Auger satellites have been measured to determine the probability of M-shell excitation accompanying K-shell photoionization of Ar, as function of photon energy. The theoretically predicted difference between the dependence of shakeup and shakeoff probabilities on the photon energy near threshold is demonstrated. Results are critically compared with calculations.
Threshold Double Photoexcitation of Argon
with Synchrotron Radiation

G. Bradley Armen, Teijo Åberg, * Kh Rezaul Karim, Jon C. Levin,
and Bernd Crasemann

Department of Physics and Chemical Physics Institute
University of Oregon, Eugene, Oregon 97403

and

George S. Brown
Stanford Synchrotron Radiation Laboratory
Stanford, California 94305

and

Mau Hsiung Chen
Lawrence Livermore National Laboratory
Livermore, California 94550

and

Gene E. Ice
Metals and Ceramics Division, Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

Approved for public release; distribution unlimited.
Auger satellites have been measured to determine the probability of M-shell excitation accompanying K-shell photoionization of Ar, as function of photon energy. The theoretically predicted difference between the dependence of shakeup and shakeoff probabilities on the photon energy near threshold is demonstrated. Results are critically compared with calculations.

In atomic inner-shell photoionization, multiple excitation processes occur with significant probability. The resulting final states are approximately described by configurations formed by removal of a core electron and excitation of additional electrons to higher bound states (shakeup) or to the continuum (shakeoff).1,2 Such multiple excitation processes result in satellites in the photoelectron spectra1,4-6 and in the Auger and x-ray spectra from transitions through which the photoexcited states decay.2,7,8 The study of these multiple excitation processes is important because they epitomize the breakdown of the independent-particle model and can provide important clues for the understanding of electron correlation and of excitation dynamics.3,5,9,10 The energy dependence of the cross sections for double excitation is particularly informative near threshold; the observation of Auger satellites makes it possible to measure this dependence. Here we report on an investigation in which highly monochromatized, hard synchrotron radiation was tuned through the thresholds for various multiple excitation processes during is ionization of Ar, and the probabilities of accompanying 3s and 3p excitation was traced by measuring the intensities of pertinent...
Auger satellites. Results are compared with theory.3,10

In the experiment, x rays from an 8-pole wiggler, operating at 14 kG, were focused onto an Ar jet by a Pt-coated doubly curved toroidal mirror. The x-ray bandwidth from a Ge (111) double-crystal Bragg monochromator was 0.9 eV at hv=3200 eV; the flux on target was \(-10^{12}\) photons/s with 60 mA of 3-GeV electrons in the SPEAR storage ring. Electron spectra were measured with a computerized double cylindrical-mirror analyzer; with a pass energy of 82.5 eV, the electron-spectrometer resolution was 1.6 eV.

We take the 2,660-eV Ar K-L2L3 1D2 Auger-electron line as reference. The K-LL Auger yield12 of Ar is affected only minutely by excitation of one or two M-shell electrons. The intensity of satellites of the 1D Auger line relative to that of the "diagram" line is therefore a measure of the probability of the multiple photoexcitation processes studied here.

To interpret the 1D Auger satellite spectrum it is necessary to calculate the radiationless transition energies and rates in the presence of one or two open M subshells. The initial states can be limited to those which in the sudden approximation are expected to be significantly populated.1 These are the \([1s31] (l=0,1)\) shakeoff states and the \([1s31]nl (n=4 \text{ and } 5 \text{ for } l=1, n=4 \text{ for } l=0)\) shakeup states. In the limited 3s(2S)ns1,3Sis2S and 3p5(2P)np1,3Sis2S basis, the eigenstates are linear superpositions of 1S and 3S states. The initial shakeup states can be identified as states with dominant 1S component because the monopole selection rules prevent transitions to the triplet
state. According to our Hartree-Fock (HF) calculations, the initial \([1s3p]4p\) state has almost pure \(^1S\) character, whereas in the other shakeup cases the mixture is more uniform.

The radiationless decay of the initial doubly excited states considered above to the various \([2p^2(^1S,^1D)3l]n\) final states was analyzed by calculating transition energies as differences between initial- and final-state total energies. The states were described by single-configuration HF configuration-average wave functions in LS coupling. Relative transition rates within each multiplet were calculated from the square of the product of appropriate angular factors and Slater integrals. The ratio of the \(s\)- to \(d\)-wave contributions to the \(K-L_2,L_2,1S_0\) transition rates was estimated with Hartree-Slater wave functions. Nonresonant triple excitation satellites fall outside the energy span of the spectra.

Calculated Auger satellite energies are indicated schematically in Fig. 1. The satellites arising from \(3s\) and \(3p\) shakeoff accompanying \(1s\) ionization are seen to fall into the peak around -2,643 eV, while most \(3s\) and \(3p\) shakeup processes cause Auger satellites that fall within the 2,650-eV peak, unresolved from the \(K-L_2L_2,1S_0\) diagram line. The measured intensity of the \(^1S\) line, excited at or below 3,220 eV photon energy, is \(11.0\pm0.6\%\) of the \(^1D\)-line intensity, in excellent agreement with the prediction (11.12%) from a relativistic intermediate-coupling calculation that includes configuration interaction. The predicted positions of the Auger lines are only slightly affected by configuration mixing in the initial states and by relativity.
In Fig. 2(a), the relative intensity of the 2.643-eV shakeup satellite peak including the 1S_0 diagram line is plotted. The satellite peak that arises at photon energy $E=3.225$ eV is tentatively ascribed to the $[1s3p]4p^2$ bound-bound resonance, in accordance with the interpretation of the Ar K absorption spectrum6 which shows a peak at 3.224 eV. In accord with observations of Kobrin et al.6 the $[1s3p]4p$ shakeup satellite appears to have approximately half its asymptotic intensity at 5 eV above threshold. Saturation of $[1s3p]4p$ plus opening of the $[1s3s]4s$ channel lead to a small gradual increase which levels off to a constant shakeup satellite intensity -60 eV above the $[1s3p]4p$ threshold.

Within the independent-electron model, the shakeup cross section is given by a combination of monopole and dipole radial matrix elements, $<n'l|nl>$ and $<n'l'|r|nl>$, respectively. If we neglect terms with double and triple order products of the $n'\neq n$ overlap elements, the ratio of the $[1s3p]4p$ to $[1s]$ cross sections is3

$$R_{3p\rightarrow 4p}(E) = P([1s3p]4p)(5A_+ (E_1)^2 + 7A_-(E_1)^2)/2P([1s])<\epsilon'p|r|1s>^2,$$

where

$$P([n_1l_1...n_2l_2]) = \prod_{n,l} <n'l|nl>^2 q(nl)$$ \hspace{1cm} (2)

and

$$A_+(E_1) = <4p|3p> <\epsilon_1p|r|1s> + <\epsilon_1p|3p> <4p|r|1s>.$$ \hspace{1cm} (3)

In the product (2), $q(nl)$ is the number of electrons in subshell...
nl of the hole configuration \([n_1l_1\ldots]\). From energy conservation, we have \(E_1 = E - I([1s3p]4p)\) and \(E' = E - I([1s])\), which leads to the \(E\)-dependence indicated by the solid curve in Fig. 2(a). The continuum wave function was calculated in a \([1s3p]\) HF frozen core, using Seaton's method.\(^{12}\) The theoretical curve was normalized to the measured point at \(E = 3.380\) eV, whereas the calculated asymptotic intensity ratio is 14%. The measured energy dependence of the shakeup probability is seen to be well predicted by theory, except very close to threshold.

The configuration-interaction (CI) calculation of Dyall\(^{10}\) includes mixing between \([1s3p]\)4p and higher members of that shakeup series. The shape of the curve is not much affected by this CI, but a shifting of intensities results, from the lower to upper states, in accordance with the present experiment. The 6\% \([1s3p]\)4p excitation probability measured by Kobrin et al.\(^{6}\) also agrees well with the calculations of Dyall.\(^{10}\)

In contrast to shakeup, double-ionization cross sections must always start from zero at the threshold,\(^{3}\) as can be seen from the independent-electron model cross-section ratio

\[
R_{3p \rightarrow 6p}(E) = P([1s3p]) \int_0^{\xi_1} (5A_+ (\xi)^2 + 7A_- (\xi)^2) d\xi / 4P([1s]) \langle \xi' | p | 1s \rangle^2,
\]

where we have \(\xi_2 = E - I([1s3p]).\) The 4p wave function in Eq. (3) is replaced by the continuum wave function of the shakeoff electron with energy \(\xi\) \((0 \leq \xi \leq \xi_2)\), so that \(\xi_1 = \xi_2 - \xi\). It is clear from Fig. 2(b) that the measured cross section does not go to zero at the \([1s3p]\) threshold. This fact can be attributed to admixture, in the 2,643-eV peak, of satellites due to half of the \(3p \rightarrow 5p\) excitations and higher shakeup, according to our energy
If we assume in accordance with Fig. 2(a) that the shakeup ratio is practically constant as a function of \(E \), then it can be concluded that the experimental shakeoff curve levels off at high \(E \) at 19±2\% (after subtracting the threshold value of 5\%). The shape of the curve is well predicted by a calculation of the ratio given by Eq. (4), using HF wave functions for both the \([1s3p]\) core and continuum states [Fig. 2(b)]. In the calculation of the continuum wave functions the Lagrangian multipliers were neglected, but a Schmidt orthogonalization was carried out afterwards. As seen in Fig. 2(b), the measured cross-section curve is only slightly affected by the opening of the \([1s3s]\) shakeoff channel. Our calculations predict an asymptotic shakeoff probability of 25\% at high \(E \).

Dyall\(^{10}\) has estimated the \([1s3s]\) and \([1s3p]\) relative shakeoff probability by in essence taking the total shake probabilities \(1-<n_1|n_1>^2 \) per electron and subtracting the shakeup probabilities calculated from Rydberg \(n_1 \) \((n>4)\) functions generated in a frozen-core average-of-configuration potential for the \([1s3s]\) and \([1s3p]\) configurations. The result, 7.3\%, is only one-third of our experimental probability, 19±2\%. In order to understand this discrepancy, it is useful to examine the sudden 3p shake(up+off) limit\(^3\)

\[
R_{3p \to n(s)p(\infty)} = \frac{6(1-<3p^*|3p|^2)}{<3p^*|3p>^2} \tag{5}
\]

in which the small influence of the forbidden transition \(<2p^*|3p|^2 \) has been neglected. If the \(|3p^*\) wave function is
chosen as the one which corresponds to the \([1s3p]\) core, the result is 37\%. If this wave function is chosen, on the other hand, as that which corresponds to the \([1s]\) core, as in the conventional sudden-approximation method, the result is 20.5\%. Subtraction of the -12\% \([1s3p]nl\) shakeup intensity\(^\text{10}\) from the first of these results leads to 25\% shakeoff; subtraction from the second result gives 9\% shakeoff. It appears that the 31 wave functions of Ref. 10 were generated in a one-hole potential, different from the potential that was used in generating the Rydberg orbitals.

The total shake(up+off) probability at large \(E\) that we measure is 33±4\%. This is somewhat higher than the total \(M\) shake probability of 26±2\% measured by Krause et al.\(^\text{1}\) and also slightly exceeds the relative \(K_\beta^3\) x-ray satellite intensity of 28±2\%.\(^\text{2,8}\) The corresponding conventional shake value calculated from Dirac-Fock (DF) wave functions, including forbidden-transition corrections, is 24.4\%.

We can draw the following conclusions. (1) The difference in the photon-energy dependence of shakeup vs. shakeoff close to threshold has been demonstrated to be as predicted by theory. (2) The measurements indicate more shakeoff than shakeup at high photon energy, in contrast to the predictions of Ref. 10 but in accord with Ref. 1. (3) The measured shakeup probabilities agree well with the predictions of Ref. 10, but the shakeoff probabilities do not. (4) The measured total shake probabilities are bracketed by the sudden-approximation values calculated by the HF (DF) method for a double-hole \([1s3l]\) and a single-hole \([1s]\) field. Within the restricted HF (DF) method, both procedures
are somewhat inconsistent with respect to fulfilling the closure relation. This inconsistency is removed if many-electron wave functions are used to obtain the
$$\langle \tilde{\Phi}([1s3l]n(\ell)1)^2S|\psi_{\text{frozen}}([1s])^2S \rangle$$ shakeup and shakeoff amplitudes, since the $$\tilde{\Phi}$$ functions are eigenfunctions of the same projected ($N-1$)-electron Hamiltonian $PH(N-1)P$, where $P=|1s><1s|$.

We gratefully acknowledge technical support at SSRL from Teresa Troxel, Glen Kerr, and Jack Fredericks. We are indebted to Reinhard Bruch and Mahindadasa Yakabadda Gamage for participating in some of the measurements. This work was supported in part by the Air Force Office of Scientific Research and by the U.S. Department of Energy. SSRL is supported by the Department of Energy through the Office of Basic Energy Sciences and the NIH through the Biotechnology Resources Program.
Permanent address: Laboratory of Physics, Helsinki University of Technology, 02150 Espoo 15, Finland.

Figure Captions

FIG. 1. Calculated energies of Auger satellites caused by 3s- and 3p-electron excitation accompanying 1s ionization, with reference to an Ar K-L(2,3)L(2,3) Auger spectrum photoexcited 2,000 eV above the 1s ionization threshold. Estimates of relative satellite intensities within each multiplet are indicated by the heights of the bars.

FIG. 2. (a) Intensity of the 2,650-eV feature in the photoexcited Ar K-L(2,3)L(2,3) Auger spectrum, with reference to the 1D-line intensity, as a function of x-ray energy. The dashed line at 11.1% indicates the 1S diagram-line contribution. Energy thresholds for 1s ionization and for 3p→4p and 3s→4s shakeup accompanying 1s ionization are indicated by vertical arrows. The normalized theoretical prediction for the near-threshold energy dependence of these relative shakeup probabilities is represented by the solid curve. (b) Photoexcitation-energy dependence of the 2,643-eV Auger satellite-group intensity. Thresholds for 1s ionization alone and accompanied by 3p and 3s ionization are indicated by vertical arrows. The normalized theoretical relative shakeoff probability is indicated by the solid curve. Circles and triangles pertain to data from separate experiments.
Fig. 1
Fig. 2

(a) SHAKEUP

(b) SHAKEOFF