - Non-Consumable Items Materiel Support Request for Non-Consumable Other Managed Items
 - Condensed Automated Provisioning System
 - Provisioning Items Orders to Contracting Officer
SLAC PROCESS VARIABLES USED IN COMPUTATION

- FAILURE FACTOR
- STANDARD USAGE RATE
- REPLACEMENT TASK DISTRIBUTION
- MAINTENANCE TASK DISTRIBUTION
- OPERATIONAL UNITS OF PROGRAM
- NUMBER OF END ITEMS BEING SUPPORTED AT EACH
LEVEL OF MAINTENANCE
- ORDER SHIP TIME
- TURN AROUND TIME

C-4.13
ACC SPECIAL PROJECTS

- DMM
 - RECEIVES LIST OF SPARE PARTS FROM CSA
 - MANUALLY SCREENS PART NUMBERS FOR EXISTING NSNs
 - ISSUES FUNDED PROCUREMENT WORK DIRECTIVE TO THE DESIGNATED PROCUREMENT OFFICE

- DESIGNATED PROCUREMENT OFFICE
 - PROCURES ON A ONE TIME BASIS ONLY THE INSTALLATION SPARES
ACC SPECIAL PROJECTS

<table>
<thead>
<tr>
<th>FY83</th>
<th>LOCATION</th>
<th>PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FAA</td>
<td>INSTALLATION OF AIR TRAFFIC CONTROL RADAR</td>
</tr>
<tr>
<td></td>
<td>FT HOOD</td>
<td>INSTALLATION TELEPHONE COMMUNICATIONS UPGRADE</td>
</tr>
<tr>
<td></td>
<td>NAVY</td>
<td>AN/FAC-2B</td>
</tr>
<tr>
<td></td>
<td>AIR FORCE</td>
<td>VINSON SECURE VOICE TERMINAL</td>
</tr>
<tr>
<td></td>
<td>FT HUACHUCA</td>
<td>AN/TSC-109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FY84</th>
<th>LOCATION</th>
<th>PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FT HOOD</td>
<td>INSTALLATION TELEPHONE COMMUNICATIONS UPGRADE</td>
</tr>
<tr>
<td></td>
<td>NAVY</td>
<td>AN/FAC-2B</td>
</tr>
<tr>
<td></td>
<td>AIR FORCE</td>
<td>VINSON SECURE VOICE TERMINAL</td>
</tr>
<tr>
<td></td>
<td>AIR FORCE</td>
<td>SECURE CONFERENCE PROJECT</td>
</tr>
</tbody>
</table>
NON DEVELOPMENTAL ITEMS LOGISTICAL SUPPORT

- LIFE TIME CONTRACTORS SUPPORT VS. ORGANIC SUPPORT
 - DETERMINED BY PROJECT MANAGEMENT OFFICE

- ORGANIC SUPPORT REQUIRES:
 - A PROVISIONING PARTS LIST (PPL) FROM THE CONTRACTOR
 - INTERIM CONTRACTORS SUPPORT FOR AT LEAST THE TIME REQUIRED TO PROCESS THE PPL THROUGH THE STANDARD SYSTEM AND ACQUIRE SPARE PARTS

- NON GOVERNMENT CONFIGURATION CONTROL IS A POTENTIAL LOGISTICS PROBLEM
HAZCON REQUISITION FLOW CHART

WORLD WIDE CUSTOMERS

TELEPHONE REGNS

TWX MESSAGES

HAZCON

CHECK AVAILABILITY &
COORDINATE WITH
COMMODITY DIV.
(IM)

SECURE
APPROVAL FOR
ISSUE & LOCATION
OF APPLICABLE
DEPOT

NO STOCK

NO STOCK
AVAILABLE
ITEM PLACED
ON B/O

EXPEDITE SUPPLY ACTIONS

1. EMERGENCY REPAIR
2. EMERGENCY SET
 ASSEMBLY
3. FABRICATION
4. EXPEDITE CURRENT
 CONTRACTS
5. Q-RASH

CONTINUE
TO MONITOR
ALL ACTION TO
EXPEDITE
SHIPMENT

OBTAIN
TELEPHONIC MRO
APPROVAL
INPUT COMPUTER
DOCUMENTATION

CALL DEPOT
TO EXPEDITE
SHIPMENT

PROVIDE
SHIPMENT DATA
TRIP REPORT

FORT RITCHIE, MARYLAND

20 July 1984

ARTHUR YOUNG & CO
1. PURPOSE OF VISIT:

We made a return visit to the Central Supply Support Facility (CSSF) at Fort Ritchie, Maryland to look into unresolved issues that arose between the CSSF and the NICP at CECOM involving catalogue support and local purchase of repair parts; of particular concern is the capture of demand data on part number requisitions to facilitate conversion to NSN. In addition we wished to review certain matters pertaining to their Authorized Stockage List (ASL), the Ft Ritchie role in HA?CONS, and to discuss and obtain a copy of the ISC Asset Report, known as LOGMIS.

2. ACTIVITIES VISITED:

We visited the Chief of Staff, the Deputy Chief of Staff for Logistics, and the CSSF.

3. DATE OF VISIT:

20 July 1984

4. NAMES OF PERSONS VISITED/CONTACTED:

See Encl 1.

5. NAMES OF TEAM MAKING TRIP:

LTG Richard L. West USA (Ret)
LTG Richard G. Trefry USA (Ret)
MG Duane H. Stubbs USA (Ret)

6. OBSERVATIONS AND FINDINGS:

a. We paid a courtesy call on BG John Myers, CG, 7th Signal Command at Fort Ritchie during which we apprised Gen Myers of the status of our study to date. Our discussion with Gen Myers generally paralleled the tenor and philosophy of the other ISC general officers with whom we have spoken. In particular, he hastened to point out the rapid pace of technology change in the communications field today. Additionally, he assured us that Headquarters ISC does, indeed, have definitive transition to war plans covering the AMSF in Mannheim - to include an alternate site as well as personnel retention, replacement and augmentation. He said that he would have the appropriate persons in Ft Huachuca contact us on this subject.

b. While at the CSSF, we confirmed that the Ft Ritchie ASL is totally integrated (except for the 256th Sig Spt Co at Fort Rucker which has been physically segregated for deployability purposes). Performance statistics pertain to the entire ASL, not just the CSSF. Ft Ritchie passes to the NICP all
requisitions for ASL stocked items for which there is no stock on hand; they do not establish due-out to their customers, releasing upon replenishment. (Fort Ritchie supply management personnel believe this to be an elective option of SATL; and the management personnel at CECOM NTCP with whom we discussed this issue were unconcerned. While Ft Ritchie has a very high Demand Satisfaction - in excess of 90 percent - the passing of IPG 3 requisitions does contribute to the high availability rate of ISC fixed site systems).

They do not have visibility per se over that portion of the ASL which supports their mission critical activities (PLL sites) and acknowledged that it would be helpful if a systems architecture for their operation were developed which would enable specific visibility over the CSSF assets.

On a conversation concerning VTABLE, the CSSF personnel voiced alarm over the probable degradation that will occur when Ft Ritchie is cut into the VTABLE system. It appears that VTABLE, a general purpose system, will not fully or efficiently embrace the special purpose system of the CSSF. For example, they now have a local unique program called SAILS/INTERACTIVE which permits "gangpunching" of recurring documents, i.e., changing only the data element that has a change and retaining use of the remainder; VTABLE will require a complete input for each. Also, they are able to shift from one operation to another whereas VTABLE will require a sign off-sign on for each different operation, with time consuming delays. In essence, they fear that their productivity and responsiveness to the customer will be adversely impacted under VTABLE.

At our 18 June 1984 visit to Ft Ritchie, we requested certain data pertaining to the performance of the CSSF. That information has been provided and is at Encl 2. In addition, we requested documentation that describes the methodology used by the CSSF to compute OST. See Encl 3.

c. There is a certain frustration involved in part number (PN) requisitioning activity. There is no standardization or uniformity across the face of the industry in regard to codes or part numbers - a misplaced slash or dash becomes a different part number. Clarifying can be a laborious process.

In pursuit of identifying data, an exchange of correspondence between NTCP and Ft Ritchie can add to the frustration: NTCP requests the Technical Manual (TM) reference for a piece of commercial equipment; CSSF responds back that there is no TM for a piece of commercial equipment, etc.

The procedure involving PN requisitions and local purchase was described. Ft Ritchie has a local catalogue file in their SAILS system (X02) which consists of, among other things, items for LP. Demand is captured, and after three demands in 180 days, a supply control study is generated for ASL stockage. They will also request catalogue support from USACDA via DA Form 1009. Once an SNR is assigned, Ft Ritchie requisitions on the NTCP unless it is coded for local purchase (AAC "L"). CECOM by admission has relatively few "L" coded items; however, it appears that DESC may have a large quantity of low dollar value items coded "L". CECOM does have the dollar threshold for small purchases of noncentrally managed items, and apparently does refer requisitions back to the customer for LP of those items under the threshold.
- Our concern in this area was that perhaps the CSSF had a closed loop in their LP program, and they were buying (to include for ASL stockage) items which would never get into the NSN, central management posture. It appears that Ft. Ritchie is doing an excellent job to overcome difficulties in a somewhat ill-defined area. However, improvements are on the way. There is the MRSA program to extract data pertaining to PN transactions from SAILS at six months intervals, which is an interim program, which provides this information for cataloge purposes. (See Fncl 4). Over the longer range, there is underway now a change to SAILS and DSN that will capture a host of unit level transactions and automatically provide output to the Central Demand Data Bank at LCA. Among the transactions to be captured are LP, PN, DX, warranty, cannibalization, etc.

- We were advised that once an NSN is assigned, the requisition for a nonstocked ASL item is passed to the NICP, unless it is coded for LP. DLA (DSFC-SOF) has a much higher number of items coded LP than CECOM.

d. We were given a copy of LOGMTS (Logistics Management Information System) for the 7th Signal Command. LOGMIS is the TSC asset report for property book items, and is an input to CBS-X. LOGMIS does contain RTCC 1 and RTCC 2 codes, as designated by HODA and the NICP respectively, but the many items of NTDT as well as conventional class VII major items that are components of TSC "non-reportable" systems and items that do not have RTCC codes assigned do not get picked-up into CBS-X. This is why there is no national level asset visibility of the TSC unique items. It appears that LOGMIS could be easily modified, as an input to CBS-X, to provide that asset visibility for the NICPs and HODA (by coding, as applicable, the appropriate items with a RTCC code reflected in CBS-X). See Fncl 5 for a LOGMIS extract.

e. We were given the Ft. Ritchie perspective on HAZCON's, which was similar to that given us by HQs TSC. On any given day, there are 2 to 5 HAZCONS on the books, not all are supply related. A HAZCON requiring supply action is referred for action to the next higher echelon when it cannot be resolved or eliminated at the current operating level, i.e., the PLL site refers to the CSSF; CSSF refers to the NTCP, etc. We were given a flow diagram depicting actions under a HAZCON. See Fncl 6.

7. SUMMARY OF DFCISTIONS RENDERED:

- The ASL at Fort Ritchie is a single, consolidated entity.
- There is no visibility, per se, over that portion of the ASL that supports the CSSF (the ASL back-up for the ISC sites having PLLs).
- LOGMIS is an input to CBS-X, but not all ISC major items (mainly NTDT) have RTCC 1 or RTCC 2 codes that transfer visibility into CBS-X.
- ITABLE will apparently impact adversely on the supply management operation at Fort Ritchie.
- Local purchase requirements are heavy at Fort Ritchie due to the large traffic in part numbered (non NSN) repair parts for ISC unique equipment. There are actions underway by many different players to enhance the procedures involving PN conversion and visibility of the transactions involved.

C-5.4
R. RECOMMENDATIONS OR FOLLOW-UP REQUIREMENTS:

- Fort Ritchie will provide us a flow diagram involving part number requisitions leading to LP, demand for NSN, etc.

- Fort Ritchie will provide us with information pertaining to the internal TSC and external interfaces of LOGMIS.

- The team will next visit the USA Signal School, Fort Gordon, Georgia to look into doctrine and training. We also will visit ISC PLL sites to complete our description of the TSC unique supply system.

Enclosures:

1. Persons Visited/Contacted
2. Information Requested on CSSF
3. Data for Comparison on OS
4. Local Purchase Part Number Demand Data Collection
5. LOGMIS extract
6. HAZCON flow - CSSF
PERSONS VISITED/CONTACTED

BG John Myers
COL Chas Beokman
Mr. P. F. Heck
Ms. Mary Thomas
Mr. H. Cameron
Mr. Preston Fouke

CG 7th Sig Command
A/Chief of Staff
A/DCSLOG
ODCSLOG
CSSF
ODCSLOG

Encl 1

C-5.6
REPLY TO
ATTENTION OF:

ASN-LOG-S

SUBJECT: Information Requested on Centralized Supply Support (CSS)
by DA Contractor (Arthur Young, Assoc.)

HQDA(DALO-SMPS)
ATTN: Jay Briggs
Washington, DC 20310

1. Reference visit of DA contractor team to Fort Ritchie, MD, 18 June 1984
(Richard West (LTG Ret) and Duane Stubbs (MG Ret)).

2. Transmitted herewith is requested information:
 a. Operating Data (TAB A)
 b. CSS Requisition Flow Charts (TAB B)
 c. Message, LOG Center, ATCL-SFA, 041225Z May 84, subject: Status of
 SAILS Secondary Items Performance Report (SIPR) (TAB C)
 d. Message, 7th Signal Command, CCN-LOG-S, 281205Z Oct 82, subject: Unit
 Sup Operations: Personnel Turnover Rate (TAB D)
 e. Supply MOS -7th Signal Command Military Strength (TAB E)

3. The following items were provided the team on 18 June 1984 during the CSS
 briefing:
 a. HQ USACC CSS Implementation Plan
 b. Braddock, Dunn and McDonald Study
 c. LEA Evaluation
 d. CSS Background Slides
 e. Overview of CPA
 f. OA Briefing

C-5.7

Emel 2
ASN-LOG-S
SUBJECT: Information Requested on Centralized Supply Support (CSS)
by DA Contractor (Arthur Young, Assoc.)

4. Requisition and flow charts (examples) are returned at TAB F.

FOR THE COMMANDER:

RALPH E. HECK
DAC
Acting DCSLOG

6 Encl
as

CF: w encl
Cdr, USAISC
(AS-LOG-LD-B)

C-5-8
The following statistics were requested:

1. Operating Statistics

 a. Zero balance with dues out. Total ASL lines at zero balance for the period Dec 83 through May 84 are as follows: (This information was obtained from the *ALB092 Report)

 (1) Dec 1586
 (2) Jan 1337
 (3) Feb 1396
 (4) Mar 2775
 (5) Apr 2464
 (6) May 2317

 ASL lines at zero balance do not include dues out, since unfilled requisitions are passed to wholesale system and are not back ordered.

 b. ASL turbulence. Total ASL lines experiencing turbulence is reflecting actions resulting from **system problem. Information for Dec 83 through May 84 is taken from the *ALB092.

 (1) Dec 4095
 (2) Jan 2151
 (3) Feb 540
 (4) Mar 1588
 (5) Apr 1268
 (6) May 539

 c. MRD denial rate. Total materiel release order denial rate is taken from the *ALB092 for Dec 83 through May 84.

 (1) Dec 87
 (2) Jan 110
 (3) Feb 49
 (4) Mar 8
 (5) Apr 18
 (6) May 11
d. Inventory accuracy. The latest completed inventory on file as reflected on ALL-208 was 29 Mar 82. Overall inventory accuracy was 95.5%. Inventory was conducted last year, however ALL-208, 2 Jun 83 did not compile accuracy level percent.

e. Location survey accuracy. Total locations surveyed (Mar 84) were 17,938. Number of correct locations surveyed were 11,944, for a location survey accuracy of 67%. The percentage of accuracy is due to backlog in deleting locations as result of zero balances.

2. Operating Data. Number end items supported (standard/nonstandard) as of Jun 84, are 6,273. Of these 1,682 have standard LINs assigned and 4,591 are nonstandard commercial type items. (This information was extracted from the LOGIS Data Base.)

3. Number lines on ASL

 a. Total lines on ASL (*ALB092) for the period of Dec 83 through May 84 are as follows:

 (1) Dec 10175
 (2) Jan 8395
 (3) Feb 8551
 (4) Mar 9643
 (5) Apr 8616
 (6) May 8150

 b. Demand supported ASL lines (*ALB092) for the period of Dec 83 through May 84 are as follows:

 (1) Dec 4739
 (2) Jan 4737 56.4
 (3) Feb 4779 55.0
 (4) Mar 4626 48.9
 (5) Apr 4413 51.2
 (6) May 4197 51.5

 c. Nondemand supported ASL lines (*ALB092) for the period of Dec 83 through May 84 are as follows:

 (1) Dec 5436
 (2) Jan 3655

 C-5.10
d. NSN/Part number. Tape scan of SAILS ALC X42 file, 18 Jun 84, revealed the following:

1. NSNs 7644 78.2 50%
2. MPN/MCNS 2134 21.8 50%
3. Total ASL lines 9778

4. Percent and requisition volume of NICP support. This information will reflect passing actions only and does not reflect requisitions filled by CSS. LCA provided the following information for 20 random activities (May 83 to May 84) plus USACC-Panama (1 Nov 83 to 31 May 84)

1. DESC - 4705 84.2 50%
2. CECOM - 884 15.8 50%

5. Request for NSN assignments. Requests for conversion of part numbered lines to NSNs (DA Form 1988) resulted in approximately 50% NSN assignment. MRLA developed a special program in Sep 82 to run local purchase part numbers demanded in SAILS to collect this data.

* ALB092. See Tab C. ALB092 does not reflect accurate data, therefore statistics can be used for trending only.

** ASL drop problem. Mission essential items (in support of unit PLLs) on ASL are converting to SLC "Z" and dropping. ECP U401-021 has been approved and forwarded for corrective action.
When requisitions are received at CSS, the availability of item determines how the requisition flows. Chart B₁ reflects processing through wholesale system for NSN items not on hand. Chart B₂ reflects processing of requisitions for part numbers and NSN that are coded local purchase. Chart B₃ reflects processing requisitions for items (NSN or PN) that are in stock.
CSS FT RITCHIE
REQUISITION FLOW
FOR NON-STOCKED NSNs

USACC ACTIVITY

CSS (SAILS)

DAAS

LCA

ALOC (PANAMA) CCP

USACC ACTIVITY

S9E

B16

NICPs

DEPOT

COMMERCIAL VENDOR

C - 5.13
CSS FT RITCHIE
REQUISITION FLOW
FOR NON-STOCKED PART NUMBERS
OR LOCAL PURCHASE NSNs

CSS ACC
ACTIVITY

CSS
(SAILS)

LOCAL
PURCHASE

CSS
WAREHOUSE

ALOC
(PANAMA)
CCP

USACC
ACTIVITY

C-5, 14
CSS FT RITCHIE
REQUISITION FLOW
FOR STOCKED ITEMS
(NSN/PN)

USACC ACTIVITY

CSS (SAILS)

ALOC (PANAMA)
CCP

CSS WAREHOUSE

USACC ACTIVITY

C-515
RTTUZYUW RUEOAGA0335 1251918 MTNS-UUXX--RUEOANA.1251932 0236
ZNR UIJUXX
R 041225Z MAY 84
FM COR USALOGC FT LEE VA //ATCL-SFA//
TO ATG 6706
DA-RHCSVD
QT
UNCLAS
Q999
SUBJ STATUS OF SAILS SECONDARY ITEMS PERFORMANCE REPORT (SIPR)
A. TM 38-103-15.
B. PHONE CON BETWEEN MR. VANDERGRIFF, DCSLOG, 7TH SIGNAL COMMAND, FT
RITCHIE, MD, AND MR. SHAHARAM, THIS CENTER, SAB, 24 APR 84.
1. REFERENCE A IS THE TECHNICAL MANUAL DESCRIBING THE SAILS SIPR,
PCN ALO-092.
2. REFERENCE B WAS A REQUEST FOR CURRENT STATUS OF THE SAILS SIPR.
3. THE SIPR CURRENTLY PRODUCED IN CYCLE 12/84 IS BEING COMPLETELY
REDESIGNED. THE REVISION IS REQUIRED BECAUSE THE REPORT DATA (ALL
SECTIONS OF THE REPORT) ARE INACCURATE AND AT BEST THE REPORT CAN
ONLY BE USED TO INDICATE VERY GENERAL TRENDS AND CANNOT BE USED FOR
ITS INTENDED PURPOSE, THAT IS PROVIDE MANAGEMENT DATA.
4. THE REVISED SIPR IS CURRENTLY BEING VALIDATED WITH A TENTATIVE
broadcast date in an interim change package (ICP) to software change
5. USALOGC POC IS MR. ROBERT SHADARAM OR MR. MICHAEL CUEIN, AUTOVON
487-1328/2252.
6. LOGISTICS EXCELLENCE STARTS HERE.
QT
#0335
RTTUZYUW RUEOAGA0335 1251918 MTNS-UUXX
SUBJ: UNIT SUP OPERATIONS: PERSONNEL TURNOVER RATE

A. CC-IG (AUG 82) 7TH SIG COMD FINDING C-5.

1. REF ADDRESSED SUP POSITION VACANCIES, TURNOVER RATES, AND IMPACT OF SAME. FINDING FURTHER INDICATED ACTION WAS R2R TO REVIEW CAUSES OF TURNOVER AND TO TAKE ACTION TO ALLEVIATE SAME.

2. BASED ON THE ABOVE, THIS OFC INITIATED A SURVEY OF THE 7TH SIG COMD IN ORDER TO DOCUMENT THE EXTENT OF THE PROBLEM AND CAUSES OF SAME. AS OF THIS DATE, SURVEY HAS PRODUCED THE FOL RESULTS:

 A. DURING THE PERIOD OF JAN 81 TO SEP 82 THIS COMD EXPERIENCED

 CCN-PER
 CCN-FP
 CCN-IG

MR. BROWN, CCH-LOG-S, 5085
27 OCT 82

SIGNED

UNCLASSIFIED

C-5.17
AN OVERALL LOSS OF 62.1 PERCENT OF ITS SUP PERSONNEL.

(1) IN MILITARY AUTHORIZED SUP POSITIONS WE HAVE EXPERIENCED
71.7 PERCENT LOSS. ON THE CIVILIAN SIDE A 51.8 PERCENT LOSS.

(2) THE FOUR LARGE IC'S BREAK DOWN AS FOL: USACC-DARCOM -
80.5 PERCENT, USACC-FORCES - 68.2 PERCENT, USACC-TRADOC - 52.5
PERCENT, USACC-OP COMM - 50.8 PERCENT.

B. TYPES OF LOSSES:

(1) MILITARY - NORMAL PCS/ETS/RETIREMENT.

(2) CIVILIAN:

47.4 PERCENT - PROMOTION AT HOST INSTALLATION
24.6 PERCENT - LATERAL TRANSFER TO HOST INSTALLATION CITING
WORKLOAD AND LACK OF PROMOTION POTENTIAL WITHIN USACC.

15.8 PERCENT - RETIREMENTS

12.3 PERCENT - RESIGNATIONS FROM GOVERNMENT CITING WORKLOAD
AND LOW PAY.

C. FACTORS MOST CITED AS REASONS FOR LOSSES RANKED IN ORDER OR
IMPORTANCE ARE:

(1) LOW GRADE STRUCTURE IN RELATION TO RESPONSIBILITY.

(2) WORKLOAD FOR AT A USACC UNIT IN RELATION TO STAFFING.

(3) LACK OF PROMOTION OPPORTUNITIES WITHIN USACC.
4. SEEMINGLY CONSTANT CHANGES IN DA/USACC SUP POLICY/PROCEDURES.

5. COMPLEXITY OF SUP SYSTEM COMPONDED BY: USACC UNIQUE SYSTEMS, I.E., SOS'S, EDX'S, CSS, FAA, LOG,HIS, ETC.

6. LOW ESTEEM PLACED ON SUP FIELD POSITIONS. LACK OF RECOGNITION/KNOWLEDGE OF THE TECHNICAL SKILLS RQR IN THESE SUP POSITIONS. THIS IS EVIDENT BY THE DISPARITY OF CIVILIAN GRADE STRUCTURE FROM ONE ACTV TO ANOTHER. IT IS FURTHER EVIDENCED BY THE NUMBER OF MILITARY ASSIGNED TO UNIT SUP OPERATIONS WHO DO NOT HAVE A SUP MOS. I.E., PENDING DISCHARGE, CLEARANCE PROBLEMS, EXCESS MOS, ETC.

7. LACK OF TRAINING AND/OR POOR TRAINING. (NOTE RECENT ESTABLISHMENT OF CSAP SHOULD ASSIST IN ALLEVIATING THIS PROBLEM)

3. IT SHOULD BE EVIDENT THAT IN A HIGH TECHNOLOGY COMMAND SUCH AS THE ARMY COMMUNICATIONS COMD, CONTINUITY OF OPERATION CAN ONLY BE ACCOMPLISHED BY A STABLE, HIGHLY SKILLED WORKFORCE IN ALL ELEMENTS OF A FIELD ACTV. SUGGESTED COURSES OF ACTION TO ALLEVIATE THIS TURNOVER PROBLEM ARE AS FOL:

A. MILITARY: THERE DOES NOT APPEAR TO BE A FEASIBLE SOLUTION AT THIS TIME.

B. CIVILIAN:

UNCLASSIFIED

C - 5.19
1. Develop clear lines of progression for SUP career development within USACC and advertise same, i.e., GS 3/4 PLL clerk to GS 11/12 STAFF ACTION OFFICER. This will require identification and/or establishment of key bridging positions, suggested training plans, developmental assignments, etc.

2. Develop/implement central recruiting and/or at least a command-wide advertising system of position vacancies within USACC. This could encompass all fields, i.e., SUP, technician, budget, etc., vacancies.

3. Standardize unit SUP position job descriptions to attempt to standardize position grades from one ACTV to another. Position and pay personnel indicate OPM standards dictate position grade. However, it is obvious from the experience of this command that the determination of which standards are to be applied to a given type of position varies from installation to installation.

4. Develop and apply engineered work standards for typical USACC unit SUP operation to insure proper staffing.

5. Req DA negotiate with OPM to establish/direct which standards will be applied to civilian P20 positions, coupled with a minimum grade level. Req DA reconsider its restrictions on who
UNCLASSIFIED

MAY BE ACCOUNTABLE FOR PROPERTY, I.E., PERMIT SENIOR NCO'S TO BE PB0'S REGARDLESS OF CIRCUMSTANCES.

{61} REVIEW ALL USACC/DA PROCEDURAL REQUIREMENTS TO IDENTIFY AREAS FOR ELIMINATION/SIMPLIFICATION TO REDUCE ADMINISTRATIVE WORKLOAD AT UNIT LEVEL.

4. SOME OF THE ABOVE CITED SOLUTIONS WILL REQUIRE DA APPROVAL, OPM APPROVAL. SOME CAN BE IMPLEMENTED AT MACOM OR MAJOR SUBORDINATE COMMAND LEVEL. HOWEVER, IT IS THE OPINION OF THIS OFC THAT THE SUCCESS OF ANY SOLUTIONS WITHIN THE CONTROL OF THIS COMMAND MUST HAVE USACC WIDE APPLICATION TO BE MEANINGFUL. UNIT SUP OPERATIONS HAVE TRADITIONALLY BEEN A MAJOR PROBLEM AREA TO THIS COMMAND. IT IS OBVIOUS THAT SUP PERSONNEL TURNOVER IS A MAJOR CONTRIBUTING FACTOR TO THIS CONTINUING PROBLEM. REG YOUR HQ TAKE THE LEAD AND PROVIDE NECESSARY COORDINATION/ACTION TO ATTEMPT RESOLUTION.

5. POC THIS OFC IS MR. BROWN, AUTOVON 277-5065.
7TH SIGNAL COMMAND
MILITARY STRENGTH - SUPPLY MOS

Provided by 7th MILPO:

<table>
<thead>
<tr>
<th>Personnel Required</th>
<th>Authorization</th>
<th>On Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76C</td>
<td>64</td>
<td>66</td>
</tr>
<tr>
<td>P</td>
<td>44</td>
<td>57</td>
</tr>
<tr>
<td>V</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>W</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>103</td>
<td>108</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>237</td>
<td>259</td>
</tr>
</tbody>
</table>

C-5.22
TRADOC
REQUISITION AND SHIPMENT FLOW
LOCALLY PROCURED ITEMS

- Requisition Flow
- Purchase Request
+ Purchase Order
- Shipment Flow

C-5, 23
TRANSC
REQUISITION AND SHIPMENT FLOWS
CENTRALLY PROCURED ITEMS

TRANSC
REQUISITION FLOW

- PURCHASE ORDERS

C-5.24
12 July 1984

ASN-LOG

SUBJECT: Data for Comparison of Average Order Ship Time (OST) for the CSSF Versus the Standard System

HQDA(DALO-SMPS)
ATTN: Jay Briggs
Washington, DC 20310

1. Reference telephone conversation between Mr. Duane Stubbs (MG Ret), representing DA contractor Arthur Young, Associates, and Colonel Charles H. Beckman, this headquarters, 9 July 1984, subject as above.

2. The following information requested by referenced telephone conversation is provided:
 a. Copies of document registers from 28 units, previously sampled, were used for comparison of average OST for the timeframe 1 July 1983 through 31 December 1983. The OST average was determined by subtracting the Julian date in the document request number Column A, from the Julian date in the date completed, Column M, totaling the answers and dividing by the number of requests. This same methodology was used for prior samplings.
 b. The type of items analysed for CSSF were Communication-Electronic (CE) repair parts only. The type of items analysed for the host were general in nature and not limited to CE repair parts.

3. Point of contact for this office is Mr. Heck, AUTOVON 277-5505.

FOR THE COMMANDER:

Ralph E. Heck
RALPH E. HECK
DAC
Acting DCSLOG

CF:
Cdr, USAISC (AS-LOG-LD-B)
SUBJECT: Local Purchase Part Number Demand Data Collection

SEE DISTRIBUTION

1. References:

 a. Message DALO-SMP-P, 102041Z Sep 82, subject: Special Program Run on Part Number Demanded Local Purchase Items from SAILS Demand History File.

 b. Fonecon between Mr. Giles, this office, and Mr. Dean Fletcher, FORSCOM, 3 Sep 82, SAB.

 c. Fonecon between Mr. Giles, this office, and Mr. Amos VanBibber, TRADOC, 3 Sep 82, SAB.

2. As stated in reference a, Inclosure 1, the Materiel Readiness Support Activity (MRSA) has been tasked to gather local purchase part number demand data. This data will be used to identify items, being ordered by part number, that qualify for National Stock Number (NSN) assignment. Qualifying part numbers will be provided to the appropriate commodity command for cataloging action. Additionally, it is anticipated that a number of these items will be changed to centralized stockage and thereby reduce reliance on local purchase at the retail level.

3. In order to accomplish the above task, request the SAILS document history files be processed through the programs attached at Inclosure 2 (for the X50ALB file) and Inclosure 3 (for the X59ALB file) with the resulting tape sent to this Activity, ATTN: DRXMD-SS (G1113) and request processing occur prior to the purge of the document history files but no later than 30 Sep 82. Note: March 1983.

4. The card decks should be maintained for future use. It is expected that the document history files will be processed through the utility programs on six month intervals. The next processing action should be in March 1983.
5. This action was coordinated with HQ FORSCOM and HQ TRADOC by references b and c.

6. Points of contact at HPSA for this project are Bob Gilliland, George Giles, or Bob Thompson, DRXMD-SS, AUTOVON 745-3686/3893.

FOR THE COMMANDER:

H. C. JEFFRIES
Chief, Supply Division

3 Incl
as

CF:
Cdr, TRADOC
(AITL-HO) w/o incl
Cdr, FORSCOM
(AFLG-MAS) w/o incl

C-5.27
SUBJECT: Local Purchase Part Number Demand Data Collection

DISTRIBUTION:

Superintendent
United States Military Academy, ATTN: MASU-T, West Point, NY 10996

Commander:

Hq, Presidio of San Francisco, ATTN: Supply & Services Division,
AFZM-DI-SS, Presidio of San Francisco, CA 94129
US Army Chemical Center and Fort McClellan, ATTN: ATZN-DIS, Bldg 241,
Fort McClellan, AL 36205
US Army Garrison, ATTN: Supply Division (Ms. Baumgardner), Bldg 1520,
Fort Detrick, Frederick, MD 21701
Hq, Fort Indiantown Gap, ATTN: ATZN-DI-S, Annville, PA 17003
US Army Aviation Center and Fort Rucker, ATTN: ATZQ-DI-S/S, Fort Rucker,
AL 36362
US Army Field Artillery Center and Fort Sill, ATTN: ATZR-L, Fort Sill,
OK 73503
US Army Transportation Center and Fort Eustis, ATTN: ATZD-DIO-SU, Fort
Eustis, VA 23604
Fort McPherson, ATTN: AFZK-DI, Fort McPherson, GA 30330
Hq, 11th Corps and Fort Hood, ATTN: AFZF-SUP, Fort Hood, TX 76544
13th Corp Support Command, ATTN: AFZF-SC-MAT, Fort Hood, TX 76544
Hq, 7th Signal Command and Fort Ritchie, ATTN: CCNJ-DIO, Fort Ritchie,
MD 21719
Fort Devens, ATTN: AFZD-DIS, Fort Devens, MA 01433
US Army Infantry Center and Fort Benning, ATTN: ATZB-DI-S, Fort Benning,
GA 31905
US Army Air Defense Center and Fort Eliss, ATTN: ATZC-DIS, Fort Bliss,
TX 79916
Hq, US Army Communications Command and Fort Huachuca, ATTN: CCH-IOD,
Fort Huachuca, AZ 85613
Fort Drum, ATTN: AFZS-SI-S, Watertown, NY 13601
US Army Armor Center and Fort Knox, ATTN: ATZK-DI-S, Fort Knox, KY 40121
US Army Training Center and Fort Dix, ATTN: ATZDSU, Fort Dix, NJ 08640
24th Infantry Division and Fort Stewart, ATTN: AFZP-DIS, Fort Stewart,
GA 31313
5th Infantry Division (Mech) and Fort Polk, ATTN: AFZX-DI-G, Fort Polk,
LA 71459
US Army Soldier Support Center and Fort Benjamin Harrison, ATTN: ATZI-DI-S,
Fort Benjamin Harrison, IN 46216
1 Corps and Fort Lewis, ATTN: AFZH-II, Fort Lewis, WA 98433
US Army Training Center and Fort Leonard Wood, ATTN: ATZT-DIS, Fort Leonard
Wood, MO 65473
US Army Training Center and Fort Jackson, ATTN: ATZJ-DIS, Fort Jackson,
SC 29207
Fort George G. Meade, ATTN: AFZL-DI-S, Fort George G. Meade, MD 20755
GRAND-SS

SUBJECT: Local Purchase Part Number Demand Data Collection

DISTRIBUTION (CONT.):

101st Airborne Division and Fort Campbell, ATTN: AFZB-DI, Fort Campbell, KY 42223
US Army Signal Center and Fort Gordon; ATTN: ATZH-DIS, Fort Gordon, GA 30905
4th Infantry Division and Fort Carson, ATTN: AFSZ-C-DI-S, Fort Carson, CO 80913
US Army Quartermaster Center and Fort Lee, ATTN: ATZM-DI, Fort Lee, VA 23801
US Army Engineer Center and Fort Belvoir, ATTN: ATZA-DIS, Fort Belvoir, VA 22060
XVIII Airborne Corps and Fort Bragg, ATTN: AFZC-AA, Fort Bragg, NC 28307
XVIII Airborne Corps and Fort Bragg, ATTN: AFZA-DI, Fort Bragg, NC 28307
7th Infantry Division and Fort Ord, ATTN: AFZJ-DI, Fort Ord, CA 93941
1st Infantry Division and Fort Riley, ATTN: AFZJ-DI-S, Fort Riley, KS 66442
Fort Richardson, ATTN: Supply and Services Division, Fort Richardson, AK 99505
Fort McCoy, ATTN: Supply & Service Division, Fort McCoy, Sparta WI 54656
CAC and Fort Leavenworth, ATTN: ATZL-DIS-CA, Bldg 198, Fort Leavenworth, KS 66027
Fort Sam Houston, ATTN: AFZG-DI-SS, Fort Sam Houston, TX 78236
National Training Center and Fort Irwin, ATTN: AFZJ-DI (Major Ellis), Fort Irwin, CA 92310
Fort Sheridan, ATTN: AFZO-DI-SS, Fort Sheridan, IL 60037
Military District of Washington, ATTN: ANLOG-SM, Cameron Station, Alexandria, VA 22314

C-5.29
SUBJECT: SPECIAL PROGRAM RUN ON PART NUMBER DEMANDED LOCAL PURCHASE ITEMS FROM SAILS DEMAND HISTORY FILE

1. GCSLOG HAS INSTITUTED A PROGRAM WITH DARCOM TO ENSURE ASSIGNMENT OF NATIONAL STOCK NUMBERS TO ALL QUALIFYING ITEMS.

2. AS A PART OF THIS EFFORT DARCOM'S MATERIAL READINESS SUPPORT ACTIVITY (MRS) HAS DEVELOPED A UTILITY PROGRAM TO EXTRACT PART NUMBER DEMAND DATA FROM THE SAILS-EX DOCUMENT HISTORY FILE. YOUR INSTALLATIONS WILL RECEIVE THIS PROGRAM UNDER SEPARATE COVER FROM FCS.

3. IN ORDER TO ENSURE CAPTURING THE MAXIMUM AMOUNT OF HISTORY DATA, YOU SHOULD MAKE EVERY EFFORT TO HAVE YOUR INSTALLATIONS RUN THIS PROGRAM AND RETURN THE TAPES TO MRS AS DIRECTED BY THE MRS COVER LETTER.

4. THE INTENT OF THIS PROGRAM IS TO IDENTIFY PART NUMBERED ITEMS PURCHASED LOCALLY FOR WHICH DEMANDS DO NOT REACH THE WHOLESALE SYSTEM. IDENTIFICATION OF THESE ITEMS, ASSIGNMENT OF NATIONAL STOCK NUMBERS, AND CODING FOR CENTRAL PROCUREMENT SHOULD RESULT IN A SIGNIFICANT DECREASE IN THE LOCAL PURCHASE WORKLOAD AT YOUR INSTALLATIONS.

5. THIS PROGRAM WILL BE RUN AGAIN AT A LATER DATE AND MAY EVENTUALLY BE STANDARDIZED. IN LIGHT OF THIS, YOU SHOULD MAKE EVERY EFFORT TO ENSURE THAT YOUR DATA BASES REFLECT AS ACCURATE INFORMATION AS POSSIBLE FOR THESE ITEMS IN THE FUTURE, I.E., MCF/PH IF AVAILABLE, AND ACCURATE VEDOC AND M4 CATS WHEN AVAILABLE.

6. TEST RUNS AT FORTS BRAGG, CARSON, KNOX AND RILEY INDICATE RUN TIME AT A MAXIMUM OF 1 HOUR AND 45 MINUTES WITH MINIMAL RESOURCE IMPACT.

7. POC AT HODA IS MR. MILLIKEN, AV 227-1542.

BT #0017 WWWW
SUBJECT: Local Purchase Part Number Demand Data Collection

1. Letter, DRXMD-SS, NRSA, 14 Sep 82, SAB, requested addressees process their document history files through the special extract program which was furnished with the letter and to provide NRSA a tape of the transactions. These tapes were consolidated by MRSA with tapes from other installations and although MRSA had to run its programs prior to receipt of all the tapes, 4106 part numbers were identified as candidates for National Stock Number (NSN) assignment. These part numbers have been provided to the appropriate commands for cataloging action.

2. As a continuation of this program, request the X50ALB and X59ALB files be processed through the extract programs which were provided with the MRSA letter mentioned above. If these card decks are not usable, a duplicate deck can be obtained through the MRSA POC below. Request the output tapes be sent to this activity, ATTN: DRXMD-SS (Gilliland) by 1 Apr 83.

3. Point of contact for this action is Mr. Bob Gilliland, DRXMD-SS, AUTOVON 745-3686/3893.

FOR THE COMMANDER:

C. C. JEFFRIES
Chief, Supply Division

CF:
Cdr, TRADOC
(ATTJ-MD)
Cdr, FORSCOM
(AFSC-MAS)
DISTRIBUTION:

Superintendent
United States Military Academy, ATTN: MASU-T, West Point, NY 10996

Commander:
Hq, Presidio of San Francisco, ATTN: Supply & Services Division,
AFZM-DI-SS, Presidio of San Francisco, CA 94129
US Army Chemical Center and Fort McClellan, ATTN: ATZM-DI-S, Bldg 241,
Fort McClellan, AL 36205
US Army Garrison, ATTN: Supply Division (Ms. Baungardner), Bldg 1520,
Fort Derick, Frederick, MD 21701
Hq, Fort Indiantown Gap, ATTN: ASZC-DI-S, Annville, PA 17003
US Army Aviation Center and Fort Rucker, ATTN: ATZQ-DI-S/S, Fort Rucker,
AL 36362
US Army Field Artillery Center and Fort Sill, ATTN: ATZR-L, Fort Sill,
OK 73903
US Army Transportation Center and Fort Eustis, ATTN: ATZF-DI-D/S, Fort
Eustis, VA 23604
Fort McPherson, ATTN: AFZK-DI, Fort McPherson, GA 30330
Hq, III Corps and Fort Hood, ATTN: AYZF-SUP, Fort Hood, TX 76544
18th Corps Support Command, ATTN: AFZF-SC-MAT, Fort Hood, TX 76544
Hq, 1st Signal Command and Fort Ritchie, ATTN: CCHK-DI-10, Fort Ritchie,
MD 21619
Fort Devens, ATTN: AFZD-DI-S, Fort Devens, MA 01433
US Army Infantry Center and Fort Benning, ATTN: ATZE-DI-S, Fort Benning,
GA 31905
US Army Air Defense Center and Fort Bliss, ATTN: ATZC-DI-S, Fort Bliss,
TX 79905
Hq, US Army Communications Command and Fort Huachuca, ATTN: CCHK-IOD,
Fort Huachuca, AZ 85613
Fort Drum, ATTN: AFZS-SI-S, Watertown, NY 13601
US Army Armor Center and Fort Knox, ATTN: ATZK-DI-S, Fort Knox, KY 40121
US Army Training Center and Fort Dix, ATTN: ATZD-DI-S, Fort Dix, NJ 08540
24th Infantry Division and Fort Stewart, ATTN: ATZP-DI-S, Fort Stewart,
GA 30433
5th Infantry Division (Mech) and Fort Polk, ATTN: AFZK-DI-G, Fort Polk,
LA 70639
US Army Soldier Support Center and Fort Benjamin Harrison, ATTN: ATZI-DI-S,
Fort Benjamin Harrison, IN 46216
I Corps and Fort Lewis, ATTN: AFZI-DI-S, Fort Lewis, WA 98433
US Army Training Center and Fort Leonard Wood, ATTN: ATZT-DI-S, Fort Leonard
Wood, MO 65473
US Army Training Center and Fort Jackson, ATTN: ATZC-DI-S, Fort Jackson,
SC 29107
Fort George G. Meade, ATTN: AFZI-DI-S, Fort George G. Meade, MD 20755
For Army Divisions and Fort Carson, ATTN: AFZG-DI-S, Fort Carson, CO 80913

US Army Quartermaster Center and Fort Lee, ATTN: ATZM-DI, Fort Lee, VA 23801

US Army Engineer Center and Fort Belvoir, ATTN: ATZM-DI, Fort Belvoir, VA 22060

US Army Corps and Fort Bragg, ATTN: AFZM-DA, Fort Bragg, NC 28307

US Army Corps and Fort Bragg, ATTN: AFZM-DI, Fort Bragg, NC 28307

1st Infantry Division and Fort Riley, ATTN: AFZM-DI-S, Fort Riley, KS 66442

Fort McCoy, ATTN: Supply & Service Division, Fort McCoy, Sparta, WI 54656

CAB and Fort Leavenworth, ATTN: ATZL-DI-CA, Bldg 198, Fort Leavenworth, KS 66760

Fort Sam Houston, ATTN: AFZG-DI-SS, Fort Sam Houston, TX 78236

National Training Center and Fort Irwin, ATTN: ATZG-DI (Major Ellis), Fort Irwin, CA 92310

Fort Sheridan, ATTN: AFZG-DI-SS, Fort Sheridan, IL 60337

Military District of Washington, ATTN: ANLOC-EM, Cameron Station, Alexandria, VA 22314

C-5 33
TABLE 3-1. INSTRUCTIONS FOR COMPLETING USACC FORM 175-R TRANSACTION L21

<table>
<thead>
<tr>
<th>DATA ELEMENTS</th>
<th>CARD COLUMNS</th>
<th>INSTRUCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIC</td>
<td>1-3</td>
<td>This entry is printed on the worksheet.</td>
</tr>
<tr>
<td>UIC</td>
<td>4-9</td>
<td>Card column 4 - This entry is printed on the worksheet. Card columns 5-9 - Enter UIC from property book. Use zeros. Do not use imbedded blanks or special characters.</td>
</tr>
<tr>
<td>SITE</td>
<td>10-13</td>
<td>Enter site code which must already be in data base and match site designation of LOGMIS output. Right-justify. Do not use imbedded blanks or special characters.</td>
</tr>
<tr>
<td>NSN/MCN</td>
<td>14-26</td>
<td>Enter NSN/MCN from the CDSS. Left-justify.</td>
</tr>
<tr>
<td>SERIAL NUMBER</td>
<td>27-36</td>
<td>Enter the serial number. Right-justify. When there is no serial number, enter an "X" in card column 36 and leave card columns 27-35 blank. Do not zero-fill.</td>
</tr>
<tr>
<td>QUANTITY</td>
<td>37-40</td>
<td>Enter quantity. Right-justify. It must be numeric and greater than zero.</td>
</tr>
<tr>
<td>TA TYPE</td>
<td>41</td>
<td>Enter one of the following TPA codes. See TA codes for valid combinations of TA and TPA codes.</td>
</tr>
<tr>
<td>TA TYPE</td>
<td>42</td>
<td>Enter one of the following TA codes:</td>
</tr>
</tbody>
</table>

- **Type**
- **Property Account**
 - 0 - Authorized by TAADS TOE, MTOE, or TDA with future effective date (TED). |
 - 1 - Authorized by TAADS TOE or MTOE. |
 - 2 - Authorized by TAADS TDA. |
 - 3 - Authorized by CTA. |
 - 4 - Authorized reserve component units by TAADS TOE, MTOE, or TDA but items are physically located at equipment concentration sites or annual training equipment pools. |
 - 5 - Authorized stockage level (ASL). |
 - 6 - Operational readiness float (ORF). |
 - 7 - Component end items. |
 - 8 - Unauthorized onhand items not authorized under TA codes 1-7 or 9 and not issued as a substitute. |
 - 9 - Authorized by training manual (TM), Army regulation (AR), letter, or other special authorization pending inclusion in appropriate TOE, MTOE, TDA, or CTA.
TABLE 3-5. INSTRUCTIONS FOR COMPLETING USACC FORM 179-R (CONTINUED)

<table>
<thead>
<tr>
<th>DATA ELEMENTS</th>
<th>CARD COLUMNS</th>
<th>INSTRUCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBJECT UIC</td>
<td>37-42</td>
<td>Enter subject UIC from the command UIC. Use zeros. Do not use blank spaces or special characters.</td>
</tr>
<tr>
<td>SUBJECT SITE</td>
<td>43-46</td>
<td>Enter subject site. Right-justify. It is mandatory if the inquiry code is 01, 06, 11, or 16. Do not use imbedded blanks or special characters.</td>
</tr>
<tr>
<td>LIN</td>
<td>47-52</td>
<td>Enter LIN. It is mandatory if the inquiry code is 11 or 12. It must be one of two formats:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st position - Alphabetic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-6 positions - Numeric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-5 positions - Numeric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6th position - Alphabetic</td>
</tr>
<tr>
<td>NA</td>
<td>53-65</td>
<td>Leave blank.</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>Enter one of the following ECIC. It is mandatory if the inquiry code is 16 or 17.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- A - Air Traffic Control (ATC) items defined as "All Navigational Aids and Approach Control Items."</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- B - Administrative motor vehicles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- C - Special design vehicles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- D - Tactical use vehicles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- E - Nontactical radios (NTR).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- F - Transportable end items.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- G - Teletypewriter end items.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- H - Defense Communications System (DCS) microwave radio end items.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- I - Not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- J - Dial central office equipment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- K - TMDE items.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- L - Weapons.</td>
</tr>
<tr>
<td>NA</td>
<td>67-73</td>
<td>Leave blank.</td>
</tr>
<tr>
<td>YEAR</td>
<td>74-75</td>
<td>Enter the last two digits of the calendar year.</td>
</tr>
<tr>
<td>DAY</td>
<td>76-78</td>
<td>Enter the Julian date. Must be right-justified and zero-filled.</td>
</tr>
<tr>
<td>NA</td>
<td>79-80</td>
<td>Leave blank.</td>
</tr>
</tbody>
</table>

C-5.36
HAZCONS

I. C-E Peculiar Repair Parts

Activity

CSS

Local Purchase

NICP ----- Vendor

II. Non C-E Peculiar Repair Parts

Activity

SSA

Local Purchase

NICP ----- Vendor

Key

Request

Parts Flow

C-537

End 6
1. **PURPOSE OF VISIT:**

We visited the U. S. Army Signal School to discuss matters involving combat developments, doctrine, and training as they pertain to the Information Systems Command (ISC); specifically we were interested in the interface between the U. S. Army Training and Doctrine Command (TRADOC) and ISC, and the coordinating and responsibility delineation inasmuch as doctrine and training both have a direct bearing on the development and operation of a supply system. The Signal School is the primary agent of TRADOC for communications doctrine, and they are the training institution responsible for the course development and instruction of ISC soldiers on how to operate and maintain the various communications systems and equipments with which ISC performs its mission.

2. **ACTIVITIES VISITED:**

We visited the Directorate of Training Development, the Directorate of Combat Development, and the Directorate of Industrial Operations. We also had a discussion with the DARCOM (now AMC) Logistics Assistance Officer, the Commander of the ISC Detachment at Fort Gordon, and the Headquarters ISC Liaison Officer to Fort Gordon.

3. **DATE OF VISIT:**

8, 9 August 1984

4. **NAMES OF PERSONS VISITED/CONTACTED:**

See enclosure 1

5. **NAMES OF TEAM MAKING TRIP:**

LTG Richard G. Trefry USA (Ret)
MG Duane H. Stubbs USA (Ret)

6. **OBSERVATION AND FINDINGS:**

a. We made a courtesy and exit call on MG Thurman D. Rodgers, the Commanding General, and BG Billy M. Thomas, the DCG (jointly). We briefed on the background and purpose of the study and received some valuable insights into the Signal School efforts in support of ISC. There is, of course, a very close relationship between the Signal Center and ISC inasmuch as they both are involved with the communications environment. There is a continual cross walk between the two organizations in terms of officer assignments.

b. There was considerable evidence that the Signal School has postured itself to anticipate the needs of advanced planning for new systems and equipment. A recent reorganization of the New Equipment Training Division has...
significantly enhanced their capability in this direction. They use Personnel and Training Conferences to bring together all of the interested players to coordinate on a programmed basis, and effectively use the New Equipment Training Plan (initiated by ISC) as the principal vehicle to address, on a check-list basis, what training is needed, who provides it, and the schedule and locations as well as many other necessary data elements pertaining to training needs. This document also fixes responsibility for initial and follow-on training requirements and prompts the determination between contractor and internal Army responsibilities. See Encl 2.

- The school is in on early coordination in the Basis of Issue Plan (BOIP) and Qualitative, Quantitative Personnel Requirements Information (QQPRI) documents from which training needs can be determined based on MOS and Additional Skill Identifiers (ASI) identified therein.

- As an item of interest we learned that the school has been using the Teler System to obtain new equipment and systems for instruction purposes, but had initiated action to get training requirements incorporated into the BOIP/QQPRI process in order to establish these additional requirements up front and to subsequently routinize their authorization procedure. The format of the presentation on training interface is at Encl 3.

c. The combat development relationship between TRADOC, which is the principal combat developer for the Army, and which is responsible for combat development integration within the Army, and ISC is based upon both formal and informal arrangements. Specifically, an MOU between the two commands ties together the doctrinal responsibilities of each against a backdrop of their respective charters for echelons above corps (ISC) and corps and below (TRADOC). Of significance is that coordinating responsibility for the interface has been placed upon ISC. See Encl 4.

- An informal rule of thumb exists for the division of responsibility between tactical and strategic systems and is expressed in terms of mobility; if the system is on wheels or tracks it belongs to TRADOC; if it is fixed it belongs to ISC. These are exceptions to this generalization but it is a useful term of reference.

- The Mission Area Analysis (MAA) is an example of close coordination between TRADOC and ISC. It is a joint product resulting from a joint effort. The format of the combat development relationship presentation is at Encl 5. Additionally, flow charts depicting other integral coordinating processes are at Encl 6 (BOIP/QQPRI, TOE, etc).

d. Quite apart from our review of doctrine and training matters, we inquired into the supply support of the ISC unique equipment in the hands of the Signal School used to train ISC soldiers. There is a substantial aggregation of equipment and system components for this purpose. We made several observations which are germane to this study:
The School has experienced some difficulty in establishing authorization for this equipment, i.e., getting it on their TDA. Some of the difficulty can be traced to the NDI acquisition process. The BOIP/QQPRI process, which is replacing the Teler process to establish equipment requirements for the School should assist in this matter.

The equipment is (apparently) picked up on the School Property Book, so the need for accountability is being satisfied, but there is no formal asset visibility over these items at the national (wholesale) level, which is also the case within ISC. This could be rectified by the designation, by the materiel developer, of RICC-2 for these items concomitant with the type classification process.

The School is using the standard supply system to obtain repair parts support for this equipment, submitting requests to the DIO. After experiencing difficulties in keeping equipment in an operable condition, the installation developed a THAZCON program to intensify management efforts necessary to alleviate an incipient failure in a piece of equipment which would adversely impact training capability (THAZCON is a training hazardous condition). The need for intensive management to enhance the responsiveness of the supply system led to the development of a critical items list as the backbone of a C-E ASL of about 8,000 line items of which an estimated 70 percent are non demand supported, and of a 600 line DX, all necessary to insure an uninterrupted training posture in the school. Additionally there is substantial local purchase activity for part numbered items. This situation is, of course, reminiscent of the situation that existed at the various installations in CONUS prior to the establishment of the CSSF at Fort Ritchie, and lends considerable support to the proposition that the standard system does not, by itself, responsively support low density non demand supported, NDI type of equipment which typifies the ISC inventory. We recommended to Gen Rodgers that he coordinate with all concerned and consider basing his ISC unique equipment on the CSSF at Fort Ritchie where procedures are in place, demand history is being captured for PN to NSN conversion, and local purchase activity in support of old, low density CE equipment has been institutionalized. Such a move has the potential to improve supply responsiveness with an accompanying reduction in inventory investment.

e. We availed ourselves of the opportunity to talk with the local ISC detachment commander about his PLL (telecon). He has a PLL of 80-90 lines and submits his requests for NSN items to the CSSF; however, he submits PN requirements to the DIO, because these requirements generally need to be obtained through LP. When asked why he didn't go to the CSSF for PN requirements as well, he replied that he didn't know. We feel that this is a reinforcing indicator that even within ISC itself the workings of the ISC unique supply system (the dedicated retail system specified in para Z, AR 10-13) are not well known and point up, as a minimum, the need for a review of internal ISC logistics SOP's.
7. **SUMMARY OR DECISIONS RENDERED:**
 - ISC has doctrinal responsibility for echelons above the corps.
 - TRADOC (Signal School) has doctrinal responsibility for corps and below.
 - The coordinating responsibility for the interface has been placed on ISC.
 - Management of the training interface between ISC and TRADOC centers around the New Equipment Training Plan.
 - The standard system at Fort Gordon did not responsively support low density, NDI equipment without substantial augmentation.

9. **RECOMMENDATIONS OR FOLLOW-ON REQUIREMENTS:**
 - We requested quantitative data pertaining to the ASL and local purchase activity in support of the Signal School ISC unique equipment.
 - Visits to PLL sites will enable us to finish our description of the ISC supply system. Having substantially concluded the fact finding portion of the study, we will concentrate on the analysis and conclusions drawn therefrom.

ENCLOSURES
1. Persons visited/contacted
2. New Equipment Training Plan
3. Training Interface
4. Memorandum of Understanding
5. Combat Development Relationship
6. Exhibits on coordination
<table>
<thead>
<tr>
<th>NAME</th>
<th>ACTIVITY/OFC SYMBOL</th>
<th>TELEPHONE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG Thurman D. Rogers</td>
<td>CG</td>
<td></td>
</tr>
<tr>
<td>BG Billy M. Thomas</td>
<td>DCG</td>
<td></td>
</tr>
<tr>
<td>COL Ronald S. Savard</td>
<td>DOTD/ATZH-DT</td>
<td>6206</td>
</tr>
<tr>
<td>Mr. Earl J. Carr</td>
<td>DOTD/ATZH-DTR</td>
<td>6674</td>
</tr>
<tr>
<td>Mr. George C'de Baca</td>
<td>DOTD/ATZH-DTN</td>
<td>2088</td>
</tr>
<tr>
<td>Mr. Wayne Rouse</td>
<td>DOTD/ATZH-DTI</td>
<td>3514</td>
</tr>
<tr>
<td>CPT Chris Frasure</td>
<td>DOTD/ATZH-DTP-D</td>
<td>6805</td>
</tr>
<tr>
<td>Mr. Allen Moore</td>
<td>DOTD/ATZH-DTP-D</td>
<td>6805</td>
</tr>
<tr>
<td>Mr. Frank Cholson</td>
<td>DARCOM LAO/DRXLA-T-GN</td>
<td>5305</td>
</tr>
<tr>
<td>COL Peter Kind</td>
<td>DCD/ATZH-CD</td>
<td>6663</td>
</tr>
<tr>
<td>MAJ Randall McMurray</td>
<td>DCD/ATZH-CD</td>
<td>6663</td>
</tr>
<tr>
<td>MAJ James Homan</td>
<td>DIO/ATZH-DIM</td>
<td>6894</td>
</tr>
</tbody>
</table>

C - b. b
<table>
<thead>
<tr>
<th>CARD NO.</th>
<th>LIN.</th>
<th>REPLACES</th>
<th>std study NO.</th>
<th>RECI NO</th>
<th>SATCOMA</th>
<th>DEVELOPTER</th>
<th>date</th>
<th>NETP NO.</th>
<th>USACC</th>
<th>NBG NO.</th>
<th>USACC</th>
<th>FTR/FTY</th>
<th>TRADOC</th>
<th>FTR/FTY</th>
<th>USACC</th>
<th>FTR/FTY</th>
<th>REMARKS</th>
<th>TRAINEE/CTB DEVELOPER</th>
<th>TRADOC</th>
<th>FTR/FTY</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>USACC</td>
<td></td>
<td>USACC</td>
<td>USACC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td></td>
<td>Initial NMT Publ.</td>
<td>2/77</td>
<td></td>
<td>Approved Rqmts Document</td>
<td>USACC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td>Tntv QKPI</td>
<td>2/77</td>
<td></td>
<td>Tntv QKPI Pwd.</td>
<td>N/A</td>
<td>2/77</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td>Tntv BOIP Pwd</td>
<td>N/A</td>
<td></td>
<td>Tntv BOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td>DA Appr of MOIP</td>
<td>N/A</td>
<td></td>
<td>DA Appr of MOIP</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>f.</td>
<td></td>
<td>4/60</td>
<td></td>
<td>4/60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g.</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>h.</td>
<td></td>
<td>4/60</td>
<td></td>
<td>DA Appr of ATBOIP</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td></td>
<td>Final QKPI</td>
<td>4/60</td>
<td></td>
<td>Final QKPI Pwd.</td>
<td>4/60</td>
<td>4/60</td>
<td></td>
</tr>
<tr>
<td>j.</td>
<td></td>
<td>Final BOIP Pwd.</td>
<td>N/A</td>
<td></td>
<td>Final BOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>k.</td>
<td></td>
<td>TCLKS Provided</td>
<td>3/61</td>
<td>Annex A to DCSS</td>
<td>Appendix A to DCSS</td>
<td></td>
<td>DA Appr of BOIP</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>l.</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>3/61</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>m.</td>
<td></td>
<td>4/60</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>n.</td>
<td></td>
<td>4/60</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>o.</td>
<td></td>
<td>4/60</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>p.</td>
<td></td>
<td>4/60</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>q.</td>
<td></td>
<td>4/60</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>r.</td>
<td></td>
<td>4/60</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2t.</td>
<td></td>
<td>Institutional</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>DA/DCSPO</td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td></td>
<td>Tentative MDS Decision</td>
<td>3/82</td>
<td></td>
<td>DCSPPO: CPT Sloan</td>
<td>221-9885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td>Amended MDS Decision</td>
<td>3/82</td>
<td></td>
<td>DCSPPO: C-24</td>
<td>725-6204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td>Final MDS Decision</td>
<td>3/82</td>
<td></td>
<td>ASI E3 (change to AR 611-201)</td>
<td>221-9885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td>Amended MDS Decision</td>
<td>3/82</td>
<td></td>
<td>Amended MOIP Pwd.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- **1st Grad:**
- **STD Output:**
- **ITPP:**
- **OP/ORG Maint:**
- **MOS:**
- **School:**
- **Date:**
- **1st 12 MOS:**
- **Econ:**
- **School Prep:**
- **Tele:**

USACC Form 63A

1 Jun 81

REPLACES USACC FORMS 63, 63-1, 63-2, 63-3 1 APR 80, WHICH ARE OBSOLETE
Noemclature:
Satellite Communications Set, AN/USC-28

<table>
<thead>
<tr>
<th>OTR/FT #CL/HRS</th>
<th>LOCATION</th>
<th>NUMBER OF STUDENTS</th>
<th>NETT</th>
<th>TADR</th>
<th>DOC</th>
<th>SIG</th>
<th>BDE</th>
<th>COMD</th>
<th>1ST</th>
<th>SIG</th>
<th>COMD</th>
<th>7TH</th>
<th>SIG</th>
<th>COMD</th>
<th>TEST</th>
<th>COMD</th>
<th>DEPO</th>
<th>TADR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Staff Planner Crs</td>
<td>2/77</td>
<td>1/160</td>
<td>Camp Roberts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>2/77</td>
<td>1/160</td>
<td>Ft. Detrick</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td></td>
</tr>
<tr>
<td>f.</td>
<td></td>
</tr>
<tr>
<td>g. IXP Tng Crs</td>
<td>2/6/81</td>
<td>3/240</td>
<td>Magnavox - CA</td>
<td>See Note 1</td>
<td></td>
</tr>
<tr>
<td>h.</td>
<td>3/82</td>
<td>2/240</td>
<td>Magnavox - CA</td>
<td>See Note 1</td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td></td>
</tr>
<tr>
<td>j. Depot Tng Crs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FY</th>
<th>FUNDING (in thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDT5E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stu PD/Tvl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff PD/Tvl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IXP Crs</td>
<td>350K</td>
<td></td>
</tr>
<tr>
<td>Depot Crs</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Stu PD/Tvl</td>
<td>65K</td>
<td></td>
</tr>
<tr>
<td>Staff PD/Tvl</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Usacc Form 51R
Replaces Usacc Forms 61-1, 61-2, 63-1 Apr 80, Which Are Obsolete
Equipment Training Plan (Cont)

NETP No. 18 - USAC

NOMENCLATURE:
- Satellite Communications Set, AN/USC-28

6. GAINING COMMAND

<table>
<thead>
<tr>
<th>NETT / NET</th>
<th>INSTRUCTORS</th>
<th>QTR</th>
<th>LEVEL (FT)</th>
<th>DEPLOY TO</th>
<th>PD/TVL</th>
<th>LOCATION</th>
<th>TRAVEL</th>
<th>TELE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/83</td>
<td>2/83</td>
<td>3/83</td>
<td>160</td>
<td>7th SigCmd</td>
<td>100</td>
<td>Ft. Detrick</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>2/83</td>
<td>1/83</td>
<td>2/83</td>
<td>50</td>
<td>5th SigCmd</td>
<td>100</td>
<td>Ft. Gordon, GA</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>1/83</td>
<td>3/83</td>
<td>3/83</td>
<td>2/50</td>
<td>7th SigCmd</td>
<td>100</td>
<td>Elmendorf</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>2/83</td>
<td>3/83</td>
<td>3/83</td>
<td>50</td>
<td>Navy</td>
<td>100</td>
<td>Camp Zama</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>2/83</td>
<td>3/83</td>
<td>3/83</td>
<td>50</td>
<td>Navy</td>
<td>100</td>
<td>Northwest</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>4/83</td>
<td>3/83</td>
<td>3/83</td>
<td>50</td>
<td>Navy</td>
<td>100</td>
<td>Hawaii</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>5th SigCmd</td>
<td>100</td>
<td>Landstuhl</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>AF</td>
<td>100</td>
<td>Ascension</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>AF</td>
<td>100</td>
<td>Lago di Patria</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>AF</td>
<td>100</td>
<td>Croughton</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>Navy</td>
<td>100</td>
<td>Thorso</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>7th SigSde</td>
<td>100</td>
<td>Camp Roberts</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>Navy</td>
<td>100</td>
<td>Diego Garcia</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>AF</td>
<td>100</td>
<td>Clark</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>USACC-J</td>
<td>100</td>
<td>Ft. Buckner</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>1st SigSde</td>
<td>100</td>
<td>Song So</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>A</td>
<td>100</td>
<td>Kwajalein</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>2/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>5th SigCom</td>
<td>100</td>
<td>Augsburg</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>AF</td>
<td>100</td>
<td>Guam</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>AF</td>
<td>100</td>
<td>Offutt</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>3/83</td>
<td>4/83</td>
<td>3/83</td>
<td>50</td>
<td>AF</td>
<td>100</td>
<td>Sunnyvale</td>
<td>5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

USAC Form 63C

Replaces USAC Form 63, 63-1, 63-2, 63-3, 1 Apr 80, which are obsolete

1 Jun 81

137
NEW EQUIPMENT TRAINING PLAN (CONT)

NOMENCLATURE: Satellite Communications Set, AN/USC-28

<table>
<thead>
<tr>
<th>U.S. ACC</th>
<th>6. GAINING COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Team Deployment Data:</td>
<td>NO</td>
</tr>
<tr>
<td>WHITB</td>
<td>NO/INSTRS</td>
</tr>
<tr>
<td>X/X</td>
<td>Magnavox</td>
</tr>
<tr>
<td>4/83</td>
<td>AF</td>
</tr>
<tr>
<td>3/84</td>
<td>5th Sig Cmd</td>
</tr>
<tr>
<td>1/85</td>
<td>5th Sig Cmd</td>
</tr>
<tr>
<td>1/85</td>
<td>AF</td>
</tr>
<tr>
<td>2/84</td>
<td>AF</td>
</tr>
<tr>
<td>1/84</td>
<td>5th Sig Cmd</td>
</tr>
<tr>
<td>2/85</td>
<td>5th Sig Cmd</td>
</tr>
<tr>
<td>1/84</td>
<td>7th Sig Cmd</td>
</tr>
<tr>
<td>4/84</td>
<td>5th Sig Cmd</td>
</tr>
<tr>
<td>3/84</td>
<td>5th Sig Cmd</td>
</tr>
<tr>
<td>4/84</td>
<td>5th Sig Cmd</td>
</tr>
<tr>
<td>3/84</td>
<td>Navy</td>
</tr>
<tr>
<td>1/85</td>
<td>Navy</td>
</tr>
<tr>
<td>2/85</td>
<td>Depau T</td>
</tr>
<tr>
<td>3/85</td>
<td>AF #1</td>
</tr>
</tbody>
</table>

USACC FORM 63C

REPLACES USACC FORMS 63, 63-1, 63-2, 63-3 1 APR 80, WHICH ARE OBSOLETE.
<table>
<thead>
<tr>
<th>NO/NETT</th>
<th>INSTRUCTORS</th>
<th>QTR</th>
<th>CRS LEVEL</th>
<th>CRS LGTH</th>
<th>DEPLOY TO: COMMAND</th>
<th>PD TVL FUNDS</th>
<th>LOCATION</th>
<th>TOT NO</th>
<th>STU PD</th>
<th>POC & TELE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X/X</td>
<td>Magnavox - See Para 5b</td>
<td>3/85</td>
<td>OP/CM</td>
<td>160</td>
<td>1st SigBde</td>
<td>Tango</td>
<td>1</td>
<td>5</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/85</td>
<td></td>
<td></td>
<td>7th SigBde</td>
<td>Panama</td>
<td>1</td>
<td>5</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
NEW EQUIPMENT TRAINING PLAN (CONT)

NOMENCLATURE: Satellite Communications Set, AN/USC-28

<table>
<thead>
<tr>
<th>5. US ACC (CONT'D)</th>
<th>6. GAINING COMMAND (CONT'D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. The contractor (Magnavox) will conduct the initial on-site training upon completion of test and acceptance. The NET instruction will be 160 hours long and cover operator training on on-site maintenance. Follow-on training will be conducted at Ft. Gordon. Training for instructors and key personnel will be at the contractor's facilities in Torrance, CA. Initial contractor training called for three classes (81 - 23 Mar - 1 May 81; 2 - 18 May - 26 Jun 81; and 9 - 6 Jul - 14 Aug 81). Material Developer contracted for two additional classes (26 Apr - 4 Jun 82 and 7 Jun - 16 Jul 82). Each class was 240 hours. On-site training is being provided by the contractor. Upon completion of the 160 hour course, the USASC provides ECCM procedures (80 hours) to the site personnel.</td>
<td></td>
</tr>
<tr>
<td>(LEGEND: I - Resource on-hand; N - Not on-hand)</td>
<td></td>
</tr>
<tr>
<td>b. Support Personnel: N/A</td>
<td></td>
</tr>
<tr>
<td>c. Facility Requirements: Classroom for 8-12 students.</td>
<td></td>
</tr>
<tr>
<td>d. Ammunition for Training: N/A</td>
<td></td>
</tr>
<tr>
<td>e. Training Materials: Overhead projector Screen Chalkboard</td>
<td></td>
</tr>
<tr>
<td>f. New Equipment: AN/USC-28</td>
<td></td>
</tr>
<tr>
<td>g. Consumables: TTY paper roll and ribbon.</td>
<td></td>
</tr>
<tr>
<td>h. Contractor Expenses: N/A</td>
<td></td>
</tr>
<tr>
<td>i. Tool & Test Equipment Requirements: TBD</td>
<td></td>
</tr>
</tbody>
</table>

NETP NO. 18 - USACC

REPLACES USACC ITEMS 63, 63-1, 63-2, 63-3 1 APR 80, WHICH ARE OBSOLETE
7. **NOMENCLATURE:** Satellite Communications Set, AN/USC-28

8. **BRIEF DESCRIPTION:** The AN/USC-28 will provide a spread spectrum, multiple-access, jam resistant communications link using suitable satellite communications link terminal equipment. The AN/USC-28 is the element of the DSCS which shall provide protected communications service to DSCS users and protected control circuits for the overall control and operational maintenance of the DSCS network. The AN/USC-28 transmits and receives signals from the SCT equipment, provides timing signals to the Time Division Multiple Access (TDMA) equipment, provides duplex channels for protected traffic, link orderwire, and provides a critical control circuit teletype orderwire link between the NET Control Terminal (NCT) and each NET Terminal (NT) in the network.

9. **PROCUREMENT DIRECTIVE:** DSCS Program Plan 1978 - 1982; Planned density, 51 systems.

10. **MAINTENANCE DATA:**
 a. On-site - PCB replacement based on troubleshooting using self diagnostics and self test.
 b. Off-site - Repair module selected piece part.
 c. Depot - Perform overhaul.
 d. Designated Repair Depot - Contractor's facilities.

11. **RECOMMENDED MOS:**
 a. MOS 26Y, Strategic Communications Ground Station Equipment Repairer (with ASI E3).
 b. Organizational Maintenance: MOS 26Y (with ASI E3).
 d. ASI E3 will be published in Change 19, AR 611-201, effective 1 March 1983.

12. **POWER REQUIREMENTS:** Normal on-site power.

13. **POWER GENERATOR SOURCE:** Provided by site generators or commercial power.

14. **AIR CONDITIONING REQUIREMENTS:** Will be installed in existing air conditioned facility.

15. **HISTORICAL DATA:** N/A
NEW EQUIPMENT TRAINING PLAN (Cont'd)

NOMENCLATURE: Satellite Communications Set, AN/USC-28

NOTE 1: IKP inputs by command.

<table>
<thead>
<tr>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>AF</td>
<td>AF</td>
</tr>
<tr>
<td>USASIGS</td>
<td>Navy</td>
<td>Navy</td>
</tr>
<tr>
<td>USACERIA</td>
<td>USASIGS</td>
<td>SATCOMA</td>
</tr>
<tr>
<td>SATCOMA</td>
<td>SATCOMA</td>
<td>USACERIA</td>
</tr>
<tr>
<td>ACC NETT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Class 1 (26 Apr-4 Jun 82)

<table>
<thead>
<tr>
<th>Army</th>
<th>Navy</th>
<th>AF</th>
<th>Sig Sch</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Class 2 (7 Jun-16 Jul 82)

<table>
<thead>
<tr>
<th>Army</th>
<th>Navy</th>
<th>AF</th>
<th>Sig Sch</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

NOTE 2: The Signal School has identified, in the DSCE Program Plan 85/89, a requirement for four (4) additional AN/USC-28s to be funded in FY 85 to support AN/USC-28 training.

NOTE 3: Awaiting delivery of TMDE to support training. Also scheduled to receive 4 additional AN/USC-28s in FY 85.
SIGNAL CENTER - INFORMATION

SYSTEM COMMAND

TRAINING INTERFACE
NEW SYSTEMS TRAINING DIVISION

* NEW EQUIPMENT TRAINING PLAN (NETP)

* QUALITATIVE/QUANTITATIVE PERSONNEL REQUIREMENTS INFORMATION (QQPRI)

* OTHER DOCUMENTS
 - MATERIAL FIELDING PLAN (MFP)
 - LOGISTIC SUPPORT PLAN (LSP)

* PERSONNEL AND TRAINING (P&T) CONFERENCES.
INDIVIDUAL TRAINING/COURSE DEVELOPMENT DIVISION

* COURSE DEVELOPMENT
* TRAINING DOCUMENTATION
 - SOLDIER'S MANUALS
 - JOB BOOKS
 - TRAINER'S GUIDES
* SQT VALIDATION
RESIDENT/NON RESIDENT
TRAINING DIVISION

* TELECOMMUNICATIONS REQUIREMENTS (TELER) ACTION FOR TRAINING EQUIPMENT
 - IDENTIFIES THE REQUIREMENT FOR THE TELER DEVELOPMENT TO USAISC-FG.
 - COORDINATES WITH ISC FOR THE TRAINING SUPPORT ITEMS TO SUPPORT THE TELER.
 - COORDINATES WITH ISC FOR CEEIA INSTALLATION OF EQUIPMENT IDENTIFIED BY TELER.

* COORDINATES WITH COMMUNICATION SYSTEMS AGENCY FOR SITE SURVEY.

* RESPONDS TO REQUEST FOR UNPROGRAMMED TRAINING.

* PROGRAMS STUDENT INPUT FOR ISC MOS & FUNCTIONAL TRAINING COURSES.
SUBJECT: Combat Development Activities Between TRADOC and USACC

1. PURPOSE. This memorandum constitutes a formal agreement on the delineation of combat development (CD) relationships and responsibilities between the Commander, US Army Training and Doctrine Command (TRADOC) and the Commander, US Army Communications Command (USACC). It sets forth guidelines for the coordination and accomplishment of actions of mutual interest and will be used as the basis for more definitive guidance as may be required within each command.

2. SCOPE. This agreement is applicable only to those items of communications-electronics (C-E) and air traffic control (ATC) CD which are of common concern to TRADOC and USACC. CD items which are of unilateral concern to TRADOC or USACC are not covered by the provisions herein. Specifically, C-E items which pertain only to corps level and below, or only to base communications, and ATC CD items which pertain only to non-tactical ATC operations, are not included.

3. REFERENCES.
 a. AR 10-13, Organization and Functions - United States Army Communications Command.
 b. AR 10-1, Organization and Functions - United States Army Training and Doctrine Command.
 c. AR 71-1, Force Development - Army Combat Developments.
 e. AR 71-9, Force Development - Material Objectives and Requirements.
 f. AR 71-2, Basis of Issue Plan.
 g. AR 310-31, w/TRADOC Supplement, Management Systems for Tables of Organization and Equipment.
4. OBJECTIVES. This Memorandum of Agreement (MOA) is designed to:

a. Provide for the integration of certain HSAAC CD products into the TRADOC/CD and doctrinal effort.

b. Establish relationships and responsibilities between TRADOC and HSAAC for CD and doctrinal actions.

c. Promote complete expeditious coordination and processing of CD and doctrinal plans, programs, and projects between the two commands.

5. RELATIONSHIPS. TRADOC and HSAAC are coordinate elements of the Department of the Army (DA). Each is authorized to communicate directly with the other on matters of mutual interest. Direct communications between Headquarters, TRADOC and Headquarters, HSAAC and between centers, schools, installations, and other activities is authorized. Actions affecting allocation or use of resources (funds, manpower, facilities) and major plans, policies, and programs will be affected at the Headquarters, TRADOC/USAC level.

6. RESPONSIBILITIES.

a. Commander, TRADOC is responsible for conducting all combat and doctrine developments not assigned by HQDA to other commands and agencies. As the Army's principal combat developer, he is responsible for guiding, coordinating, and integrating the total combat and doctrine development effort for the Army. In implementation of the foregoing, he has specific responsibilities for:

(1) Conducting Army CD and doctrinal activities in support of DA objectives and requirements contained in the Catalog of Approved Requirement Documents (CARDS) and other DA documents.
(2) Preparing recommendations to HQDA on the establishment, revision, and elimination of Science and Technology Objectives (STO), Letters of Agreement (LOA), Letters of Requirements (LR), and Required Operational Capability (ROC); recommending to HQDA the relative priorities for research, development, test and evaluation (RDTE); and procurement of the above.

(3) Develop doctrine, operational concepts and operational organizational plans; tables of organization and equipment (TOE) (less those assigned other proponents by AR 310-31); Manpower Authorization Criteria; Basis of Issue Plan (BOIP); Army contributions to joint doctrine; and the Army position, within the field of CO, on policy and doctrinal statements of allied Armies and international standardization.

(4) Promulgating approved operational concepts, doctrine, tactics, and related matters through field manuals (FM) and other doctrinal publications.

(5) Preparing program/budget documents for HQDA which require RDTE resources and which are not assigned to the US Army Operational Test and Evaluation Agency (OTEA) for Operational testing.

b. Commander, USACC directs the Army combat developments activities relating to Defense Communications Systems (DCS), Army communications in CONUS, Army ATC, and other missions and functions of USACC as outlined in AR 10-13, coordinated as appropriate with TRADOC. CD operational concepts and doctrinal activities relating to communications pertaining to the communications zone (CONMIZ), and the interface between echelons above corps (EAC) and corps communications systems, or identified as communications intrinsic to the operational concept of CAC and EAC contingency (EACC) will be conducted by USACC, in coordination with and as tasked by TRADOC.

c. By separate correspondence, and in coordination with HQ USACC, HQ TRADOC will designate specific arenas, organizations, and equipments for which USACC will have principal responsibility. USACC responsibilities include but are not limited to:

(1) Assisting in the development of operational concept (to include unit reference sheets), doctrine, organization, and related matters by providing input for the production of studies and doctrinal material.

(2) Developing new or revised STO, LOA, LR, ROC; recommending RDTE/procurement priorities relating thereto, and recommending elimination of those no longer required; participation in Joint Working Groups (JWG), Test Integration Working Groups (TIWG), Study Advisory Groups (SAG), Special Study Groups (SSG), and Product Improvement Program (PIP) specified in DA Pamphlet 11-15.
(3) Preparing and managing the programing, budgeting, prioritization, and execution of the Aircraft Procurement, Army (APA) funds for fixed and combat support ground ATC equipment for the total Army. Coordinates with TRADOC on all avionics interfaces.

(4) Preparing, as proponent, the Army Command and Control System (AC2S) EAC communications architecture.

(5) Preparing the AC2S CONUS communications reconstitution architecture, in coordination with TRADOC, as an associated effort to USACC's present responsibilities for HQDA tasking addressing CONUS reconstitution.

(6) Engineering, installing, and operating the required communications at EAC and in CONUS to support the AC2S functions of mobilization, deployment, and sustainment of combat forces in the same manner as is currently performed with the Defense Communications System.

(7) Assisting in the review of Qualitative and Quantitative Personnel Requirements Information (QQPRI) documentation for additions, changes or deletions.

(8) Reviewing Manpower Authorization Criteria (MACRIT) studies and providing comments and/or recommendations as appropriate.

(9) Developing Basis of Issue Plans (BOIP) for TOE and Tables of Distribution and Allowances (TDA).

(10) Developing Draft Plan TOE.

(11) Participating in Operational Tests and Evaluations (OTE) and Force Development Experimentation, Tests, and Evaluation (FDTE) on equipment, systems concepts, doctrine, and organizations.

(12) Preparing program/budget documents for provision to TRADOC on user tests which require RDTE resources and which are not assigned to OTEA for operational testing.

(13) Developing, in coordination with TRADOC, TOE and FM for signal and ATC units required to fulfill assigned USACC responsibilities in the field.

(14) Coordinate material fielding plans for new fixed and combat support ground ATC equipment.

d. Commander, TRADOC will closely coordinate all CD actions affecting strategic, CONUS, and nontactical communications development actions with the Commander, USACC.
a. TRADOC will establish and provide operational concepts doctrine and operational requirements for Army aviation to USACC. CD documents prepared by TRADOC which affect USACC assigned areas of responsibility will be coordinated with USACC to assure interface with USACC proposed concepts, doctrine, organization, and material. CD documents prepared by USACC will be coordinated with TRADOC to assure interface with all weapon systems and/or users of air space.

f. Commander, TRADOC will provide computer support as required by USACC for the development of ROAS and JOE for CACS. This support will be provided by a computer installation at the Field Office (FPFO) under the staff supervision of TRADOC, Deputy Chief of Staff for Resource Management (DCSM), and operated by Comder, DDCS. Terminal support will be provided by the US Army Intelligence Center and School (USAICS), Ft Huachuca, Arizona until such time as USAICS’ terminal becomes fully operational. Priority for computer support of USAICS and USAICS’ combat development requirements, will be established by Commander TRADOC.

7. REVISION OF CARUS. USACC will recommend CARUS changes, additions, and deletions to TRADOC in accordance with mission and responsibilities assigned by AR 10-13.

8. EFFECTIVE DATE AND ANNUAL REVIEW. This agreement is effective upon signature of both parties and will remain in effect until rescinded or changed by mutual consent, provided such changes are accomplished as written amendments hereto. The provisions of this MOU will be reviewed annually by both TRADOC and USACC 60 days prior to anniversary date of signature.

9. SUPERSESSION. This MOU supersedes agreement on CD activities between TRADOC and USACC effective 31 May 1978.

FOR THE COMMANDER:

[Signature]

For the Commander:

[Signature]

[Date]

[Signature]

For the Commander:

[Signature]

[Date]
ROLES AND MISSIONS

- TRADOC
- DA AGENCY FOR INTEGRATION OF COMBAT DEVELOPMENTS,
 DOCTRINE AND TRAINING (AR 10-41)
- SIGNAL CENTER (AR 10-41)
- PROONENT CORPS AND BELOW
- COORDINATION AT EAC INTERFACE
- ISC (AR 10-13)
- EAC & ABOVE COMMZ, DCS, FIXED FACILITIES, ATC
- EAC INTERFACE RESPONSIBILITY
AGREEMENTS/WORKING RELATIONSHIPS

- MOU TRADOC AND ACC (FEB 82)

- CG TRADOC (26 MARCH 83)
 - SIGNAL CENTER RESPONSIBLE FOR ALL COMMUNICATIONS
 - MOU REVIEW/STAFFING (MAR-JUN 83)
 - SIGCEN/ISC POSITION (15 JUN 83)

- BOTTOM LINE - CONTINUE AS OUTLINED IN MOU
PROJECTS

- MAA
 - ONE DOCUMENT
 - TWO AUTHORS
 - JOINT WORK GROUP

- ORGANIZATION STRUCTURING
 - REVIEW/COORDINATION WITH ISC
 - PROBLEM ANALYSIS PAPER (PAP)
 - MANPOWER REQUIREMENTS
 - ANALYSIS REPORT (MRAR)
 - TOEs
 - BOIP//QPPI
INFORMAL

IF IT HAS WHEELS/TRACKS, IT'S THE SIGCEN

IF IT DOESN'T, IT'S ISC

EXCEPTIONS - DSTE, TSC-109, TRANSPORTABLE COMM CENTERS, RECONSTITUTION ASSETS

CONCEPTUAL DOCTRINE
PROJECTS

- VARIATIONS FROM MOU
 - 97TH SIG BN (CENTAG)
 - 11TH SIGNAL BN (32d AADCOM)
 - 56TH FA BDE (PERSHING II)

- ABIC-EAC
 - IEW SYSTEMS
 - ADA SYSTEMS

- MATERIAL SYSTEMS
 - TRITAC
DLMO DOCTRINAL INTERFACE WITH ACC

- MOA BETWEEN HQ TRADOC AND ACC, DTD FEB 82

- PROMULGATE APPROVED O&O CONCEPTS AND O&O PLANS THRU FMS AND OTHER PUBLICATIONS

- PARTICIPATES IN TRADOC/ACC SYMPOSIAUS, JWGS, FIELD SURVEYS AND FTXs

- EXCHANGE OF COORDINATING DRAFTS FOLLOWED BY REVIEW AND COMMENTS

- THE ABOVE PROCEDURES ENSURES THAT SIGCEN AND ACC MONITOR DOCTRINAL CHANGES AND LINK OUR DOCTRINAL WRITING
BOIP/QQPRI Procedures for Staffing with USAISC

- - - - - USAISC Proponency

SIGC Proponency

DARCOM

QQPRI

EARA

BOIP FEEDER DATA

HQ TRADOC

DCSCD

USAISC

DCSOPS

Coordination

SIGC

Integrating Center

Develop Proponent BOIP
Review Non-proponent BOIP
in AOR
Review QQPRI

Review Board

Develop Proponent BOIP
Review Non-proponent BOIP
in AOR. Verify Tng Input to QQPRI.

Review for accuracy and completeness.
TOE Coordination with USAISC

Proponent TOE
- SIG Center
- TOE Branch

AOIR: USAISC TOE Branch
POC: Mr. Campani
Mr. Stephany
MSG Taylor
879-6333/6572

Non-Proponent TOE
- USAISC
- TOE Branch

AOIR: SIG Center TOE Branch
POC: CPT Matthews
Mr. Burns
MSG Linville
780-2462/2563

CDR TRADOC
TRIP REPORT

PLL SITES

23 AUGUST - 4 SEPTEMBER 1984
1. **PURPOSE OF VISITS:**

 A visit was made to a number of ISC operating units in order to make a first hand observation of supply operations at the PLL level, and to complete our description of the ISC retail supply system. We were interested in the management and structure of the PLLs; property books; and asset reporting. Accountability and authorization were functional areas that we looked into as they are germane to our study.

2. **ACTIVITIES VISITED:**

 We visited the Pentagon Telecommunications Center (ISC Operations Command - Pentagon), Davison Army Airfield, Fort Monroe, VA, and Fort Eustis, VA.

3. **DATES OF VISITS:**

 - 23 Aug 84 Pentagon Telecommunications Center
 - 31 Aug 84 Davison Army Airfield
 - 4 Sep 84 Fort Monroe; Fort Eustis

4. **NAMES OF PERSONS VISITED, CONTACTED:**

 See Enclosure 1.

5. **NAMES OF TEAM MAKING TRIP:**

 - LTG Richard L West USA (Ret)
 - LTG Richard G Trefry USA (Ret)
 - MG Duane H Stubbs USA (Ret)

6. **OBSERVATIONS AND FINDINGS:**

 a. We were given an overview briefing of PLL and supply operations at the ISC Operations Command - Pentagon, and at ISC-TRADOC, and were provided statistics pertaining to the ISC sites subordinate to them.

 b. PLLs are, in general, nondemand supported and conform to the characterization of an engineered stockage policy. PLLs are automated as a part of the SAILS system. Requests for PLL replenishment as well as fringe requests for ISC unique items are submitted to Fort Ritchie via AUTODIN. PLL sites were in possession of good regulatory guidance (SOPs, etc. out of the 7th Signal Command), and the units were participating in the PLL reduction program and the PLL Certification Program. The Certification Program is a written examination with attendant training to all PLL clerks and their first line supervisor.

 c. Accountability is good, based on our observations, although there is one operating policy concerning accountability which we believe needs to be reviewed (discussed later). Most property books in ISC are manual, as is the unit level reconciliation pertaining to the asset reporting system (LOGMIS). End items are picked up on the property book based on Equipment Authorization.

 C-7.2
Letters & on-site visits of Equipment Survey Teams. Teler project numbers are frequently used for interim authorization to pick up on the property book pending proper authorization.

d. USACC Reg 105-17, Telecommunication (Teler) Bill of Materials (BOM) Receipt, Storage, Accounting and Disposal Procedures is supplemented/implemented at 7th Signal Command by an LOI. We believe that the requirement to defer opening, inventorying, and picking up on the property book those teler BOMs identified as UNISTAR until after installation and testing should be reconsidered. UNISTAR projects are those staged through an AMC depot and subsequently shipped to the operating unit. The Command rationale for the deferral is that 1) the expertise doesn't exist at the property book level to properly identify items; and 2) exposure is increased to pilferage and/or the use of materials for a different project without replacement. We believe that the needs and requirements of accountability outweigh in this case; prompt entry on the property books serves the government's best interest, particularly since property book accountability is a precursor to authorization.

e. We were impressed with the supply management being exercised in matters other than the PLL, as well. Units maintained informal accountability on Installation Hardware, the nuts, bolts and supplies used in the installation of telephones and related signal equipment. Similarly, a Wire and Cable Management Program keeps track of this otherwise expendable materiel which is of high dollar value.

f. The Davison Army Air Field ISC detachment follows the prescribed supply channels for ATC and NAVAIDS: to Ft Ritchie for repair parts and to Ft Rucker for DX; however, they also have an account with the FAA for DX support of FAA peculiar equipment. Equipment of this nature is on hand because of DAAF's air space relationship with National Airport.

g. Uniformly, at the unit operating level, there is a dislike for LOGMIS. This appears to be because there is no usable feedback on LOGMIS at the operating level. By the same token, there was little understanding of the uses or purposes of LOGMIS. When apprised of how LOGMIS inputs CBS-X, and the importance of that data base, there was a change of attitude. It does reflect the human relations impact of a lack of feedback.

h. Davison AAF does not have an authorization for a PLL clerk. They need one.

i. All of the PLL sites we visited went to their host installation for supply support for all items other than the ISC unique items managed by the CSSF. We noted that the installation hardware requirements generated considerable local purchase activity at the installation P&C office. This is fairly uniform across CONUS as we had made telephone inquiries of randomly selected installations concerning P&C support of the local ISC detachments.

j. Personnel at the PLL/property book operating level were enthusiastic in expressing satisfaction with the support from the CSSF. We were favorably impressed with the quality of people that we encountered. They were professional and obviously interested in their work. We noted, as discussed
in previous trip reports, the grade imbalance that exists in ISC at the PLL and PBO levels. This in turn lead to personnel turbulence. We go on record as recognizing the general grade deficiency for PLL clerks and property book officers throughout ISC in CONUS.

k. Some representative quantitative data reflecting the PLL composition is as follows:

<table>
<thead>
<tr>
<th></th>
<th>Pentagon</th>
<th>Ft Dietrick</th>
<th>Davison AAF</th>
<th>Ft Ben Harrison</th>
<th>Ft Monroe</th>
<th>Ft Rucker</th>
</tr>
</thead>
<tbody>
<tr>
<td>No lines on PLL</td>
<td>1026</td>
<td>635</td>
<td>199</td>
<td>57</td>
<td>220</td>
<td>946</td>
</tr>
<tr>
<td>Demand supported</td>
<td>58</td>
<td>78</td>
<td>10</td>
<td>0</td>
<td>7</td>
<td>109</td>
</tr>
<tr>
<td>Non DS</td>
<td>968</td>
<td>557</td>
<td>189</td>
<td>57</td>
<td>213</td>
<td>837</td>
</tr>
<tr>
<td>NSN</td>
<td>657</td>
<td>633</td>
<td>199</td>
<td>57</td>
<td>186</td>
<td>925</td>
</tr>
<tr>
<td>P/N</td>
<td>369</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>21</td>
</tr>
<tr>
<td>$ value of PLL</td>
<td>88.7K</td>
<td>503.3K</td>
<td>72.4K</td>
<td>13.8K</td>
<td>59.3K</td>
<td>98.4K</td>
</tr>
<tr>
<td>OST</td>
<td>7 days</td>
<td>7 days</td>
<td>7 days</td>
<td>14 days</td>
<td>9 days</td>
<td>11 days</td>
</tr>
</tbody>
</table>

RECAP PERCENTAGES OF 6 SAMPLE SITES

1. % demand supported 8.5%
2. % nondemand supported 91.5%
3. % NSN 86.2%
4. % PN 13.8%

By comparison, the same data for the ASL at CSSF is:

1. 52%
2. 48%
3. 78.2%
4. 21.8%

A deduction from the above is that while PLL stockage is overwhelmingly nondemand supported, by aggregating the demand at the CSSF, the ASL stockage has a higher proportion of demand support.

7. SUMMARY OR DECISIONS RENDERED:

- PLLs typify an engineered stockage policy indicative of NDI: largely nondemand supported and a good number of P/N items.
- PLLs are well managed. Based on our observations, we believe there is no subversion of the system, i.e., the retail supply system is limited to ISC unique items.
- Accountability could be improved if ISC reconsidered their policy concerning UNISTAR BOMs. This in turn would favorably impact authorization.
- Davison AAF needs authorization for a PLL clerk.
- ISC logisticians rank and file would benefit from an orientation on the purposes and functions of LOGMIS.

8. RECOMMENDATIONS OR FOLLOW-UP REQUIREMENTS:

None.

Enclosures

1. Persons visited/contacted
2. Handout - Pentagon Telecommunications Center
3. Briefing - ISC TRADOC
PERSONS CONTACTED/VISITED

<table>
<thead>
<tr>
<th>Name</th>
<th>Position & Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. D. J. Oldham</td>
<td>Ch Log Div PTC</td>
</tr>
<tr>
<td>Mr. J. E. Morrel</td>
<td>Dep Chief PTC</td>
</tr>
<tr>
<td>CWO Schuster</td>
<td>PBO PTC</td>
</tr>
<tr>
<td>Mr. Taybron</td>
<td>Chief, PLL Sec PTC</td>
</tr>
<tr>
<td>Cpt C. S. Stahlman</td>
<td>Chief, ATC Div DAAF</td>
</tr>
<tr>
<td>Mr. McDonald</td>
<td>Chief, Maint, ATC Div, DAAF</td>
</tr>
<tr>
<td>S/Sgt Beck</td>
<td>NCOIC PLL Sec, DAAF</td>
</tr>
<tr>
<td>Col H. H. Oakley</td>
<td>Cmdr USAISC - TRADOC</td>
</tr>
<tr>
<td>Mr. Boswell</td>
<td>Chief, Sup Spt ISC-TRADOC</td>
</tr>
<tr>
<td>LTC Lising</td>
<td>Cdr USAISC - Ft Monroe</td>
</tr>
<tr>
<td>Maj Kelly</td>
<td>Cdr USAISC - Ft Eustis</td>
</tr>
<tr>
<td>Mr. Hinton</td>
<td>Sup Section, ISC-Ft Eustis</td>
</tr>
<tr>
<td>Ms. Hayes</td>
<td>Sup Section, ISC-Ft Eustis</td>
</tr>
<tr>
<td></td>
<td>DS</td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
</tr>
<tr>
<td>PTC</td>
<td>58</td>
</tr>
<tr>
<td>ARL HALL</td>
<td>7</td>
</tr>
<tr>
<td>EAST COAST</td>
<td>24</td>
</tr>
<tr>
<td>(FT MEADE)</td>
<td></td>
</tr>
<tr>
<td>EAST COAST</td>
<td>78</td>
</tr>
<tr>
<td>(FT DETRICK)</td>
<td></td>
</tr>
<tr>
<td>NORTH EAST</td>
<td>23</td>
</tr>
<tr>
<td>VINT HILL FARM</td>
<td></td>
</tr>
<tr>
<td>FARMS</td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>190</td>
</tr>
</tbody>
</table>
NOTES

1. Prior to 1976, the PTC was supported by the SSA at Ft Ritchie who transceived to the appropriate depot for direct shipment to the using unit. At that time the PTC had approximately 10,000 lines of PLL. Since the establishment of the CSS at Ft Ritchie our PLL has been reduced to approximately 1300 lines. The primary reason for this reduction is the Order Ship Time (OST). With the Ft Ritchie CSS, OST is about 3 to 7 days prior to that and to the best of my knowledge OST was in excess of 30 days.

2. Now we have a single point (CSS) for support of all C & E peculiar items.

3. Additionally; we have the capability to call in an emergency request 24 hours per day 7 days a week, through the 7th Signal Command Operation Center (COC).

4. Local Purchase: We have a small amount of Blanket Purchase agreements (BPAs) in which we can exercise for emergency repair parts with local commercial C & E parts retailers.

C-7.9
USAISC-TRADOC
LOGISTICS
REVIEW

c.-7.10
USAISC-TRADOC UNITS
16 MAJOR UNITS - 5 SUB UNITS

USAISC--
FORT BELVOIR, VA
FORT BENJAMIN HARRISON, IN
FORT BENNING, GA
FORT BLISS, TX
FORT DIX, NJ
SUB UNIT: FORT HAMILTON, NY
FORT EUSTIS, VA
SUB UNIT: FORT STORY, VA
FORT GORDON, GA
FORT JACKSON, SC
FORT KNOX, KY
FORT LEAVENWORTH, KS
FORT LEE, VA
SUB UNITS: FORT A.P. HILL, VA
FORT PICKETT, VA
FORT LEONARD WOOD, MO
FORT McCLELLAN, AL
FORT MONROE, VA
FORT RUCKER, AL
FORT SILL, OK
SUB UNIT: FORT CHAFFEE, AK

C-7.11
FUNCTIONAL AREAS

AREAS INSPECTED DURING OUR ANNUAL COMMAND SUPPLY DISCIPLINE INSPECTION:

1. PUBLICATIONS.
2. PROPERTY ACCOUNTING.
3. INVENTORY PROCEDURES.
4. ACCOUNTING FOR LOST DAMAGED AND DESTROYED PROPERTY.
5. PRESCRIBED LOAD LISTS (PLL).
6. LOGIS.
7. SPECIAL ISSUE AND TURN-IN PROCEDURES.
8. INSTALLATION HARDWARE.
9. TELER BOM.
10. CABLE/WIRE MANAGEMENT.
Prescribed Load List (PLL)

<table>
<thead>
<tr>
<th></th>
<th>BHA</th>
<th>HRE</th>
<th>RUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # Lines (OS/NDs)</td>
<td>57</td>
<td>220</td>
<td>946</td>
</tr>
<tr>
<td>Total # Lines (OS)</td>
<td>0</td>
<td>7</td>
<td>189</td>
</tr>
<tr>
<td>Total # Lines (NDs)</td>
<td>57</td>
<td>213</td>
<td>837</td>
</tr>
<tr>
<td>Total # Lines with NSU</td>
<td>57</td>
<td>186</td>
<td>925</td>
</tr>
<tr>
<td>Total # Lines with Part #</td>
<td>0</td>
<td>34</td>
<td>21</td>
</tr>
<tr>
<td>Total $ Value of PLL</td>
<td>13,761</td>
<td>59,327</td>
<td>98,498</td>
</tr>
<tr>
<td>Ave Order/Ship Time</td>
<td>14 days</td>
<td>9 days</td>
<td>11 days</td>
</tr>
</tbody>
</table>

NOS
- 100%
- 97%
- 88.7%

PLL

- **Total Lines**
- **Total $ Value in**
- **Average Order/Ship Time**
 - None
 - 62 days
 - 20 units

Unit operates a leased system which is maintained by contract.

C-7.17
<table>
<thead>
<tr>
<th>Category</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL # ORGAN PROP BOOK LINES</td>
<td>53</td>
<td>165</td>
<td>347</td>
</tr>
<tr>
<td>TOTAL DOLLAR VALUE</td>
<td>455,332</td>
<td>3,327,354</td>
<td>9,228,575</td>
</tr>
</tbody>
</table>

AMF/ATC DX FACILITY

USAISC SIG RN-FT RUCKER, AL

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECT EXCHANGE ASL</td>
<td>274</td>
</tr>
<tr>
<td>BENCH/SHOP STOCK (NDS)</td>
<td>2715</td>
</tr>
<tr>
<td>SHOP STOCK (DS)</td>
<td>63</td>
</tr>
</tbody>
</table>
PRESCRIBED LOAD LIST (PLL) PROCEDURES

OUR UNIT'S PLL CONSISTS OF BOTH DEMAND SUPPORTED (DS) AND NON-Demand Supported (NDS) REPAIR PARTS. APPROVAL TO STOCK NDS PLL MUST BE OBTAINED FROM 7TH SIG CMD ANNUALLY. NDS PLL ITEMS WITH A TOTAL LINE VALUE IN EXCESS OF $50.00 REQUIRE LINE BY LINE JUSTIFICATION FOR STORAGE.

PLL MAY INCLUDE REPAIR PARTS REQUIRED TO SUPPORT COMMUNICATION ELECTRONIC (C-E) EQUIPMENT, AS WELL AS REPAIR PARTS IN SUPPORT OF OTHER EQUIPMENT REQUIRED TO PERFORM THE OWN MISSION OF THE UNIT.

C-E PECULIAR REPAIR PARTS SUPPORT IS OBTAINED FROM THE CENTRALIZED SUPPLY SUPPORT (CSS) ACTIVITY, FT RITCHIE, MD. OTHER THAN C-E PECULIAR REPAIR PARTS ARE OBTAINED THROUGH THE HOST INSTALLATION SUPPLY DIVISION. THE ORDER AND SHIP TIME (OST) FOR C-E PECULIAR REPAIR PARTS IS VERY SHORT, 8-13 DAYS FOR AUTHORIZED STOCKAGE LIST (ASL) ITEMS ON 13 PRIORITY DESIGNATOR REQUISITIONS.

REQUISITIONS ARE KEY PUNCHED ON 80 COLUMN IBM CARDS AND THEN TRANSMITTED FROM THE COMM CENTER VIA AUTODIN TO THE CSS ACTIVITY FORT RITCHIE, MD.

C-7-15
OUR SUPPLY PERSONNEL MUST CONDUCT REQUIRED INVENTORIES.
(QUARTERLY FOR 300 OR LESS PLL LINES; SEMI-ANNUALLY FOR PLL'S CONSISTING OF MORE THAN 300 LINES) THEY MUST ALSO KEEP A RECORD OF USERS ON THE DA FORM 3318.

IN ADDITION TO DL AND NDS PLL OUR UNITS MAINTAIN CERTAIN PLL ITEMS AS DIRECT EXCHANGE (D.X.). PLL RECORDS FOR DX ITEMS ARE IDENTIFIED WITH A BLUE SIGNAL TAB WHICH SIGNIFY DX. DX SOURCES ARE:

A. C-E PECULIAR PARTS ARE OBTAINED FROM THE DX FACILITY AT FT HUACHUCA, AZ.

B. ATC/NAVAIDS D.X. REPAIR PARTS ARE OBTAINED FROM THE DX FACILITY AT FT RUCKER, AL.

EACH OF THE ABOVE FACILITIES HAVE WRITTEN DX SOPS.

ATC/NAVAIDS PARTS THAT ARE NOT AVAILABLE FROM THE WHOLESALE SYSTEM MAY BE ORDERED DIRECTLY FROM THE FEDERAL AVIATION ADMINISTRATION (FAA).

OUR UNITS HAVING ATC RESPONSIBILITIES HAVE SUPPORT AGREEMENTS WITH FAA TO PROVIDE PLL ITEMS FOR ATC RADAR BEACON SYSTEMS. VIDEO MAPPERS ETC.

PLL RECORDS FOR ATC/NAVAIDS REPAIR PARTS OBTAINED FROM FAA ARE MANUAL - NOT PART OF SAILS.

C. 7, 16
PLL CERTIFICATION PROGRAM

The PLL certification program is designed to improve individual efficiency in all facets of PLL management. We administer a test, consisting of 100 questions, to all full/part time PLL clerks. The test is also given to the first line supervisor of the PLL clerks, i.e., the unit PBO. The passing criteria is 75% correct. Those who fail are provided additional training and retested until they achieve a passing score.

It should be noted that test results are not used or considered during any personnel actions. The sole purpose of the test is to insure qualified personnel maintain the PLL records.
THE PLL REDUCTION PROGRAM IS AN ONGOING PROGRAM TO REDUCE THE UNITS PLL DOWN TO ONLY THOSE ITEMS REQUIRED IN SUPPORT OF THE UNITS OWN MISSION. A SERIES OF 28 MESSAGES COMPILED BY 7TH SIG COMD IS THE BASE DOCUMENT BY WHICH THE REDUCTION IS ACCOMPLISHED. PLL REDUCTION MSG’S 1-28 LISTED HUNDREDS OF ITEMS UNITS HAD BEEN CARRYING ON PLL RECORDS THAT HAD NOT SHOWN DEMANDS FOR AS MUCH AS 4 YEARS. THESE ITEMS WERE PURGED FROM UNITS PLL’S AND COULD ONLY BE REINSTATED WHEN FULLY JUSTIFIED BY THE USER. AS ITEMS WERE PURGED, EXCESSES WERE IDENTIFIED AND TURN-IN ACTIONS ACCOMPLISHED.
INSTALLATION HARDWARE (IH) PROCEDURES

IH IS LIMITED TO THOSE ITEMS USED BY TELEPHONE MECHANICS, INSTALLERS AND CABLE SPLICERS FOR NORMAL DAY-TO-DAY OPERATIONS. THESE ITEMS CONSIST OF NUTS, BOLTS, CONDUIT, SPLICE CLOSURES AND OTHER EXPENDABLE ITEMS NEEDED TO ACCOMPLISH THE OWN MISSION OF THE ISC UNIT.

STOCKAGE OBJECTIVES ARE COMPUTED FROM THE PAST 12 MONTHS DATA. EACH UNIT COMMANDER MUST REVIEW, REVISE, AND APPROVE THE IH STOCKAGE LIST EVERY 6 MONTHS.

DA FORM 3318 IS USED TO MAINTAIN IH RECORDS. DA FORM 3318 REFLECTS REQUISITIONS, RECEIPTS AND ISSUES.

IH ITEMS ARE REQUISITIONED FROM THE HOST INSTALLATION STOCK RECORD ACCOUNTABLE OFFICER. ORDER AND SHIP TIME IS QUITE LENGTHY WHEN COMPARED TO THE RELATIVELY SHORT OST EXPERIENCED FROM THE CSS ACTIVITY, FOR C-E PLL ITEMS.

EVERY ATTEMPT IS MADE TO REQUISITION STANDARD ITEMS THROUGH THE WHOLESALE SYSTEM. HOWEVER, MANY OF THE IH ITEMS ARE NOT COMMON ITEMS AND MUST BE BOUGHT THROUGH LOCAL PURCHASE (LP). EXPERIENCE HAS PROVEN THAT LP HAS THE LONGEST OST COMPARED TO ITEMS ORDERED THROUGH THE WHOLESALE SYSTEM.

C-7.19
PROPERTY BOOK PROCEDURES

USAISC-FT SILL, OK, MAINTAINS TWO AUTOMATED PROPERTY BOOKS 1 ORGANIZATIONAL AND 1 INSTALLATION. THESE BOOKS ARE MAINTAINED IAW AR 710-2 AND FT SILL'S SOP FOR AUTOMATED PROPERTY BOOK PROCEDURES, TITLED "THE AUTOMATED ASSET ACCOUNTABILITY SYSTEM (TAAS)." THE MANUAL PROPERTY BOOKS ARE MAINTAINED UTILIZING DA FORM 3328 AND DA FORM 3328-1.

IN ADDITION TO THE ABOVE MENTIONED REGULATIONS, WE ARE REQUIRED TO COMPLY WITH CERTAIN USAISC AND 7TH SIG COND REGULATIONS REGARDING SUPPLY PROCEDURES THAT ARE PECULIAR TO ISC UNITS.

OUR SUPPLY OPERATIONS ARE PERFORMED BY THE FOLLOWING: 1 PBO, 1 SUPPLY CLERK, 1 PLL CLERK AND 1 DRIVER/WAREHOUSEMAN. THE ABOVE IS THE NORMAL STAFFING. HOWEVER, THERE ARE EXCEPTIONS BASED ON SIZE OF THE ISC UNIT.

C-7.20
ALL PROPERTY BOOK ITEMS, LESS TRADE, ARE REQUISITIONED THROUGH THE LOCAL HOST STOCK RECORD ACCOUNT. REQUISITIONS ARE PREPARED ON DA FORM 2765, 2765-1 OR DD FORM 1348-6. REQUISITIONS ARE PROCESSED IN SAILS PROTOCOLS AS OUTLINED IN AR 725-50 AND TM 38-L03-19.
AMF-ATC/DX FACILITY

THE AMF-ATC/DX FACILITY PROVIDES LOGISTICS AND TECHNICAL ADVISORY SUPPORT TO NON-TACTICAL ATC NAVIGATIONAL AIDS (NAVAIDS) FACILITIES WITHIN CONUS, ALASKA, HAWAII, PANAMA, AND SELECTED EQUIPMENT IN KOREA.

OFF-SITE MAINTENANCE IS ACCOMPLISHED AT THE FIXED SHOP FACILITY AT FT. RUCKER, AL.

ON-SITE MAINTENANCE IS ACCOMPLISHED BY THE MOBILE MAINTENANCE CONTACT TEAMS (MNCT).

SUPPLY SUPPORT ITEMS AVAILABLE FOR DX ARE LISTED ON THE ATC/DX LISTING WHICH IS PUBLISHED AND DISTRIBUTED TO THE FIELD ON A QUARTERLY BASIS.

THE DA FORM 2402 (EXCHANGE TAG) IS USED BY THE SUPPORTED UNIT TO ACCOMPLISH DX.

DX ITEMS ARE SHIPPED TO AND FROM THE DX FACILITY PRIMARILY VIA UPS WITH RETURN RECEIPT REQUESTED. AIR SHIPMENTS ARE MADE ONLY AFTER BEING FULLY JUSTIFIED. THE OSL FOR ASL ITEMS IS WITHIN 24 HOURS AFTER THE DX REQUEST IS RECEIVED AT THE AMF-ATC DX FACILITY.

THE DX FACILITY WILL ACCEPT TELEPHONE REQUESTS FROM SUPPORTED UNITS FOR EMERGENCY REQUIREMENTS, WITH THE DX ITEM BEING SHIPPED TO THE DX FACILITY AFTER THE FACT.

C-7, 32
When items are not available to satisfy the requested DX quantity, the DX activity will establish an informal due-out in PD sequence. When due outs are filled, they are filled by matching the oldest due out date with the highest PD.

Requisitions for stock replenishment for the AMF-ATC DX facility are processed as follows:

AMF submits DA Form 2765-1 to the SA, ISC-SIG BN FT Rucker, where each document is edited and reviewed for correctness. After the edit process, an 80-column IBM card is punched, then taken to the commcenter to be transmitted via AUTODIN to the consolidated supply support (CSS) activity.

Shipping charges:

The shipper pays the cost to ship an item to the DX facility. Return shipping charges are paid by the DX facility.
LOCAL PURCHASE PROCEDURES

LOCAL PURCHASE PROCEDURES ARE ESTABLISHED BY EACH INSTALLATION Dio. UNITS MUST FOLLOW THE ESTABLISH PROCEDURES. OUR UNITS RESEARCH REQUIREMENTS BY USE OF VENDOR'S CATALOGS AND LIST ITEMS ON EITHER DA FORM 2765-1 OR DD FORM 1348-6. DOCUMENTS ARE THEN FORWARD TO THE SRA. THE SRA PREPARES DA FORM 3953 FOR LOCAL PURCHASE ITEMS, AND FORWARDS THEM TO THE PURCHASING OFFICER FOR PROCUREMENT ACTION.

EACH UNIT PREPARES DA FORM 3953 FOR LEASE/RENTALS OR SERVICES. THE REQUEST IS FORWARDED DIRECTLY TO THE PURCHASING OFFICER FOR PROCUREMENT ACTION. UNITS ARE PROHIBITED FROM USING THE DA FORM 3953 TO PURCHASE SUPPLIES AND EQUIPMENT UNDER THE PROVISIONS OF DA PAM 711-2-2 AND 7TH SIGNAL COMMAND REGULATION 37-5
1. OBJECTIVES.

A. ACCURATE AND TIMELY COMMAND WIDE EQUIPMENT VISIBILITY FOR EFFECTIVE MANAGEMENT AND CONTROL, TO INCLUDE MAINTENANCE STATUS.

B. ACCURATE AND CURRENT TECHNICAL AND CONDITION DATA ON ANTENNA STRUCTURES FOR IMPROVED READINESS.

C. STATUS OF EQUIPMENT MODIFICATIONS ON COMMAND EQUIPMENT ASSETS.

D. SUPPORT TO THE TEST, MEASUREMENT, AND DIAGNOSTIC EQUIPMENT (TMDE) MANAGEMENT IMPROVEMENT PROGRAM (MIP).

2. LOGMIS USES.

A. FOR HQ USAISC LOGMIS PROVIDES:

(1) THE ONLY COMMANDWIDE CAPABILITY TO DETERMINE, IN A TIMELY MANNER, AVAILABILITIES OF AND NEEDS FOR CRITICAL EQUIPMENTS. ASSETS CAN BE REDISTRIBUTED AND CONTROLLED IN A MANNER TO BEST SUPPORT UNITS NEEDS AND COMMAND PRIORITIES.
(2) Scheduling and planning of maintenance requirements for equipment as well as budgeting time and resources for modification work orders (MWO).

(3) Visibility of test, measurement and diagnostic equipment (TMDE).

(4) Monthly, automatic preparation of the continuing balance system - extended (CBS-X) report to DA, which aids in asset identification.

B. For major subordinate commands (MSCs) and intermediate commands (ICS):

(1) Offers the ability to analyze availabilities of assets and the unit's needs for equipment.

(2) Information can be used to identify schedule and plan the time and resources needed to support maintenance needs.

C. For USAISC units LOGMIS provides:

(1) Reports to the units which can be used to analyze on hand assets.

(2) Reduce repetitive asset reporting while reducing requests for asset information from higher headquarters.
3. LOGMIS PROCESS:

A. THE LOGMIS PROCESS IS A CONTINUOUS CYCLE OF INFORMATION BETWEEN UNITS AND HQ. USAISC.

B. DATA IS TRANSMITTED VIA THE AUTOMATIC DIGITAL NETWORK (AUTODIN) TO THE COMPUTER AT FT HUACHUCA, AZ. THE DATA IS STORED IN THE COMPUTER AND IS THE LOGMIS DATA BASE. THE DATA BASE IS THE AUTHORITATIVE SOURCE FOR USAISC ASSETS WORLDWIDE AND MUST BE EXACT AND UP TO DATE. CHANGES ARE MADE AS THEY OCCUR.

C. LOGMIS REPORTS PROCESSED INTO THE DATA BASE ARE:

(1) ASSET MODULE. THIS MODULE IS USED TO STORE AND PROCESS ASSET IDENTIFICATION AND LOCATION INFORMATION ON ALL LOGMIS REPORTABLE EQUIPMENT. THERE ARE 7 ASSET REPORTS USED TO REPORT QUANTITIES, TRANSFERS AND CHANGES IN EQUIPMENT DATA AND TO REPORT MORE DETAILED INFORMATION. THE ASSET MODULE REPORTS ARE:

* (A) L21 - REPORTS INITIAL INFORMATION, QUANTITY INCREASES AND CORRECTS DATA WHEN USED WITH L22. IS PREREQUISITE TO ALL OTHER LOGMIS TRANSACTIONS.

* (B) L22 - REPORTS DECREASES IN EQUIPMENT QUANTITIES AND CORRECTS DATA WHEN USED IN COMBINATION WITH L21.

* (C) L23 - REPORTS TRANSFER OF EQUIPMENT.

* (D) L27 - CORRECTS PREVIOUSLY ENTERED DATA.

C-7.27
(E) L91 - REQUESTS INVENTORY STATUS BY VARIOUS CATEGORIES.

(F) L96 - DOCUMENT/VOUCHER NUMBER INQUIRY. REQUESTS VOUCHER RECORD BY FROM-TO DATES, NSN OR VOUCHER NUMBER SEQUENCES.

* (G) L99 - REQUESTS NSN OR MANAGEMENT CONTROL NUMBER (MCN) WHEN NO NSN OR MCN ARE KNOWN.

(2) TMDE MODULE. CONTAINS IDENTIFICATION OF TMDE AND BUILDS FOUNDATION OF TMDE INFORMATION USED TO PRODUCE TMDE REPORTS. NO TRANSACTION REPORTS.

(3) MODIFICATION WORK ORDER (MWO) MODULE. PROCESSES AND STORES INFORMATION ABOUT TRACKING AND SCHEDULING OF MWO. THE MWO MODULE REPORTS ARE:

(A) L29 - USED BY USAISC TO NOTIFY EQUIPMENT HOLDERS OF MODIFICATIONS AND FOR UNITS TO REPORT COMPLETION OF APPLICABLE MODIFICATIONS.

(B) L61 - USED BY UNITS TO REPORT REASONS FOR DELAY IN APPLYING MODIFICATIONS TO USAISC.

(C) L92 - USED BY USAISC TO REQUEST LIST OF UNITS NOT COMPLETING REQUIRED MWO.
(4) ANTENNA STRUCTURE MODULE. PROCESSES AND STORES INFORMATION ABOUT LOCATIONS AND CONDITIONS OF ANTENNA STRUCTURES. THE ANTENNA STRUCTURE MODULE REPORTS ARE:

(A) L33 - PROVIDES TECHNICAL DATA FOR AND THE CONDITION OF ANTENNA STRUCTURES. CHANGES PREVIOUSLY SUBMITTED DATA.

(B) L34 - PROVIDES FREE-TEXT EXPLANATION OF ANY SITUATION THAT WOULD CLARIFY STRUCTURES INSTALLATION OR REPLACEMENT. CHANGES PREVIOUSLY SUBMITTED DATA.

(C) L93 - REQUESTS ANTENNA STRUCTURE INVENTORY REPORT.

(5) RAIN MODULE. PROCESSES AND STORES INFORMATION REPORTED ON EQUIPMENT AND SYSTEM FAILURES. REPORTS ARE:

(A) L25 - REPORTS ON-SITE CORRECTIVE MAINTENANCE ACTIONS FOR SELECTED SYSTEMS.

(B) L94 - REPORTS A SEQUENCED LIST OF EQUIPMENT FAILURE INFORMATION.

4. KEY PERSONNEL. LOGMIS DEPENDS UPON FOUR KEY PERSONNEL WITHIN EACH UNIT TO ASSURE EFFECTIVE LOGMIS REPORTING. THEY ARE:
A. UNIT COMMANDER - IS RESPONSIBLE FOR LOGIS ACCURACY AND FOR THE ANNUAL RECONCILIATION OF THE UNITS LOGIS DATA BASE AND UNIT PROPERTY BOOK.

B. PROPERTY BOOK OFFICER - REPORTS INITIAL LOGIS ASSETS, COMPLETES TRANSACTIONS, CORRECTS UPDATE ERRORS, REQUESTS AND RECEIVES REPORTS, AND COMPLETES ANNUAL RECONCILIATION OF DATA BASE AND PROPERTY BOOK IN CONJUNCTION WITH UNIT COMMANDER.

C. SITE MAINTENANCE CHIEF - INITIATES LOGIS MAINTENANCE REPORTS, COMPLETES TRANSACTIONS, CORRECTS UPDATE ERRORS, AND REQUESTS AND RECEIVES REPORTS.

D. LOGIS COORDINATOR (USUALLY IS THE PROPERTY BOOK OFFICER) - COORDINATES LOGIS REPORTING OF OTHER KEY PERSONNEL TO INCLUDE EXAMINING ALL TRANSACTIONS, KEY PUNCHES OR SUBMITS TRANSACTIONS FOR KEY PUNCHING, ADDS LOGIS ROUTING IDENTIFIER AND FORWARDS INPUT TO AUTODIR. REVIEWS RETURN MESSAGES, KEEPS ACCOUNT OF TRANSACTIONS AND DISTRIBUTES REPORTS. GENERATES SPECIAL REQUESTS, CORRECTS LOGIS ERRORS, AND FORWARDS UNRESOLVED ERRORS TO PROPER PERSONNEL.

5. USAISC-TRADOC LOGIS ACCEPTANCE RATE GOAL.

A. THE USAISC-TRADOC COMMANDER, COL OAKLEY, ESTABLISHED THE LOGIS ACCEPTANCE RATE AT 95% FOR OUR COMMAND. THIS GOAL WAS SET ANTICIPATING THAT UNITS WOULD ACHIEVE 95% OR HIGHER FOR ALL LOGIS INPUT REPORTS ACCEPTED INTO THE DATA BASE UPON THE INITIAL REPORT.
EXCESS EQUIPMENT DISPOSITION

7TH SIGNAL COMMAND HAS THE RESPONSIBILITY TO CROSS LEVEL AND PROVIDE DISPOSITION INSTRUCTIONS FOR EXCESS EQUIPMENT WITHIN THE MAJOR SUBORDINATE COMMAND, WITH THE EXCEPTION OF TMDE. THE INTERMEDIATE COMMAND IS RESPONSIBLE FOR CROSS LEVELING TMDE ITEMS.

MAXIMUM EFFORT IS MADE TO CROSS LEVEL C-E EQUIPMENT WITHIN THE MAJOR SUBORDINATE COMMAND. EXCESS EQUIPMENT IS BROADCAST VIA MESSAGE TO 7TH SIG CMD UNITS. ANY UNIT WITHIN THE 7TH WITH AN AUTHORIZED SHORTAGE, MAY REQUEST ITEMS REPORTED EXCESS. EXCESS EQUIPMENT THAT CANNOT BE CROSSED LEVELED TO FILL A SHORTAGE IS TURNED-IN TO THE SUPPLY SUPPORT ACTIVITY, AS DIRECTED BY 7TH SIG CMD LOG DIVISION.
STOCKAGE OF CABLE UP TO AND INCLUDING 25 PAIR IS BASED ON THE UNIT COMMANDER’S DETERMINATION OF REQUIREMENTS. STOCKAGE IS BASED ON A 60 DAY USAGE FACTOR, CALCULATED ON THE PAST 12 MONTHS USAGE.

STOCKAGE OF CABLE 26 PAIR AND ABOVE IS BASED ON THE LONGEST SPAN OF EACH TYPE OF CABLE INSTALLED OR TO THE NEAREST REEL NEEDED TO ACCOMMODATE THE LONGEST SPAN, I.E., POLE-TO-POLE, MANHOLE-TO-MANHOLE OR SPLICE TO SPLICE.

DA FORM 3318 IS USED TO RECORD CABLE/WIRE TRANSACTIONS, I.E., RECEIPTS, ISSUES, AND ON HAND BALANCES.

OUR CABLE WIRE IS CLASSIFIED AS: M-Maintenance, (8000 Series), P-Projects, (5000 Series) and E-Excess, (9000 Series). Series indicate manner in which reels are marked and stored for each category.

WE HAVE AN AUTOMATED CABLE MANAGEMENT PROGRAM WHICH MANAGES ALL CABLE/WIRE 26 PAIR AND ABOVE OF AT LEAST 200 FEET IN LENGTH. ALL 26 PAIR AND ABOVE CABLE MUST BE REPORTED QUARTERLY TO 7TH SIG CMD.
FROM THIS REPORT, MANY OF OUR CABLE NEEDS ARE MET SIMPLY BY CROSS LEVELING CABLE FROM ONE ISC UNIT TO ANOTHER. THIS PROCEDURE IS COST EFFECTIVE, PLUS IT ALLOWS CABLE/WIRE REQUIREMENTS TO BE MET FROM COMMAND RESOURCES WITHIN A VERY SHORT TIMEFRAME. CABLE/WIRE REQUIREMENTS THAT CANNOT BE SATISFIED THROUGH REDISTRIBUTION MUST BE REQUISITIONED THROUGH THE INSTALLATION SRA.
APPENDIX D

LIST OF KEY PERSONS VISITED/CONTACTED

HQ DEPARTMENT OF THE ARMY

LTG David K. Doyle Assisant Chief of Staff for Information Management

LTG Nathaniel R. Thompson, Jr. The Inspector General

MG Vincent M. Russo The Asst Deputy Chief of Staff for Logistics

Ms. Mary Ellen Harvey Dep Dir, Sup & Maint Dir, ODCSLOG

USA ARMY MATERIEL COMMAND

GEN Richard H. Thompson CG

BG(P) Robert D. Morgan CG, USA Communications Electronics Command (CECOM)

COL Edward B. English Dep Comptroller, CECOM

COL Charles Lindberg CO, Satellite Communications Agency (SATCOMA)

D-1
USA INFORMATION SYSTEMS COMMAND

LTG Clarence E. McKnight Jr. CG (outgoing)
MG(P) Emmett Paige, Jr. CG (incoming)
BG(P) Bruce R. Harris CG, USA Communications System Agency (CSA)
BG John T. Myers CG, 7th Signal Command
COL Charles Beckman DCSLOG, 7th Signal Command
COL Howard H. Oakley CO, ISC-TRADOC
COL Huntley E. Shelton, Jr. Dep Cmdr, CSA
Mr. Feliciano Giordano Tech Dir, CSA
Mr. Max Hitschman Dir of Logistics, CSA
Mr. John Maliniak Chief PARC, ISC
Dr. Kingsley E. Forry A/DCSLOG, ISC
USA SIGNAL SCHOOL

MG Thurman D. Rodgers CG
BG Billy M. Thomas DCG
COL Ronald S. Savard Director of Training
COL Peter A. Kind Director, Combat Development

DEFENSE COMMUNICATIONS AGENCY

BG Joseph D. Schott Director, Command and Control

D-3
EXHIBIT E

USAISC ORGANIZATION

<table>
<thead>
<tr>
<th>PAGE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-3</td>
<td>AR 10-13 Organizations and Functions UNITED STATES ARMY COMMUNICATIONS COMMAND. 15 September 1980.</td>
</tr>
</tbody>
</table>
ORGANIZATION AND FUNCTIONS

UNITED STATES ARMY COMMUNICATIONS COMMAND

Effective 15 October 1980

This revision updates the mission and functions of the US Army Communications Command.

Local supplementation of this regulation is prohibited, except upon approval of the Office of the Chief of Staff, Army (ATTN: DACS-DMA), Washington, DC 20310.

Interim changes to this regulation are not official unless they are authenticated by The Adjutant General. Users will destroy interim changes on their expiration dates unless sooner superseded or rescinded.

1. Purpose. This regulation prescribes the mission and principal functions of the Commanding General, United States Army Communications Command (CG, USACC). It also sets forth the relationships with other headquarters, agencies, and Government departments.

2. Applicability. This regulation applies to the Active Army, the Army National Guard, and the US Army Reserve.

3. Explanation of terms. a. Air traffic control (ATC). The control of air traffic required to prevent collisions between aircraft and between aircraft and obstructions; also, to expedite and maintain an orderly flow of air traffic. ATC involves the following:

(1) Giving flight information.
(2) Developing air traffic regulations, controls, and procedures.
(3) Planning, engineering, installing, and operating navigational aids and control tower equipment.
(4) Planning, engineering, and operating control towers and runway, taxiway, approach, and obstruction lighting devices.

c. Other developmental activities. Doctrinal, organizational, and materiel systems requirements not included in the definition of combat developments.

e. Direct Army Communications System. Fixed and transportable Army communications, not a part of the DCS, and not organic to tactical units, essential for the functioning of echelons above corps (EAC), posts and bases, command control, and Army air traffic control.

g. Assigned Army communications. All Army communications (except base communications and DCS, Army) assigned to USACC. This includes communications support to national and Army test ranges, proving grounds, and for nuclear and chemical surety programs.

h. Base communications. Communications services required to operate a military post, camp, base, installation, or station, including telephone service for Reserve facilities.

4. Mission. The mission of the CG, USACC is as follows:

*This regulation supersedes AR 10–13, 7 June 1974.
a. Provide Army’s assigned part of the DCS.
b. Furnish all Army communications above corps level not assigned by HQDA to other commands and agencies.
c. Furnish base communications to overseas Army component and designated unified and specified commanders and to all CONUS installation commanders when not assigned by HQDA to other commands and agencies.
d. Provide all Army ATC services and systems.
e. Conduct combat development for DCS, Army, EAC level communications and Army ATC systems and other development activities for base communications and assigned Army communications.
f. Serve as developing agency for overall design of communications systems, as directed by HQDA, which have sole application to DCS and other assigned Army communications systems. See table 6-1, AR 70-1.
g. Develop and issue operational and procedural guidelines, in coordination with CG, DARCOM, on security assistance activities involving the establishment of fixed and semifixed communications facilities.
h. Command organizations, installations, and activities as assigned by HQDA.
i. Develop Army plans for echelon above corps and base communications survivability.

5. Functions. The functions of the CG, USACC, unless HQDA modifies or assigns parts of them to other commanders, are as shown below.
a. Plan, engineer, install, operate, and maintain all assigned Army communications above corps level, Army’s part of the DCS, base communications, and Army ATC facilities.
b. Establish policy and criteria for certifying Army ATC facilities and for reviewing and approving standard instrument approach and departure procedures. Perform flight checks and certification of Army ATC facilities and personnel. Determine and validate Army’s requirement for flight information.
c. Represent DA with other Department of Defense, Government, and international agencies on the use of noncombat air space; air traffic regulation, control, and procedures; and flight information.
d. Participate in materiel acquisition. Conduct development, user, and retail level logistics support evaluation tests for systems applicable to USACC’s mission.
e. Provide transmission facilities and radio distribution systems in support of education, information, and entertainment radio and television. This does not include broadcasting facilities and television receivers.
f. Centrally manage equipment used in DCS, Army, Army ATC, and other USACC communications systems in accordance with AR 710-2.
g. Furnish communications support to unified and specified commanders during contingency and emergency operations and to State and Federal agencies during civil disturbance or natural disaster operations.
h. Provide communications interface between the DCS and the senior US Army headquarters in a theater.
i. Manage the acquisition and installation of telecommunications systems in overseas areas in support of the Military Assistance Program, Agency for International Development, and foreign governments as assigned. Perform security assistance activities as prescribed by AR 12-1.
j. Provide and manage the Army’s worldwide lease telecommunications services and facilities.
k. Manage the Army Telecommunications Requirements Program (TELRPS).
l. Provide new equipment training for equipment and systems used by USACC. Develop qualitative and quantitative personnel requirements according to AR 611-1. Provide training on communications-electronics equipment used solely by USACC, for which there is no DA training base, when agreed to by the CG, TRADOC.
m. Centrally develop, manage, and maintain automated telecommunications systems software for base communications and other systems, as assigned.
n. Direct and manage the operation of the Army Military Affiliate Radio System (MARS).
o. Develop the Army Telecommunications Ten-Year Plan.
p. Provide radio propagation technical services to the military services and other Government agencies. Perform radio field spectrum measurements. Conduct radio frequency hazard and radio propagation path surveys.
q. Serve as functional chief of the Army Civilian Career Program for Communications.
r. Program, allocate, and supervise resources for achieving USACC’s mission.
s. Develop Army policy, systems definition, and
procedures for Army-wide communications systems within the scope of Army regulations and DOD, JCS, and DCS policy for the operation of DCS. Army and Direct Army Communications systems.

t. Manage call signs and frequency assignments for the Army.

u. Provide Army area frequency coordinators in the CONUS and DOD area frequency coordinators for the White Sands Missile Range and the State of Arizona.

v. Represent the Army on the following committees and panels:

1. Frequency Assignment Subcommittee.

w. Manage the Army Communications-Electronics Operating Instructions (CEOI) Program.

x. Provide life cycle communications-electronics planning assistance and support to the US Army Computer Systems Command and DA functional proponents of ADP systems.

y. Implement and manage Army portion of the DOD electromagnetic compatibility program in accordance with AR 5-12.

z. Operate a dedicated retail logistic support system for all communication electronics systems and equipment organic to USACC. This includes operation of area maintenance and support facilities.

aa. Provide retail Communications Security (COMSEC) logistics support to overseas Army component commands, unified commands, and allied forces where appropriate.

ab. Develop, administer, and maintain the Data Requirements Transfer System (DARTS).

6. Relationships. a. The CG, USACC is under the supervision of the Chief of Staff, United States Army (CSA). Directives, authority, policy, planning and programming guidance, approved programs, and resource allocations are issued to the CG, USACC by the CSA.

b. The USACC and other major Army commands (MACOMs) are coordinate elements of the Department of the Army. The CG, USACC is authorized to communicate directly with other Army headquarters and agencies on matters of mutual interest.

c. In CONUS and overseas areas, a memorandum of understanding will be transacted between USACC and the MACOM or component command to define support and logistical relationships. Local level agreements may be made when required. These agreements should clearly define the necessary installation support relationship between tenant and host which will permit both to perform their respective missions at acceptable levels of performance.

d. The CG, USACC is the Army point of contact for dealing with the Director, Defense Communications Agency on operational communications and related matters.

e. The CG, USACC, will command all assigned communications and ATC organizations supporting MACOMs. Operational control will be exercised by the CONUS-based major Army commander or the overseas Army Component commander. The senior USACC commander serves concurrently as the Deputy, Assistant Chief of Staff, or Director for Communications-Electronics on the supported commander's staff. Dual status may apply below the supported command headquarters level by mutual agreement of the commanders. At all CONUS installations, the USACC commander or director will be a principal member on the installation commander's staff for communications-electronics.

f. CG, TRADOC will assign tasks and furnish guidance for USACC combat development activities. USACC will provide the completed combat development products to TRADOC for integration into overall combat developments.

g. For other development activities, CG, USACC will report directly to HQDA. USACC will coordinate all other development products affecting combat developments and supporting development with TRADOC.

h. CG, USACC will coordinate with the CG, DARCOM those matters pertaining to the acquisition of communications systems for which USACC has been designated as materiel developer.

i. CG, USACC will coordinate with CG, USACE, those matters pertaining to the acquisition of communications systems for which USACC is responsible in support of the Military Construction Program.

j. USACC and its installations and activities are dependent on the commands listed below for the support indicated, unless furnished by other Services or otherwise approved by HQDA.

(1) US Army Health Services Command for au-
authorized health services in CONUS. (3) US Army Intelligence and Security Command for counterintelligence, electronic warfare, and cryptologic and signal security.

The proponent agency of this regulation is the Office of the Chief of Staff, US Army. Users are invited to send comments and suggested improvements on DA Form 2026 (Recommended Changes to Publications) direct to HQDA(DACS-DMA), Wash 20310.

By Order of the Secretary of the Army:

E. C. MEYER
General, United States Army
Chief of Staff

Official:
J. C. PENNINGTON
Major General, United States Army
The Adjutant General

DISTRIBUTION:
Active Army: To be distributed in accordance with DA Form 12-9A, requirements for Organizations and Functions -D.
APPENDIX F

SUPPLY FLOW CHARTS

<table>
<thead>
<tr>
<th>PAGE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-3</td>
<td>Standard System - Present Army Supply System.</td>
</tr>
<tr>
<td>F-7</td>
<td>ISC Supply operations.</td>
</tr>
<tr>
<td>F-8</td>
<td>ISC - CSSF Requisition Flow.</td>
</tr>
<tr>
<td>F-9</td>
<td>ISC - CSSF Requisition Flow for Non-Stocked NSNs.</td>
</tr>
</tbody>
</table>
F-10 ISC - CSSF Requisition Flow for Non-Stocked Part Numbers or Local Purchase NSNs.

F-11 ISC - CSSF Requisition Flow for Stocked Items (NSN/PN).

F-12 ISC - CSSF Flow of Part Number Requisitions.

F-13 ISC - CSSF Flow of Demand Data for Part Number Requisitions.

F-15 ISC - AMSF Europe Supply Flow.

F-16 ISC - AMSF Europe Supply System (ISC Unique) Referenced in the Main Report as Exhibit III-3.

F-17 ISC - AMSF Pacific Supply Flow.
TRADOC
REQUISITION AND SHIPMENT FLOW
LOCALLY PROCURED ITEMS

--- REQUISITION FLOW
---------- PURCHASE REQUEST
+++ PURCHASE ORDER
-------- SHIPMENT FLOW

F-4.1
Locally Procured Items

Processing of requisitions is identical to that outlined for centrally procured items. When, during the ISD processing, an item is identified in the Army Master Data File for local procurement, the SAILS Supply System automatically generates a purchase request. This purchase request is forwarded to the installation contracting office for necessary purchase action.

Locally procured items are delivered to the CRP and, after required processing, picked up by the requesting unit/activity.
Centrally Procured Items

1. Requisition Flow.
 a. TRADOC Units and Activities.
 (1) Requisitions for repair parts and equipment are routinely submitted to the Installation Supply Division (ISD) by supported units and activities. All requisitions are submitted to the ISD except for DEH and medical items which are processed thru their unique system.

 (2) Items which are exempt from unit requisitioning are those which meet the criteria for sale thru the Self Service Supply Center; items controlled by the Direct Exchange Activity and Organizational Clothing and Equipment (OCIE) which are obtained thru the Central Issue Facility.

 b. FORSCOM Units/Activities on TRADOC Installations.
 (1) Requisitions for repair parts are routinely submitted to the DSU by supported FORSCOM units and activities.

 (2) If stocks are available at the DSU, requested quantity is released for issue. If stocks are not available at the DSU, and the item requested is on the DSU ASL, backorders are established for IDP 09-15 requisitions. Unfilled requisitions with IPD 01-08 and all requisitions for nonstockage list items are forwarded to the ISD for continued supply action.

 (3) Requisitions are also submitted to the ISD by the DSU for replenishment of its requisitioning objectives.

 c. ISD/SAILS Processing. Requisitions received by the ISD/SAILS are issued/processed as follows:

 (1) Mission customers (non-DSS)

 (a) If stocks are available, requested quantity is released for issue.

 (b) If stocks are not available the following actions are taken.

 (1.) Authorized Stockage List Items.

 (aa) IPD 01-08 Passed to the wholesale source of supply (SOS) for continued supply action.

 (bb) IPD 09-15 Back ordered pending receipt of ISD replenishment requisitions.

F-5.a
(2.) Nonstockage List Items.

IPD 01-15 Passed to the wholesale SOS for continued supply action and direct delivery to requesting unit/activity.

(2) Nonmission Customers (DSS).

(a) If stocks are available above the requisitioning objective (retention and excess) requested quantity is released for issue regardless of priority.

(b) If the quantity on hand is less than the requisitioning objective quantity, only requisitions with IPD 01-08 are released for issue.

(c) All unfilled (total or partial) requisitions (IPD 01-15) are passed to the wholesale SOS for continued supply action and direct delivery to the requesting unit/activity.

2. Shipment Flow.

All shipments from the wholesale depots and commercial vendors are made to the Installation Central Receiving Point (CRP). Large shipments are delivered directly to the consignee after CRP processing of shipping documents. All other shipments are offloaded at the CRP and, after required processing, picked up by the requesting unit/activity.
USAISC SUPPLY OPERATIONS

AMSFs OPERATE IN ACCORDANCE WITH:
* FM 29-23 AND FM 29-24 DOCTRINE
* AR 10-13 COMMAND MISSIONS AND FUNCTIONS
* AR 710-2 SUPPLY POLICY (SEE CHAPTER 3, ALSO PARAGRAPHS 3-23 FOR AMSF)
* AR 750-1 MAINTENANCE POLICY (SEE CHAPTER 5, SECTION VII)

USAISC LOGISTICS OPERATIONS FUNCTION AS PART OF THE ARMY STANDARD LOGISTICS SYSTEM.
When requisitions are received at CSS, the availability of item determines how the requisition flows. Chart B1 reflects processing through wholesale system for NSN items not on hand. Chart B2 reflects processing of requisitions for part numbers and NSN that are coded local purchase. Chart B3 reflects processing requisitions for items (NSN or PN) that are in stock.
CSS FT RITCHIE
REQUISITION FLOW
FOR NON-STOCKED NSNs

CSS (SAILS)

DAAS

LCA

USACC
ACTIVITY

S9E

B16

NICPs

DEPOT

ALOC
(PANAMA)
CCP

USACC
ACTIVITY

COMMERCIAL VENDOR

F-9
CSS FT RITCHIE
REQUISITION FLOW
FOR NON-STOCKED PART NUMBERS
OR LOCAL PURCHASE NSNs

LOCAL PURCHASE

CSS (SAILS)

CSS WAREHOUSE

ALOC (PANAMA)
CCP

USACC ACTIVITY

DIRECT SHIP

F-10
CSS FT RITCHIE
REQUISITION FLOW
FOR STOCKED ITEMS
(NSN/PN)

USACC ACTIVITY

CSS (SAILS)

ALOC (PANAMA) CCP

CSS WAREHOUSE

USACC ACTIVITY

F-11
FLOW OF PART NUMBER (PN) REQUISITION

UNIT

VIA AUTODIN

CSS

LOCAL CONSOLIDATED MASTER DATA FILE (X02)

IF PN IS ON X02

NOT STOCKED

PASS TO LOCAL PURCHASE

STOCKED

CUT MRO

IF PN IS NOT ON X02

REFER TO DCSF

EDIT/CATALOG

IF NSN IS AVAILABLE

CREATE CROSS-REFERENCE IN X02

PASS REQ TO ICP/CUT MRO

IF NSN IS NOT AVAILABLE

LOAD DATA IN X02

PASS TO LOCAL PURCHASE
FLOW OF DEMAND DATA FOR PART NUMBER (PN) REQUISITIONS

ITEM RECEIVES 3 DEMANDS IN 180 DAYS

SUPPLY CONTROL STUDY
REFERRING DEMAND DATA
TO ITEM MANAGER

PASST REQUEST TO LOCAL PURCHASE FOR ASL STOCKS

PREPARE DA 1988 TO PASS DEMAND DATA TO CDA

PROVIDE DEMAND DATA TO MRSA AS THEY REQUEST
AMSF EUROPE
SUPPLY FLOW

UNIT
NEEDS
CLASS IX
ITEMS

AMSF
EUROPE

USAREUR
SUPPLY
SUPPORT
ACTIVITY

CE
ITEM

NON-CE
ITEM

REQUEST
ISSUE
REQUEST
ISSUE
REQUISITION
ISSUE

WHOLESALE
EXHIBIT III - 3
AMSF PACIFIC
SUPPLY FLOW

UNIT NEEDS CLASS IX ITEMS
CE ITEM NON-CE ITEM

EIGHTH ARMY SUPPLY SUPPORT ACTIVITY

AMSF PACIFIC AND/OR DET KOREA

REQUEST ISSUE

REQUISITION ISSUE

F-17
APPENDIX G

STATISTICAL/PERFORMANCE DATA

<table>
<thead>
<tr>
<th>PAGE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-2</td>
<td>LOGMIS Quarterly Asset Report.</td>
</tr>
<tr>
<td>G-3</td>
<td>Logistics Intelligence File (LIF) - OST Analysis: CONUS, Panama, Europe, Japan.</td>
</tr>
<tr>
<td>G-4</td>
<td>Performance Data SRA Ft. Ritchie (CSSF).</td>
</tr>
<tr>
<td>G-5</td>
<td>Performance Data CSSF.</td>
</tr>
<tr>
<td>G-6</td>
<td>Performance Data SRA Huachuca (DX).</td>
</tr>
<tr>
<td>G-7</td>
<td>Performance Data AMSF Europe.</td>
</tr>
<tr>
<td>G-8</td>
<td>Performance Data AMSF Pacific.</td>
</tr>
<tr>
<td>G-9</td>
<td>ISC Supply information: Systems experiencing difficulty, high dollar items in PLL; high dollar items not stocked; repairables unresourced.</td>
</tr>
<tr>
<td>UIC</td>
<td>SLIC</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>0338</td>
<td>0520</td>
</tr>
</tbody>
</table>
LOGMIS INFORMATION FLOW

USAAC
HEADQUARTERS

TAADS
SB 700-20
AMDF

LOGMIS COMPUTER

LOGMIS Regular Reports
Inquiry Reports, Return Messages

LOGMIS Transactions and Inquiries

UNITs
IC
MSC
<table>
<thead>
<tr>
<th>INSTALLATION CODE</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>FT. BLISS</td>
</tr>
<tr>
<td>16</td>
<td>FT. BRAGG</td>
</tr>
<tr>
<td>20</td>
<td>FT. CAMPBELL</td>
</tr>
<tr>
<td>22</td>
<td>FT. CARSON</td>
</tr>
<tr>
<td>28</td>
<td>FT. DEVENS</td>
</tr>
<tr>
<td>31</td>
<td>FT. DRUM</td>
</tr>
<tr>
<td>41</td>
<td>FT. HOOD</td>
</tr>
<tr>
<td>42</td>
<td>FT. SAM HOUSTON</td>
</tr>
<tr>
<td>47</td>
<td>FT. IRWIN</td>
</tr>
<tr>
<td>50</td>
<td>FT. KNOX</td>
</tr>
<tr>
<td>54</td>
<td>FT. LEWIS</td>
</tr>
<tr>
<td>58</td>
<td>FT. MCCOY</td>
</tr>
<tr>
<td>61</td>
<td>FT. MEADE</td>
</tr>
<tr>
<td>69</td>
<td>FT. ORD</td>
</tr>
<tr>
<td>72</td>
<td>FT. POLK</td>
</tr>
<tr>
<td>73</td>
<td>FT. RLYE</td>
</tr>
<tr>
<td>82</td>
<td>FT. SILL</td>
</tr>
<tr>
<td>83</td>
<td>FT. STEWART</td>
</tr>
<tr>
<td>84</td>
<td>13TH. COSCOM HOOD</td>
</tr>
<tr>
<td>93</td>
<td>1ST. SPT BRAGG</td>
</tr>
</tbody>
</table>

Encl 1
Inner Shot Time Analysis for Electronic Parts

Rec'ts Having Ship Dates During the 1-Year Period Ending 31 May 1994

Shipment Route Directly to SECO or DESC

<table>
<thead>
<tr>
<th>Source</th>
<th>Pack Order</th>
<th>No. of Rec's</th>
<th>Extended Days</th>
<th>Order Ship Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 416</td>
<td>A</td>
<td>4,993</td>
<td>730,751</td>
<td>146.4</td>
</tr>
<tr>
<td>1 416</td>
<td>V</td>
<td>63</td>
<td>14,271</td>
<td>225.1</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>151,712</td>
<td>1,072,053</td>
<td>54.1</td>
</tr>
<tr>
<td>1 59E</td>
<td>A</td>
<td>1,986</td>
<td>150,135</td>
<td>76.7</td>
</tr>
<tr>
<td>1 59E</td>
<td>V</td>
<td>188</td>
<td>28,635</td>
<td>157.3</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>231,003</td>
<td>517,750</td>
<td>11.1</td>
</tr>
<tr>
<td>1 PG TOTAL</td>
<td></td>
<td>46,769</td>
<td>1,607,671</td>
<td>34.4</td>
</tr>
<tr>
<td>2 416</td>
<td>B</td>
<td>3,247</td>
<td>530,441</td>
<td>163.4</td>
</tr>
<tr>
<td>2 416</td>
<td>V</td>
<td>25</td>
<td>57114</td>
<td>228.6</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>11,523</td>
<td>248,863</td>
<td>21.6</td>
</tr>
<tr>
<td>2 59E</td>
<td>B</td>
<td>1,980</td>
<td>179,105</td>
<td>90.5</td>
</tr>
<tr>
<td>2 59E</td>
<td>V</td>
<td>97</td>
<td>16,677</td>
<td>174.0</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>23,419</td>
<td>524,064</td>
<td>73.7</td>
</tr>
<tr>
<td>1 PG TOTAL</td>
<td></td>
<td>41,144</td>
<td>1,409,282</td>
<td>34.3</td>
</tr>
<tr>
<td>3 416</td>
<td>B</td>
<td>5,120</td>
<td>800,049</td>
<td>130.7</td>
</tr>
<tr>
<td>3 416</td>
<td>D</td>
<td>99</td>
<td>223,793</td>
<td>740.7</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>47,007</td>
<td>1,783,603</td>
<td>17.9</td>
</tr>
<tr>
<td>3 59E</td>
<td>B</td>
<td>7,793</td>
<td>852,566</td>
<td>116.5</td>
</tr>
<tr>
<td>3 59E</td>
<td>V</td>
<td>321</td>
<td>53,939</td>
<td>167.7</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>104,774</td>
<td>2,299,069</td>
<td>92.4</td>
</tr>
<tr>
<td>1 PG TOTAL</td>
<td></td>
<td>112,752</td>
<td>3,444,534</td>
<td>52.6</td>
</tr>
<tr>
<td>FINAL TOTALS</td>
<td></td>
<td>159,759</td>
<td>5,229,337</td>
<td>37.2</td>
</tr>
</tbody>
</table>

247,672 Entries Totaled

End 5
Header & Time Analysis for Electronic Papers

Pecos Ship Time Data:

Shipments Placed:

E-2007 to CECOM or DFSC.

<table>
<thead>
<tr>
<th>Source of Supply</th>
<th>Packorder Indicator</th>
<th>No of Orders</th>
<th>Extended Days</th>
<th>Other Ship Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/C/0</td>
<td>B</td>
<td>12</td>
<td>2,702</td>
<td>23/4</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>30</td>
<td>3,061</td>
<td>10/3</td>
</tr>
<tr>
<td>B/C/0</td>
<td>B</td>
<td>5</td>
<td>107</td>
<td>6/7</td>
</tr>
<tr>
<td>B/C/0</td>
<td>V</td>
<td>5</td>
<td>931</td>
<td>11/2</td>
</tr>
<tr>
<td>B/C/0</td>
<td>O</td>
<td>89</td>
<td>2,306</td>
<td>12/2</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>98</td>
<td>3,280</td>
<td>15/0</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>128</td>
<td>6,279</td>
<td>47/2</td>
</tr>
<tr>
<td>B/C/0</td>
<td>B</td>
<td>41</td>
<td>5,512</td>
<td>13/4</td>
</tr>
<tr>
<td>B/C/0</td>
<td>B</td>
<td>109</td>
<td>3,323</td>
<td>10/5</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>150</td>
<td>8,735</td>
<td>58/9</td>
</tr>
<tr>
<td>B/C/0</td>
<td>B</td>
<td>24</td>
<td>2,590</td>
<td>10/7</td>
</tr>
<tr>
<td>B/C/0</td>
<td>V</td>
<td>25</td>
<td>583</td>
<td>11/4</td>
</tr>
<tr>
<td>B/C/0</td>
<td>O</td>
<td>272</td>
<td>3,962</td>
<td>11/0</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>278</td>
<td>6,955</td>
<td>12/0</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>428</td>
<td>15,790</td>
<td>14/2</td>
</tr>
<tr>
<td>B/C/0</td>
<td>B</td>
<td>37</td>
<td>5,877</td>
<td>10/4</td>
</tr>
<tr>
<td>B/C/0</td>
<td>V</td>
<td>25</td>
<td>2,665</td>
<td>26/5</td>
</tr>
<tr>
<td>B/C/0</td>
<td>B</td>
<td>595</td>
<td>8,927</td>
<td>12/0</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>533</td>
<td>15,124</td>
<td>22/9</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>4,116</td>
<td>31,718</td>
<td>13/4</td>
</tr>
<tr>
<td>LKS TOTAL</td>
<td></td>
<td>4,749</td>
<td>88,842</td>
<td>14/7</td>
</tr>
<tr>
<td>FINAL TOTALS</td>
<td></td>
<td>9,305</td>
<td>108,931</td>
<td>20/9</td>
</tr>
</tbody>
</table>

Note:

- Numbers represent days of shipment.
- Specific calculations and analysis are detailed in the subsequent text.
OVERSEAS REQUISITIONS FOR PANAMA (NON-WAC) 1984
COMPLETED ODF PIPELINE SEGMENT ANALYSIS
NOW RACKORDERED ODF 09-15 REQUISITIONS ONLY
RECORDS WITH MIRP DATES DURING THE 1-YEAR PERIOD ENDING 31 MAY 1984

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>PIPELINE SEGMENTS</th>
<th>COMBINED SEGMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NR. OF ACTIONS</td>
<td>NR. OF ACTIONS</td>
</tr>
<tr>
<td></td>
<td>DAYS</td>
<td>DAYS</td>
</tr>
<tr>
<td>IN-THEATER PROCESSING</td>
<td>3849</td>
<td>3849</td>
</tr>
<tr>
<td>45</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>TICP PROCESSING</td>
<td>3716</td>
<td>3916</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>DEPOT PROCESSING & WILD TIME</td>
<td>3907</td>
<td>3907</td>
</tr>
<tr>
<td>35</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>TRANSIT TO CCP - ALL SHIPPMENTS</td>
<td>3348</td>
<td>3348</td>
</tr>
<tr>
<td>35</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>(TRANSIT TO CCP - NON ADD SHIPPMENTS)</td>
<td>2613</td>
<td>3448</td>
</tr>
<tr>
<td>35</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>CCP PROCESSING & CARGO ACCUMULATION - ALL SHIPPMENTS</td>
<td>3448</td>
<td>3448</td>
</tr>
<tr>
<td>35</td>
<td>5.7</td>
<td>5.7</td>
</tr>
<tr>
<td>(CCP PROC & CARGO ACC. - NON ADD SHIPPMENTS)</td>
<td>2715</td>
<td>3448</td>
</tr>
<tr>
<td>35</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>TRANSIT POE</td>
<td>3396</td>
<td>3396</td>
</tr>
<tr>
<td>35</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>DPR PROCESSING & WAIT SCHEDULED LIFT</td>
<td>3337</td>
<td>3337</td>
</tr>
<tr>
<td>35</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>DPR POE TO PDR</td>
<td>2404</td>
<td>2404</td>
</tr>
<tr>
<td>35</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>DPR PROCESSING</td>
<td>2509</td>
<td>2509</td>
</tr>
<tr>
<td>35</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>TRANSIT SSA</td>
<td>2012</td>
<td>2012</td>
</tr>
<tr>
<td>35</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>SSA PROCESSING</td>
<td>2381</td>
<td>2381</td>
</tr>
<tr>
<td>35</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>SUM OF SEGMENTS</td>
<td>2381</td>
<td>2381</td>
</tr>
<tr>
<td>35</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>TOTAL ODF</td>
<td>4000</td>
<td>33.1</td>
</tr>
</tbody>
</table>

* NR = LARGE DAY LIMITS.
** SEGMENTS COMBINED TO EFFECTIVELY ELIMINATE DUPLICATE PROCESSING TIMES FOR REQUISITIONS PROCESSED THROUGH TWO OR MORE SUBSEQUENT EVENTS ON THE SAME CALENDAR DAY.

End 13
OVERSEAS REQUISITIONS FOR W80104 (PANAMA)

COMPLETED OQT PIPELINE SEGMENT ANALYSIS
NON BACKORDERED IPD 09-15 REQUISITIONS ONLY

RECORDS WITH MRP DATES DURING THE 1-YEAR PERIOD ENDING 31 MAY 1994

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>PIPELINE SEGMENTS*</th>
<th>COMBINED SEGMENTS**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MR. OF ACTIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAYS</td>
<td></td>
</tr>
<tr>
<td>IN-THEATER PROCESSING</td>
<td>158 3.3</td>
<td>158 3.3</td>
</tr>
<tr>
<td>NCIP PROCESSING</td>
<td>163 1.2</td>
<td>163 1.2</td>
</tr>
<tr>
<td>DEPOT PROCESSING & HOLD TIME</td>
<td>167 4.1</td>
<td>167 4.1</td>
</tr>
<tr>
<td>INTRANSIT TO CCP - ALL SHIPMENTS</td>
<td>137 4.1</td>
<td>137 4.1</td>
</tr>
<tr>
<td>(INTRANSIT TO CCP - NON ADD SHIPMENTS)</td>
<td>(123) (6.9)</td>
<td>(123) (6.9)</td>
</tr>
<tr>
<td>CCP PROCESSING & CARGO ACCUMULATION - ALL SHIPMENTS</td>
<td>153 6.0</td>
<td>153 6.0</td>
</tr>
<tr>
<td>(CCP PROC & CARGO ACC - NON ADD SHIPMENTS)</td>
<td>(139) (6.4)</td>
<td>(139) (6.4)</td>
</tr>
<tr>
<td>INTRANSIT POE</td>
<td>149 5.1</td>
<td>149 5.1</td>
</tr>
<tr>
<td>POE PROCESSING & AWAIV SCHEDULED LIFT</td>
<td>140 2.9</td>
<td>140 2.9</td>
</tr>
<tr>
<td>INTRANSIT POE TO PROD</td>
<td>125 1.5</td>
<td>125 1.5</td>
</tr>
<tr>
<td>PROD PROCESSING</td>
<td>192 2.1</td>
<td>192 2.1</td>
</tr>
<tr>
<td>INTRANSIT SSA</td>
<td>113 1.0</td>
<td>113 1.0</td>
</tr>
<tr>
<td>SSA PROCESSING</td>
<td>106 5.5</td>
<td>106 5.5</td>
</tr>
<tr>
<td>SUM OF SEGMENTS</td>
<td>339</td>
<td>339</td>
</tr>
<tr>
<td>TOTAL OQT</td>
<td>164 27.1</td>
<td>164 27.1</td>
</tr>
</tbody>
</table>

* MII ELAPSE DAY LIMITS.

** SEGMENTS COMBINED TO EFFECTIVELY ELIMINATE DUPLICATE PROCESSING TIMES FOR REQUISITIONS PROCESSED THROUGH TWO OR MORE SUBSEQUENT EVENTS ON THE SAME CALENDAR DAY.
Overseas Requisitions for Wkagev

Completed OST Pipeline Segment Analysis

Non Backordered IPD 09-15 Requisitions Only

Records with MRPP dates during the 1-year period ending 31 May 1984

<table>
<thead>
<tr>
<th>Segment</th>
<th>Pipeline Segments</th>
<th>Combined Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nr. of Actions</td>
<td>Days</td>
</tr>
<tr>
<td>In-Theater Processing</td>
<td>7581</td>
<td>8.1</td>
</tr>
<tr>
<td>Non Processing</td>
<td>7571</td>
<td>2.1</td>
</tr>
<tr>
<td>Depot Processing & Hold Time</td>
<td>7527</td>
<td>3.6</td>
</tr>
<tr>
<td>InTransit To CCP - All Shipments</td>
<td>7059</td>
<td>2.8</td>
</tr>
<tr>
<td>InTransit To CCP - Non Add Shipments</td>
<td>(22301)</td>
<td>(5.4)</td>
</tr>
<tr>
<td>CEP Processing & Cargo Accumulation - All Shipments</td>
<td>7166</td>
<td>3.4</td>
</tr>
<tr>
<td>CEP Proc & Cargo Acc - Non Add Shipments</td>
<td>(127341)</td>
<td>(6.6)</td>
</tr>
<tr>
<td>InTransit PDE</td>
<td>6774</td>
<td>1.5</td>
</tr>
<tr>
<td>RIF Processing & Await Scheduled Lift</td>
<td>6965</td>
<td>1.5</td>
</tr>
<tr>
<td>InTransit PDE to PDM</td>
<td>6372</td>
<td>1.4</td>
</tr>
<tr>
<td>PDM Processing</td>
<td>6540</td>
<td>1.5</td>
</tr>
<tr>
<td>InTransit SSA</td>
<td>6111</td>
<td>1.6</td>
</tr>
<tr>
<td>SSA Processing</td>
<td>6193</td>
<td>14.3</td>
</tr>
<tr>
<td>Sum of Segments</td>
<td>41.6</td>
<td></td>
</tr>
<tr>
<td>Total OST</td>
<td>7673</td>
<td>39.0</td>
</tr>
</tbody>
</table>

* No Slapsc Day Limits.

** Segments combined to effectively eliminate duplicate processing times for requisitions processed through two or more subsequent events on the same calendar day.

Emel 19
OVERSEA REQUISITIONS FOR C46A43
 COMPLETED DSR PIPELINE SEGMENT ANALYSIS
 NON RACKORDERED IPD 09-15 REQUISITIONS ONLY
 RECORDS WITH KIRD DATES DURING THE 1 YEAR PERIOD ENDING 31 MAY 1994

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>PIPELINE SEGMENTS</th>
<th>COMBINED SEGMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO. OF ACTIONS</td>
<td>NO. OF ACTIONS</td>
</tr>
<tr>
<td></td>
<td>DAYS</td>
<td>DAYS</td>
</tr>
<tr>
<td>Initial TTRP Processing</td>
<td>11724</td>
<td>11724</td>
</tr>
<tr>
<td>TTRP Processing</td>
<td>11900</td>
<td>11900</td>
</tr>
<tr>
<td>Port Processing & Hold Time</td>
<td>11813</td>
<td>11900</td>
</tr>
<tr>
<td>Intransit to CTP - All Shipments</td>
<td>9477</td>
<td>*</td>
</tr>
<tr>
<td>Intransit to CTP - Min & Add Shipments</td>
<td>(6047) (13.2)</td>
<td>** * 9747 17.2</td>
</tr>
<tr>
<td>CTP Processing & Cargo Accumulation - All Shipments</td>
<td>9767</td>
<td>9.8</td>
</tr>
<tr>
<td>CTP Proc & Cargo Acc - Min & Add Shipments</td>
<td>(6191) (34.7)</td>
<td>**</td>
</tr>
<tr>
<td>Intransit Pri</td>
<td>9086</td>
<td>**</td>
</tr>
<tr>
<td>Pri Processing & Wait Scheduled Lift</td>
<td>9248</td>
<td>*** 7494 4.7</td>
</tr>
<tr>
<td>Intransit Pri to Pri</td>
<td>7109</td>
<td>**</td>
</tr>
<tr>
<td>Pri Processing</td>
<td>7424</td>
<td>*** 6674 2.8</td>
</tr>
<tr>
<td>Intransit SSa</td>
<td>6640</td>
<td>***</td>
</tr>
<tr>
<td>SSa Processing</td>
<td>5605</td>
<td>*** 9063 4.0</td>
</tr>
<tr>
<td>Sum of Segments</td>
<td>39.4</td>
<td>39.4</td>
</tr>
<tr>
<td>Total No</td>
<td>11917</td>
<td>11917</td>
</tr>
</tbody>
</table>

* No Ramp Day Limits.

Notes:
- To effectively eliminate duplicate processing times for requisitions processed on the same calendar day, day 0 is not counted in the subsequent events.

end 18
OVERSEAS REQUISITIONS FOR JAPAN (NON 416KG7)

COMPLETED OST PIPELINE SEGMENT ANALYSIS
NON BACKORDERED IPD 09-15 REQUISITIONS ONLY
RECORDS WITH MRP DATES DURING THE 1-YEAR PERIOD ENDING 31 MAY 1984

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>NR. OF ACTIONS</th>
<th>NR. OF DAYS</th>
<th>COMBINED SEGMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.- the theater processing</td>
<td>3423</td>
<td>3.2</td>
<td>3423</td>
</tr>
<tr>
<td>NICP processing</td>
<td>3459</td>
<td>2.5</td>
<td>3459</td>
</tr>
<tr>
<td>DEPT PROCESSING & HOLD TIME</td>
<td>3413</td>
<td>3.0</td>
<td>***</td>
</tr>
<tr>
<td>INTRANSIT TO CCP - ALL SHIPMENTS</td>
<td>3030</td>
<td>3.4</td>
<td>*</td>
</tr>
<tr>
<td>INTRANSIT TO CCP - NON ADD SHIPMENTS</td>
<td>(2941)</td>
<td>(3.3)</td>
<td>3073</td>
</tr>
<tr>
<td>CCP PROCESSING & CARGO ACCUMULATION - ALL SHIPMENTS</td>
<td>3088</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>CCP PROC & CARGO ACC - NON ADD SHIPMENTS</td>
<td>(2987)</td>
<td>(3.9)</td>
<td></td>
</tr>
<tr>
<td>INTRANSIT POE</td>
<td>3011</td>
<td>1.4</td>
<td>***</td>
</tr>
<tr>
<td>POE PROCESSING & WAIT SCHEDULED LIFT</td>
<td>2998</td>
<td>1.6</td>
<td>1465</td>
</tr>
<tr>
<td>INTRANSIT POE TO POP</td>
<td>1362</td>
<td>3.3</td>
<td>***</td>
</tr>
<tr>
<td>POE PROCESSING</td>
<td>1447</td>
<td>1.5</td>
<td>1239</td>
</tr>
<tr>
<td>INTRANSIT SSA</td>
<td>1919</td>
<td>6.9</td>
<td>***</td>
</tr>
<tr>
<td>SSA PROCESSING</td>
<td>2226</td>
<td>2.2</td>
<td>2226</td>
</tr>
<tr>
<td>SUM OF SEGMENTS</td>
<td>3249</td>
<td></td>
<td>3478</td>
</tr>
</tbody>
</table>

* NO SLA PSE DAY LIMITS.
** SEGMENTS COMBINED TO EFFECTIVELY ELIMINATE DUPLICATE PROCESSING TIMES FOR REQUISITIONS PROCESSED THROUGH TWO OR MORE SUBSEQUENT EVENTS ON THE SAME CALENDAR DAY.

Encl 12
OVERSEAS REQUISITIONS FOR WTAKG7

COMPLETED OIST PIPELINE SEGMENT ANALYSIS
NOW BACKORDERED RDP 09-15 REQUISITIONS ONLY
RECORDS WITH WRP DATES DURING THE 1-YEAR PERIOD ENDING 31 MAY 1984

<table>
<thead>
<tr>
<th>PIPELINE SEGMENTS*</th>
<th>COMBINED SEGMENTS**</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEGMENT</td>
<td>NR. OF ACTIONS</td>
</tr>
<tr>
<td>III-THEATER PROCESSING</td>
<td>4341</td>
</tr>
<tr>
<td>M 900 PROCESSING</td>
<td>4354</td>
</tr>
<tr>
<td>DEPT PROCESSING & HOLD TIME</td>
<td>4307</td>
</tr>
<tr>
<td>INTRANSIT TO CCP - ALL SHIPMENTS</td>
<td>3995</td>
</tr>
<tr>
<td>INTRANSIT TO CCP - NON ADD SHIPMENTS</td>
<td>(3575)</td>
</tr>
<tr>
<td>CCP PROCESSING & CARGO ACCUMULATION - ALL SHIPMENTS</td>
<td>4072</td>
</tr>
<tr>
<td>CCP PROC & CARGO ACC - NON ADD SHIPMENTS</td>
<td>(3611)</td>
</tr>
<tr>
<td>INTRANSIT POE</td>
<td>4024</td>
</tr>
<tr>
<td>M 900 PROCESSING & WAIT SCHEDULED LIFT</td>
<td>1286</td>
</tr>
<tr>
<td>INTRANSIT POE TO POA</td>
<td>1286</td>
</tr>
<tr>
<td>M 900 PROCESSING</td>
<td>1292</td>
</tr>
<tr>
<td>INTRANSIT SSA</td>
<td>715</td>
</tr>
<tr>
<td>SSA PROCESSING</td>
<td>1395</td>
</tr>
<tr>
<td>SUM OF SEGMENTS</td>
<td>38.4</td>
</tr>
<tr>
<td>TOTAL OIST</td>
<td>4376</td>
</tr>
</tbody>
</table>

* NO SLAPSE DAY LIMITS.
** SEGMENTS COMBINED TO EFFECTIVELY ELIMINATE DUPLICATE PROCESSING TIMES FOR REQUISITIONS PROCESSED THROUGH TWO OR MORE SUBSEQUENT EVENTS ON THE SAME CALENDAR DAY.
<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Operated</td>
<td>44 People</td>
</tr>
<tr>
<td>Authorized Stockage List</td>
<td>$8,150/$1,012,000.00</td>
</tr>
<tr>
<td>(DS 51% - NDS 49%)</td>
<td></td>
</tr>
<tr>
<td>ASL Turbulence</td>
<td>7%</td>
</tr>
<tr>
<td>Requisition Volume (DSS)</td>
<td>1,172 Lines</td>
</tr>
<tr>
<td>Customer Demands</td>
<td>5,041 Lines</td>
</tr>
<tr>
<td>MRO</td>
<td>2,378 Lines</td>
</tr>
<tr>
<td>MRD</td>
<td>11 Lines .4%</td>
</tr>
<tr>
<td>Demand Accommodation</td>
<td>54%</td>
</tr>
<tr>
<td>Demand Satisfaction</td>
<td>94%</td>
</tr>
<tr>
<td>DX Satisfaction</td>
<td>N/A</td>
</tr>
<tr>
<td>Zero Balance W/DO</td>
<td>0%</td>
</tr>
<tr>
<td>Location Survey - 1,938 Lines</td>
<td>67%</td>
</tr>
<tr>
<td>Inventory Accuracy - 220 Lines</td>
<td>100%</td>
</tr>
<tr>
<td>LABEL</td>
<td>VALUE</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>DEMAND SUP</td>
<td>51.00</td>
</tr>
<tr>
<td>EXC ON HND</td>
<td>26.00</td>
</tr>
<tr>
<td>NONDOM SUP</td>
<td>23.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100.00</td>
</tr>
</tbody>
</table>

- DEMAND SUP 51.0%
- EXC ON HND 26.0%
- NONDOM SUP 23.0%
- EXCESS
PREPARED: 6/19/84

SRA RITCHIE SUPPLY PERFORMANCE

DEMAND SATISFACTION

NOTE: ABOVE ESTABLISHED STANDARDS
ATTENTION OF:
ASN-LOG-S

SUBJECT: Information Requested on Centralized Supply Support (CSS)
by DA Contractor (Arthur Young, Assoc.)

HQDA (DALO- SMPS)
ATTN: Jay Briggs
Washington, DC 20310

1. Reference visit of DA contractor team to Fort Ritchie, MD, 18 June 1984
 (Richard West (LTG Ret) and Duane Stubbs (MG Ret)).

2. Transmitted herewith is requested information:
 a. Operating Data (TAB A)
 b. CSS Requisition Flow Charts (TAB B)
 c. Message, LOG Center, ATCL-SFA, 041225Z May 84, subject: Status of
 SAILS Secondary Items Performance Report (SIPR) (TAB C)
 d. Message, 7th Signal Command, CCN-LOG-S, 281205Z Oct 82, subject: Unit
 Sup Operations: Personnel Turnover Rate (TAB D)
 e. Supply MOS -7th Signal Command Military Strength (TAB E)

3. The following items were provided the team on 18 June 1984 during the CSS
 briefing:
 a. HQ USACC CSS Implementation Plan
 b. Braddock, Dunn and McDonald Study
 c. LEA Evaluation
 d. CSS Background Slides
 e. Overview of CPA
 f. OA Briefing

G-5.1
ASN-LOG-S
SUBJECT: Information Requested on Centralized Supply Support (CSS) by DA Contractor (Arthur Young, Assoc.)

4. Requisition and flow charts (examples) are returned at TAB F.

FOR THE COMMANDER:

6 Encl
as

CF: w encl
Cdr, USAISC
(AS-LOG-LD-B)
The following statistics were requested:

1. Operating Statistics

 a. Zero balance with dues out. Total ASL lines at zero balance for the period Dec 83 through May 84 are as follows: (This information was obtained from the *ALB092 Report)

 (1) Dec 1586
 (2) Jan 1337
 (3) Feb 1396
 (4) Mar 2775
 (5) Apr 2464
 (6) May 2317

 ASL lines at zero balance do not include dues out, since unfilled requisitions are passed to wholesale system and are not back ordered.

 b. ASL turbulence. Total ASL lines experiencing turbulence is reflecting actions resulting from system problem. Information for Dec 83 through May 84 is taken from the *ALB092.

 (1) Dec 4095
 (2) Jan 2151
 (3) Feb 540
 (4) Mar 1588
 (5) Apr 1268
 (6) May 539

 c. MRD denial rate. Total materiel release order denial rate is taken from the *ALB092 for Dec 83 through May 84.

 (1) Dec 87
 (2) Jan 110
 (3) Feb 49
 (4) Mar 8
 (5) Apr 18
 (6) May 11

 DA level 5090

 G - 5.3
d. Inventory accuracy. The latest completed inventory on file as reflected on ALL-208 was 29 Mar 82. Overall inventory accuracy was 95.5%. Inventory was conducted last year, however ALL-208, 2 Jun 83 did not compile accuracy level percent.

e. Location survey accuracy. Total locations surveyed (Mar 84) were 17,938. Number of correct locations surveyed were 11,944, for a location survey accuracy of 67%. The percentage of accuracy is due to backlog in deleting locations as result of zero balances.

2. Operating Data. Number end items supported (standard/nonstandard) as of Jun 84, are 6,273. Of these 1,682 have standard LINs assigned and 4,591 are nonstandard commercial type items. (This information was extracted from the LOGMIS Data Base.)

3. Number lines on ASL

 a. Total lines on ASL (*ALB092) for the period of Dec 83 through May 84 are as follows:

<table>
<thead>
<tr>
<th>Month</th>
<th>Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>10175</td>
</tr>
<tr>
<td>Jan</td>
<td>8395</td>
</tr>
<tr>
<td>Feb</td>
<td>8551</td>
</tr>
<tr>
<td>Mar</td>
<td>9643</td>
</tr>
<tr>
<td>Apr</td>
<td>8616</td>
</tr>
<tr>
<td>May</td>
<td>8150</td>
</tr>
</tbody>
</table>

 b. Demand supported ASL lines (*ALB092) for the period of Dec 83 through May 84 are as follows:

<table>
<thead>
<tr>
<th>Month</th>
<th>Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>4739</td>
</tr>
<tr>
<td>Jan</td>
<td>4737</td>
</tr>
<tr>
<td>Feb</td>
<td>4779</td>
</tr>
<tr>
<td>Mar</td>
<td>4626</td>
</tr>
<tr>
<td>Apr</td>
<td>4413</td>
</tr>
<tr>
<td>May</td>
<td>4197</td>
</tr>
</tbody>
</table>

 c. Nondemand supported ASL lines (*ALB092) for the period of Dec 83 through May 84 are as follows:

<table>
<thead>
<tr>
<th>Month</th>
<th>Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>5436</td>
</tr>
<tr>
<td>Jan</td>
<td>3655</td>
</tr>
</tbody>
</table>

\[\text{G7-5.4} \]
(3) Feb 3768
(4) Mar 5017
(5) 'Apr 4203
(6) May 3953

d. NSN/Part number. Tape scan of SAILS ALC X42 file, 18 Jun 84, revealed the following:

(1) NSNs 7644 78.2%
(2) MPN/MCNS 2134 21.8%
(3) Total ASL lines 9778

4. Percent and requisition volume of NICP support. This information will reflect passing actions only and does not reflect requisitions filled by CSS. LCA provided the following information for 20 random activities (May 83 to May 84) plus USACC-Panama (1 Nov 83 to 31 May 84)

(1) DESC - 4705 84.2%
(2) CECOM - 884 15.8%

5. Request for NSN assignments. Requests for conversion of part numbered lines to NSNs (DA Form 1988) resulted in approximately 50% NSN assignment. MRSA developed a special program in Sep 82 to run local purchase part numbers demanded in SAILS to collect this data.

* ALB092. See Tab C. ALB092 does not reflect accurate data, therefore statistics can be used for trending only.

** ASL drop problem. Mission essential items (in support of unit PLLs) on ASL are converting to SLC "Z" and dropping. ECP U401-021 has been approved and forwarded for corrective action.
<table>
<thead>
<tr>
<th>LABEL</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMAND SUP</td>
<td>60.00</td>
</tr>
<tr>
<td>EXC ON HND</td>
<td>21.00</td>
</tr>
<tr>
<td>NONDMO SUP</td>
<td>19.0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100.00</td>
</tr>
</tbody>
</table>

- DEMAND SUP: 60.0%
- EXC ON HND: 21.0%
- NONDMO SUP: 19.0%
TOTAL DOLLAR VALUE OF INV $448,850
AMSF-EUROPE

CONTRACTOR OPERATED
ANNUAL BUDGET
AUTHORIZED STOCKAGE LIST
(US 29% - NDS 71%)
ASL TURBULENCE
REQUISITION VOLUME (DSS)
CUSTOMER DEMANDS
MRO
MRD
DEMAND ACCOMMODATION
DEMAND SATISFACTION
DX SATISFACTION
ZERO BALANCE W/BO
LOCATION SURVEY - 2,498 LINES
INVENTORY ACCURACY - 2,316 LINES

332 PEOPLE
FY 84 - $8.4M
15,240 LINES/$10,321,315.00
6%
2,275 LINES
3,824 LINES
3,241 LINES
9 LINES .3%
84.88%
79.91%
96.9%
3%
99.4%
99.1%
HEADQUARTERS USACC

AMSF EUROPE

PREPARED: 6/22/84

NOTE: TOTAL DOLLAR VALUE OF INV $ 10,186,071.05
HEAODQUARTERS US ACC

AMSF EUROPE SUPPLY PERFORMANCE

DEMAND SATISFACTION

PREPARED: 6/22/84

NOTE: WITHIN ESTABLISHED STANDARDS
<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Operated</td>
<td>141 People</td>
</tr>
<tr>
<td>Authorized Stockage List</td>
<td>12,470 Lines/$12,768,605.00</td>
</tr>
<tr>
<td>(US 20% - NDS 80%)</td>
<td></td>
</tr>
<tr>
<td>ASL Turbulence</td>
<td>5%</td>
</tr>
<tr>
<td>Requisition Volume (DSS)</td>
<td>1,151 Lines</td>
</tr>
<tr>
<td>Customer Demands</td>
<td>1,528 Lines</td>
</tr>
<tr>
<td>MRO</td>
<td>1,537 Lines</td>
</tr>
<tr>
<td>MRD</td>
<td>15 Lines 1%</td>
</tr>
<tr>
<td>Demand Accommodation</td>
<td>80%</td>
</tr>
<tr>
<td>Demand Satisfaction</td>
<td>79%</td>
</tr>
<tr>
<td>DX Satisfaction</td>
<td>89%</td>
</tr>
<tr>
<td>Zero Balance W/D/O</td>
<td>1%</td>
</tr>
<tr>
<td>Location Survey - 2,051 Lines</td>
<td>100%</td>
</tr>
<tr>
<td>Inventory Accuracy - 2,051 Lines</td>
<td>89%</td>
</tr>
</tbody>
</table>
NOTE: 3.373 LINES OF EXCESS ARE ASL LINES OVER AND ABOVE RETENTION.
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
MEMORANDUM FOR ARTHUR YOUNG STUDY TEAM

SUBJECT: Supply Information

1. C-E systems which are experiencing difficulty in logistics support (supply):

 NEW SYSTEMS
 (3-5 Yrs)

 AN/TSC-86 Satellite Comm Terminal
 AN/TTC-38 Automatic Telephone Central Off
 AN/TSC-109 Transportable Standard Remote Terminal
 AN/UGC-74 Teletype
 AN/FRC-162 Microwave Radio
 AN/GSC-39 Satellite Terminal
 Model 40 Teletype

 OLD SYSTEMS

 AN/TRC-132 - TROPOSCATTER Radio
 AN/TTC-38 Automatic Telephone Central Office
 AN/TRC-25 Comm Central HF (1KW)
 AN/FTC-31 AUTOSEVOCOM Switch
 AN/FTC-39 Switching Set, Telephone
 AN/MSC-46 Satellite Comm Terminal
 AN/MSC-54 Satellite Terminal
 AN/TSC-93 Tactical Satellite Comm Terminal
 AN/TSC-85 Tactical Satellite Comm Terminal
 AN/FYQ-42-V-8 AUTODIN Switch
 AN/TYC-8 DSTE
 AN/TSC-109 T-SRT
 AN/FSC-31 NCA System

2. The following are examples of high-dollar items currently on active PLLs:

<table>
<thead>
<tr>
<th>SN</th>
<th>NOUN</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5895-01-007-9402</td>
<td>Drive Assy</td>
<td>12,421</td>
</tr>
<tr>
<td>5895-01-036-8279</td>
<td>Scanner CC</td>
<td>11,821</td>
</tr>
<tr>
<td>5960-01-011-2698</td>
<td>Electronic Tube</td>
<td>30,958</td>
</tr>
<tr>
<td>5825-01-060-6496</td>
<td>Module RF</td>
<td>11,000</td>
</tr>
<tr>
<td>5825-01-060-6511</td>
<td>Power Supply</td>
<td>12,000</td>
</tr>
<tr>
<td>7025-01-126-8998</td>
<td>16K Memory Unit</td>
<td>6,000</td>
</tr>
<tr>
<td>5825-01-060-6570</td>
<td>DEMODE #1</td>
<td>5,000</td>
</tr>
<tr>
<td>1830-01-021-2901</td>
<td>Lens Assy</td>
<td>16,142</td>
</tr>
<tr>
<td>1830-01-021-2902</td>
<td>Circuit Card Assy</td>
<td>19,270</td>
</tr>
</tbody>
</table>
3. High-dollar items which are currently on the ASL at Fort Ritchie, but are not stocked because of item cost. This is not in accordance with ISC policy.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1830-01-006-8732</td>
<td>Circuit Cards</td>
<td>14,278.37</td>
</tr>
<tr>
<td>1830-01-006-8733</td>
<td>Circuit Cards</td>
<td>8,356.93</td>
</tr>
<tr>
<td>1830-01-006-8737</td>
<td>Circuit Cards</td>
<td>7,586.27</td>
</tr>
<tr>
<td>1830-01-006-8738</td>
<td>Circuit Cards</td>
<td>5,250.54</td>
</tr>
<tr>
<td>1830-01-006-8740</td>
<td>Circuit Cards</td>
<td>5,865.51</td>
</tr>
<tr>
<td>1830-01-006-8741</td>
<td>Circuit Cards</td>
<td>5,397.95</td>
</tr>
<tr>
<td>1830-01-021-7066</td>
<td>Cathode Ray Tube</td>
<td>19,270.00</td>
</tr>
<tr>
<td>1830-01-021-7067</td>
<td>Cathode Ray Tube</td>
<td>19,270.00</td>
</tr>
<tr>
<td>5895-01-089-4015</td>
<td>Power Supplies (PA Funded)</td>
<td>6,062.00</td>
</tr>
<tr>
<td>5895-01-092-1892</td>
<td>Power Supplies (PA Funded)</td>
<td>25,000.00</td>
</tr>
</tbody>
</table>

4. These items are reparables which because of the high cost for test and evaluation prior to repair, the item manager withheld the contracting action.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>5960-00-127-5594</td>
<td>10,000 Watt Klystron Tube</td>
<td>14,875.00</td>
</tr>
<tr>
<td></td>
<td>Manager is B16</td>
<td></td>
</tr>
<tr>
<td>5820-01-126-2494</td>
<td>Long Haul TROPOSCATTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communications Terminal</td>
<td></td>
</tr>
<tr>
<td>5820-01-126-2494</td>
<td>Path Memory Circuit Board</td>
<td>2,343.00</td>
</tr>
<tr>
<td></td>
<td>Manager is B16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satellite Earth Terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KY801B Decoder</td>
<td></td>
</tr>
</tbody>
</table>

Chief, Logistics Operations Division

VERLIN Z. CRONN

G-9.2
APPENDIX H

REFERENCES

ARMY PUBLICATIONS

<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR 70-1</td>
<td>System Acquisition Policy and Procedures (1 Feb 84).</td>
<td></td>
</tr>
<tr>
<td>AR 70-61</td>
<td>Type Classification of Army Materiel (1 Aug 78).</td>
<td></td>
</tr>
<tr>
<td>AR 71-9</td>
<td>Materiel Objectives and Requirements (15 Jul 84).</td>
<td></td>
</tr>
<tr>
<td>AR 105-22</td>
<td>Telecommunication Requirements Planning Developing and Processing (1 Jul 78) and draft (9 June 83).</td>
<td></td>
</tr>
<tr>
<td>AR 220-1</td>
<td>Unit Status Reporting (1 Jun 81).</td>
<td></td>
</tr>
<tr>
<td>AR 700-9</td>
<td>Policies of the Army Logistics System.</td>
<td></td>
</tr>
<tr>
<td>AR 700-127</td>
<td>Integrated Logistics Support (15 May 83).</td>
<td></td>
</tr>
<tr>
<td>AR 708-1</td>
<td>Cataloging and Supply Management Data (1 Apr 81).</td>
<td></td>
</tr>
<tr>
<td>AR 710-1</td>
<td>Centralized Inventory Management of the Army Supply System (Dec 70).</td>
<td></td>
</tr>
</tbody>
</table>
AR 710-2 Supply Policy Below the Wholesale Level w/CS (1 Oct 81).

AR 710-3 Asset and Transaction Reporting System (15 Jul 84).

AR 725-50 Requisitioning, Receipt and Issue System w/CS (1 Apr 83).

AR 735-5 Basic Policies and Procedures for Property Accounting (1 Jun 84).

AR 750-7 Installation Materiel Maintenance Activities (27 May 76).

FM 29-23 Direct Support Maintenance Operations, w/c Non-divisional.

FM 38-1 Logistics Management.

FM 38-725 Direct Support System Management and Procedures (Jan 76).

FM 63-3J Combat Service Support Operations-Corps (coordinating draft Apr 84).
FM 63-4 Combat Service Support Operations-
Theatre Army Area Command
(final draft Dec 83).

FM 63-5 Combat Service Support Operations-
Theatre Army (final draft Mar 84).

FM 100-16 Support Operations: Echelons Above
Corps (final draft Jul 83).

DA Pam 710-2-1 Using Unit Supply System (1 Jun 84).

DEPARTMENT OF DEFENSE PUBLICATIONS

DOD 4000.23-M MILSTEP: Military Supply and
Transportation Evaluation Procedures
(Jan 81).

DCA Cir Physical Security Measures for DCS
310-90-1 Facilities (1 Nov 83).

DCA Cir Communications Requirements
310-130-2 Management Thresholds (MT) and
Performance Objectives (PO)
(13 Feb 79).

ARMY MATERIEL COMMAND PUBLICATIONS

USA DARCOM LCA Information Brochure (Aug 79).
LCA Pam 700-1
USA DARCOM
LCA Pam 700-2
DSS Performance Evaluation (Nov 77).

USA DARCOM
LCA Pam 700-3
Individual DSS Activity Performance Report (I) DAPR Performance Evaluation (Nov 78).

USA DARCOM
LCA Pam 725-1
The Logistics Intelligence File (Nov 80).

USA DARCOM
CDA Pam 18-1

USA DARCOM
DESCOM
Pam 700-4, Vol I
& II

INFORMATION SYSTEMS COMMAND PUBLICATIONS

HQ USACC
Reg no. 105-17
Telecommunications Requirements (Teler) Bill of Materiel (BOM) Receipt, Storage, Accounting, and Disposal Procedures (19 Jan 1979).

HQ USACC
Supply Supplement to
AR 710-2
Supply Policy Below the Wholesale Level (8 Apr 83).

 HQ 7 Sig Cmd
Reg 700-2
Centralized Supply Support (CSS) for USACC Peculiar C-E Repair Parts (30 Apr 80).

H-4
<table>
<thead>
<tr>
<th>HQ 7 Sig Cmd Reg 700-3</th>
<th>Prescribed Load List (PLL) Procedures for USACC Activities (24 Oct 80). w/CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ 7 Sig Cmd LOI</td>
<td>Letter of Instruction (LOI) for Communications-Electronics Telecommunications Requirements (TELER) Bill of Material (BOM) Receipt, Storage, Accounting and Disposal Procedures (10 Feb 82).</td>
</tr>
<tr>
<td>HQ 7 Sig Cmd SOP</td>
<td>Centralized Supply Support USACC Peculiar C-E Repair Parts and Prescribed Load Lists (SOP) (undated).</td>
</tr>
</tbody>
</table>

STUDIES

<table>
<thead>
<tr>
<th>HQDA COE</th>
<th>Real Property Management Activities (4 Volumes) (BG D. G. Weinert) (Mar 78).</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA Logistics Evaluations Agency</td>
<td>Evaluations of the Centralized Supply Support Facility (CSSF) (Apr 82).</td>
</tr>
<tr>
<td>USACC</td>
<td>USACC Implementation Plan for the Establishment of a Centralized Supply</td>
</tr>
</tbody>
</table>

H-5
Capability at Fort Ritchie and a Direct Exchange Capability at Fort Huachuca (17 Mar 76).

USACC (Dr K. Forry) An Analytical Model for Optimum Site Stockage (Winter 1979).

Braddock, Dunn DX/Supply Support Concept Study for and McDonald Inc. the USACC (14 Jun 74).

BRIEFINGS (HARD COPY)

HQDA Organization, Mission, Functions (1 Jun 84).

Asst Chief of Staff Information Management

HQDA Task Group Mission (1 Jun 84).

Asst Chief of Staff Information Management

HQDA Contingency Contracting (Jul 84).

Dep Chief of Staff Logistics

HQDA CBS-X (Jul 84).

Dep Chief of Staff Logistics

H-6
<table>
<thead>
<tr>
<th>Agency/Site</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQDA NGB</td>
<td>ARNG Class IX Policy (18 Apr 84).</td>
</tr>
<tr>
<td>USA DARCOM</td>
<td>Stovepipe Logistics Study (May 84).</td>
</tr>
<tr>
<td>HQ USACC DCSLOG</td>
<td>USACC Logistics Puts It All Together (May 84).</td>
</tr>
<tr>
<td>USA CECOM Directorate of Materiel Management</td>
<td>Director of Materiel Management Major Functions (NICP) (Jul 84).</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Agency/Site</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA WASH DC DALO-SMZ-A</td>
<td>Msg Subject: Realignment of AMSF Missions within Overseas Commands to All MACOMS (9 Sep 75).</td>
</tr>
<tr>
<td>DA WASH DC DALO-SMS-R</td>
<td>(Msg Subject: Log Mgt of Army Nontactical Comm Equip to CDR, USACC (3 Oct 75).</td>
</tr>
<tr>
<td>USACC (COL L. Lamason) ACSLOG</td>
<td>Letter to MG Eugene D'Ambrosio, Dir, S&M ODCSLOG, HQDA</td>
</tr>
</tbody>
</table>
USACC

Letter of Instruction Direct Exchange (DX) and Operational Readiness Float (ORF) of USACC Peculiar Communication-Electronic Equipment (undated).

USACC

Army Communications Resources-FY 1983 Progress Review (undated).

USA FORSCOM

Executive Overview of Automated Logistics Management Information Systems (Oct 82).

USA COE

USA

Materiel Fielding Plan for Telecommunication Center System Agency Consolidations/Upgrade Project (Feb 84).

Western Union

AUTODIN Monthly Summary (May 84).

Government Systems Division

USAWC

APPENDIX I

ACRONYMS

A

ACC - US Army Communications Command
ADP - Automatic Data Processing
ALMC - US Army Logistics Management Center
ALOC - Air Line of Communication
AMC - Army Materiel Command
AMDF - Army Master Data File
AMP - Army Materiel Plan
AMSA - Army Materiel Systems Analysis Activity
AMSF - Area Maintenance Supply Facility
ASL - Authorized Stockage List
ATC - Air Traffic Control
AUTODIN - Automatic Digital Network
AUTOSEVOCOM - Automatic Secure Voice Communication
AUTOVON - Automatic Voice Network

B

BDM - Braddock, Dunn and McDonald, Inc
BOIP - Basis of Issue Plan
BOM - Bill of materials
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS-X</td>
<td>Continuing Balance System-Expanded</td>
</tr>
<tr>
<td>CBRS</td>
<td>Concept Based Requirements System</td>
</tr>
<tr>
<td>CCSS</td>
<td>Commodity Command Standard System</td>
</tr>
<tr>
<td>CDDB</td>
<td>Central Demand Data Bank</td>
</tr>
<tr>
<td>CECOM</td>
<td>US Army Communications and Electronic Command</td>
</tr>
<tr>
<td>CEEIA</td>
<td>Communication Electronic Engineering Installation Agency</td>
</tr>
<tr>
<td>CG</td>
<td>Commanding General</td>
</tr>
<tr>
<td>COMSEC</td>
<td>Communications Security</td>
</tr>
<tr>
<td>COSCOM</td>
<td>Corps Support Command</td>
</tr>
<tr>
<td>CPP</td>
<td>Central Processing Point</td>
</tr>
<tr>
<td>CSA</td>
<td>Communications Systems Agency</td>
</tr>
<tr>
<td>CSSF</td>
<td>Central Supply Support Facility</td>
</tr>
<tr>
<td>C-E</td>
<td>Communications-Electronics</td>
</tr>
<tr>
<td>DAAS</td>
<td>Defense Automatic Addressing System</td>
</tr>
<tr>
<td>DARCOM</td>
<td>USA Materiel Development and Readiness Command</td>
</tr>
<tr>
<td>DCA</td>
<td>Defense Communications Agency</td>
</tr>
<tr>
<td>DCG</td>
<td>Deputy Commanding General</td>
</tr>
<tr>
<td>DCS</td>
<td>Defense Communication System</td>
</tr>
<tr>
<td>DESC</td>
<td>Defense Electronics Supply Center</td>
</tr>
<tr>
<td>DESCOM</td>
<td>US Army Depot Systems Command</td>
</tr>
<tr>
<td>DIO</td>
<td>Director of Industrial Operations</td>
</tr>
<tr>
<td>DLA</td>
<td>Defense Logistics Agency</td>
</tr>
<tr>
<td>DLOGS</td>
<td>Division Logistics System</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>DLSC</td>
<td>Defense Logistics Services Center</td>
</tr>
<tr>
<td>DMMC</td>
<td>Division Materiel Management Center</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DODAAC</td>
<td>DOD Activity Address Code</td>
</tr>
<tr>
<td>DSCS</td>
<td>Defense Satellite Communication System</td>
</tr>
<tr>
<td>DSS</td>
<td>Direct Support System</td>
</tr>
<tr>
<td>DSU</td>
<td>Direct Support Unit</td>
</tr>
<tr>
<td>DS4</td>
<td>Direct Support Unit Standard Supply System</td>
</tr>
<tr>
<td>DX</td>
<td>Direct Exchange</td>
</tr>
<tr>
<td>EAC</td>
<td>Echelons Above Corps</td>
</tr>
<tr>
<td>ERC</td>
<td>Equipment Readiness Code</td>
</tr>
<tr>
<td>ERPSL</td>
<td>Essential Repair Parts Stockage List</td>
</tr>
<tr>
<td>FAS</td>
<td>Force Accounting System</td>
</tr>
<tr>
<td>GSU</td>
<td>General Support Unit</td>
</tr>
<tr>
<td>ILS</td>
<td>Integrated Logistics Support</td>
</tr>
<tr>
<td>IM</td>
<td>Item Manager</td>
</tr>
<tr>
<td>INSCOM</td>
<td>US Army Intelligence & Security Command</td>
</tr>
</tbody>
</table>

I-3
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISC</td>
<td>US Army Information Systems Command</td>
</tr>
<tr>
<td>ISO</td>
<td>Installation Supply Office</td>
</tr>
<tr>
<td>LCA</td>
<td>Logistics Control Activity</td>
</tr>
<tr>
<td>LEA</td>
<td>US Army Logistics Evaluation Agency</td>
</tr>
<tr>
<td>LIF</td>
<td>Logistics Intelligence File</td>
</tr>
<tr>
<td>LIN</td>
<td>Line Item Number</td>
</tr>
<tr>
<td>LOGC</td>
<td>US Army Logistics Center</td>
</tr>
<tr>
<td>LOGMIS</td>
<td>Logistics Management Information System</td>
</tr>
<tr>
<td>LSA</td>
<td>Logistics Support Assessment</td>
</tr>
<tr>
<td>LOGNET</td>
<td>Logistics Data Network</td>
</tr>
<tr>
<td>LOGSACS</td>
<td>Logistics Structure and Composition System</td>
</tr>
<tr>
<td>LP</td>
<td>Local Procurement</td>
</tr>
<tr>
<td>MAA</td>
<td>Mission Area Analysis</td>
</tr>
<tr>
<td>MCN</td>
<td>Management Control Number</td>
</tr>
<tr>
<td>MFP</td>
<td>Materiel Fielding Plan</td>
</tr>
<tr>
<td>MICOM</td>
<td>US Army Missile Command</td>
</tr>
<tr>
<td>MILSTAMP-</td>
<td>Military Standard Transportation and Movement Procedures</td>
</tr>
<tr>
<td>MILSTRIP-</td>
<td>Military Standard Requisition and Issue Procedures</td>
</tr>
<tr>
<td>MMC</td>
<td>Material Management Center</td>
</tr>
<tr>
<td>MOC</td>
<td>Management of Change</td>
</tr>
<tr>
<td>MPN</td>
<td>Manufacturer's Part Number</td>
</tr>
<tr>
<td>MRD</td>
<td>Material Release Denial</td>
</tr>
<tr>
<td>MRO</td>
<td>Materiel Release Order</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MRSA</td>
<td>Material Readiness Support Activity</td>
</tr>
<tr>
<td>MRC</td>
<td>Material Readiness Command</td>
</tr>
<tr>
<td>MTOE</td>
<td>Modified Table of Organization & Equipment</td>
</tr>
<tr>
<td>NDI</td>
<td>Nondevelopment Item</td>
</tr>
<tr>
<td>NET</td>
<td>New Equipment Training</td>
</tr>
<tr>
<td>NETP</td>
<td>New Equipment Training Plan</td>
</tr>
<tr>
<td>NICP</td>
<td>National Inventory Control Point</td>
</tr>
<tr>
<td>NOT</td>
<td>New Organization Team</td>
</tr>
<tr>
<td>NSN</td>
<td>National Stock Number</td>
</tr>
<tr>
<td>OJT</td>
<td>On the Job Training</td>
</tr>
<tr>
<td>OST</td>
<td>Order Ship Time</td>
</tr>
<tr>
<td>PARC</td>
<td>Principal Assistant Responsible for Contracting</td>
</tr>
<tr>
<td>PB</td>
<td>Property Book</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PD</td>
<td>Priority Designator</td>
</tr>
<tr>
<td>PERSACS</td>
<td>Personnel Structure and Composition System</td>
</tr>
<tr>
<td>PG</td>
<td>Property Group</td>
</tr>
<tr>
<td>PLL</td>
<td>Prescribed Load List</td>
</tr>
<tr>
<td>PM</td>
<td>Project Manager</td>
</tr>
<tr>
<td>P/N</td>
<td>Part Number</td>
</tr>
</tbody>
</table>
PP - Parcel Post
P3I - Preplanned Product Improvement

Q
QQPRI - Qualitative, Quantitative Personnel Requirements Information

R
RICC - Reportable Item Control Code
RIMSTOP - Retail Inventory Management Stockage Policy

S
SACS - Structure and Composition System
SAILS - Standard Army Intermediate Level Supply System
SALS - Standard Army Logistics System
SATCOMA - Satellite Communications Agency
SLAC - Support List Allowance Card
SSA - Supply Support Activity
SSSC - Self Service Supply Center
STAMMIS - Standard Army Multi-Command Management Information System
STANFINS - Standard Army Financial System

T
I-6
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAADS</td>
<td>The Army Authorization Documentation System</td>
</tr>
<tr>
<td>TAEDP</td>
<td>Total Army Equipment Distribution Plan</td>
</tr>
<tr>
<td>TAMMC</td>
<td>Theater Army Materiel Management Center</td>
</tr>
<tr>
<td>TDA</td>
<td>Table of Distribution Authorization</td>
</tr>
<tr>
<td>TELER</td>
<td>Telecommunications Requirements</td>
</tr>
<tr>
<td>TMDE</td>
<td>Test, Measurement and Diagnostic Equipment</td>
</tr>
<tr>
<td>TMMC</td>
<td>Theater Materiel Management Center</td>
</tr>
<tr>
<td>TOE</td>
<td>Table of Organization and Equipment</td>
</tr>
<tr>
<td>TRADOC</td>
<td>US Army Training and Doctrine Command</td>
</tr>
<tr>
<td>UMMIPS</td>
<td>Uniform Material Movement and Issue Priority System</td>
</tr>
<tr>
<td>UNISTAR</td>
<td>A code word pertaining to materiel being fielded by means of depot staging</td>
</tr>
<tr>
<td>UPS</td>
<td>United Parcel Service</td>
</tr>
<tr>
<td>USAISC</td>
<td>US Army Information Systems Command</td>
</tr>
<tr>
<td>USAREUR</td>
<td>US Army Europe</td>
</tr>
<tr>
<td>VIABLE</td>
<td>Vertical Installation Automated Baseline</td>
</tr>
<tr>
<td>VTAADS</td>
<td>Vertical the Army Authorization Documentation System</td>
</tr>
</tbody>
</table>
END
FILMED
3-85
DTIC