DEVELOPMENT OF A TEC MANAGER'S GUIDEBOOK

Robert J. Smillie, John M. Keller and Hubert H. Setzler
Mullonics Systems Development Division
Litton Systems, Inc.

Submitted by
Seward Smith, Chief
ARI FIELD UNIT AT FORT BENNING, GEORGIA

and

Harold F. O'Neil, Jr., Director
TRAINING RESEARCH LABORATORY

U. S. Army
Research Institute for the Behavioral and Social Sciences
January 1985

Approved for public release; distribution unlimited.

This report, as submitted by the contractor, has been cleared for release to Defense Technical Information Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution other than to DTIC and will be available only through DTIC or other reference services such as the National Technical Information Service (NTIS). The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Title: Development of a TEC Manager's Guidebook

Author(s): Robert J. Smillie, John M. Keller, Hubert H. Setzler

Performing Organization: Mellonics Systems Development Division, Litton Systems, Inc. P.O. Box 2498, Fort Benning, GA 31905

Controlled Office: U.S. Army Research Institute for the Behavioral and Social Sciences 5001 Eisenhower Avenue, Alexandria, VA 22333

Contract or Grant Number: DAHC 19-77-C-0011

Program Element, Project, Task Area & Work Unit Numbers: 2Q763731A770

Report Date: January 1985

Number of Pages: 272

Security Classification: Unclassified

Distribution Statement: Approved for public release; distribution unlimited.

Abstract:

This Guidebook is a job performance aid for Training Extension Course (TEC) managers and developers. As a source reference it provides information on the organization, management, and supervision of a TEC program, and the preparation, development, validation, and dissemination of TEC lessons. For other personnel involved with TEC, the Guidebook serves as a comprehensive overview of the TEC development process.

Keywords:

- TEC Lessons
- TEC Manager
- TEC Validation
- Training Extension Course (TEC)
FOREWORD

This report is one of a series on the research support provided by the Mellonics Systems Development Division of Litton Systems, Inc., to the Army Research Institute for the Behavioral and Social Sciences (ARI) under Contract Number DAHC 19-77-C-0011. This report is part of the final report of the total contractual effort and is incorporated into that report by reference.

As set forth in the Contract Statement of Work, the Mellonics effort includes support to the Training Extension Course (TEC) studies presently being conducted by the ARI. One of these studies involves the development of a TEC manager's guide. This guide provides general guidelines for TEC managers and lesson developers, and should be a useful reference source during TEC lesson development. It also serves as a training aid for new managers and developers.
ABSTRACT

This Guidebook is a job performance aid for Training Extension Course (TEC) managers and developers. As a source reference it provides information on the organization, management, and supervision of a TEC program, and the preparation, development, validation, and dissemination of TEC lessons. For other personnel involved with TEC, the Guidebook serves as a comprehensive overview of the TEC development process.
ACKNOWLEDGMENTS

The authors wish to express sincere appreciation to all persons who have contributed assistance in any form to the development of this Guidebook. Special appreciation is extended to the TEC managers at all the U. S. Army Schools who provided the impetus and the suggestions for an effective document. Since the Guidebook is the result of the efforts of many, it is appropriate that individual recognition be given.

Chapters 1 and 2 were written by Dr. John M. Keller (Development & Evaluation Associates, Inc., Syracuse, New York). Chapters 3 and 6 were written by Dr. Hubert H. Setzler (Development & Evaluation Associates, Inc., Syracuse, New York). Chapter 4 was written by Dr. Robert J. Smillie (Mellonics Systems Development Division, Litton Systems, Inc., Fort Benning, Georgia). Chapter 5 was initially drafted by Dr. Joseph D. George (Columbus College, Columbus, Georgia) and was revised by Mr. Hal C. Strasel and Dr. John E. Holmgren (Army Research Institute for the Behavioral and Social Sciences, Fort Benning, Georgia), and Mr. James Bercos (Mellonics Systems Development Division, Litton Systems, Inc., Fort Benning, Georgia).

Finally, the authors express thanks to the U. S. Army Training Support Center - Training Programs Directorate at Fort Eustis, Virginia for their support and guidance throughout the development process.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>Organization and Management of a TEC Development Unit</td>
<td>1-1</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>Planning and Administration of a TEC Unit</td>
<td>2-1</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>Preparation for TEC Lesson Development</td>
<td>3-1</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>Design and Assessment of TEC Lessons</td>
<td>4-1</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>Validation of TEC Lessons</td>
<td>5-1</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>Distribution of TEC Lessons</td>
<td>6-1</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>Glossary</td>
<td>A-1</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>Acronyms</td>
<td>B-1</td>
</tr>
</tbody>
</table>
PREFACE

PURPOSE

The Training Extension Course (TEC) Manager has two areas of responsibility. The first comprises organizing, managing, and supervising a TEC program. The exact nature of these functions will vary from school to school because of different school organization and different types of internal constraints. The second area is more consistent across schools. These functions cover the preparation, development, validation, and dissemination of TEC lessons. In addition, there existed no single, easily accessible source of information to assist TEC managers and lesson developers in the development of TEC lessons. Thus, the purpose of this Guidebook is to provide in one document, general guidelines for TEC managers and lesson developers to be used as a source reference during the TEC lesson development process and to serve as a training aid for new managers and developers. The Guidebook can also serve as a reference for TEC project officers at the Army Training Support Center, Training Programs Directorate (ATSC-TPD), as well as, other personnel who are involved with TEC. (e.g., some sections of the Guidebook may be useful to contractors for defining criteria and developmental procedures).

SCOPE

The Guidebook is designed to be used as both an information document for monitoring contractor lesson development efforts and a procedural guide for designing and developing TEC lessons in house, i.e., within the existing resources of the school. The Guidebook provides an introduction to managers and lesson developers for the tasks and procedures that have to be considered when a TEC lesson is under development. It will not eliminate the need for other resources, such as, changes to contract statements of work (SOW). It is not a fully proceduralized job performance aid and does not list step-by-step procedures for all decision alternatives. Rather, it introduces the TEC program and general TEC management techniques. It also gives examples and guidelines for developing and evaluating TEC lesson criteria.

CONTENTS

The Guidebook is divided into six chapters, followed by a glossary and an acronym list.

Chapter 1 provides introductory material on TEC organization; relationships between the schools, the ATSC-TPD, the Project Manager for Training Devices (PM TRADE), and the Naval Training Equipment Center (NTEC); and responsibilities and training opportunities for TEC managers.

Chapter 2 presents material related to systematic approaches to course development; relationships between TEC, the Instructional Systems Development
(ISD) model, and Directorates of Training Development (DTD); planning requirements and techniques; use of Subject Matter Experts (SME); and recurring report requirements.

Chapter 3 discusses the requirements for preparation for TEC lesson development. This includes an overview of the basic principles, preparation techniques and procedures for TEC lesson development, how to select media, how to write the Coordination and Contract Summary Sheet (CCSS), and how to write Lesson Administrative Instructions (LAI) and Student Instruction Sheets (SIS).

Chapter 4 provides human factors criteria and design information to assist in designing and monitoring the development of TEC lessons. Criteria are discussed for application to both development and evaluation of TEC lessons. All TEC lesson types (audiovisual, audio only, printed text, and job performance aid) are discussed.

Chapter 5 presents a detailed discussion of the TEC manager's job in conducting or monitoring the TEC evaluation process. It includes discussion of how to validate pre- and posttests and how to conduct the sequence (cycle) of tests necessary to demonstrate TEC lesson training effectiveness.

Chapter 6 discusses the requirements on the TEC manager for preparing the final TEC materials for distribution and for historical storage of the data and materials. It also describes the shipment of TEC lessons to the Training Material Support Detachment at Tobyhanna, TEC lesson annual review procedures, procedures for a safety violation, and safeguarding of defense information.

HOW TO USE THIS GUIDEBOOK

This Guidebook is designed for a "thumbing through" approach. Descriptive illustrations, flow charts, high-lighted material, and subject headings are placed at the outer portions of each page to permit easy location when thumbing through the book, from either direction. "White space" is contained in the outer columns of each page for each user to write his or her own personal notes. The loose-leaf format allows information to be added as TEC policies and requirements change, and permits each user to tailor the Guidebook to their school's organization.
CONTENTS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>ORGANIZATION AND MANAGEMENT OF A TEC DEVELOPMENT UNIT</td>
</tr>
<tr>
<td>1.1</td>
<td>INTRODUCTION TO TEC HISTORY, PHILOSOPHY, AND ACCOMPLISHMENTS</td>
</tr>
<tr>
<td>1.1.1</td>
<td>TEC and the TEC Development Manager</td>
</tr>
<tr>
<td>1.1.2</td>
<td>What is TEC?</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Reasons for TEC</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Characteristics of TEC</td>
</tr>
<tr>
<td>1.1.5</td>
<td>Philosophies of TEC</td>
</tr>
<tr>
<td>1.1.6</td>
<td>Relationship Between TEC and Total Army Training</td>
</tr>
<tr>
<td>1.1.7</td>
<td>TEC and Proficiency</td>
</tr>
<tr>
<td>1.1.7.1</td>
<td>Internal Evidence</td>
</tr>
<tr>
<td>1.1.7.2</td>
<td>External Evidence</td>
</tr>
<tr>
<td>1.2</td>
<td>ORGANIZATION OF TEC</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Organization of TEC at ATSC</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Organization of TEC within the Schools</td>
</tr>
<tr>
<td>1.3</td>
<td>RELATIONSHIPS BETWEEN THE SCHOOLS, ATSC/TPD, PM TRADE, NTEC, AND THE CONTRACTOR</td>
</tr>
<tr>
<td>1.3.1</td>
<td>General Areas of Responsibility in TEC Contracts</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>The School</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>ATSC/TPD</td>
</tr>
<tr>
<td>1.3.1.3</td>
<td>PM TRADE</td>
</tr>
<tr>
<td>1.3.1.4</td>
<td>NTEC</td>
</tr>
<tr>
<td>1.3.1.5</td>
<td>Contractor</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Lines of Communication</td>
</tr>
<tr>
<td>1.3.2.1</td>
<td>Pre-Award Phase</td>
</tr>
<tr>
<td>1.3.2.2</td>
<td>Development Phase</td>
</tr>
<tr>
<td>1.3.2.3</td>
<td>Reproduction Phase</td>
</tr>
</tbody>
</table>
1.4 RESPONSIBILITIES AND TRAINING OPPORTUNITIES FOR TEC DEVELOPMENT MANAGERS

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-24</td>
</tr>
</tbody>
</table>

1.4.1 TEC Development Manager Responsibilities
- Diversity of Responsibilities
- General Categories of Responsibilities
- Rate-of-Progress Responsibility
- Sample Job Description

1.4.2 General Project Management Characteristics
- Management Versus Leadership
- What is Project Management?
- Characteristics of Project Management
 - Versus Other Leadership Assignments
- The Function of a Manager
- Common Problems in Project Management

1.4.3 Dealing with Contractors
- General Background
- Responsibilities and Authority
- Local Contracting

1.4.4 Training Opportunities
- Workshops
- References
This chapter serves as an introduction to the Training Extension Courses (TEC). It provides you with information on TEC organization and management. Relationships between the Service Schools, the Army Training Support Center - Training Programs Directorate (ATSC/TPD), the Project Manager for Training Devices (PM TRAD), and the Naval Training Equipment Center (NTEC) are discussed. Included also, are the responsibilities of and training opportunities for TEC managers.

1.1 INTRODUCTION TO TEC HISTORY, PHILOSOPHY, AND ACCOMPLISHMENTS

In order to help you understand the background and purpose of TEC, this section includes information about the history of TEC, its philosophy, and its relationship to other Army training programs.
Manager

The success of the Training Extension Course (TEC) depends on you. An old cliche? Maybe, but nevertheless true. The success of TEC depends upon more than just having a TEC manager at each school to supervise the legal fulfillment of the contractual requirements. The TEC program is relatively new, and even though its success is steadily mounting, there are many service schools and field commanders who are not taking full advantage of TEC. Thus, the program still needs to be sold. The best way to promote TEC is to have motivated TEC managers who know the training philosophy, the development process, and the management aspects of TEC; who believe in it; and who capitalize on every opportunity to sell TEC to units and to resident instructors. This guidebook is aimed primarily at the first of these three characteristics—
to help you know TEC. This resource is provided to help you understand the purpose, background, and philosophy of TEC, and the procedures for managing TEC, but that is as far as we can go with a book.

We have found that the second characteristic, the belief in TEC, comes from experience with TEC. The program speaks for itself. After trainers, commanders, and trainees are exposed to it and try it, they are impressed. This fact supports the importance of the third characteristic of the dedicated TEC manager. By recognizing opportunities to expose people to TEC and showing them how to organize so it will support their training, you will be providing the program with the opportunity to "sell itself."
Accordingly, this section of the guidebook is aimed at helping you sell TEC. It provides you with background knowledge on the history, philosophy, purpose, and effectiveness of TEC.

Hopefully, it will be motivating, informative, and useful in helping you become an effective representative of TEC. Subsequent sections and chapters will present recommendations and techniques to help you become more proficient in the procedures required to manage TEC.

1.1.2 What is TEC?

TEC is a program that has been designed to help put into the hands of trainers, both in units and in institutions, exportable, performance-oriented training packages. It is designed to provide soldiers and their commanders with immediate access to high quality, self-paced, multimedia instruction especially designed to assist in acquiring and maintaining skills critical to the soldier's on-the-job performance. Each TEC lesson is individually packaged, and ready for use on an individual basis, or by small groups, under the supervision of an NCO.

1.1.3 Reasons for TEC

Historically, TEC began in the early 1970's as a response to a number of problems in individual training. The most serious of these was detected by the U.S. Army Board For Dynamic Training. They found that many soldiers in combat arms units were not able to perform critical tasks in their primary Military Occupational Specialty (MOS). This lack of competency on the part of individuals can quickly mushroom and destroy a unit's combat capability. In the process of considering solutions to this problem, many other problems were uncovered that confront commanders, training managers, and trainers. Some of these problems were:
TRAINING PROBLEMS?

![Diagram with text](image)

- Insufficient numbers of qualified NCOs to conduct the required training.
- Demands on the commander's time which interfered with training time.
- Personnel turbulence such as frequent turnover and low manning levels.
- Rapidly changing doctrine which necessitates changes in training.
- Limited training resources such as the shortage of time, personnel, and space to provide sufficient field-based training.

All of these problems underscored the need for a system of exportable training support that would make performance-based, high quality instruction available to field units in an easy to use format. TEC was conceived as such a system.

1.1.4 Characteristics of TEC

TEC training materials are designed to emphasize performance -- what the soldier will do as a result of the training. The training is developed and validated to insure that the soldier will, in fact, be able to perform the task after the completion of training. TEC lessons have incorporated the following features:

- Self-pacing: A soldier can work through a lesson individually at his own pace. He can repeat the lesson as often as necessary until he achieves mastery.

TEC FEATURES

- SELF-PACING
- LESSON ADMINISTRATIVE INSTRUCTIONS
- DIAGNOSTIC TEST (PRETEST)
- VALIDATED CONTENT
- INDIVIDUAL OR GROUP INSTRUCTION
- MULTIMEDIA DELIVERY
• Lesson Administrative Instructions (LAI) are provided with each lesson. They provide guidance for the trainer on how to use the training system to identify and solve individual training deficiencies.

• Diagnostic test (pretest): This test can be used with individuals to determine whether they need to study a given lesson, and it can be administered by a commander to his soldiers to assess their job proficiency. It is the first step in the management of training.

• Validated content: During the development phase, each TEC lesson is tested on soldiers in units to verify that it will teach.

• Individual or group instruction: Many of the lessons can be used by as many as ten soldiers at once, and all of the lessons can be used individually.

• Multimedia delivery: TEC lessons are currently produced in a variety of modes (audio-visual, audio only, printed text, and job performance aids) depending upon which is most appropriate for the objectives of a given lesson.

1.1.5 Philosophies of TEC

TEC is most effective when the people using TEC understand certain philosophical and scientific assumptions that form the background of this program. Educational psychologists have proven that better learning usually occurs when the learner makes frequent, active responses, few errors, and receives feedback on his performance. Furthermore, retention
and transfer of learning are better if the training situation closely simulates the actual performance situation, and the learner has opportunities to practice what he has learned. These principles are operating in the following statements that characterize the philosophy of TEC:

- Learning is a self-activity. Numerous studies have demonstrated that students learn faster, retain longer and have a higher motivation when they control their rate of progress toward training goals.

- Training should overcome a performance deficiency. Since the achievement of specific performance objectives is what we are after, no training need be undertaken if the soldier can already all the performance objectives in a satisfactory manner.

- Training is best if it closely approximates the real world condition. When the soldier can relate the tasks to his real world job requirements, he will be more motivated and will learn better.

- Soldiers learn and retain more if they participate in the training rather than merely being exposed. Lesson materials providing "hands on" training are the most effective.

- Soldiers would rather learn than not learn. Most soldiers strive for competency and professionalism in their chosen career. The key is to devise a management system to make the training materials available and job relevant.
1.1.6 Relationship Between TEC and Total Army Training.

TEC and Total Training.
The current concept of Army training is based on the belief that training should be:

- Exportable so that it is available where it is needed.
- Performance based so that soldiers are learning skills rather than just knowledge.
- Validated so the training can be proven effective.

Does this summary sound complete to you? In fact, there is one vital element that was left out. It is the question of whether the training is worthwhile. For every lesson, course, and training guidebook we must ask, "Is it worthwhile?" The answer to this question is found by answering a companion question which is, "Is this a vital, necessary skill in a given soldier's job?"

Every school in the Army has been required to answer this question for their proponent military occupational specialties (MOS). They have conducted task analyses in order to identify the critical tasks in each MOS. This task list, combined with the training philosophy form the foundation for the Army's training program. TEC, along with the other current training support activities, is built upon this foundation;
TEC, EPMS, and SQT. TEC is a vital training component in individual training under the Enlisted Personnel Management System (EPMS). This system brings together, for the first time, job requirements and training requirements for each grade in each MOS. These requirements are identified in the Soldier's Manual, and proficiency is measured by a Skill Qualification Test (SQT). TEC is designed to provide training on critical tasks that are defined in the Soldier's Manual and might be included in the SQT.

The soldier can identify those tasks for which he needs to achieve proficiency by reviewing the Soldier's Manual and taking the appropriate pretests. He can then use the available TEC lessons independently, or in conjunction with on-the-job training (OJT), to develop the necessary skills. As a TEC manager, it is imperative that you help insure that TEC interlock with the overall training development effort and that trainers in units and in the schools understand this relationship.

TEC and ARTEP. The Army Training and Evaluation Program (ARTEP) is aimed more at collective training evaluation and proficiency, while SQT is aimed at individual training evaluation. But it almost goes without saying, well-trained units require proficient individuals. Even though TEC is designed primarily for individual training, it is a valuable tool in assessing and improving unit readiness. The pretests in TEC lessons can be quickly and easily administered to the appropriate MOS soldiers of an
entire unit to obtain a measure of proficiency in critical tasks. This will indicate to the commander whether his troops are prepared for collective training or maneuvers. If the troops are not up to standards on key skills, the necessary individual training can be programmed before collective training begins. One of the big advantages of TEC comes into play at this point. Instead of taking the entire unit through a series of platform lessons and field demonstrations on all of the critical tasks, the training can be individualized. Soldiers can be assigned simultaneously to different lessons in accordance with their training needs. What is more, these lessons are performance-oriented and validated. The end result should be less time spent in training with more effective standardized training. The bottom line for the TEC manager is the same as it was before with EPMS: TEC lessons should interlock with the overall training development effort.

For TEC, together with the other elements of individual and collective training, is part of the pillars in the "Greek Temple" illustration which you see in several TEC publications. This illustration captures the essence of the Army Training philosophy. It shows the building block approach and the systematic interrelationships between philosophy, tasks, methods, and results.
1.1.7 TEC and Proficiency

We have been making many claims about the benefits of TEC, but what, you may wonder, is the evidence that supports these claims. There are, in general, two types of evidence. The first is internal; it is the type of evidence that accumulates from the "built-in" process of developing and validating TEC. The second type is external, and results from external agencies, such as the Army Research Institute for the Behavioral and Social Sciences, conducting evaluations of TEC. Altogether, the evidence acquired so far is too massive to include in this document, but we can give you a summary of the types of evidence, and the general results.

Internal Evidence. The strongest internal evidence is obtained during the validation process. During the development phase, each lesson is tried-out on an appropriate number of soldiers to determine whether the lesson teaches what it is supposed to teach. No lesson is approved for reproduction and distribution unless it meets the validation standards established by the proponent school. If the tests used in the lesson were validated, and appropriate sampling procedures were followed, then the lesson validation process provides strong evidence in support of the lesson. You may be flattered to know that no other organization in the world that even approaches the size of the U.S. Army is using such a systematic, rigorous approach to training development. Additional anecdotal evidence, although it is not numerical, is continuously received from TEC managers, training commanders, field commanders, and soldiers who have experienced the effectiveness of TEC. This is also important information since the lessons have to be well-received and used before they can be effective.
External Evidence. External evidence has been obtained in research studies conducted by the Army Research Institute for the Behavioral and Social Sciences (ARI). These studies tend to indicate that TEC is effective and that there are several benefits to be derived from the program. The data are not complete, there are several studies underway as this guidebook goes to press, but there appear to be five conclusions that can be drawn from the studies so far.

- TEC is effective. When soldiers use TEC, they learn from it; they become more proficient soldiers. Two different studies by ARI support this conclusion.

- TEC lessons, when properly developed and validated, will do a better job than conventional training. This conclusion has preliminary support in one ARI study, and is still being studied. When TEC is combined with conventional training, the results should be even better.

- TEC can be made available where other forms of training are not. This should improve overall individual effectiveness, and a study is underway to help answer this question.

- TEC offers standardized, school developed and validated instruction. This standardization helps insure all soldiers will receive the same high quality instruction.

- When TEC is substituted for conventional training,
training development and administrative resources can be used to train in other areas. (Some TRADOC schools are doing this now!)

- TEC has been positively received by field units and research components. ARI personnel report they receive many volunteered comments in support of TEC as they conduct their studies. These comments indicate when soldiers and commanders use TEC, they like it and they think it is effective.

These benefits are important, not because TEC is trying to compete with other training alternatives, but because TEC is trying to fill an important need in the Army training. So far, the indicators of TEC's ability to meet this need are "thumbs up", and this success can be attributed directly to the motivation, dedication, and capableness of TEC managers such as yourself.
1.2 ORGANIZATION OF TEC

Many agencies are involved in the complete TEC process, and it is difficult to represent the entire network on paper. This section and the following section describe many of these relationships. After you have studied these sections, and the portions of the manual dealing with the TEC development process, and have obtained some experience, you will become familiar with the entire process. Your understanding will grow most rapidly if you will reread these sections from time to time as you become familiar with the various agencies involved.

1.2.1. Organization of TEC at ATSC

The U.S. Army Training Support Center (ATSC) was established under the Training and Doctrine Command (TRADOC) at Fort Eustis, Virginia, on 1 July 1976. Its purpose was to harness the management of training support activities previously scattered throughout TRADOC. Its stated mission required ATSC to provide centralized management of training support activities for individual and collective training for Active Army and Reserve Component forces.

The responsibility still lies with the schools to develop courseware since that is where the subject matter experts are located, and that is where analysis and identification of training needs occur. ATSC provides the interface with other units (see illustration) that is necessary.
in the process of developing and distributing exportable training materials.

Operationally, ATSC is organized with a small staff, and six functional directorates. These directorates, one of which is Training Programs Dictorare (TPD) have the primary operational role in exportable training support materials. TPD manages the programs involving the transmission of training via selected media. Included in this area are:

- Army Training Literature Program -- encompasses Soldier's Manuals, Field Manuals, How to Fight Manuals, and Training Circulars.

- Training Extension Course (TEC) -- the system of self-paced validated instruction utilizing a variety of media to be used in individual or small group instruction.

- Television/Motion Picture Program -- production and distribution of over 4,000 subjects, usually in 3/4-inch tape format.

In particular, TEC is managed by a division of TPD, the Army Training Extension Course Program (ATECP). ATECP comprises the four subdivisions shown in the wiring diagram.
1.2.2. Organization of TEC within the Schools

There is a great variety in the way TEC units are organized at the various schools. This statement will come as no surprise to the experienced TEC manager, but it may be helpful to the newly assigned manager to realize that this diversity exists. Therefore, the purpose of this section is simply to describe the extent to which schools do differ in the way they have organized TEC. In some schools, such as the Judge Advocate General's School, TEC is developed on a limited basis. The TEC manager has other responsibilities besides TEC. In other schools, such as Infantry or Armor, the TEC staff is large with a requirement for ten or more personnel. It is normally the case that the TEC Branch is located in the Course Development Division, but it may be in some other division such as Training and Literature. The TEC Branches also differ in terms of the degree of centralization. Some schools have a centralized TEC Branch which is a separate entity, and for which they provide resources. In a few schools, TEC is decentralized in that it is not singled out as a separate administrative entity. In these schools TEC is handled concurrently with other training development responsibilities.

The point being made here is that there are a variety of means by which the goals of TEC are accomplished. The important thing is for you to become as knowledgeable as you can of the responsibilities facing you, of the different means of accomplishing those goals that have been discovered at other schools, and to utilize that knowledge in the most effective way possible at your school.
1.3 RELATIONSHIPS BETWEEN THE SCHOOLS, PM TRADE, NTEC, AND THE CONTRACTOR

During a complete cycle of a TEC contract development, you will interact with representatives of all these agencies. In a general way, each of these agencies has a defined responsibility. However, the lines of communication and specific responsibilities do not stay the same. They change during different phases of the contract development. Accordingly, Section 1.3.1 explains the general responsibilities of each unit in order to clarify the purpose for each. Then Section 1.3.2 illustrates appropriate lines of communication for each phase of the contract.

1.3.1 General Areas of Responsibility in TEC Contracts

The School. Before a TEC contract is written, each school to be included in the contract is asked to formulate a set of requirements for major subject areas to be covered and the number of instructional packages (kits) to be developed. These requirements are based on the school's needs and the guidelines provided by ATSC/TPO. After the requirements have been approved, the
school will prepare government furnished materials (GFM) for the contractor. These will be presented to the contractor when the contract is awarded, normally in incremental deliveries. After the contractor begins to develop the lessons, the school will review them at specified times with respect to technical and doctrinal accuracy. The school will also monitor the trial and validation process, and approve the 8mm answer print, proofs of camera ready copy, or answer print audio tape before the mass reproduction phase begins.

ATSC/TPD. The U.S. Army Training Support Center, Training Programs Directorate (ATSC/TPD) is responsible for establishing priorities for the overall TEC program. This includes long range plans for the rate of TEC lessons, and the role to be played by TEC in the total Army training program.

ATSC/TPD provides several services to the various schools participating in the program. They work with TRADOC DCSRM (Deputy Chief of Staff Resource Management) in providing the funding for the contract, and for each school's TEC-related administrative expenses (minus civilian salaries). They also participate with the schools in the planning and programming of lessons for development. Prior to the contract preparation phase, the ATSC/TPD project officer (PO) assigned to the fiscal year program will coordinate the preparation of contractual requirements. These requirements will be forwarded to Project Manager for Training Devices (PM TRADE) for preparation of a contractual package that adheres to the user requirements. After the contract has been awarded, the ATSC/TPD PO will monitor the process and help solve problems as they occur at all schools covered by that contract. The ATSC/TPD PO is

ATSC/TPD RESPONSIBILITIES

- ESTABLISH PRIORITIES
- PROVIDE FUNDING SUPPORT
- COORDINATE REQUIREMENTS
- SUPERVISE OVERALL TEC PROGRAM
- PROVIDE INTERFACE BETWEEN SCHOOLS AND PM TRADE
the school's point of contact (POC) for all problems related to TEC. At various times during the life of the contract, you will be communicating directly with the Contracting Officer's Technical Representative (COTR), if one has been assigned. This person is assigned by the Government (PM TRADE or the Naval Training Equipment Center - NTEC) to supervise the contractor, and to represent the Government's interests. In addition, you may have occasion to communicate directly with the contractor's on site representative, if one has been designated, the acquisitions director (AD) from PM TRADE, and the NTEC Project Engineer (PE). These contacts have been established as part of the standard operating procedures for TEC lesson development and reproduction. But, anytime there is a problem, or you have a question about the TEC program, you should contact your ATSC/TPD PO first. It is ATSC/TPD's responsibility to provide the interface between the schools and PM TRADE or NTEC.

PM TRADE RESPONSIBILITIES

- **SUPERVISE PROCUREMENT**
- **PROVIDE COTR IF REQUIRED**
- **SUPERVISE CONTRACT**
- **PROVIDE INTERFACE BETWEEN ATSC, NTEC, AND CONTRACTOR**

PM TRADE. The Project Manager for Training Devices (PM TRADE) assigns an acquisition director (AD) to a given TEC contract who directs and supervises all contractual actions, development, and reproduction based on requirements and priorities established and directed by ATSC/TPD. The AD will take the requirements presented by ATSC/TPD and incorporate the requirements in the prescribed government contracting format. Following this, the procurement process will be accomplished. After the contractor has been selected, PM TRADE will, in selected cases, assign a COTR who will reside at the contractor's place of work. This COTR will monitor and facilitate the orderly progress of the contract during the development phase. This COTR serves as a direct point of contact between the school and the contractor.

The overall management and supervision of the contractual obligation is the responsibility of the PM TRADE AD.
This AD monitors contract performance, and directs and coordinates the development and implementation of remedial actions when contractual problems are identified. Ordinarily, this person does not communicate directly with the schools, as may the PM TRADE COTR, but serves as the interface between ATSC/TPD, PM TRADE, NTEC, and the contractor.

NTEC. The Naval Training Equipment Center (NTEC) provides experts to PM TRADE during the pre-award phase to evaluate the requirements and terms of the contract with respect to their feasibility and various legal issues. A Project Engineer (PE) is assigned to the contract to provide technical expertise in audiovisual engineering and to assist in cost and schedule controls, and subsequent validation of contract data in coordination with Defense Contract Administrative Services (DCAS). In addition, a COTR is placed by NTEC with the reproduction contractor. This COTR monitors progress during the reproduction phase, checks on the technical quality of audio and visual material, and serves as an interface between the school and the reproduction contractor.

Contractor. The contractor will analyze the GFM, and recommend, subject to approval by the school, the media to be used for a given lesson. However, the school has the final authority on media selection. The contractor will develop the required lessons in accordance with the development model approved for each contract. The lessons will be submitted to the school for review at designated junctures. The contractor will validate the lessons under the supervision of school representatives. Following validation, the lessons will be prepared in final form for reproduction. The development contractor normally accomplishes reproduction as well as lesson development. In some cases, however, the lessons are sent to a separate reproduction contractor.

NTEC Responsibilities
- Provide audiovisual expertise to PM TRADE and the schools
- Provide reproduction COTR
- Judge technical quality of lessons

Contractor Responsibilities
- Analysis
- Media selection
- Lesson development
- Validation
- Reproduction
1.3.2 Lines of Communication

Pre-Award Phase. While the contract is being written, your point of contact (POC) for all TEC related matters is your PO at ATSC/TPD. The PO will coordinate requirements, communicate with PM TRADE, and participate in the contractor selection process. The PM TRADE representative will communicate with NTEC, and manage the contract preparation and negotiation phase.

Development Phase. Your primary POC is still your ATSC/TPD PO. This PO should be contacted in the event of questions or problems related to the contract. Two additional POCs you may encounter during this phase are the contractor's on site representative at your school, and PM TRADE's COTR at the contractor's place of business. Communications concerning the routine development procedures should be directed to these persons. However, in the event of problems, you should first contact your ATSC/TPD PO. This PO will contact the PM TRADE AD as necessary to follow-up on the problem.

*These diagrams illustrate, in a simplified way, the changes in lines of communication during each phase of the contract. They do not illustrate all possible communications that might occur during a contract.
Reproduction Phase. The procedures here are essentially the same as during the development phase. The difference is that, in some cases, you will now be in communication with an NTEC PE. As before, the COTR should be contacted at once in case of problems.

*Refer to previous foot note.
There is no simple way to present a list of responsibilities and guidelines for a TEC Development Manager. There are several reasons for this:

- Differences in contractual requirements
- Differences in working conditions
- Differences in personal style
- Differences in preparation for project management responsibilities

Despite these differences, the goal in this section of the Guidebook is to provide guidance, especially for the newly assigned TEC Development Manager, with respect to his or her responsibilities. This section will also introduce you to some of the general characteristics of project management, and suggest methods for you to obtain additional information and training relevant to your responsibilities.

1.4.1 TEC Development Manager Responsibilities

Diversity of Responsibilities. The responsibilities assigned to a TEC manager are defined, to a large extent, by the contract. But, a limitation to the contract as a source of a “job description” is that it describes the ends but not the means. It tells you what you must accomplish, but not always how to accomplish it. A complete job description, or management guidebook, should describe how to accomplish the task. But, in the case of the TEC manager, there is still another complication. There is, as previously indicated, great diversity among the schools as to the ways TEC is developed. Some schools work entirely on contract, others do some
in-house development. Because of these, and other, differences in working conditions, it is important for the TEC manager to become competent in the general skills of project management, and to discover or utilize the most appropriate means to accomplish the goals in a given school. This section contains an overview of some of the responsibilities related to contract management, and the next section (1.4.2) describes some of the general characteristics of project management.

General Categories of Responsibilities.
One category of responsibility is derived directly from the contracting process. Since these change from contract to contract, and can be derived directly from the contracts, they will not be presented in detail here. However, for purposes of orientation, we will summarize the types of responsibilities associated with contract obligations. They fall roughly into three categories: definition of requirements, preparation of government furnished material (GFM), and supervision of contractor's work. The first category includes the work that goes into preparing the request for proposal (RFP) which, eventually, will become the contract. Each school to be included in the contract works with ATSC/TPD to define what their requirements will be for the contract. Criteria varies from fiscal year (FY) to FY for selecting subject material, but support of EPMS can be expected to always be a major consideration. Once subject material and kits have been determined, you then move into the second category of responsibilities: preparation of GFM. As soon as the contract has been awarded, and the contractor is ready to begin work, you must be prepared to give him all of the back-up material he will need in order to be able to do his job. After turning this material over to him, you then enter your third phase of responsibilities: supervision of contractor's work. It is this phase

CONTRACT RESPONSIBILITIES

- **DEFINITION OF REQUIREMENTS**
- **PREPARATION OF GOVERNMENT FURNISHED MATERIAL (GFM)**
- **SUPERVISION OF CONTRACTOR'S WORK**
of your responsibilities that is usually spelled out in detail in the contract. Sometimes your supervision will be indirect in that you will be critically evaluating decisions (e.g., media selection recommendations) and products that are presented to you by the contractor. At other times, your supervision will be direct as when you oversee the contractor’s procedures while he conducts validation studies of the lessons. But, in all cases, it is important for you to remember that in conjunction with your subject matter experts (SME) and higher level staff, it is your responsibility to make judgments on the technical and doctrinal accuracy of the contractor’s product. Assurance that the kit meets contractual specifications rests with ATSC/TPD, PH TRADE, and NTEC.

Rate-of Progress Responsibility. This could have been included in the general categories of responsibilities, but it is so important that it deserves special attention. The TEC program is young, it has grown rapidly, and it has, predictably, encountered some log jams. Both the contractors and the Army have had to slip their production and review schedules, and there have been delays in reproduction and distribution. But, the time of tolerance for these delays is past. These log jams have to be prevented, and TEC has to be kept on schedule. To emphasize the importance of keeping TEC on track, TEC is a major area of interest in the commandant’s installation contract. TEC products are accounted for and reported quarterly to the commander of TRADOC. Unless TEC can demonstrate both that its products are effective, and that its products are being produced and fielded in an acceptable length of time, the entire program will be jeopardized. Since several studies have demonstrated the effectiveness of TEC, that leaves us with the second problem as the major issue. The Army must always meet its schedule of deliverables and reviews. Only in this
way can the Army then take a firmer line, if necessary, with contractors who persistently have trouble meeting deadlines. Needless to say, the primary responsibility for meeting the time schedules falls upon you since there are many school reviews in the development cycle. Only with your effective management can TEC stay on track!

Sample Job Description. The following example, which is a composite based upon samples received from the Transportation School and the Quartermaster School, describes the responsibilities of a TEC Development Manager (Branch Chief), TEC Project Officer at the school, educational specialist, and writer-editor (not to be confused with SME's). This example illustrates the diversity of responsibilities relevant to achieving the objectives of TEC. This example is not suggested as a model for all schools. For example, it does not include responsibilities for in-house development, which would be included at some schools. Furthermore, some schools do not have staffs which are large enough to allow this breakdown of job descriptions. In those cases, many of these tasks would be the sole responsibility of the TEC manager, or distributed in a different manner among two or three people.
MANAGER RESPONSIBILITIES

JOB DESCRIPTIONS - EXAMPLES

TIC Development Manager

(1) Supervises TIC Branch operation and development of all TIC lessons.

(2) Ensures TICs and validation standards.

(3) Coordinates TIC with other relevant units of the Training Programs Directorate.

(4) Supervises relationships between the TIC branch and the civilian contractors.

(5) Ensures an initial point of contract for the contractor on all lesson development.

(6) Attends all meetings with the contractor.

(7) Determines long-range lesson development requirements.

(8) Plans and ensures that the budget is met.

(9) Reviews and approves the contractor lesson proposals throughout the development process.

(10) Reviews and approves all budgeting correspondence.

(11) Serves as chairperson of the TIC Review Committee.

TIC Project Officer

(1) Provides direct supervision of development of TIC lessons within a specific MOS/subject category.

(2) Directly supervises the efforts of the TIC support writers and subject matter experts and the efforts of the civilian contractors for which he is responsible.

(3) Coordinates and attends individual and group meetings.

(4) Coordinates the collection, review, and approval of government furnished materials by the contractor.

(5) Supervises the preparation of the Contract and Contract Summary Sheets.

(6) Ensures that all lesson development (both school and contractor efforts) remains on schedule.

(7) Maintains TIC Branch awareness of status of individual lesson development.

(8) Arranges field visits at delivery of CEC.

(9) Serves as member of the TIC Review Committee.

Educational Specialist

(1) Provides professional expertise on instructional technology.

(2) Recommends the development and application of new methods in training technology, tools, and lesson materials.

(3) Reviews and evaluates lesson objectives.

(4) Analyzes government furnished materials to determine lesson objectives and criteria for the development of lesson plans and lesson content.

(5) Provides guidance for the development of lesson plans and lesson content.

(6) Recommends guidelines for the development of lesson plans and lesson content.

(7) Provides recommendations on new methods and technologies.

(8) Formalizes the coordination of lesson development with the contractor or other schools as necessary.

(9) Serves as member of the TIC Review Committee.

Writer/Editor

(1) With assistance from the subject matter experts, prepares the Contract and Contract Summary Sheets.

(2) With assistance from the subject matter experts, collects, reviews, and annotates government furnished material for the contractor.

(3) Assists in reviewing contractor developed materials within the TIC Branch.

(4) Assists the Project Officer in maintaining cost data.
1.4.2 General Project Management Characteristics

Management Versus Leadership.

Too often in the military, industry, and education, it is assumed that because an individual has leadership skills and training, he or she is prepared to assume the responsibilities of project management. Although similarities exist, there are many aspects of project management that require more than leadership. Both an understanding of the special nature of development projects, and the appropriate management techniques are required. In this section of the Guidebook an orientation to the characteristics and problems of project management are provided. For the newly assigned TEC manager without previous project management experience, this orientation and some study of the references accompanying this section, will help you begin to function effectively. You should also feel free to call upon your ATSC/TPD PO, and experienced colleagues at other TEC schools. They will be more than happy to
PROJECT MANAGERS SHOULD HAVE

- INTERPERSONAL SKILL
- ORGANIZATIONAL SKILL
- ANALYTICAL SKILL
- TECHNICAL SKILL

share their experience with you. As you work in this assignment, you will discover that TEC development managers are enthusiastic and willing to do what they can to help a colleague as a means of helping obtain the highest quality program possible.

What is Project Management? Almost all definitions of project management include or imply the following elements:

The project manager, by working with people and other resources, must produce the product, or other outcomes defined by the objectives of the project, on time, according to standards, and within the allocated budget.

This definition implies certain skills that are important for a project manager to possess:

- Interpersonal Skill: To an increasing degree almost every expert in management emphasizes the importance of interpersonal skills in project management. Even in a hierarchical organization such as the Army, a successful project is the result of the coordinated efforts of many people. It will always be the case that some of these people are not in the hierarchy under the personal control of the TEC manager. The successful TEC manager is able to enlist the assistance of people whose expertise or resources are needed, even when there is no immediate obvious payoff for those people. Even when key people are in the command of the TEC manager, projects will not make satisfactory progress unless these people are motivated and productive.

- Organizational Skill: The successful TEC manager is able to maintain a vision that is larger than his
immediate area of responsibility. The best project managers, in industry and education as well as the military, are able to conceptualize the "big picture," and have their work fit into it. Having this perspective helps the project manager make decisions that are in the best interest of the project and the larger organization.

- **Analytical Skill:** Just as the whole picture is important, so are the details. The effective project manager is able to break the whole down into pieces, and to have an eye for the detail that comprises each of the pieces. A concern for detail will not, by itself, automatically result in excellence, but there will be no excellence without a concern for detail. This does not mean that the TEC manager has to keep personally in touch with every detail of every lesson that is being developed, but it does mean that he can perceive the detail when need be. And it means that he instills this concern in his personnel.

- **Technical Skill:** Knowledge of the product or its contents, and experience with project management are both helpful. The TEC manager should know at least enough about the content areas so that he can judge the work of the subject matter experts (SMEs) who may be working on a project. If he does not have that knowledge, he should make an effort to acquire it. Similarly, experience in project management is valuable for the simple reason that many unprogrammable decisions have to be made. The experienced manager will be far better equipped to handle many of the uncertainties associated with project management. This, of course, leaves us with the obvious dilemma of what does the inexperienced project manager do? The main thing is to understand that it is normal to have
to make decisions in the face of uncertainty, and to learn as much as possible from experienced colleagues.

Characteristics of Project Management Versus Other Leadership Assignments. Generally speaking, as a TEC manager, you have, or might, encounter the following types of leadership assignments: commander, administrator, or project manager. The requirements of each differ in important ways. For example, command responsibility requires that you establish policy within your sphere of decision making, and that you be primarily concerned with commanding people rather than supervising processes. The other two types of leadership responsibility both require the supervision of processes, but they, too, differ significantly. Managers have to set policies, determine standards, make unprogrammed decisions, and cope with a high degree of uncertainty due to the degree of non-repetitiveness in projects. Administrators, on the other hand, are concerned with implementing policy, and they tend to deal mostly with structured, predictable, and relatively unambiguous situations. As you can see, project management requires the very type of personal initiative and decision making that is discouraged in more structured, administrative assignments.

Development projects have several characteristics that distinguish them from most other organizational units. In general projects are:

- Objectives oriented: A project exists for the sake of producing a product, or other tangible outcome. Only those tasks are assumed by a project that lead to the accomplishment of the objectives.

- Non-repetitive in whole or part: Once the objectives have been achieved, the project is finished. There may be overlapping or sequential projects which are the responsibility of the same personnel, but each project has a definite goal and
time-line. Even though the other projects may be similar, and experience with one will transfer to the next, there will still be unique, non-programmable problems and decisions to be made. This results, in part, from changes in specifications, personnel, and other resources.

- Time-bound: A project carries due dates. Often the products from one project have to interface with another project. Frequently, there are serious, negative consequences if a manager cannot meet deadlines.

- Inter-organizational: Projects have a tendency to cut across established organizational boundaries. This happens because a project will often require experts and resources that are not available in the parent organization. Since projects are often one-shot endeavors, it could be inefficient to incorporate all of the required resources into the parent organization. Therefore, the project manager often has to be skilled at locating and utilizing resources from diverse sources.

The Function of a Manager. Classically, the functions of a manager are defined as planning, organizing, directing (or motivating), and controlling.

- Planning: Planning is future oriented. The manager must identify objectives, and prepare time-lines, budgets, policies, and staffing requirements that will facilitate their accomplishments.

- Organizing: The manager must identify resources, prepare job descriptions, delegate tasks, establish patterns of communications, and integrate all project activities toward the goal of accomplishing the project objectives.
• Directing (motivating): The manager must exert leadership, and other types of influence, so that subordinates will accomplish their tasks. The manager must be able to delegate authority, and to secure cooperative working relationships with other units.

• Controlling: The manager must exercise quality control by comparing performance to standards and correcting discrepancies. This applies to process events, such as personnel performance, and to product characteristics.

The TEC manager's responsibilities that were described in the last section (1.4.1) fit conveniently into these four functions, but these functions are broader than the earlier list. The earlier list describes your "ends-oriented" responsibilities. They were the tasks that are directly related to the development and completion of a TEC contract. The four functions presented in this section also include "means-oriented" responsibilities. For example, under planning, you must do more than plan the requirements of the contract. You must also plan your internal organization and time lines. Then, you will need to implement the organizational plan, supervise the personnel, and maintain quality control. Some of these broader, means-oriented, responsibilities are embedded in the example presented in the previous section (See Sample Job Description in Section 1.4.1).

Common Problems in Project Management.
There are certain problems that occur so often in project management, that they do not fit into our normal definition of a problem. Usually, we think of a problem as an out-of-the-ordinary
impediment to progress. Once we solve the problem, we either do not expect it to occur again, or we have a solution ready for it. Such is not the case in project management. There are several categories of problems that are recurrent, but the solutions tend to differ each time because of the nature of projects. Therefore, we will describe some of these problems so you will be aware of them, but we cannot present simple solutions. The solutions will result from your overall knowledge of your project and its objectives, your general problem solving ability, your experience, and your ability to draw on the experience of others.

- Hierarchical versus horizontal relationships: Often you will need personnel, such as subject matter experts, and services from units over which you have no direct authority. Securing this cooperation in timely manner often poses a real challenge to achieving your milestones on schedule.

- Deadlines versus quality: No project manager wants to turn out products which are not high quality, and it is imperative that the Army have high quality training materials. However, some project managers can get into trouble by striving for an excessive degree of perfection that interferes with getting the products out on time. It is always possible to identify one more revision that can be made on a product; it can be a never ending cycle. Achieving top quality products, and getting them out on time is a real challenge to any project manager.

- Responsibility versus authority: Even though the project manager has the responsibility for achieving the project's objectives, he does not always have complete authority over personnel, schedules, budget, or
performance specification. This can be particularly vexing to the project manager since it curbs his sphere of decision making.

- Detailed supervision versus management by exception: The project manager is accountable for the outcomes of the project, but in a complex project, it is impossible to supervise every detail of every event. The manager has to manage by exception to some degree; that is, he has to identify sensitive or critical events and observe only those. He moves into the role of detailed supervision only when there is a problem. Being able to identify the critical points and achieve the right balance of supervision is a real source of problems.

- Project priorities versus organizational priorities: Projects, by their very nature, tend to become ends-in-themselves. The TEC manager may begin to see TEC as the panacea for all training problems. The commander of a field unit, who has no vested interest in TEC, may see it as only one of several resources as he attempts to build a well-trained unit. Failure to obtain a larger perspective than one's immediate responsibility can create many problems for a project manager.

Bibliography for 1.4.2

Cook, D. Educational project management. Columbus, Ohio: Charles Merrill, 1971. (Provides guidance on managing educational development systems.)

Newport, M.G. The tools of managing. Reading, Massachusetts, 1972. (Describes principles of management.)

1.4.3 Dealing with Contractors

General Background. A considerable amount of your time will be spent in interactions with your contractor. And, to a great extent, the success of your project will depend upon your ability to develop a productive working relationship with your contractor. Therefore, it is important for you to know how to deal with contractors in terms of techniques, responsibilities, authority, and legal boundaries. With respect to techniques, it is impossible to present a list of clear-cut procedures. Most individuals will, with experience, work out their own best methods of managing contracts. However, this problem has been researched by scientists, especially industrial psychologists, and there is a growing literature on the subject of contractual relationships. The one idea that we would like to bring to your attention from this literature, is the concept of formal versus informal contracts. This concept has proven useful to managers who have to supervise contracts in the process of fulfilling their project objectives.

The formal contract is the legal contract. It consists of the stated agreements in the signed contract. The informal contract refers to the psychological aspects of the relationship. It consists of all the unstated, or difficult to state, expectations of the two parties to the contract. It is very important to consider both of these aspects in relation to your TEC contract, or any local contracts you might write in support of in-house development. Your responsibility and authority in relation to the formal contract are discussed later in this section.

Expectations can differ in many ways when contracting the software.

To deal effectively with contractors

- Work within both formal and informal contracts
- Recognize the aspects of development where expectations (both school and contractor) might differ
It is, on the one hand, fairly easy to define a time-line for deliverables and reviews, and to define the deliverables in general, descriptive terms such as kits, lessons, final art, etc. On the other hand, it is extremely difficult to work out the detailed specifications. When you contract for a generator, it is relatively easy to specify many characteristics of the final product in terms of its composition, output, and durability. But, with educational software, the problems are far more complex. The complexity results from the lack of a technology which allows us to specify every important learning and motivational characteristic of a lesson in terms of a particular arrangement of words and pictures. It also results from the degree of human interaction that occurs during the development process. This offers many opportunities for the TEC manager and the contractor to have very different expectations about the desires and obligations of each other.

An example might help. Every TEC contract requires the TEC managers to provide GFM for the contractor, and some guidelines are provided. But there is still an unanswered question as to how detailed the GFM should be. Some schools provide coordination and contract summary sheets that are almost detailed enough to be used as draft scripts. Other schools provide an outline with technical back-up information and expect the contractor to write scripts. The expectations of the schools differ greatly with respect to the amount of detail in art. This can be a substantial problem for a contractor who deals with several schools and the expectations of each school are different. Therefore, it is important for the TEC manager to learn to recognize the many aspects
of development where expectations might differ, and to discuss these with the contractor. Many hours, and days, of development time can be saved by establishing an effective working relationship.

Responsibilities and Authority.

The responsibilities of the TEC manager are included in each TEC contract. Since they are not exactly the same in each contract, you should study each contract and develop some type of checklist for reference and guidance. With respect to authority, you are not authorized to deal directly with a contractor or make agreements which obligate the government or effect changes in the contract. If any problems occur relative to the terms of the contract, you should contact your ATSC/TPD PO who will assist you in following it through to the contracting officer. You are required by the contract to make important judgments about the contractor's work. These include media selections, technical accuracy, quality of art, and overall quality of the lesson as specified by the contract. It is important for you to exercise this authority and not rely on the contractor's judgment.

The contractor is an expert in his field, but you represent the target population. It is up to you to be concerned with the most cost effective methods of development, and the acceptability of the products to the users.

Local Contracting. Contracting locally for services to assist with in-house development presents many special problems. In order to do so, you should have considerable experience with whatever you are contracting for, and with the regulations concerning procurement.
First, unless you have experience with the services you are buying, it will be difficult for you to judge proposals with respect to time, costs and quality. Second, you may encounter many difficulties unless you learn the regulations governing this type of procurement. Your local procurement office can work with you on such a contract. Before beginning this type of contractual activity, however, you should talk with some experienced TEC managers. Your ATSC/TPD PO will be able to recommend some names to you.

1.4.4 Training Opportunities

Workshops. At present, there is one workshop that is available to TEC personnel. This workshop, Criterion Referenced Instruction (CRI), is offered by Training Developments Institute (TDI), TRADOC. It is currently being offered at regular intervals at a variety of locations, and a large number of TEC personnel have participated. You should contact your ATSC/TPD PO for more information about this workshop.

References. Much of your training will have to result from your personal reading and on-the-job experience. There are many publications, both military and civilian, on the topic of training, and the preparation of training programs and materials. In this chapter, we have included a few of the most salient in consideration of the responsibilities of TEC manager. If your interests go beyond these, the bibliographies in these publications will guide you to the larger area of literature.
Chapter 2

Planning and Administration of A TEC Unit

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>PLANNING AND ADMINISTRATION OF A TEC UNIT</td>
<td>2-3</td>
</tr>
<tr>
<td>2.1</td>
<td>SYSTEMATIC APPROACHES TO COURSE DEVELOPMENT</td>
<td>2-4</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Systematic Course Development</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>Cautionery Note</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Distinguishing Features of the Systems</td>
<td>2-6</td>
</tr>
<tr>
<td></td>
<td>Approach</td>
<td>2-6</td>
</tr>
<tr>
<td></td>
<td>Interservice Procedures for Instructional Systems Development</td>
<td>2-6</td>
</tr>
<tr>
<td></td>
<td>Criterion-Referenced Instruction and the ISD</td>
<td>2-10</td>
</tr>
<tr>
<td></td>
<td>A Final Caution</td>
<td>2-11</td>
</tr>
<tr>
<td>2.1.2</td>
<td>OVERVIEW: How TEC Lessons are Developed and Evaluated</td>
<td>2-13</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>2-13</td>
</tr>
<tr>
<td></td>
<td>Front-End Analysis</td>
<td>2-14</td>
</tr>
<tr>
<td></td>
<td>Development Phase</td>
<td>2-20</td>
</tr>
<tr>
<td></td>
<td>Reproduction Phase</td>
<td>2-21</td>
</tr>
<tr>
<td>2.2</td>
<td>RELATIONSHIP BETWEEN TEC, THE ISD, AND DIRECTORATES OF TRAINING DEVELOPMENT</td>
<td>2-22</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Summary of the ISD Phases as They Relate to TEC Development</td>
<td>2-22</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Relationship Between the ISD and Directorates of Training Development</td>
<td>2-24</td>
</tr>
<tr>
<td>2.3</td>
<td>PLANNING REQUIREMENTS AND TECHNIQUES</td>
<td>2-26</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Selecting Subject Areas for TEC Lesson Development</td>
<td>2-26</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Budget Planning Requirements Policies</td>
<td>2-27</td>
</tr>
<tr>
<td></td>
<td>Example from the Quartermaster School</td>
<td>2-31</td>
</tr>
</tbody>
</table>
CONTENTS (continued)

<table>
<thead>
<tr>
<th>2.4</th>
<th>SUBJECT MATTER EXPERTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1</td>
<td>Utilization of Subject Matter Experts</td>
<td>2-33</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Limitations of the SME</td>
<td>2-34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.5</th>
<th>RECURRING REPORTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1</td>
<td>DAVIS Reports: DD Form 1995</td>
<td>2-36</td>
</tr>
<tr>
<td></td>
<td>Purpose</td>
<td>2-36</td>
</tr>
<tr>
<td></td>
<td>Required By</td>
<td>2-36</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Quarterly TEC Product Requirement, RCS ATTN-55</td>
<td>2-38</td>
</tr>
<tr>
<td></td>
<td>Purpose</td>
<td>2-38</td>
</tr>
<tr>
<td></td>
<td>Required By</td>
<td>2-38</td>
</tr>
<tr>
<td>2.5.3</td>
<td>TEC Direct Obligations</td>
<td>2-38</td>
</tr>
<tr>
<td></td>
<td>Purpose</td>
<td>2-38</td>
</tr>
<tr>
<td></td>
<td>Required By</td>
<td>2-39</td>
</tr>
<tr>
<td>2.5.4</td>
<td>TEC Lesson Status Report</td>
<td>2-40</td>
</tr>
<tr>
<td></td>
<td>Purpose</td>
<td>2-40</td>
</tr>
<tr>
<td></td>
<td>Required By</td>
<td>2-40</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Lesson Review/Approval Reports</td>
<td>2-41</td>
</tr>
<tr>
<td></td>
<td>Purpose</td>
<td>2-41</td>
</tr>
<tr>
<td></td>
<td>Required By</td>
<td>2-41</td>
</tr>
<tr>
<td>2.5.6</td>
<td>TEC Lesson Annual Review Reports</td>
<td>2-42</td>
</tr>
<tr>
<td></td>
<td>Purpose</td>
<td>2-42</td>
</tr>
<tr>
<td></td>
<td>Required By</td>
<td>2-42</td>
</tr>
<tr>
<td>2.5.7</td>
<td>Composite Task List Update Reports</td>
<td>2-43</td>
</tr>
<tr>
<td></td>
<td>Purpose</td>
<td>2-43</td>
</tr>
<tr>
<td></td>
<td>Required By</td>
<td>2-43</td>
</tr>
</tbody>
</table>
2.0 PLANNING AND ADMINISTRATION OF A TEC UNIT

During the last decade, a significant advance was made in the field of training development. It resulted from applying general systems theory to the process of training and educational development. The impact of this planning technique was so dramatic that it contributed to the development of a new field of specialization known as educational, or instructional technology. Initially, this technology was developed in colleges and universities, and in industry, but it has now been adopted by the Army and other branches of the service. As a member of the TEC program, you will see this technology being applied on a broader scale than ever before. It is a large project that involves virtually every school and unit in the Army.

The purpose of this chapter is to present a systematic approach to course development. This is accomplished by:

- Describing the relationships between TEC, the Instructional Systems Development (ISD) model, and Directorates of Training Development.
- Explaining how Subject Matter Experts (SMEs) are used.
- Reviewing recurring report requirements.
In its broadest scope, the systems approach has moved beyond TEC; it has been adopted by the U.S. Army Training and Doctrine Command (TRADOC) as a means of planning and implementing a total training concept. This concept (see Section 1.1.6) will result in a totally integrated and validated performance-oriented training program for the Army.

In this section of the Guidebook, we will introduce you to the systems approach, particularly as it is represented in two documents that are widely distributed among Army training development personnel. The first of these is TRADOC Pamphlet 350-30, Interservice Procedures for Instructional Systems Development. The second, Criterion-Referenced Instruction by R. F. Mager and P. Pipe, is available through a workshop conducted by TDI, TRADOC which is frequently attended by school training personnel.

2.1.1 Systematic Course Development

Cautionary Note. We have to open this section with a caution: there are many ways of portraying the systems approach to instructional development. A
recent graduate student of Instructional technology identified over 40 different models that have been published in the literature of the field. Therefore, we cannot say that there is one best model for development. Models vary depending upon the circumstances in which a given project takes place.

Overview. Despite this diversity, there are, at an abstract level, some features that are common to most of the models. Most of them begin by doing a needs analysis or a problem analysis, and a task analysis in order to determine what tasks are to be included in the training program. The second major group of steps involves the specification of objectives and tests; that is, the observable outcomes of the program are described, and methods to measure them are developed. The third major group of steps includes the design of an appropriate sequence of instruction, and the selection of an appropriate strategy for instruction. This would include media selection. The fourth group of steps, often called development, includes the preparation of an initial version, a try-out, revision, and validation in order to see whether the training material meets the objectives.
After the validation is finished, the last phase begins. This fifth phase, or implementation, includes the process of putting the materials into the training system, management of their use, and continuous monitoring of their effectiveness.

Distinguishing Features of the Systems Approach. In these few words, we have attempted to give you an overview of the process. Its distinguishing features are that a systematic analysis is performed in order to determine what should be taught, as opposed to relying on tradition or one person's judgment. After that determination has been made, the Instructional technologist prepares a teaching sequence and strategy based on the latest research in the areas of communication and psychology. Then, after designing and developing the training materials, the instruction technologist must literally "put his money where his mouth is." If the materials do not validate, then they must be revised until they do; this is one of the most rigorous features of the systems approach, viz., performance-oriented instruction. The materials have to be proven to be effective before they can be put into the field.

Interservice Procedures for Instructional Systems Development. As a TEC Manager
you will frequently encounter the term "ISD." This refers to TRADOC Pamphlet 350-30, Interservice Procedures for Instructional Systems Development, more commonly known as the ISD. The five volumes of this pamphlet constitute one of the most complete textbooks available either from the Government or commercially, on the systematic approach to instructional development. If it has any major fault, from the point of view of the TEC Manager, it is that it is too complete. It contains far more detail than you need to know as a TEC Manager. You will work closely with the outputs of certain phases of ISD, and will follow some of the procedures in the design and development of TEC lessons. You will not, however, be involved with many of the procedures outlined there. In order for you to be able to appreciate the completeness of this model, and to have a reference to the set of manuals, we have reproduced the overview of the Five Phases, the Blocks in each Phase, and the Outputs of each Phase.
THE FIVE PHASES ARE:

PHASE I: ANALYZE

Beginning with Phase I, the ID model is concerned with analyzing data using job analysis information from Phase I. The first step is to establish the training objectives of each task selected for training into a terminal learning objective. Each terminal learning objective is then analyzed to determine the training objectives and learning tasks necessary for mastery of the terminal training objective. Tasks are designed to match the learning objectives. A series of tasks is developed to ensure that the end results match the level of learning objectives. Finally, a sequence of instructions is designed for the learning objectives.

PHASE II: DESIGN

The instructional design phase begins with the identification of terminal learning objectives by determining the types of learning tasks necessary for optimal learning. It involves determining the best way to present the information to the students. The learning experience is planned through a multimedia presentation which takes into account such factors as learning category, media characteristics, learning style, and content. Instructional guidelines are used to master and manage all resources for conducting instruction. Instructional materials are selected, developed, and field tested. When materials have been evaluated on the basis of empirical data obtained from groups of typical students, the course is ready for implementation.

PHASE III: DEVELOP

Staff training is required for the implementation of the instructional materials and the instruction. Some key personnel must be trained to be masters in the field of management plan. This instructional staff must be trained to produce the materials and design the instruction. They should be able to do so by using the materials and instruction as designed, and should be able to do so with a high degree of accuracy. The evaluation of input from the instructional materials provides the basis for determining the actual performance of the course and the effectiveness of the instructional materials. All collected data, internal and external, can be used to modify the instruction and exploit the potential of the instructional materials.

PHASE IV: IMPLEMENT

Evaluation and revision of instruction are carried out by personnel who are trained to do so. The instructional materials are the major part of the instructional design, and the first activity (external evaluation) is to evaluate the instructional materials. The instructional materials are then revised, and the revision process is repeated until the instructional materials meet the needs of the intended audience. The instructional materials are then evaluated, and the evaluation results are used to modify the instructional materials. The instructional materials are then implemented in a series of training sessions. The implementation process is repeated until the instructional materials meet the needs of the intended audience.
THE OUTCOMES OF THE BLOCKS ARE:

I

1. a list of tasks performed in a particular job.
2. a list of tasks selected for training.
3. a job performance measure for each task selected for instruction.
4. an analysis of the job analysis, task selection, and job performance construction for any existing instruction to determine if these courses are usable in whole or in part.
5. selection of the instructional setting for task selected for instruction.

II

1. a learning objective for and a learning analysis of each task selected for instruction.
2. test items to measure each learning objective.
3. a task of entry behaviors to use if the original assumptions were correct.
4. the sequencing of all dependent tasks.

III

1. the classification of learning objectives by training category and the identification of appropriate learning guidelines.
2. the media selections for instructional development and the instructional management plan for conducting the instruction.
3. the analysis of packages of any existing instruction that meets the given learning objectives.
4. the development of instruction for all learning objectives where existing materials are not available.
5. field tested and revised instructional materials.

IV

1. documents containing information on time, space, student and instructional resources, and staff trained to conduct the instruction.
2. a completed cycle of instruction with information needed to improve it for the succeeding cycle.

V

1. data on instructional effectiveness.
2. data on job performance in the field.
3. instructional system revised on basis of empirical data.

Our recommendation is that you read the first volume, Executive Summary and Model, and the third volume, Phase II: Design, in their entirety. The first will give you an overview of the system, and the third volume covers many of the tasks for which you are responsible. You are also responsible for supervising the development process, but we do not see it as essential for you to read all of the fourth volume, Phase III: Develop.
Blocks III.2, III.4, and III.5 are more applicable to TEC than the other two. This volume is very large and contains much information that is not relevant to the TEC development process. It would be more valuable for you to study the development model that is included in any contracts you are working under and to browse through the ISD development phase.

Criterion-Referenced Instruction and the ISD. The expression "criterion-referenced instruction" is commonly used to describe instruction that has competency rather than competitiveness as its goal. In competitive, or norm-referenced, instruction and testing, the goal is to select a given percentage of trainees who come out at the top. A norm-referenced test is designed to rank order people from best to worst. The scores are based on the average score of the people taking the test. In criterion-referenced instruction and testing, a level of proficiency that is appropriate for a given task is defined, and the attempt is made to train everyone until they reach that level. If someone cannot reach the criterion, then that person must be disqualified, or the trainer must seek alternative methods of training the person.
The expression "Criterion-Referenced Instruction" (CRI) has also been used by Robert F. Mager and Peter Pipe in the title of a set of copyrighted materials on the systematic approach to instructional development. Since these materials are copyrighted, and since there are other similar sets of materials for sale by competing publishers, their tables and flowcharts are not included here. However, since these materials are available to many of you as a result of participating in the CRI workshop, it may be useful to see a comparison of CRI with ISD. This comparison illustrates both the diversity and the commonality of the two instructional development models. The major phases are different, but they both include comparable steps.

A Final Caution. We must emphasize again that there is no one best model. The ISD, and TEC Contract development models all have one goal: to provide guidance. None of
them can provide prescriptive rules which will govern all problems that will occur. The models can provide general principles of systematic development and some specific procedures. They cannot cover every specific instructional problem that may be encountered. Your understanding of the basic principles is necessary, and, as in all areas where judgment is important, some experience with the program will help you fulfill the goal of high-quality TEC materials.

Bibliography for 2.1.1

2.1.2 OVERVIEW: How TEC Lessons are Developed and Evaluated

Introduction. The general process of TEC Lesson development and evaluation is given below. It is assumed for convenience here that all the indicated steps (except Reproduction and Distribution) take place within, or are monitored by, the TRADOC School Directorate of Training Developments (DTD), which is further assumed to include the TEC Management Branch. If your School differs from this assumption, translate the words used to fit your organization.
MAJOR STEPS IN THE TEC CYCLE

Job/task analysis
- **Critical task identification**
- **Formulate training objectives**
- **Select mode of training (TEC or other method)**
- **Prepare training & learning objectives for TEC lessons**

FRONT-END PHASE
- **Criterion referenced test item development**
- **Determine entry level of students**
- **Prepare CCSS and other GFM as required**

DEVELOPMENT PHASE
- **Develop initial instructional materials**
- **Conduct test on individuals, revise as necessary**
- **Small group tests (optional), revise as necessary**
- **Large Group Validation, revise as necessary**
- **Approve final, camera-ready, kits**

REPRODUCTION PHASE
- **Reproduction**
- **Distribution**

Front-End Phase. The first major step in TEC lesson development normally will occur independently of a decision to produce TEC lessons. This is the definition of a specific training requirement for soldiers in one of your proponent MOSs. The decision to produce a TEC lesson to meet this requirement depends upon the need to
export the training and the
stability of the lesson ma-
terial. The determination
of the training requirement
is usually a function of the
Task Analysis and Design
Division in DTD.

This division is gen-
erally responsible for the
job analysis necessary to
develop job tasks for the
Soldier's Manuals. These
analyses result in defini-
tion of the performance re-
quirements of each critical
task. These critical tasks
are then translated into
training objectives. This
is a highly critical step
in training development
since the validity of these
tasks (truthful representa-
tion of the real job re-
quirement) and training
objectives dictate the max-
imum extent to which any train-
ing material can be effective
in training to do the real
job.

After critical task per-
formance requirements/train-
ing objectives have been
defined, these are normally
turned over to the Course
Development Division or sim-
ilar organization. This group
is then responsible for cre-
ating training materials to
train to the objectives. It
is normally at this point that
the decision is made on whether
to develop materials through
TEC or other instructional
means. This decision may
well depend on the difficulty
of the material, the require-
ments for exportability, and/or
the judged adaptability of the training requirement to one or more of the available TEC media. If the decision is to go to TEC, the TEC Management Staff is in the act for real. Then the subsequent steps given in the TEC cycle are performed (or monitored) by this group. In case of contractual lesson development, all of these steps are monitored and evaluated by the TEC Staff in relation to satisfying the requirements for Government Furnished Materials (GFM) and the Coordination and Contract Summary Sheet (CCSS) which are to be developed by the TEC Staff and provided to the contractor. Development and monitoring of these materials and activities are discussed in subsequent sections. This section will discuss the steps as they should be conducted, regardless of whether in-house or by contract.

Given the training objective (TEC stated in specific performance-oriented terms), the Course Developers/TEC staff begin their part of the front-end process. This part requires several essential steps in relation to overall TEC development.

The first step in this part of the process is to translate the training objectives into terminal learning objectives for the TEC lesson. These are specific statements of the knowledges, skills, and performance capabilities that the trainee should process upon completion of the lesson. To the extent possible, these learning objectives should be the performance capabilities and skills necessary to actually do the soldier's task.

<table>
<thead>
<tr>
<th>TERMINAL LEARNING OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SPECIFIC STATEMENTS OF:</td>
</tr>
<tr>
<td>- KNOWLEDGES</td>
</tr>
<tr>
<td>- SKILLS</td>
</tr>
<tr>
<td>- PERFORMANCE CAPABILITIES</td>
</tr>
<tr>
<td>• PERFORMANCE REQUIREMENTS</td>
</tr>
<tr>
<td>• CONDITIONS</td>
</tr>
<tr>
<td>• CRITERIA/STANDARDS</td>
</tr>
</tbody>
</table>
toward which the lesson is directed. Ideally, these learning objectives are the performance requirements, plus the conditions under which the performance must be accomplished, plus the criterion, or standard, which the trainee must meet in his performance after training. It may be obvious to point out that the learning objectives may be identical to the training objectives which may be identical to the job task. If the training objectives fill the bill for learning objectives, don't change them. If they are inappropriate or incomplete, change them to meet the need.

As indicated above, the validity of the training/learning objectives is highly critical to the successful training of the soldier to perform his job in the field. Make sure these are correct and directly related to what the soldier really must be able to do.

The development and validation of the criterion referenced test items is also a highly critical step in TEC lesson development and evaluation. The most important aspect is whether the test items accurately and reliably measure what you want to measure -- and this again is based on what the soldier needs to be able to do on the job. Pre/posttest(s) (there may be either one or two equivalent tests) are to be

CRITERION REFERENCED TEST ITEMS

- WHAT YOU WANT TO MEASURE
 - ACCURATELY
 - RELIABLY

- HOW YOU MEASURE
 - PERFORMANCE-ORIENTED TESTS
 - PRETESTS
 - POSTTESTS
VALID TEST:

MASTERS' PERFORMANCE ≠ NON-MASTERS' PERFORMANCE
developed from the criterion-referenced test items and validated so that they accurately measure the ability of the soldier to perform the tasks he's being trained to do. Ideally, this should be a performance test which requires the soldier to actually perform the required activities. Frequently, it is difficult or impossible to design such a test which can be feasibly administered within the training conditions and time constraints. In such cases "performance-oriented" tests which combine some performance components with some written components may have to be substituted for a "hands-on" performance test. In either case, these tests should be validated through testing both experienced/trained/knowledgeable soldiers (masters) and inexperienced/naïve soldiers (non-masters) and determining whether the test really tests the mastery of the tasks to be trained. If the test is valid, it should discriminate between the "Masters" and the "Non-masters." If it does not, two alternatives are possible: either it is not a valid test of the performance task; or, the task is one which does not require training. If the latter is true, you've saved your School some time and effort. If the former is true, you've got more work to do on test development and revalidation of the test. This process is discussed further in Chapter 5 of this manual.

Again, this is a highly critical step in TEC lesson development, since if the test is poor, the lesson may be training the wrong skills or not training to the
level required to actually perform the task on the job. Developing the actual lesson is an iterative process which includes much of the Developmental and Reproduction Model with which you may be already somewhat familiar. This is the most time consuming part of the total development process, but from one viewpoint it is the least critical step in the process. It is essentially a systematic trial and error process which iteratively evaluates the effectiveness of the instructional materials in relation to the criterion test items developed in Step 2. Successful performance of this step will assure that the TEC lesson teaches to the test. But remember, it is the quality of the task, and of the learning/training objectives which it measures, that determine the effectiveness of the instruction in relation to the real world performance of the soldier on real world tasks. No matter how good the instruction is, if it is training to an inadequate test, or to meet incorrect training objectives, it may be worse than worthless; it may be dangerous!

The remaining steps in the front-end phase are:

- Determine the entry level of trainees, including prerequisite knowledge and skills they must bring to the lesson.

- Determine the structure and format for the lesson, including what type of
medium is most appropriate, how long it must be, whether more than one kit will be required, etc.

- Prepare the Coordination and Contract Summary Sheet (see Chapter 3) and any additional GFM that may be necessary.

Development Phase. As shown in the TEC cycle there are several general sub steps in the lesson development phase. These include:

- Develop the initial instructional materials for the lesson. These include the script, the visuals (if audiovisual, printed text, or job performance aid), the Lesson Administrative Instructions (LAI), and the Student Instruction Sheet (SIS).

- Conduct individual tests of the lesson instructional materials. This is the first step in demonstrating training effectiveness of the lesson. It yields data on the quality of the initial cut at the training materials.

- Revise TEC materials as indicated by individual trials.

- Conduct optional small group tests of the lesson materials. Again, designed to yield diagnostic information about the lesson's effectiveness.

- Revise TEC materials as indicated by small group trials.

- Conduct validation tests with large groups (approximately 30 trainees) or with sequential sampling approach (cf. Chapter 5).
• Revise TEC materials as indicated by large group trials.

Please note that steps 2 through 7 can be recycled, individually or totally, if any test results indicate the need for it.

Once the revised TEC materials have been demonstrated to effectively teach to the criterion level demanded based on the importance of the training objectives (see Chapter 5), the TEC lesson is ready to be prepared in final form.

As the final step in the development phase, the TEC Manager's staff is responsible for technical review of the camera-ready kits.

Reproduction Phase.

Finally, in either in-house or contractual development, the kits (in a Master Kit format) are forwarded for reproduction. After reproduction, copies are forwarded to Tobyhanna Army Depot for distribution.

REPRODUCTION PHASE

- REPRODUCTION
- DISTRIBUTION
As we indicated in Section 2.1.1, you are not ordinarily responsible for the entire development process. Most schools are now organized so that the TEC program receives the inputs it needs for the design and development of TEC lessons. This has not always been the case, and it may still be a problem in some schools. At this point, we present an example of the relationship between the ISD and the TEC Manager's responsibilities. Section 2.1.1, an example from the U.S. Army Transportation School, illustrates this relationship.

2.2.1 Summary of the ISD Phases Related to TEC Development

To help you understand how ISD and the TEC program are related, your particular areas of concern as a TEC Project Officer are discussed below:

- PHASE I (Analyze) - Task Analysis at the U.S. Army Transportation School is the responsibility of the Individual Training Analysis and Design Division, Directorate of Training Developments. The outputs of Phase I which you will work with are a task listing, training site selection, and job task data cards. The job task
PHASE II (Design) - In the case of TEC lessons, Phase II functions will be performed by you and your subordinates. Your major outputs for this phase will be learning objectives, self-evaluation criterion-referenced tests, and minimum standards to be used during lesson validation trials. These items are incorporated in a document referred to as the Coordination and Contract Summary Sheet for each TEC lesson. These outputs and the summary sheet are discussed in further detail in other sections of this Project Officer's Guide.

PHASE III (Develop) - In the case of TEC lessons, the majority of the functions will be performed by a contracted lesson developer, based on School specifications in the Coordination and Contract Summary Sheets and related documents. The contractor's efforts will be monitored by the TEC Branch. The primary output of this phase will be a School-approved, validated TEC lesson prepared for distribution to the field.

PHASE IV (Implement) - In the case of TEC lessons used in non-resident settings, as most lessons will be, the responsibility for implementation rests in effect
with the trainee's commander or supervisor. As for TEC lessons used in a resident setting, the responsibility for this function would, of course, rest with the department having proponency for instruction in the given MOS. You will not be involved with this phase...

- PHASE V (Control) - Responsibility for this phase usually belongs to the Directorate of Evaluation (DOE). You may eventually be concerned with feedback on the effectiveness and validity of TEC lessons as a result of functions performed by the DOE.

2.2.2 Relationship Between the ISD and Directorates of Training Development

Many Directorates of Training Development have reorganized or modified their organization to facilitate a process oriented training development cycle such as that described in the ISD. In most schools, there is a Training Analysis and Design Division which is sometimes subdivided into two divisions for individual and collective training. As the title indicates, this division covers the first two phases of the ISD. This group is responsible for, among other things, preparing a task analysis and training objectives. These will be used by you, and other groups within the Course Development Division, during the development phase, which is
Phase III of the ISD. It is true, that in some schools, the TEC Manager does not have a separate unit within the Course Development Division, but this tends to be the exception rather than the rule. The fourth phase, Implementation, is the responsibility of the various unit commanders that utilize TEC, but the fifth phase, Control, is usually the responsibility, at least in part, of the Directorate of Evaluation.

TYPICAL RELATIONSHIP
BETWEEN DIRECTORATE OF TRAINING DEVELOPMENT AND ISD

- DIRECTORATE OF TRAINING DEVELOPMENT
 - DIRECTORATE OF TRAINING ANALYSIS AND DESIGN
 - DIRECTOR OF COURSE DEVELOPMENT
 - DIRECTORATE OF EVALUATION
 - DIRECTORATE OF TRAINING LITERATURE
 - ANALYZE DESIGN
 - DEVELOPMENT
 - CONTROL
 - ASSISTS INDIRECTLY WITH IMPLEMENTATION

<table>
<thead>
<tr>
<th>DIRECTORATE OF TRAINING DEVELOPMENT</th>
<th>ISD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECTORATE OF TRAINING ANALYSIS AND DESIGN</td>
<td>ANALYZE DESIGN</td>
</tr>
<tr>
<td>DIRECTOR OF COURSE DEVELOPMENT</td>
<td>DEVELOPMENT</td>
</tr>
<tr>
<td>DIRECTORATE OF EVALUATION</td>
<td>CONTROL</td>
</tr>
<tr>
<td>DIRECTORATE OF TRAINING LITERATURE</td>
<td>ASSISTS INDIRECTLY WITH IMPLEMENTATION</td>
</tr>
</tbody>
</table>
Planning is an important aspect of your job. Without planning you will not be able to accomplish your goals, and ATSC will not be able to anticipate your requirements. This section is designed to introduce you to some of your planning responsibilities. Your Project Officer is always willing to help you with specific questions or problems.

2.3.1 Selecting Subject Areas for TEC Lesson Development

During this stage of your work, you will have to coordinate with the Training Analysis and Design Division, and the Course Design Division. Your Training Analysis and Design Division should have a list of critical tasks and training objectives that track with the Soldier's Manual and SQT tests. In order to select the jobs to be developed in TEC, you will need to use the criteria that have been approved by ATSC/TPD. These criteria tend to stay the same, although the order of importance may change in a given year. You would use these criteria in conjunction with the review and decision procedures that have been established at your school. You should consider
special needs when you are formulating your TEC requirements. Following are the criteria for TEC subject area selection:

- Lessons which support EPMS training requirements and are consistent with the EPMS implementation schedule.
- Lessons which support increased weapons systems effectiveness.
- Lessons which solve valid training requirements in an on-the-job setting for both Active Army and Reserve Components.
- Lessons which replace or support existing conventional training in an institutional setting.

2.3.2 Budget Planning Requirements

From time to time, letters will be sent to you from ATSC/TPD requesting your school internal funding requirements to support the TEC program. You should be prepared to submit requests that provide for the continuance of your current load, and projections for the next two fiscal years. Funding needs should be listed in the fiscal year during which they will actually occur. For example, if a contract is awarded in April, prin
requirements will probably not occur until the following fiscal year. Therefore, funding requests for print support should be requested for the following fiscal year. In the following portions of this section are guidelines concerning ATSC/TPD policies regarding internal funding, a sample of the format to use, a brief description of Element of Expense (EOE) numbers, and an example from the Quartermaster School.

Policies. As a general rule, ATSC/TPD will fund school requests for such items as printing, travel incidental to lesson validation (assume three lessons validated per TDY trip), travel incidental to contractor coordination and/or lesson quality control, shipment of TEC materials, supplies required for ATSC approved in-house TEC lesson development, and miscellaneous materials required to support quality control of TEC lessons at the school. Schools are required to give a brief justification for all expenditures requested.

As a TEC manager, you will be required to submit TEC funding data to your resource management office for inclusion in the installation budget reports to TRADOC. Examples of this would be the Budget Manpower Guidance (BMG), and Budget Execution Review (BER).
The format for school submission of funding requirements will be a letter of transmittal that includes a summary sheet indicating funds requested by Element of Expense (EOE) number. An example of the format for a funding request is given below. As backup material to the summary sheet discussed above, each separate line item within a given EOE for which funds are requested must contain written justification. Example justifications for each EOE are included. For example, if five separate items are requested under the EOE for supplies, each of the five items must be justified.

ATSC/TPD cannot approve the expenditure of funds that are not directly related to the TEC program. Questions on funding submissions are to be directed to your ATSC/TPD PO.

FORMAT FOR THE REPORT

(SCHOOL LETTERHEAD)

(SCHOOL LETTERHEAD)
Element of Expense (EOE) Definitions

<table>
<thead>
<tr>
<th>EOE No.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>Includes only costs for lesson validation, contractor coordination, attendance at TEC managers conferences and any other travel (civilian or military) that is justifiable.</td>
</tr>
<tr>
<td>2200</td>
<td>Expenses anticipated in shipment of CPM to contractors, shipment of art and/or shipment of any other supplies and/or equipment related to TEC that can be fully justified.</td>
</tr>
<tr>
<td>2300</td>
<td>Rental of computer terminals, Xerox machines, communications equipment, or any other equipment and/or services related to TEC that can be fully justified.</td>
</tr>
<tr>
<td>2400</td>
<td>Printing of lesson Administrative Instruction Job Aids, administrative materials, and any other printed matter needed to support TEC lesson production or utilization.</td>
</tr>
<tr>
<td>2500</td>
<td>Any contractual services. Generally schools will not have an entry in this line item since ATSC will determine all funding required for actual contracting of TEC lessons. If schools determine one or types of additional contracting is needed, it should be entered in this EOE column and fully justified.</td>
</tr>
<tr>
<td>2600</td>
<td>Purchase of administrative materials such as print materials or any other materials required to support TEC lessons that are not classified as printed matter. Also included in this line item are materials required to support the school's internal TEC staff such as print materials for the home produced TEC lessons.</td>
</tr>
<tr>
<td>3100</td>
<td>Equipment necessary for production of TEC lessons or quality control. Where regulations require justification of these purchases, the school must indicate whether the required approval to buy the equipment has been secured through proper military channels or what stage the request for approval is in. Additionally, the school must provide written justification concerning why the equipment should be purchased under the TEC program.</td>
</tr>
<tr>
<td>Other</td>
<td>If the school feels there is justification for the expenditures of funds that cannot be specifically listed in one of the above EOEs, but is related to the TEC program, the expenditure should be listed in this column and fully justified.</td>
</tr>
</tbody>
</table>
Example from the Quarter-Master School. The following example includes the letter of transmittal, and the FY 7T (i.e., the continuance of the current fiscal year) funding request submitted by the Quartermaster School in April, 1976.

DEPARTMENT OF THE ARMY
U.S. Army Quartermaster School
Fort Lee, Virginia 23801

15 April 1976

ATTN: CD-CO

SUBJECT: AMT TEC Operating Costs, FY 77, 78

Commander:
U.S. Army Training Support Center
ATTN: ATTSC-TP-PD
Fort Eustis, VA 23604

1. Reference letter, Combat Arms Training Board (ATTMB-TP-PD), dated 30 March 1976, subject: School Internal Funding Requirements to Support the Training Extension Course (TEC) Program.

2. Attached at Inclusions 1-3 are the FY 77 projected internal funding requirements for FY 77, FY 78 and FY 78 in accordance with the guidelines in reference 1 above. It should be noted that there are no allowance made for supply revisions and reprinting of support materials. In the ever-changing supply arena, this will continue to increase the workload and internal funding requirements.

FOR THE COMMANDANT:

3 Inc

2-31
U. S. Army Quartermaster School
Fort Lee, Virginia 23801

ATTN: TO: CO/YSHER, CPT
SUBJECT: FY 77 TEC Funding Request

15 April 1976

<table>
<thead>
<tr>
<th>ELEMENT OF EXPENSE</th>
<th>FOR DEFINITION</th>
<th>FUNDS REQUESTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOE 2100</td>
<td>Travel and Transportation of People</td>
<td>$100</td>
</tr>
<tr>
<td>EOE 2200</td>
<td>Transportation of Things</td>
<td>$1,250</td>
</tr>
<tr>
<td>EOE 2400</td>
<td>Printing and Reproduction</td>
<td>$14,520</td>
</tr>
<tr>
<td>EOE 2500</td>
<td>Supplies and Materials</td>
<td>$350</td>
</tr>
<tr>
<td>TOTAL FY 77 REQUEST</td>
<td></td>
<td>$16,523</td>
</tr>
</tbody>
</table>

EXPENDITURE JUSTIFICATION

EOE 2100 (Transportation of Things)

a. Shipment of Historical Data for 21 TEC lessons, total weight of approximately 15 pounds per lesson with estimated costs of $150.

EOE 2400 (Printing)

<table>
<thead>
<tr>
<th>LESSON NUMBER</th>
<th>MATERIAL TO BE PRINTED</th>
<th>ESTIMATED PAGES</th>
<th>ESTIMATED PRINTING COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>531-101-7928 through 531-191-7932</td>
<td>LESS, Workbooks, Lesson Books, Learning Resource Books</td>
<td>No. of pages</td>
<td>$14,520</td>
</tr>
</tbody>
</table>

EOE 2500 (Supplies and Materials)

a. Self-Service supplies in support of TEC, estimated costs $250.

b. Packing materials required to ship Historical Data and printed material to RCAD. Estimated costs of $100.

2-32
2.4 SUBJECT MATTER EXPERTS

You may have some knowledge of the content areas for which you are developing, but neither you nor your contractor will have sufficient content knowledge for the development of each lesson. Therefore, you will have to rely on the assistance of subject matter experts (SMEs). Different schools use the SME in different ways, but all schools agree that the primary function of the SME is to check the TEC lesson for technical accuracy. In some cases, the SME is used to check for doctrinal accuracy, or to assist in various aspects of front-end work or lesson development. Regardless of the variety of ways in which the SME is used at your school, the critical task of the SME is to check for the technical accuracy of the TEC lesson.

2.4.1 Utilization of Subject Matter Experts

Schools have found that SMEs and their "chiefs" do not always agree on what constitutes a "technically accurate" lesson. They may have differences of opinion about the procedures, the nomenclature, or the level of detail in the art. Therefore,
2.4 SUBJECT MATTER EXPERTS

You may have some knowledge of the content areas for which you are developing, but neither you nor your contractor will have sufficient content knowledge for the development of each lesson. Therefore, you will have to rely on the assistance of subject matter experts (SMEs). Different schools use the SME in different ways, but all schools agree that the primary function of the SME is to check the TEC lesson for technical accuracy. In some cases, the SME is used to check for doctrinal accuracy, or to assist in various aspects of front-end work or lesson development. Regardless of the variety of ways in which the SME is used at your school, the critical task of the SME is to check for the technical accuracy of the TEC lesson.

2.4.1 Utilization of Subject Matter Experts

Schools have found that SMEs and their "chiefs" do not always agree on what constitutes a "technically accurate" lesson. They may have differences of opinion about the procedures, the nomenclature, or the level of detail in the art. Therefore, it is important to determine who will have approving authority for the lesson and to include them early to eliminate subsequent changes based on their biases.

This tendency to have different opinions about what a "technically accurate" lesson is causes problems when you have turnover in SMEs. It is best if you can have the same SME work with a given lesson until it is finished. Since you may not always be able to do this, you may have to face the task of breaking in a new SME on a lesson that is already under development. One way of helping to remove personal bias from the SME's decision, is to discuss the differences between "technical acceptability" and "personal style." Most experts, unless they are extremely closed-minded, will recognize that there is more than one way to get a job done, even though they like their way best. By encouraging the new SME to make this distinction, you might be able to save yourself some revision time and money. The new SME might get a chance to show-off his style in a subsequent lesson.

2.4.2 Limitations of the SME

While a good SME can be invaluable, it is also important to realize that SMEs have inherent limitations. Quite a number of years ago, job analysts discovered what they called the "master worker fallacy." It was traditional to define a job by analyzing the
work of a master worker. Someone finally pointed out that even a master worker may not be doing a job as efficiently or effectively as it could be done. Even this person is limited by his own personal experience and biases. The same principle holds true with SMEs. They, like the rest of us, tend to over-generalize from personal experience, and to keep doing something the same way it has worked once. Therefore, it might be appropriate in some situations to obtain input from more than one SME on a given lesson. You will discover how dramatically different the responses of several SMEs to a given instructional task can be. It would then become the task of yourself, one of your project officers, or one of your SMEs to help untangle purely stylistic differences from substantive differences in the responses of the different SMEs.
This section contains descriptions of the recurring reports that are required of you. Whenever possible, a reduced-sized copy of the form is included to assist in recognition. If you need instructions or an example of a completed copy of any of these forms, please contact your ATSC/TPD PO.

2.5.1 DAVIS Reports: DD Form 1995

Purpose. The DD Form 1995 is used to program information into the Defense Audiovisual Information System (DAVIS). DAVIS can help to guard against duplication of effort by several schools. Duplication is a common problem due to the overlapping of TEC lesson material among schools. All programmed lessons for production in various formats, TV, TEC, etc. will be listed in the computer files so schools are aware of productions underway in a given subject area.

Required By. The following require the filing of DAVIS reports:

- AR 108-2, 1 September 1976.

Letter, ATTSC-TP-TEC,
7 December 1976, subject:
Input to the Defense Audio-
visual Information System.
2.5.2 Quarterly TEC Product Requirement, RCS ATTNG-55

Purpose. At the beginning of FY 77, Installation Commanders signed "Installation Contracts" with the Command Group, Headquarters, TRADOC. The contracts outlined specific numbers of products to be completed during FY 77. The TEC Program was included as a major area of interest. Total TEC Products to be delivered were listed and then subdivided into quarterly delivery schedules.

2.5.3 TEC Direct Obligations*

Purpose. These reports are absolutely necessary in order to facilitate the continued funding of school support for the management/administration of the TEC Program. This point was driven home at the May, 1977 TEC Managers Conference. ATSC/IPD needs to be able to claim unobligated funds in order to use them where they are needed.

* Only non-TRADOC schools are required to report TEC Direct Obligations.
needed before they are lost at the end of a fiscal year. Should you lose any funds due to their being recalled by ATSC/TPD, they will be replaced when needed in the next budget cycle. Only with your cooperation can TEC funds be most effectively utilized. There is no particular format, except to report by Element of Expense (EoE).

Required By. The following references should be consulted for TEC Direct Obligations reports:

- Reference paragraph 7, Memorandum for Record, TEC Manager's Conference, 19-22 October, 1976; and letter, TRADOC, 30 December 1976; subject: TEC Direct Obligations FY 77.

- Budget Manpower Guidance (BMB) narrative.
2.5.4 TEC Lesson Status Report

Purpose. This report is used to track the events that take place throughout the development cycle of all TEC lessons being developed by the school/contractor.

Required By. An agreement made with all schools at the April 1974 TEC Conference. The provisions of the agreement were used to establish the Status Report for TEC III, IV, and V Schools. Each contract uses a form that, although similar, is different in its details.

LESSON STATUS REPORT - AN EXAMPLE
2.5.5 Lesson Review/Approval Reports

Purpose. These reports are used by the school to provide the developing and reproduction contractor(s) with the school's evaluation of kits at various stages of development. These reports either approve the contractor's work or identify deficiencies that must be corrected before the school authorizes the contractor to proceed to the next stage of development.

Required By. During the November 1974 TEC Manager's Conference, the schools were provided with the basic format for lesson review correspondence.

Example Report

<table>
<thead>
<tr>
<th>Frame</th>
<th>Error Code</th>
<th>Error Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>Missing</td>
<td>Add “F” to end of story.</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>Out of Place</td>
<td>Place reference in correct location.</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Out of Place</td>
<td>Place reference in correct location.</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>Out of Place</td>
<td>Place reference in correct location.</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>Out of Place</td>
<td>Place reference in correct location.</td>
</tr>
</tbody>
</table>

Legend:
- A: Error present correcting act.
- M: Error present correcting mismatch.
- F: Error present, follow-up action.
Purpose. These reports are used to notify the Training Support Center of the results of annual reviews and request/recommend actions to update, revise or recall fielded lessons.

SAMPLE FORMAT

OFFICE SYMBOL
SCHOOL HEADING

SUBJECT: Annual Review of TEC Kit 000-000-0000-F

US Army Training Support Center
ATTN: ATTSC-TP-TEC
Fort Huind, VA 23604

1. (Indicate date kit was reviewed and by whom.)
2. (Indicate result of review. Extensive changes may be listed in enclosure. Changes should be listed frame by frame.)
3. (Include recommendation on method of revision, if necessary.)

SIGNED
2.5.7 Composite Task List

Update Reports

Purpose. The Composite Task List is a reference document that identifies every task taught in fielded TEC lessons. In addition, the Composite Task List indicates tasks that are being addressed in lessons currently being developed by schools and tasks that schools plan to include in TEC lessons that they will develop in the future. The Composite Task List enables course designers to determine if TEC lessons can be used to support course objectives in addition to providing training material developers a document that can be used to determine if TEC lessons should be referenced in products such as the Soldier's Manual. The Composite Task List also assists schools in avoiding duplicating tasks in their TEC lessons that are or will be covered by another school.

With these reports, you should report changes to the basic Composite Task List. There is no particular format that you have to follow.

Required By. Letter, USACATB, 8 March 1976, subject: Composite Task List; requires you to report changes when they occur.
Chapter 3

Preparation for TEC Lesson Development

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 PREPARATION FOR TEC LESSON DEVELOPMENT</td>
<td>3-2</td>
</tr>
<tr>
<td>3.1 OVERVIEW OF THE BASIC PRINCIPLES</td>
<td>3-3</td>
</tr>
<tr>
<td>3.1.1 Performance-Oriented Training</td>
<td>3-4</td>
</tr>
<tr>
<td>3.1.2 Job/Task Analysis vs Training Task Analysis</td>
<td>3-5</td>
</tr>
<tr>
<td>3.1.3 Audience Characteristics</td>
<td>3-7</td>
</tr>
<tr>
<td>3.1.4 Training Objectives</td>
<td>3-9</td>
</tr>
<tr>
<td>3.1.5 Criterion-Referenced Testing</td>
<td>3-12</td>
</tr>
<tr>
<td>3.2 PREPARATION TECHNIQUES AND PROCEDURES FOR TEC LESSON DEVELOPMENT</td>
<td>3-14</td>
</tr>
<tr>
<td>3.2.1 How to Develop Government Furnished Materials (GFM)</td>
<td>3-14</td>
</tr>
<tr>
<td>3.2.2 Lesson Scope and Purpose</td>
<td>3-17</td>
</tr>
<tr>
<td>3.2.3 Ordering and Sequencing Training Objectives</td>
<td>3-18</td>
</tr>
<tr>
<td>3.2.4 Developing Criterion-Referenced Tests</td>
<td>3-19</td>
</tr>
<tr>
<td>3.2.5 Specifying References and Equipment</td>
<td>3-22</td>
</tr>
<tr>
<td>3.2.6 Receipting for GFM</td>
<td>3-25</td>
</tr>
<tr>
<td>3.3 HOW TO WRITE A COORDINATION AND CONTRACT SUMMARY SHEET (CCSS)</td>
<td>3-26</td>
</tr>
<tr>
<td>3.3.1 The CCSS as an Instructional Guide and Contract</td>
<td>3-26</td>
</tr>
<tr>
<td>3.3.2 Writing the CCSS</td>
<td>3-26</td>
</tr>
</tbody>
</table>
The TEC development system gives you a proven method of effective lesson development. This chapter summarizes what you have to learn in order to do your job as a TEC manager. Along with this guidebook you will need TRADOC Pamphlet 350-30 Inter-service Procedures for Instructional Systems Design (especially important is the Executive Summary) and the TEC contract model under which you will be working.

A new TEC officer will quickly find that he must make a number of decisions on TEC lesson development. He must know some instructional theory (a set of basic principles) and carry out specific procedures required of the TEC process. The purpose of this chapter is to:

- Provide a brief overview of the basic principles as applied in TEC lesson development.
- Describe and furnish examples of techniques and procedures used by TEC managers and developers in lesson development.

PREPARATION FOR LESSON DEVELOPMENT

- KNOW INSTRUCTIONAL THEORY
- CARRY OUT SPECIFIC PROCEDURES OF TEC PROCESS
3.1 OVERVIEW OF THE BASIC PRINCIPLES

The purpose of this overview is to fill the immediate need of newly assigned TEC Officers. It covers the concepts of performance-oriented training as applied to TEC. Since these principles drive TEC development preparation, a summary of "TEC logic" should give you a feel for the thinking behind TEC lesson development. For a full description of the development process, you should refer to the latest contractual flow diagram/event description and the ISD model (see Chapter 2).

When the focus is on preparation for development, everything comes from the principle of performance-oriented training. The TEC manager should understand the critical relationships of task analysis, audience characteristics, and criterion-referenced testing to training objectives. These are the concepts and procedures that allow TEC to rise above the traditional methods of instruction. They are the reasons why performance-oriented instruction makes sense.
3.1.1 Performance-Oriented Training

The goal of every TEC lesson is that upon completion of the lesson the soldier has a skill that he can perform. Traditional instruction analyzed the content of instruction. Performance training looks at what the soldier must do. The emphasis is shifted away from knowledge and toward performance. The soldier must perform or TEC fails.

Through TEC the training materials themselves do the teaching. More accurately, lessons are designed to help the soldier teach himself. Both the learning characteristic of the soldier and the task that make up the job (the MOS duty position) are purposely built into the TEC lesson. These elements focus on final soldier performance. What that performance is and how it is to be measured are stated in the training objectives and their criterion-referenced tests.

Bibliography for 3.1.1

Swezey, R. W. & Pearlstein, R. B. Guidebook for developing criterion-referenced tests. Arlington, Virginia: U. S. Army Research Institute for the Behavioral and Social Sciences, August 1975. (AD A014 987) (Chapter 1 discusses criterion-referenced testing and how it relates to performance measurement.)
3.1.2 Job/Task Analysis vs Training Task Analysis

In Chapter 2 you were introduced to job/task analysis. This section briefly covers task analysis from the point of view of training task analysis. The job/task analysis is the primary input into training task analysis.

A job/task analysis is a logical description of the duties, tasks, and elements that make up an MOS duty position. The logical breakdown of these tasks is not necessarily the way the soldier will most effectively learn to perform the tasks. Training task analysis takes the tasks selected for training and structures them in ways that help the soldier master the performance of those tasks. Often, however, the job/task analysis and the training task analysis approximate each other so closely that the two are interchangeable. Experienced developers generally use the term "task analysis" to refer to both. They assume the context of the conversation makes it clear as to whether he is referring to job analysis or training task analysis.

Occasionally you may need to clarify the point of reference in a discussion: "Now, are we talking about task analysis with respect to the job or to the training objectives?" The differences between the two are given below.
Bibliography for 3.1.2

3-6
TEC lessons are intended for very specific audiences: soldier/trainees. These audiences are the target population of the TEC lesson. Since the target population is going to function as a learner, the lesson must be geared to the instructionally relevant learning characteristics of the typical soldier/trainee for whom the training is intended. This chapter presents general audience considerations while Chapter 4 (See Section 4.1.3) gives you specific methods for determining the target audience parameters of the lesson material. The Army has found that age, rank, MOS, educational background, and months in service are useful descriptors of the target population. There is a growing body of educational research on how learner and task characteristics influence one another. Instructional developers find it helpful to list audience characteristics in a number of categories. The most often researched categories relevant to training are given below.

<table>
<thead>
<tr>
<th>CATEGORIES</th>
<th>PHYSICAL</th>
<th>APTITUDES</th>
<th>SKILLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age</td>
<td>IQ</td>
<td>Job-related skills</td>
</tr>
<tr>
<td></td>
<td>Sex</td>
<td>Verbal ability</td>
<td>Experience</td>
</tr>
<tr>
<td></td>
<td>Handicaps or strengths</td>
<td>Spatial ability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dexterity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KNOWLEDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Educational level</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reading level</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematical background</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOCIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Work environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peer reference group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Socioeconomic status</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTITUDES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motivation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biases and prejudices</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anxiety level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The research is fine, but in the real world of TEC development large files of psychometric data on attitudes and abilities for individual MOSs is not available (and never will be). There is another way to effectively define and limit the target population -- course prerequisites.

Course prerequisites help you ensure that you do not try to train those who are not ready for the TEC lesson. You do not want soldiers taking TEC lessons that go far beyond their present knowledge or skill. The soldier must have acquired the prerequisite skills through other TEC lessons, courses, or OJT to be able to master the new material.

Course prerequisites, as all training development requirements, come from a performance perspective. What must the soldier be able to do before he can optimally learn from the new lesson. In this way the course prerequisites force the attention of the TEC manager and developer on entry performance. They also take into consideration the broader perspectives on how the TEC lessons fit together and into the total training and management system.

Course prerequisites as developed for the Lessons Administrative Instructions (LAIs) are covered in Chapter 6. The audience characteristic will be listed on the title page of the CCSS to aid the developing contractor laying out the Kit Design Approach (KDA). The target audience characteristics will influence
the developer's decisions on the amount of material to be covered, the medium, the level of language to be used, the learning strategy, and the starting point of the lesson. You should supply the ranges for:

- Formal education
- Months of military service
- Grade/rank
- Primary sources of military training
- Prior training or experience with lesson subject matter
 - MOS training (school based)
 - OJT
 - TEC lessons prerequisites.

In section 3.3, the CCSS title page reflects a useful set of audience descriptions for lesson development. It describes who the trainee is with respect to the training task.

3.1.4 Training Objectives

For TEC, the Front-End Phase (see Chapter 2) should now produce a compact and instructionally relevant statement -- the TRAINING OBJECTIVE. The training objective is a clear and explicit performance statement built on three elements: (a) the task; (b) the conditions; (c) the training standard. Look at the following example given below.
DEFINITION

TASK:
- The task to be performed is identified in observable terms. Applying a battle dressing is observable. We can see the soldier do it.

CONDITIONS:
- The conditions are stated under which the skill or knowledge is demonstrated. It tells the trainer what resources and materials must be provided for the soldier/trainee.

TRAINING STANDARD:
- The training standard states the minimum standard of acceptable performance the student must attain to pass the test (perform acceptably).
- The criteria established by the training standard are usually:
 - Time
 - Completeness
 - Accuracy
 - Safety standards (if required).
- These criteria are found in the JPM (job performance measures) of the tasks as part of the work of the task analysis division.

EXAMPLE
- Each soldier will apply an individual battle dressing.
- Given an individual battle dressing, a subject individual (or practice dummy), and a narrative description of wound location.
- Dressing must be applied within 2 minutes.
- Dressing must be applied without touching (contaminating) sterile side of dressing.
- Dressing must cover described wound.
- Student must apply pressure to the wound either with the attached bandages or with the hand over the dressing, until it is determined by the trainer that bleeding has stopped.
- The bandages must be wrapped around the dressing and the wounded limb and tied securely over the dressing.
Because the performance in the training objective is explicit, there is less debate about what the objective means. Because the objective describes the performance with action verbs, rather than "mental" verbs, such as knows, understands, is proficient in, there is a great deal of common agreement about what is and what is not acceptable performance.

PERFORMANCE-ORIENTED TRAINING OBJECTIVES

- Clearly Stated
- Resources Employed Efficiently
- Observable, Explicit Statement of Performance
- Soldier/Trainee Oriented
- Control the Intent of Instruction
- Require Action Verbs
- Most Students Understand What Is Expected of Them by Simply Reading the Training Objectives
- "Measurable" Terms for Performance

Bibliography for 3.1.4

CRITERION-REFERENCED TESTING

- Requires a task analysis
- Indicates who can perform a task to acceptable standards
- Provides diagnostic information

Criterion-referenced tests of the training objectives test the objectives—nothing more. They are measures of whether or not the soldier performs at the level required of the objectives.

Criterion-referenced tests are related to the Job Performance Measures (JPMs), but they are prepared in much greater detail. Criterion-referenced tests tell the soldier exactly what he is to do and the conditions under which he is to do it. Although the primary purpose of the criterion-referenced test is a GO-NO GO decision on soldier performance, the test must also have a diagnostic capability. That is, the test must yield information about why the soldier failed to pass the test. Consequently, some items on the test may be purely diagnostic ones, testing subordinate skills or functioning as indicators of "trouble spots" in some of the intermediate objectives.

Another major feature of criterion-referenced tests is test revision. Criterion-referenced testing usually requires several run-throughs before inconsistencies, confusing points, and performance difficulties can be eliminated. This technical problem is handled by the test developers, while the TEC manager's responsibility is to ensure completeness, fidelity, and realistic cut-off scores that correspond to the overall training plan.

In Chapter 2 the procedures were covered for planning the TEC program. After subject matter has been determined and approved, it is time to put together the GFM.

3.2.1 How to Develop Government Furnished Materials (GFM)

The GFM consists of the Coordination and Contract Summary Sheet (CCSS) and all relevant equipment and materials needed to produce the lesson. GFM is not a hastily thrown together package of previous training materials and field manuals. The TEC manager and developer should view the GFM as representing four critical dimensions:

- GFM is a reflection of serious training needs best served by exportable training and determined through prior needs analysis.

- GFM embodies the principles of performance-oriented instruction, the training philosophy of the U.S. Army.

- GFM together with the current contract model of TEC development defines the conditions and constraints for management.
decisions that guide the lesson development process.

- GFM, especially the CCSS, is essentially the basis from which the developing contractor will commence work.

Incomplete CCSS and other GFM will create a "fuzzy" beginning for you and the developing contractor. It is your job to see that the CCSS is as specific and detailed as possible. All references should document page, paragraph, and figure numbers (when applicable). Contractors, often unfamiliar with the content of the TEC lesson when first starting, can waste hours going through a large, detailed manual looking for a particular item of information that has been referenced by document number only. Throughout the project you will be living with the CCSS. The CCSS will be guiding the development of the TEC lesson.

A conscientious TEC manager and developer and a fully competent contractor can and will solve many problems together. Theirs can be a stimulating and professionally rewarding relationship. Each brings his own perspective and expertise to the project. Neither sloughs his duties and responsibilities off on the other. A new TEC manager may overly rely
on the advice and recommendations of a contractor. He may feel unsure of his own "educational expertise." That's natural. However, if you are uncertain about the consequences of heavily relying on a contractor, ask an experienced TEC manager. He has often learned the hard way. The contractor's point of view is not always in line with the best interest of TEC.

Many of these problems can be avoided with a clear and precise CCSS. Developing the GFM is the real-world substance of TEC development. It anchors TEC to the Army's instructional setting. The following sections of this chapter provide you with the techniques and procedures that help ensure a well-constructed CCSS and GFM package.
3.2.2 Lesson Scope and Purpose

The goal of every TEC lesson is to produce a task performer. Goal statements are statements of how you intend to rectify a discrepancy. That is, you distinguish between the way it is now and the way it ought to be. Define goals in terms of what is and what ought to be. The "what is" becomes the input of the TEC lesson, the "what ought to be" is the sought for output.

DEFINING LESSON GOALS - AN EXAMPLE

<table>
<thead>
<tr>
<th>"WHAT IS"</th>
<th>"WHAT OUGHT TO BE"</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>OUTPUT</td>
</tr>
<tr>
<td>Soldiers in MOS62B at Skill Level 2 perform below the minimum proficiency on the job at the following tasks:</td>
<td>Performance levels required of MOS62B Skill Level 2 personnel are that they are able to maintain the following standard for the following tasks:</td>
</tr>
<tr>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
</tr>
</tbody>
</table>

By laying out the broad goal of the TEC lesson you can easily define the Scope/Purpose of the lesson—a requirement of the CCSS. In the Scope/Purpose statement you tell the developer who the target audience is and what skills he should be expected to learn. The Scope/Purpose statement is not as specific as the training objectives, rather it tells the developer in a general way what the lesson is intended to do.
The learning steps taken to reach the terminal training objectives is an often debated problem. Although many roads lead to Rome, there will be arguments about which is the best road. For many tasks, the number and order of learning steps offer several good possibilities.

Sequencing the learning steps within each training objective implies a rationale for the relationship among the events of learning in a TEC lesson. The decision tree is a quick, logical way to determine sequencing priorities.

[Diagram: Decision Tree for Sequencing Objectives]

Bibliography for 3.2.3

TRADOC PAMPHLET 350-30. ISD Phase II. Fort Monroe, Virginia: U.S. Army Training and Doctrine Command, August 1975. (Pp. 79-96 provide detailed information on the sequencing of training objectives.)
Tasks selected for training come from the MOS task listing. These tasks along with their Job Performance Measures (JPM) are transformed into training objectives. The criterion-referenced tests of the training objectives would ideally be the same as the JPMs. JPMs are, however, often impractical as the TEC criterion-referenced tests (CRTs) because of time, resources, and equipment. Besides, you cannot expect the soldier after initial training to perform at a proficiency level that must be gained through practice.

Normally, you must attempt to construct a post-test that approximates the JPM. Two problems arise with criterion-referenced tests of training objectives: the training conditions and training standards. Training conditions differ from real-world conditions by the very nature of the training setting. You should try to make these conditions match as closely as possible the conditions the soldier will find on the job. The conditions statement in the test must tell the soldier under what conditions he must perform the task.

The standards for post-tests are generally lower than the standards of the JPMs. When first learning to perform a task, the trainee
have a lower degree of proficiency, and to produce a less than perfect product.

As you turn the training objectives into test items, you will find there is no magic formula for determining how detailed the tests should be, what standards should be set, and how the test is to be scored. Test development is much like TEC lesson development. Experience, consensus, trial-and-error are primary ingredients. This does not mean that decisions on test construction should be arbitrary. A valuable procedure to follow in developing CRTs has been produced by Swezey and Pearlstein for the Army Research Institute. This practical, applied procedure significantly improves the quality of criterion-referenced tests. The flow of this process is given below.

ASSESS THE OBJECTIVES AS INPUTS INTO THE CRT	- PERFORMANCE
DEVELOP A TEST PLAN	- CONDITIONS
CONSTRUCT THE ITEM POOL	- STANDARDS
SELECT FINAL TEST ITEMS	- PRACTICAL CONSTRAINTS
ADMINISTERING AND SCORING THE TEST	- ITEM FORMAT
MEASURING RELIABILITY AND VALIDITY	- NUMBER OF ITEMS
	- MATCHING WITH THE OBJECTIVE
	- CLEAR AND UNAMBIGUOUS
	- EASY TO ADMINISTER
	- APPROPRIATE LEVEL OF REALISM
	(SEE CHAPTER 5)
	(SEE CHAPTER 5)
	(SEE CHAPTER 5)
the state-of-the-art of criterion-referenced test development, refer to the ISD (Phase II Design), the CRI Workshop materials, and Swezey and Pearlstein.

The pretest (see Chapter 5) is essentially a bypass of instruction for the soldier who passes it. This test determines whether the soldier can already adequately perform the training task or some sections of the whole lesson. It is a waste of time to train someone to do what he already knows how to do.

The pretest is designed to test precisely what the posttest tests. According to the ISD, the pretest is generally identical to the posttest or an alternative version of that test. The ISD (Phase II Design), covers both pre- and posttesting in the section on entry behavior.

Bibliography for 3.2.4

Swezey, R. W. and Pearlstein, R. B. *Guidebook for developing criterion-referenced tests*. Arlington, Virginia: U. S. Army Research Institute for the Behavioral and Social Sciences, August 1975. (AD - A014 487) (This 210 page guidebook outlines the rationale for the CRT approach and provides specific guidance for the construction of test items.)

When developing the GFM, you should consider:

- time and cost of developing new materials
- the purpose of the objectives
- the requirements of the contractor for detailed technical information
- the references (documentation) in the CCSS.

Time and Cost. Do not re-invent the wheel. Use what you have, when you can. Many training materials already in existence are successful. Inspect for their ability to meet TEC needs. Check the TEC lesson composite task listing and the TEC monthly status report to ensure you are not duplicating what is being done or has been done.

Purpose of the Objectives. When gathering training materials, focus on the performance of the training objectives. When you review materials, ask yourself how the information relates to the training objective. If the information is a technical document, is it up-to-date? Is it correct? If the materials are previous training packages or plans of instruction, are the content and method of presentation applicable to the TEC lesson? Is it capable of being
Equipment must be judged on its availability, cost, ease of transportation, and indestructability. Students can be very hard on equipment.

Requirements of the Contractor. Contractors generally request complete documentation and technical assistance. The GFM must reflect your best effort to supply all relevant materials. Otherwise, you will constantly hear the phrase, "Well, we don't have the"

References (Documentation) in the CCSS. A sample of a checklist and reference sheet is provided below that you may wish to use to keep track of reference sources that you have located. During the development process a document or piece of equipment that was originally deemed irrelevant may be critical at a later date. This work sheet for logging sources considered for the GFM can be extremely helpful in retrieving discarded materials.

WHEN YOU REFERENCE MANUALS AND DOCUMENTS, CITE PAGES, PARAGRAPH NUMBERS, FIGURES, ETC. BE SPECIFIC. NAIL IT DOWN SO THAT THE CONTRACTOR DOESN'T SPEND EXCESSIVE AMOUNTS OF TIME SEARCHING FOR THE INFORMATION.
<table>
<thead>
<tr>
<th>Document/Equipment Title and Number</th>
<th>Technical Reference</th>
<th>Instructional Materials</th>
<th>Equipment</th>
<th>Where Obtained</th>
<th>How related to the Objective</th>
<th>Selected for CFM (yes/no)</th>
<th>Comments</th>
</tr>
</thead>
</table>

Training Objective

3-24
Once you have established the exact materials to be issued to the development contractor, it becomes necessary to prepare a OFM receipt which lists those materials issued to the contractor. To accomplish this, schools will complete ATSC Form 122, dated 1 Nov 77, Loaned Government Owned Property Receipt. Special note must be made of the "Must Return" and "Expendable" columns. For each item of GFM or GFE (Government Furnished Equipment) you must indicate whether the material is to be returned to the school. The receipt must be signed and dated by a contractor representative and copies retained by the school and contractor. Copies of ATSC Form 122 have been distributed by ATECP; however, schools may reproduce this form locally after initial supply has been exhausted.
The CCSS is a critical document in your work with your contractor. The quality and cost of the final product will depend, to a great extent, on the quality of the CCSS. The purpose of this section is to introduce you to the purpose, format, and content of the CCSS.

3.3.1 The CCSS as an Instructional Guide and Contract

The CCSS is part of the GFM supplied to the contractor by the TEC Project Officer. As you develop the CCSS the critical importance of all of the front-end analysis will become obvious. The arduous, time-consuming, and meticulous process of defining the audience, working with the task analysis, developing specific training objectives, and compiling criterion referenced test items starts to pay off. It is this work which forms the content of the CCSS.

3.3.2 Writing the CCSS

In form, the CCSS has a title page and one or more pages explicitly stating the training objectives, the criterion referenced...
test, the responses the soldier will make, and a remarks section. A description and explanation, as well as an example of the CCSS, are given below.
This is a working title. Each kit will eventually receive its own title. The scope provides a brief summary of the purpose of the lesson.

Information you acquired during the earlier analysis of training needs is supplied here. Factors found to be critical in any training program have been: level of education, months of military service, and rank. Any data on the personal characteristics of the target group can be helpful in deriving instructional strategies, particularly with respect to motivational strategies.

This is where you can suggest the medium that you feel would be the most appropriate for the kit.

In this section you list and reference all materials and equipment the contractor receives (AA, FMs, TM, video tapes, etc.).

Identify the name, rank, and telephone number of the technical advisor and/or subject matter expert.

This is a statement of the minimum standard of achievement of participants during group validation required for approval of a kit. The minimum standard of 90% would state that 90% of the participants in the group validation must respond correctly to 80% of the posttest items before final approval is given. This ratio of required percentage of participants correctly responding to required percentage of posttest items is linked with the criticality of the ETC lesson.

Detailed explanation of training objectives, self-evaluation criterion, response and criteria, and specific remarks.

1. Lesson Title:
2. Lesson Number:
3. Purpose and Scope:
4. Target Audience:
5. Means and Method of Training:
6. Government Furnished Materials:
7. Project Officer:
8. Technical Advisor:
9. Subject Matter Expert:
10. Projected Standard:
11. Lesson Specification Sheets:
12. Response and Criteria:

Radio Set AN/PRC-106. Part 2

201-113-452/F

The purpose of this lesson is to provide the soldier with the skills and knowledge to perform the preliminary starting procedure and starting procedure on the Radio Set AN/PRC-106.

The soldier receiving these instructions must have received Operation Radio Set AN/PRC-106 Part 1: will have 11 to 12 years of formal education; 5 to 6 months of military service; attained the grade of E-3, E-4, or E-5; primary source of military training will be AIT and/or on-the-job training. Soldier must not have had any training as an operator of Radio Teletypewriter Sets AN/PRC-22, AN/PRC-112, or AN/PRC-142.

This lesson is intended as a demonstration practical exercise presentation in audiovisual format. Audiovisual will provide the motor skills necessary to perform the preliminary starting procedure and starting procedure on the Radio Set AN/PRC-106.

Sets AN/PRC-106 and AN/PRC-142.

b. Mission Plan coded 201-1380/2/C-18, dated 10 Dec 73, titled INTRODUCTION TO RADIO SET AN/PRC-106.

Sets AN/PRC-106 and AN/PRC-142.

b. Mission Plan coded 201-1380/2/C-18, dated 10 Dec 73, titled INTRODUCTION TO RADIO SET AN/PRC-106.

Radio Set AN/PRC-106.

12. Response and Criteria:

Correction for each response is D; AO-20.
Lesson Specification Sheet

<table>
<thead>
<tr>
<th>Task No.</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Perform the preliminary starting procedures on the receiver-transmitter MT-3300 and place the Audio switch in the OFF position.</td>
</tr>
</tbody>
</table>

Lesson Description

- **Overview:**
 - This section outlines the objectives, tasks, and procedures for the lesson on receiver-transmitter MT-3300.
- **Tasks:**

Additional Notes

- **Operator Action:**
 - The operator must perform the preliminary starting procedures as outlined in T-11-330-106, para 3-4, to prepare the receiver-transmitter for operation.
- **Operator Response:**
 - The operator must verify that the receiver-transmitter is operational and ready for use after completing the preliminary starting procedures.

Diagram

- [Diagram of receiver-transmitter MT-3300 and associated controls]

Note: The diagram and additional notes are not transcribed due to the complexity and visual nature of the content.
Design and Assessment of TEC Lessons

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>Design and Assessment of TEC Lessons</td>
<td>4-3</td>
</tr>
<tr>
<td>4.1</td>
<td>Design Criteria for TEC Lessons</td>
<td>4-5</td>
</tr>
<tr>
<td>4.1.1</td>
<td>TEC Lesson Media Selection</td>
<td>4-6</td>
</tr>
<tr>
<td>4.1.2</td>
<td>TEC Lesson Length</td>
<td>4-19</td>
</tr>
<tr>
<td></td>
<td>EPMS Philosophy</td>
<td>4-20</td>
</tr>
<tr>
<td></td>
<td>ISD Model and Lesson Grouping</td>
<td>4-20</td>
</tr>
<tr>
<td></td>
<td>Stimulus/Response Time</td>
<td>4-24</td>
</tr>
<tr>
<td></td>
<td>Number of Visuals</td>
<td>4-25</td>
</tr>
<tr>
<td></td>
<td>Training Objectives and Criterion-Referenced Test Items</td>
<td>4-25</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Target Audience Considerations</td>
<td>4-27</td>
</tr>
<tr>
<td></td>
<td>Reading Level</td>
<td>4-27</td>
</tr>
<tr>
<td></td>
<td>Nomenclature</td>
<td>4-30</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Self-Evaluation</td>
<td>4-30</td>
</tr>
<tr>
<td></td>
<td>Quiz Structure</td>
<td>4-31</td>
</tr>
<tr>
<td></td>
<td>A Systematic Approach</td>
<td>4-31</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Level of Pictorial Detail</td>
<td>4-32</td>
</tr>
<tr>
<td></td>
<td>Realism and School Acceptability</td>
<td>4-32</td>
</tr>
<tr>
<td></td>
<td>Use of the Graphic Arts Guidance Kit</td>
<td>4-33</td>
</tr>
<tr>
<td>4.2</td>
<td>Audiovisual (AV) TEC Lesson Design</td>
<td>4-36</td>
</tr>
<tr>
<td>4.2.1</td>
<td>AV Lesson Length</td>
<td>4-36</td>
</tr>
<tr>
<td></td>
<td>Format and Presentation</td>
<td>4-36</td>
</tr>
<tr>
<td></td>
<td>Animation and Motion</td>
<td>4-37</td>
</tr>
<tr>
<td></td>
<td>Visual Development Cycle</td>
<td>4-38</td>
</tr>
<tr>
<td></td>
<td>Stimulus/Response Time</td>
<td>4-40</td>
</tr>
<tr>
<td></td>
<td>AV Script</td>
<td>4-40</td>
</tr>
<tr>
<td>4.2.2</td>
<td>AV Graphic Arts</td>
<td>4-41</td>
</tr>
<tr>
<td></td>
<td>Color Usage</td>
<td>4-42</td>
</tr>
<tr>
<td></td>
<td>Contrast</td>
<td>4-42</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Audio Technical Considerations for AV Lessons</td>
<td>4-42</td>
</tr>
<tr>
<td></td>
<td>Synchronization</td>
<td>4-43</td>
</tr>
<tr>
<td></td>
<td>Cueing</td>
<td>4-43</td>
</tr>
</tbody>
</table>
CONTENTS (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>AUDIO ONLY (AO) TEC LESSON DESIGN</td>
<td>4-44</td>
</tr>
<tr>
<td>4.3.1</td>
<td>AO Lesson Development</td>
<td>4-44</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Format and Development</td>
<td>4-44</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Stimulus/Response Time</td>
<td>4-45</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Audio Technical Considerations</td>
<td>4-45</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Running Time</td>
<td>4-45</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Cueing</td>
<td>4-45</td>
</tr>
<tr>
<td>4.4</td>
<td>PRINTED TEXT (PT) TEC LESSON DESIGN</td>
<td>4-47</td>
</tr>
<tr>
<td>4.4.1</td>
<td>PT Lesson Development</td>
<td>4-47</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Lesson Development Process</td>
<td>4-48</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Stimulus/Response Time</td>
<td>4-48</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Lesson Format</td>
<td>4-49</td>
</tr>
<tr>
<td>4.4.2</td>
<td>PT Graphic Arts</td>
<td>4-50</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Color Usage</td>
<td>4-50</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Contrast</td>
<td>4-50</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Print and Line Specifications</td>
<td>4-51</td>
</tr>
<tr>
<td>4.5</td>
<td>JOB PERFORMANCE AID (JPA) DESIGN</td>
<td>4-52</td>
</tr>
<tr>
<td>4.5.1</td>
<td>The Appropriateness of a JPA</td>
<td>4-52</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Definition and Use</td>
<td>4-52</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Development and Format</td>
<td>4-54</td>
</tr>
<tr>
<td>4.5.2</td>
<td>JPA Technical Procedures</td>
<td>4-54</td>
</tr>
<tr>
<td>4.6</td>
<td>ASSESSING THE QUALITY OF A TEC LESSON</td>
<td>4-55</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Review and Revision of the Initial Draft</td>
<td>4-55</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Review and Revision of the Final Draft</td>
<td>4-61</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Inspection of the Master Kit</td>
<td>4-63</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Review of the Preproduction Sample</td>
<td>4-63</td>
</tr>
</tbody>
</table>
This chapter provides human factors and design information you need to monitor and evaluate the production of TEC lessons. Since TEC can be developed either in-house or by a contractor, these criteria can be followed in the in-house production cycle or used in monitoring and evaluating the contractor's development effort. Criteria for lesson design are discussed and methods for application of these in lesson assessment are presented.

The chapter consists of three major parts. Section 4.1 presents design criteria for the development of all or several TEC lesson types. These criteria comprise media selection, lesson considerations, self-evaluation design, and pictorial level of detail. Sections 4.2 thru 4.5 present special considerations related to the development of lessons in various media. Finally, Section 4.6 discusses how to use these criteria and considerations in the assessment of TEC lessons, whether developed in-house or by a contractor. It provides checklists which can be used to assess the strengths and weaknesses of individual lessons. This assessment technique should be used as a diagnostic tool to improve subsequent drafts of lesson materials.

Because of the uniqueness of each TRADOC School, this chapter presents only the major considerations of how these criteria should be incorporated into your development process. Appropriate references and cross-references are provided where possible.
Additional TEC lesson development requirements can be found in the existing TEC contracts. The materials in this chapter are not intended to modify or negate any requirement of the existing contracts, but, they can help you in monitoring and assessing the products of the contracts.
As a TEC manager you are required to actively participate in TEC lesson development and to monitor the contractor's performance for contracted developments. The criteria presented in this and the following sections are intended to assist you in that development and monitoring process. This chapter should help you understand how the available design criteria can be applied in development and assessment of TEC lessons.

Before discussion of specific criteria and their applications, you should understand that the conscientious application of all the design criteria in the world cannot assure the development of training effective TEC lessons. Training effectiveness is a function of several things, only one of which is the technical aspect of lesson design. There are also the factors of having a valid measurement instrument (test), and having valid and meaningful instructional materials for the training sequence.

On the other hand, without application of the best technical approaches to lesson development, without consideration of the relationships between audio and visual modes of instruction, and without consideration of the needs of your audience, the best application of the other factors may also be worthless. This can happen because the intended audience cannot understand the lesson, or because they are bored with it, or because they just will not sit and endure an overly lengthy lesson, or because of any number of similar reasons.
In summary, a particular TEC kit or lesson can fail to train effectively due to either poor design or inadequate instructional techniques. The elimination of the poor design from the start can give your instructional technology its best chance to train effectively.

4.1.1 TEC Lesson Media Selection

A major decision in the TEC development process is deciding which medium to choose for lesson presentation. Presently, the media available for TEC lessons are audiovisual (AV), audio only (AO), and printed text (PT). Future TEC lesson formats may also include videodisc, computer assisted instruction (CAI), or any number of new delivery systems.

When discussing media selection, the new TEC manager should keep in mind there are two types of TEC lessons: teaching lessons and guidance lessons. Teaching lessons are formatted in one of the three aforementioned media and are designed for initial or refresher instruction so that soldiers can learn to perform particular tasks. Guidance lessons, called Job Performance Aids (JPAs), use a checklist or "talk-through" format to assist the soldier in performance of a given task or procedure. Presently, the only TEC medium for JPAs is printed text (See Section 4.5).
The major decision on media selection concerns the mode of information presentation, i.e., should information be presented primarily auditorily (AO) or visually (AV, PT)? In particular, does the material require visual support? Can it be easily presented in writing only? Or, is an auditory mode sufficient to communicate the information? Factors, such as those following, should be considered in your choice.

<table>
<thead>
<tr>
<th>USE AUDITORY MEDIUM IF:</th>
<th>USE VISUAL MEDIUM IF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE INFORMATION IS SIMPLE.</td>
<td>THE INFORMATION IS COMPLEX.</td>
</tr>
<tr>
<td>THE INFORMATION IS SHORT.</td>
<td>THE INFORMATION IS LONG.</td>
</tr>
<tr>
<td>THERE IS NO NEED TO CROSS-REFERENCE THE INFORMATION.</td>
<td>THERE IS A NEED TO CROSS-REFERENCE THE INFORMATION.</td>
</tr>
<tr>
<td>THE INFORMATION DEALS WITH EVENTS IN TIME.</td>
<td>THE INFORMATION DEALS WITH LOCATION IN SPACE.</td>
</tr>
<tr>
<td>THE INFORMATION REQUIRES IMMEDIATE ACTION.</td>
<td>THE INFORMATION DOES NOT REQUIRE IMMEDIATE ACTION.</td>
</tr>
<tr>
<td>THE RECEIVING LOCATION IS TOO BRIGHT FOR AV PRESENTATION OR TOO DARK TO PERMIT READING OF PRINTED MATERIAL.</td>
<td>THE RECEIVING LOCATION IS TOO NOISY.</td>
</tr>
<tr>
<td>THE INDIVIDUAL IS REQUIRED TO MOVE ABOUT CONTINUALLY.</td>
<td>THE INDIVIDUAL CAN REMAIN IN ONE POSITION.</td>
</tr>
<tr>
<td>THE TASK REQUIRES A "HANDS-ON" ACTIVITY THAT CAN BE EASILY DESCRIBED WITHOUT VISUAL IDENTIFICATION.</td>
<td>THE TASK REQUIRES VISUAL INPUT (e.g., LOCATING SWITCHES).</td>
</tr>
<tr>
<td>THE TASK REQUIRES A "HANDS-ON" ACTIVITY WHICH MUST BE DEMONSTRATED OR ILLUSTRATED.</td>
<td></td>
</tr>
</tbody>
</table>
medium, however, you should identify the media alternatives that would be suitable to effectively teach the TEC lesson objectives. This process provides you with a set of candidate delivery systems that excludes all the inappropriate systems. Using the table below will provide some guidance in making a trade-off decision.

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>RELATIVE RANKING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
</tr>
<tr>
<td>Flexibility in Lesson Design</td>
<td>PT</td>
</tr>
<tr>
<td>Student Access</td>
<td>PT</td>
</tr>
<tr>
<td>Mobility (Field Use)</td>
<td>PT</td>
</tr>
<tr>
<td>Ease in Updating/Revisions</td>
<td>PT</td>
</tr>
<tr>
<td>Student Interest/Motivation</td>
<td>AV</td>
</tr>
<tr>
<td>Inadequate Reading Skills</td>
<td>AV</td>
</tr>
<tr>
<td>Requires Visual Movement Presentation</td>
<td>AV</td>
</tr>
<tr>
<td>Presentation of Psychomotor Preceptual Skills</td>
<td>AV</td>
</tr>
<tr>
<td>Cost</td>
<td>AV</td>
</tr>
</tbody>
</table>

A more complete and systematic method for determining the most appropriate delivery system is given in ISD (Block III.2, pp. 106-124).
is a judgmental decision process based on practicality and cost alternatives. Several factors, like those discussed below, have to be considered when rejecting media formats.

FACTORS THAT SHOULD BE considered IN REJECTING MEDIA ARE:

- **STATE-OF-THE-ART:** The basic medium is under development or test and may not be included for the TEC program.

- **INTERFACE WITH EXISTING PROGRAM:** TEC lessons must be designed to fit into existing programs, which places constraints on the new lessons: e.g., equipment on hand, available classrooms, scheduling practices, etc.

- **TIME TO PRODUCE MEDIA:** Media which require long lead times for development may not be useful when scheduled ready-for-training dates do not allow a long development cycle.

- **BUDGET CYCLE CONSTRAINTS:** While the application of some of the powerful training approaches, such as closed circuit television, may result in low costs per student graduate, the initial investment is substantial. Unless these resources appear in existing budgets, the application of these techniques to an immediate problem is not feasible.

- **ADOPTION OF INNOVATIONS:** Project team members frequently resist innovations. If the proposed medium is significantly different from existing techniques, either adequate resources must be focused upon gaining acceptance for the innovation, or a more traditional approach must be selected.

- **COURSEWARE DEVELOPMENT:** If the courseware is to be locally developed, skilled personnel, equipment, time, and dollars must be available.

- **HIGH COST ALTERNATIVES:** The projected life cycle cost of a medium approach may be significantly higher than other equally useful alternatives.

- **LEARNING STYLE OF TRAINEES:** If trainee has low reading ability or would be limited in his ability to use certain kinds of media, then reject these media as inappropriate.

- **OTHER CONSTRAINTS:** A variety of other practical factors should be considered: e.g., command policy and existing investment in production facilities.
MEDIA SELECTION

Instructions.

1. Once a task has been selected for training, it is necessary to select a medium for presentation. In making a medium selection, it is important to remember that media does not teach, content teaches. The purpose of media selection is to attempt to find the medium that is most instructionally effective and cost effective.

2. The charts and tables provide a simplified method of determining which medium to select, to train a particular task. To begin, have the "Media Selection Questions" sheet and the "Media Selection Algorithm" sheet side-by-side. Read all of the steps before beginning.
 - Step 1 - Select a task to be trained.
 - Step 2 - Answer question 1 on the "Media Selection Questions" sheet.
 - Step 3 - From the response of question 1, follow the "Media Selection Algorithm" and answer the appropriate questions in the Algorithm, until a media choice is identified. A media choice will be an "M" numbered block.
 - Step 4 - Refer to the "Media Selection Choices" and the "Description of Representative Media Types" sheets.
 - Step 5 - Once you have identified the media choices you must select the medium to be used. To select this medium, consider the following:
 a. Consider the choices in descending order.
 b. The lower the reading level, the more pictorial representation is needed.
3. Following these 5 steps you will have a simplified method of selecting which media should be used for instructions. Remember that no medium can teach; a medium is only as good as its contents.

4. The following definition of terms should be of assistance in using the Algorithm:

 a. Familiarization (behavior level) - student is expected to gain a general knowledge of tasks. Usually will be associated with introductory type lessons.

 b. Discriminated Recall - given a set of previously learned or presented tasks, the student will be able to correctly choose that task necessary to perform a specific skill.

 c. Rule-using - student will use a set of rules in performing a skill.

 d. Familiarization (content level) - a general knowledge of tasks, specific skills are not intended to be taught at this level. Familiarization level content is generally associated with managerial knowledge of skills.

 e. Review - previously acquired tasks which need to be refreshed as either prerequisite to new skills or to reinforce the previously learned tasks.

 f. Concept - a logical progression of abstract ideas that directly relate to a sequence of tasks. Note concept level content is very difficult to develop in measurable terms. If concept level content is identified, great care should be used in the writing of objectives.

 g. Rule - a logical sequence of procedures or guides to the accomplishment of a skill.
What is the level of behavior expected of the student for this task?
1. Familiarization
2. Discriminated recall
3. Rule-using

Question 2:
What level of content is being taught?
1. Familiarization
2. Review
3. Concept
4. Rule

Question 4:
What is the number of examples the student needs to see small or large?
1. Small
2. Large

Question 5:
Is the memorization component of this objective large or small?
1. Small
2. Large

MEDIA SELECTION ALGORITHM
MEDIA SELECTION CHOICES

<table>
<thead>
<tr>
<th>H1 - Familiarization, Simple Pictoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Workbook</td>
</tr>
<tr>
<td>2. Mediated Interactive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H2 - Familiarization, Complex Pictoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mediated Interactive lecture</td>
</tr>
<tr>
<td>2. Slide/tape present (photograph)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H3 - Familiarization, motion required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Video tape</td>
</tr>
<tr>
<td>2. Slide/tape w/motion (may not be worth expense)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H4 - Familiarization, Interactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is probably a waste of time and resource to teach this objective at a familiarization level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H5 - Discriminated recall, familiarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familiarization level content should not be taught at a recall level.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H6 - Discriminated recall, review, simple pictoral, small memorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CAI</td>
</tr>
<tr>
<td>2. Workbook</td>
</tr>
<tr>
<td>3. Slide/tape (photographs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H7 - Discriminated recall, review, complex pictoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CAI</td>
</tr>
<tr>
<td>2. Workbook w/Audio only tape</td>
</tr>
<tr>
<td>3. Slide/tape (Art)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H8 - Discriminated recall, review, motion required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Video tape</td>
</tr>
<tr>
<td>2. Slide/tape w/motion</td>
</tr>
<tr>
<td>3. Mediated Interactive lecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H9 - Discriminated recall, review, interactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why is an interactive presentation needed to teach discriminated recall behavior?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H10 - Discriminated recall, concept, small memorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Workbook</td>
</tr>
<tr>
<td>2. Mediated Interactive lecture</td>
</tr>
</tbody>
</table>

| Note: You may want to combine this objective with the classification level objective dealing with this content. |

<table>
<thead>
<tr>
<th>H11 - Discriminated recall, concept, large memorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Workbook</td>
</tr>
<tr>
<td>2. Mediated Interactive lecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H12 - Discriminated recall, concept, large memorization, simple pictoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CAI</td>
</tr>
<tr>
<td>2. Workbook</td>
</tr>
<tr>
<td>3. Slide/tape (Art)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H13 - Discriminated recall, concept, large memorization, complex pictoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Slide/tape w/photographs</td>
</tr>
<tr>
<td>2. Workbook</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H14 - Discriminated recall, concept, large memorization, motion required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Video tape</td>
</tr>
<tr>
<td>2. Slide/tape w/motion sequences</td>
</tr>
<tr>
<td>3. Mediated Interactive lecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H15 - Discriminated recall, concept, large memorization, interactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why do you need an interactive presentation to teach a discriminated recall level behavior?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H16 - Discriminated recall, rule-using, simple pictoral, small memorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Workbook w/Audio only tape</td>
</tr>
<tr>
<td>2. Mediated Interactive lecture</td>
</tr>
</tbody>
</table>

| Note: You may not want to combine this objective with the workbook portion of the rule-using level objectives dealing with the content. |

<table>
<thead>
<tr>
<th>H17 - Discrimination recall, rule-using, simple pictoral, large memorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CAI</td>
</tr>
<tr>
<td>2. Workbook w/Audio only tape</td>
</tr>
<tr>
<td>3. Slide/tape (Art)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H18 - Discriminated recall, rule-using, complex pictoral, small memorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Slide/tape w/photographs</td>
</tr>
<tr>
<td>2. Workbook w/Audio only tape</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H19 - Discriminated recall, rule-using, complex pictoral, large memorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Slide/tape w/photographs</td>
</tr>
<tr>
<td>2. Workbooks w/Audio only tape</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H20 - Discriminated recall, rule-using, motion required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Video tape</td>
</tr>
<tr>
<td>2. Slide/tape w/motion</td>
</tr>
<tr>
<td>3. Mediated Interactive lecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H21 - Discriminated recall, rule-using, interactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why do you need interactive simulation to teach discriminated recall behavior?</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Note: Be sure you have a separate objective to teach the large memory component of this objective at the discriminative recall level.</td>
</tr>
<tr>
<td>1. CAI</td>
</tr>
<tr>
<td>2. CAI</td>
</tr>
<tr>
<td>3. Mediated Interactive Lecture</td>
</tr>
<tr>
<td>4. Mediated Interactive Lecture</td>
</tr>
<tr>
<td>Note: Be sure you have a separate objective to teach the large memory component of this objective at the discriminative recall level.</td>
</tr>
</tbody>
</table>

- Rule-driving, rule content, small presentation, large pictorial, small number of examples
- Large number of examples, large presentation, large pictorial, small number of examples
- Large number of examples, large presentation, large pictorial, small number of examples
- Large number of examples, large presentation, large pictorial, small number of examples
Media 36 - Rule using, rule content, complex pictoral, small memorization, small number of examples
1. Slide/tape/workbook (photographs)
2. CAI
3. Mediated Interactive lecture
4. Workbook

Media 37 - Rule using, rule content, complex pictoral, small memorization, large number of examples
1. CAI
2. Random Access Slide/tape/workbook (photographs)
3. Mediated Interactive lecture
4. Workbook

Media 38 - Rule using, rule content, complex pictoral, large memorization, small number of examples
1. Random access slide/tape/workbook (photograph)
2. CAI
3. Mediated Interactive lecture
4. Workbook

Note: Be sure you have a separate objective to teach the large memory component of this objective at the discriminated recall level.

Media 39 - Rule using, rule content, complex pictoral, large memorization, large number of examples
1. CAI
2. Mediated Interactive lecture
3. Random access slide/tape/workbook (photograph)
4. Workbook

Note: Be sure you have a separate objective to teach the large memory component of this objective at the discriminated recall level.

Media 41 - Rule using, concept, large memorization, simple pictoral, small number of examples
1. Workbook
2. CAI
3. Mediated Interactive lecture
4. Random access slide/tape with workbook

Note: Be sure you have a separate objective to teach the large memory component of this objective at the discriminated recall level.

Media 42 - Rule using, concept, large memorization, large number of examples
1. CAI
2. Random access slide/tape/workbook
3. Mediated Interactive lecture
4. Workbook with Audio only tape

Note: Be sure you have a separate objective to teach the large memory component of this objective at the discriminated recall level.

Media 43 - Rule using, concept, large memorization, motion required
1. Video tape
2. Mediated Interactive lecture (with VT)
3. Slide/tape with motion

Note: Be sure you have a separate objective to teach the large memory component of this objective at the discriminated recall level.

Media 44 - Rule using, concept, large memorization, interactive
1. Simulator
2. Actual equipment with workbook and audio only tape
3. CAI simulation
4. Video tape

Media 45 - Rule using, concept, small memorization, motion required
1. Videotape
2. Slide/tape with motion
3. Mediated Interactive lecture (with VT)

4-15
The description of some specific media categories are presented below:

This list is far from exhaustive, and the media hardware devices which can be used to present these types of instruction vary widely. However, this list does present a representative sample of the range of media available.

1) Mediated Interactive Lecture (MIL)

As with any lecture, the major portion of the instructional material is a MIL presented verbally by an instructor to a group of students. However, as the name states, a MIL must be both mediated and interactive.

A MIL requires two hard copy products, student worksheets, and visual aids. The student worksheet includes a set of lesson objectives, the generalities for each objective, necessary charts, tables, and figures, and a set of practice item response sheets for each objective. The type of visual aids used in a MIL may include overhead transparencies, slides, or video tapes, depending on the display requirements of the lesson. These aids are used where appropriate to present supporting information, sets of examples, and sets of practice items.

In order for a lecture to be adaptive to student needs, it must be interactive. An Interactive Lecture provides the Instructor with an outline which requires him to ask the students questions and alter his presentation based on student responses.

2) Printed Text

The defining characteristics of a Printed Text is that all instructional components are presented in printed form. Printed Text may be developed for a set of objectives that require the student to perform at a remember (recall, or recognize) behavior level only, or for objectives that require the student to perform at an organizing or relating behavior level.

The organization and format of workbook ensures that all instructional components are present. The workbook begins with a lesson introduction and a set of instructions explaining how to proceed. Each segment (corresponding to one objective) begins by presenting the objective, the generalities and the supporting explanation or help. Where necessary, the examples are accompanied by additional "Hints". The practice items are designed to require the student to behave at the level designated in the objective. The practice set is accompanied by a feedback and help section.

3) Slide-Tape Presentation (ST)

A slide-tape presentation contains two separate components: a set of slides, or photographic transparencies, audio sections, (a student worksheet may be included). The ST presentation is normally used for recall level objective that require complex graphics and/or lengthy explanations.
The audiotape begins with an introduction. For each objective, it
restated the generality and presents additional supporting information.
The slides, of course, complement the audiotape. When working with class-
ification and rule-using level objectives, a series of examples is presented
with accompanying "helps" where needed. A set of practice items is presented
next. The student is told to stop the tape after each question and write his
answer on his worksheet. When the tape is started again, it gives feedback
and help for that item.

4) Random-Access Slide Presentation (RAS)
A random-access slide presentation contains two components: a set of
slides presented via a random-access slide projector or RAS-Cassette
student workbook, and an audio-only tape. An RAS presentation is used to
present lesson material for classification and rule-using level objectives.
This medium allows for visual presentation of large numbers of examples
and practice items without sacrificing the freedom of movement (i.e.,
teacher control) lost in the linear SF or videotape (VT) presentation.
The workbook presents tables of numbered example items and practice
items. The student can use these tables to check those examples he has
viewed, or the practice items he has worked. The practice tables also
provide space for the student's response.

The random-access slides are used to present an expanded version of
the generality, the set of examples with helps, practice items, and
feedback.

5) Videotape Presentation (VT)
A videotape presentation contains two components: a videotape
cassette and a student worksheet. The use of these two components is
exactly parallel to the use of corresponding components of the slide-tape
presentation. The major difference between these two media is the type
of display capability. The instructional strategy used is similar in both
types of media.

Because the development cost for VTs can vary widely depending on
the type of effect needed, categories of VT complexity need to be specified.
Five representative categories have been designated VT (a1), VT (a2),
VT (a3), VT (a4), VT (a5). Each of these categories will be described
below:

An animated videotape (VT (a)) presents abstract concepts and ideas
through the use of cartooning. This type of videotape is used when motiv-
ation is a critical requirement.

A level three videotape (VT (a3)) is the result of professional treat-
ment for both the direction and production aspects of the process. Production
techniques and features available for instructional utilization are superimposition (labeling), slow motion, and special effects generation
attribute isolation), multiple fades, dissolves, wipes, special effects,
music, and audio mixing. This level videotape includes full dramatization
with quality acting. In total or in part from tightly written and story-
boarded scripts. Essentially, this is the high cost - high effect
cadillac of videotape production.
A level two videotape (VT (I)) receives a lights production effort as that received by a Level 3, but dramatization is omitted. Voice-over or on-screen narration delivers content. Superimposed labels, titles, etc., are more prevalent. Motivation is carried largely through camera movement and post-production special effects generation.

A level one videotape (VT (II)) is a one-camera effort, either live action, voice-over, or a mixture of this and the 'big talking face' approach. Motivation is minimal in comparison to a Level 3 or 2 (i.e., special effects generation and 'slip' videotape techniques) available in an extensive post-production effort and reduced to more straightforward editing.

A "home move" level videotape (VT (III)) normally utilizes edit-in-the-camera techniques with lightweight, often hand-held portable equipment. This level is often black and white with a minimal quality lighting effect. All narration is voice-over and may be recorded along with the video.

6) Computer-Assisted Instruction (CAI)

The defining characteristics of computer-assisted instruction is that it presents interactive expository and exploratory instruction through direct interface with a computer. It is distinguished from a trainer in that it is not designed for simulation purposes.

Because computers are programmable, it is possible for any hardware system to present instruction containing all basic instructional requirements. However, preference should be given to any system which economically and efficiently fulfills all of the basic instructional requirements outlined above.

7) Hands-on Exercise

A hands-on exercise is used to allow the student to practice classification rule-based procedure-using behaviors in a simulated real world environment. The type of hardware equipment used depends on the degree of fidelity to the real world required. Hands-on exercises will normally be used with RAS, ST, or workbooks.

In addition to the obvious requirement for a hands-on exercise to include the use of any real or simulated equipment used in the actual job environment, it also includes an Audio only tape.

The Audio tape presents the student with the set of lesson objectives, a lesson introduction, and a set of instructions describing what he should do to be prepared for the exercise. The Audio tape then presents any information the student will need for mission planning purposes, and it spells out exactly what planning he will need to have prepared. The Audio tape then outlines in detail the procedures or actions the student should perform. Previously mastered procedures are referred to by name without the accompanying list of steps.
4.1.2 TEC Lesson Length

The next most significant decision to be made is the length of the lesson, or, how many kits are required to package the total TEC lesson. Although overall lesson length is of relatively little importance for PT lessons, each PT lesson should consist of easily comprehensible parts, e.g., kits which require approximately 50 minutes to read and to work the practice exercises. JPAs are by nature shorter than the other TEC lessons. For AV and AO lessons, length and number of kits are problems. Many factors have to be considered since actual lesson length requires a trade-off among multiple inputs.
Providing realistic and measurable standards for each soldier's training and career progression is a guiding philosophy of the U.S. Army. As discussed in Chapter 1, it is the Enlisted Personnel Management System (EPMS) that establishes the relationship among grade structure, required skills, and levels of training for each Military Occupational Specialty (MOS). As integral parts of EPMS, TEC lessons are related to Soldier's Manuals tasks and the SQTs. These form the nucleus for the development of a Job Training Package based on a task analysis of a soldier's entire job (part of an MOS, or sometimes a complete MOS).

In the past, the development of TEC lessons focused on individual tasks, e.g., the assembly and disassembly of the M60 machine gun. The lesson content was based on a systematic analysis of individual tasks but not of the tasks for a complete MOS. Future efforts must have a wider scope. The systems analysis approach to Job Training Package (JTP) development will provide you with a complete listing of training objectives for a job. Completion of the analysis requires grouping the objectives into sets or subsets which can be packaged into job based lessons. Knowing the time it takes to convey each objective provides some idea of the length of an individual lesson. Lengthy lessons may require subdivision into more manageable units, i.e., multiple kits.

ISD Model and Lesson Grouping. According to the ISD model, the Analysis and Design sections of each school are responsible for defining and describing jobs as well as the duties associated with each job. These duties are then broken down into task statements. Finally, the tasks are described in terms of their basic behavioral elements.
referenced test items that are required to teach the task elements of each TEC lesson. If this is not done elsewhere you will have to perform the above function. An example of a task description for a duty position that can be used to determine what behavioral elements to teach in a TEC lesson is given below.

<table>
<thead>
<tr>
<th>Job: MOS 72 C - Central Office Switchboard Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duties:</td>
</tr>
<tr>
<td>1. Installation and operation of Switchboard Telephone, Manual SB-22/PT</td>
</tr>
<tr>
<td>2. Installation and operation of Manual Telephone Switchboard SB-86/P</td>
</tr>
<tr>
<td>3. Installation of Central Office Telephone, Manual AN/MTC-1</td>
</tr>
<tr>
<td>5. Operation and maintenance of generators</td>
</tr>
<tr>
<td>Tasks: (Duty #1)</td>
</tr>
<tr>
<td>1. Field telephone operation TA-312/PT</td>
</tr>
<tr>
<td>2. Preinstallation checks of switchboard telephone, Manual SB-22/PT</td>
</tr>
<tr>
<td>3. Line and trunk connections of switchboard telephone, Manual SB-22/PT</td>
</tr>
<tr>
<td>4. Line-to-line and recalls with switchboard telephone, Manual SB-22/PT</td>
</tr>
<tr>
<td>5. Line-to-calling-party and emergency checks with switchboard telephone, Manual SB-22/PT</td>
</tr>
<tr>
<td>6. Conference calls and trunk calls with switchboard telephone, Manual SB-22/PT</td>
</tr>
<tr>
<td>Elements: (Duty #1, Task #2)</td>
</tr>
<tr>
<td>1. Install batteries</td>
</tr>
<tr>
<td>2. Preinstallation checks</td>
</tr>
<tr>
<td>a) check #1</td>
</tr>
<tr>
<td>b) check #2</td>
</tr>
</tbody>
</table>
A TASK IN TERMS OF ITS ELEMENTS WITH TWO WAYS TO PACKAGE THE TEC LESSON

The purpose of this review is to insure the validity of objectives, the compatibility with present training, and the relationship to current soldiers' manuals.

The TEC developer (either the school or a contractor) is responsible for grouping task elements into individual TEC lessons. A TEC lesson, however, can be composed of one or more TEC kits. A TEC kit is the packaged material, e.g., the audio tape in an AO kit, used to present a lesson or a logical subdivision of . The difficult part is deciding how many TEC kits are needed to convey the terminal training objectives of each TEC lesson. One task, however, does not have to be covered in a single TEC kit; it can span two or more kits. Similarly, if tasks are relatively simple, one kit could cover two or more tasks.

One way to decide on the number of kits necessary for one lesson is to sketch out the complete lesson first. Then, an estimate of time for presenting the complete lesson can be made. If the lesson is too long, you can divide it into several kits at logical breaks within the lesson.
to describe it is the next factor that relates to overall lesson length, i.e., how should the training objectives be stated to insure an effective TEC lesson. Therefore, the TEC developer should follow a set of systematic guidelines, e.g., those discussed in the ISD model (Block II.1 pp. 1-34) or TRADOC Pamphlet 350-31 (pp. 18-23). Applying these guidelines (stated below) to each lesson will aid the structuring and formatting of each TEC kit.

EXPLICITLY STATE EACH OF THE TRAINING OBJECTIVES FOR EACH TEC LESSON ACCORDING TO:

1. **ACTION TYPE**
 - SPECIFIC
 - GENERALIZED SKILL
 - GENERALIZED BEHAVIOR OR ATTITUDE

2. **DESCRIPTION**
 - FULL
 - PARTIAL
 - STATED ONLY

3. **RELEVANCY**
 - HIGH
 - MODERATE
 - LOW

4. **COMPLETENESS**
 - ACTION, STANDARDS, AND CONDITIONS
 - ACTION AND CONDITIONS OR STANDARDS
 - ACTION ONLY

5. **PRECISION**
 - FULL
 - PARTIAL
 - VAGUE

* TO THE EXTENT POSSIBLE, INCLUDE ACTIVE PRACTICE AS PART OF THE LESSON.
* ADD GUIDANCE AND PROMPTS TO LEAD THE STUDENT THROUGH THE LESSON.
* PROVIDE FEEDBACK TO STUDENT.
* DESCRIBE CRITERION-REFERENCED TEST ITEMS IN TERMS OF THE OBJECTIVES.
- The following is a training objective that states a specific action; contains a full description; is highly relevant; is complete with stated action, standards, and conditions; and is fully precise.

SCHEDULE PREVENTIVE MAINTENANCE ON RADIO SET AN/VRC-12 FOR MONTH OF JULY 1978 WHEN GIVEN DD FORM 314, TM 38-750, TM 11-5820-401-20, AND DATE OF LAST SERVICE. THE COMPLETED SCHEDULE SHOULD CONTAIN NO MORE THAN TWO ERRORS WHEN PREPARED IN 15 MINUTES.

- The following training objective states a specific action, but, it contains no description, has questionable relevancy, is incomplete, and is vague.

FIELD STRIP A RIFLE.

- **Stimulus/Response Time.** The total length of a TEC kit is the combination of stimulus time and response time. These times and the ratio of the two are all important in determining lesson length.

 ISD states that most individuals cannot remain completely attentive during a 20-30 minute period. Thus, a TEC lesson should not contain a continuous running narrative. The total stimulus time should not exceed 20-30 minutes. You should break this time at logical intervals to actively involve the student in the lesson. The active participation is the response time component of the lesson.

 There are two ways to include active participation in the lesson: having the student answer questions during and after the lesson, and using practical exercise. The exercises acquaint the student with the equipment while the lesson explains how to use it. For example,
Active participation is not as effective as allowing each student to disassemble the weapon while providing individualized instruction. Active participation always includes student feedback. Providing correct answers and reassuring comments lets the student know what is wrong, what is right, and how his performance can be improved.

The ratio of narrative to response time is a function of how many review questions and practical exercises are used in the lesson. Frequently, the response time will exceed the stimulus time.

Number of Visuals. If you are supervising or monitoring the development of a TEC kit, it is important to have an idea of how many visuals you will need because lesson length is also a function of number visuals. For example, if you are designing a lesson for the disassembly of an M16A1 rifle, do not plan a series of visuals of isolated weapon parts when a single exploded view would be more effective. Specifying the number of visuals to support the associated narrative for a particular TEC kit will help structure its overall length. The number of visuals per kit should be consistent with TEC Request for Proposals (RFPs)/contracts.

Training Objectives and Criterion-Referenced Test Items. The final factors to be considered for lesson length determination are the numbers of training

Rules-of-Thumb for Translating Single Frames/Visuals (No Animation) into Lesson Time:

1. Average Number of Visuals per Kit = 120

2. 150 Frames = Approximately 35 Minutes
TEC LESSON ON THE "X" VEHICLE

OBJECTIVES: 1. REPLACE THE "Y"
2. REMOVE THE "W"
3. TURN THE "V"
4. CHECK THE "Z"

A final consideration is the importance of each training objective. Some objectives may be more critical than others (e.g., those that concern surviving in combat). Therefore, more lesson time (if more time is needed to teach the objective in greater detail) may have to be devoted to these more critical objectives. (See Chapter 5 for rating the importance of training objectives.)
4.1.3 Target Audience Considerations

TEC lessons are developed to train the audience. Soldiers must be able to perform the critical tasks of their primary MOS. And, the TEC system will facilitate the training of these tasks. This facilitation will occur, however, only if the target audience understands the TEC lesson. Therefore, you have to be aware of the skill levels the audience brings to the training environment. In addition, you have to (1) pitch the instructional materials to the ability level of the audience; and (2) use the appropriate nomenclature of the specified task.

Reading Level. In the past, most instructional materials were printed. Thus, comprehension was closely related to reading ability. Presently in TEC, however, approximately 80% of all TEC kits are developed in media other than printed. Therefore, instead of reading ability, the verbal comprehension of the target audience should establish the
Reading ability of individuals can be determined by a quantitative measure, the readability score. In general, a low readability score predicts a low comprehension level. An extension of readability formulas is the estimation of school grade levels. Grade level refers to those students who reach a specified criterion level on a comprehension test. For example, a readability score of 8 means the individual is reading at the same level as an average reader in the 8th grade (at the time the reading level standards were established).

Thus, if you can determine the reading ability or verbal comprehension of the target audience from available data, e.g., service entrance examinations, do it. Otherwise, you will be forced to make subjective judgments regarding the target audience's comprehension. If you guess too low, you will be talking down to the audience which they will resent. On the other hand, if you guess too high, no one will understand the material.

The subject matter experts and the resident instructors should have a feel for the audience. They should have the final judgment and should work to insure that the reading level of the lesson does not exceed the expected reading level of the target audience. To assist this process a method such as FORECAST may be useful.

FORECAST was developed for the Army and has been validated and cross-validated. It is a quality control tool used to check
the reading level (and possibly, the comprehension level) of verbal material. Use FORECAST to check completed material and to establish a criterion to direct TEC lesson development.

USING FORECAST

General Instructions

1) Select a 150 word passage from connected discourse. Do not use this formula to check unconnected statements. It's best to start counting words at the beginning of a paragraph or section.

2) Counting the Words:
 Words include numbers, letters, symbols, and groups of letters that are surrounded by white spaces. Hyphenated words and contractions are counted as one word: "couldn't", "F.O.B.", "i.e.", "$32,008", "second grade".

3) Counting the Syllables:
 Count syllables the way the word is pronounced: such as "row" has one syllable, "mention" has two. With symbols and figures the syllables are known by the way they normally read aloud, such as, one syllable for ("cents"), three for R.F.D. ("are-eff-dee"), and four for 1918 ("nineteen eighteen"). When in doubt about syllables, consult a dictionary.

Step 1. Count the number of one syllable words in a 150-word passage.

Step 2. Divide the number by 10.

Step 3. Subtract the result from 20 to obtain the reading grade level.

* Adapted from Kern, Sticht, Welty, & Haube, 1975.
Nomenclature. Only necessary technical terms should be placed in the TEC lessons. Any terms or phrases peculiar to the Army and the MOS, however, can be used. All such terms should be fully explained to help the student understand. Special abbreviations or acronyms may require an explanation of the phonetics.

Bibliography for 4.1.3

Caylor, J. S., Sticht, T. G., Fox, L. C., & Ford, J. P. Methodologies for determining reading requirements of military occupational specialties (HumRRO-TR-73-5). Alexandria, Virginia: Human Resources Research Organization, March 1973. (Pp. 5-18 describe how FORECAST was developed and how it was validated.)

4.1.4 Self-Evaluation

Structure the self-evaluation to maximize the active participation of the trainee and to insure his involvement in the lesson content. The self-evaluation should ask the student what he has learned, provide him with the correct answer, and tell why it is correct. Applying the principles of programmed instruction is one systematic way to assure both the trainee's involvement and the transfer of information.
Quiz Structure. To effectively teach the training objectives, your TEC lessons must include active audience participation. Review questions can provide this participation when well constructed and placed appropriately in the lesson. Review questions should be presented immediately after each new procedure or idea (i.e., learning objective) with the trainee given time to answer (a pause in AC or AV and an answer key in a PT). At the end of the lesson, a quiz that covers the entire lesson should be presented. The quiz should include feedback to the student.

Quizzes within a TEC lesson are not mandatory and, of course, some lessons do not require them. For example, a JPA has no review questions because the purpose of a JPA is to assist an individual in the performance of a task. On the other hand, a JPA demands continuous audience participation.

A Systematic Approach. One systematic approach that is useful for structuring review questions is programmed instruction. By using the principles of this technique, you can directly involve the student in the lesson. Basically programmed instruction presents the student with information to which he must respond before he can proceed with the rest of the lesson. Then the student is given the correct answer. He then proceeds to the next piece of information. The programmed instruction approach allows the student to proceed at his own pace and requires that he actively participate in the lesson. The question/answer feedback and student participation facilitate the learning of the lesson objective.

- Use review questions throughout lesson
- Place quiz at the end of the lesson

- Present information in units.
- Ask a question based on that information. This permits the student to actively respond.
- After allowing the student the opportunity to respond, give the correct answer, and explain why it is correct. Continue in the same manner for the remaining information units.
- Present a complete question/answer review immediately after the lesson has ended.

4-31
4.1.5 Level of Pictorial Detail

Guidelines for pictorial detail are required for all lessons involving visuals.

Realism and School Acceptability. How realistic do the visuals have to be in order to teach the lesson objectives? Your might assume that the more realistic the illustration, the greater the probability that learning will occur. This is not necessarily true. One study authorized by ATSC compared two versions of the same TEC lesson. One version contained complex illustrations with extensive detail and background; the other had simple illustrations with background and uniform detail removed. The results showed there were no differences in learning between the two lesson types. In addition, soldier attitudes toward the two versions were equivalent. (See Biege, Borg, & Schuller, 1977 for details.) Therefore, when you use visuals you should be more concerned about the suitability of the information content than with the detail of the visuals.

- STRIKE A BALANCE BETWEEN QUALITY AND DETAIL. VISUALS (ESPECIALLY PHOTOGRAPHS) MAY INADVERTENTLY HIDE A CRITICAL FACTOR IN SHOWING REQUIRED RELATIONSHIPS.

- NEVER USE VISUALS TO EMPHASIZE A POINT OF VIEW THAT THE TECHNICIAN WILL NEVER ACTUALLY SEE.
Even though these data show the drawings do not have to be exact to train soldiers, some schools believe any depiction of soldiers and equipment should be 100% accurate. For example, it may be a waste of time and money to draw a detailed picture of M60A1 tank to illustrate the location of the two machine guns when an outline drawing would suffice. There will be times, however, when exact detail is essential. For example, a lesson on how to dress properly would require a properly dressed soldier. On the other hand, a lesson showing the operation of a squad radio should place more emphasis on the drawing of the squad radio than on the soldier operating it. The TEC manager should use the minimum level of detail which is: (a) believed by SMEs to be effective and (b) acceptable to school personnel.
Use of the Graphic Arts Guidance Kit. Visuals should generally complement and illustrate the narration by effectively using harmony, contrast, balance, emphasis, and shape. A harmonious display is composed of coordinated elements (lettering, color, etc.). Contrast uses light and dark elements to delineate the forms in the visuals. Balance can either be formal (a symmetrical arrangement of all elements), or informal (elements appear balanced although each side of the arrangement is different). Emphasis refers to the proper use of lettering, color, or other directional aids to stress a central idea. Shaping means guiding the viewer through a visual in proper sequence. The Graphic Arts Guidance Kit (GAGK) provides you with detailed standards for using those characteristics to develop quality visuals.
GAGK is available from ATSC-TPD and you should consult it for specific guidance when developing or monitoring the development of the TEC lesson visuals. Although designed to provide uniform standards for TEC Beseler Cue/See lesson visuals, GAGK can be applied to any of three TEC modes - AV, PT, and JPA.

CONTENTS OF GAGK

Audiovisual

A. Semi-Comprehensive Art

B. Final Art

1. Beseler Cue/See Field Guide
2. Final Art Aspect Ratios
3. Registration
4. Resolution
5. Type
6. Color and Contrast
7. Graphic Style and Photography
8. Animation and Motion Pictures
9. Laboratory

Printed Texts

A. Visual Dummy

B. Master Mechanical

Bibliography for 4.1.5

TPD Graphic Arts Guidance Kit (GAGK). Fort Eustis, Virginia: U. S. Army Training Support Center - Training Programs Directorate, (no date available). (A kit which presents information in three media: printed, super 8 mm, and 35 mm slides.)

AN AV TEC LESSON IS A FUNCTION OF:

1. LENGTH
 - FORMAT AND PRESENTATION
 - ANIMATED/MOTION SEQUENCES
 - VISUAL DEVELOPMENT CYCLE
 - STIMULUS/RESPONSE TIME
 - SCRIPT
2. GRAPHIC ARTS
 - COLOR
 - CONTRAST
3. AUDIO PROCEDURES
 - RUNNING TIME
 - CUEING

Section 4.1 presented criteria that can be applied to all TEC lessons to insure the development of an effective lesson. This section presents criteria specific to AV TEC lessons. The three subsections provide guidance on lesson length, graphic art evaluation and audio technical procedures.

4.2.1 AV Lesson Length

The general considerations for the length of AV lessons are presented in Section 4.1.2. The format of AV lessons, however, is based on the presentation of individual frames, the number of animation and motion sequences, the number and type of visuals, the amount of stimulus and response time, and the length of the script.

Format and Presentation. The AV format is a system of slides (Super 8) with auditory narrations. According to the ISD manual (Block III.4), you should avoid displaying a single frame longer than 20 seconds. Otherwise, the audience will become bored and distracted from the subject matter. If narrations are related to the visuals and must exceed 20 seconds, then use 2 or more similar visuals (e.g., the same equipment viewed from a different angle).
Besides being limited to about 20 seconds per frame exposure, narration length is also dependent on speech rate and pauses within the narration. Average speech rate is about 120 words a minute. A comfortable range for most audiences is 100 to 140 words a minute. Appropriately placed pauses will give your listeners an opportunity to digest the information presented.

Normally TEC lesson narrators should possess a wide range of frequencies within their normal speaking voice. Use of a voice which produces mostly high frequencies or mostly low frequencies can be annoying and thus distract from the teaching potential of the lesson. If you have special requirements for the voice quality of the narrator (e.g., an authoritarian type voice) make those requirements known before the TEC lesson goes into reproduction.

Animation and Motion. A unique feature of the Beseler Cue/See is its capability to display animated and motion sequences. An animated sequence consists of multiple art visuals shown in rapid succession, whereas a motion sequence is a motion picture film clip. Use these techniques only when they add something to the lesson. For example, an animated or a motion sequence of acquiring and tracking an aircraft would help the student learn air defense tactics. On the other hand, the value of using an animated or a motion sequence to display the components of an M16A1 rifle would be questionable. GAGK provides specific guidance for using animated and motion sequences.
Visual Development Cycle. Development of AV visuals is an iterative process that does not begin until a lesson has been outlined and narration has been defined. To the extent possible, you start by determining the number and kind of visuals needed to support the narrative. For contract development, it is important to convey the kind and number of visuals you have in mind. Otherwise, you may receive multiple visuals where one would suffice.

The art development cycle starts with a verbal description of an idea, continues from a thumb-nail sketch to a rough sketched line drawing, and finally to a finished product. The rough sketch is later replaced with a semicomprehensive art, i.e., filled-in color illustrations. The last stage (final art) is a true rendering of precise line work or a full color photograph.
TEC, visuals are used to supplement and complement the narrative. This affects the division of stimulus and response times. While this division should follow the general guidance of Section 4.1, the specific guidelines given below apply.

- **NARRATION (AUDIO) SHOULD BE USED TO EXPLAIN DETAILS, SUGGEST RELATIONSHIPS, AND SUPPLY INFORMATION NOT EXPLAINED IN THE VISUALS.**

- **USE THE NARRATION TO IDENTIFY OR DESCRIBE THE CONTENT OF A VISUAL AS SOON AS THE VISUAL APPEARS. DO NOT MAKE THE AUDIENCE GUESS WHAT THE CONTENT OF A VISUAL IS ALL ABOUT. TELL THEM.**

- **NARRATION SHOULD ALWAYS BE SIMPLY WRITTEN, DO NOT USE LONG, COMPLICATED SENTENCE STRUCTURES WITH MULTIPLE CLAUSES. USE A SIMPLE VOCABULARY. TRY TO STRIKE A BALANCE BETWEEN COMPLETENESS AND SIMPLICITY WITHOUT TALKING DOWN TO THE AUDIENCE.**

- **VARY THE PACE OF THE NARRATION. ALLOW FOR BREAKS OF SILENCE TO BRIDGE DIFFERENT VISUALS.**

- **CHOOSE WORDS CAREFULLY. WORDS IMPROPERLY CHOSEN MAY EVOKE AN ERRONEOUS MENTAL PICTURE OF AN IDEA OR RELATIONSHIP.**

- **AVERAGE KIT LENGTH: 25 MINUTES STIMULUS TIME AND 45 MINUTES OF STUDENT RESPONSE TIME.**

- **MINIMUM KIT LENGTH: 15 MINUTES STIMULUS TIME AND 30 MINUTES OF STUDENT RESPONSE TIME.**

- **MAXIMUM KIT LENGTH: 40 MINUTES STIMULUS TIME AND 90 MINUTES OF STUDENT RESPONSE TIME.**

- **USE SHORTER KIT LENGTH TIMES IF THERE IS NO HANDS-ON PRACTICE COMPONENT.**

A recent TEC request for proposal (RFP) lists average, minimum, and maximum kit lengths (see box at left) in terms of narration (stimulus and student response time for kits involving hands-on practice. Without a hands-on component your kit should not exceed the previously noted 20-30 minute maximum.
an AV TEC lesson always centers around a script. A script is a detailed plan of everything (both visual and audio) that will constitute an AV lesson. Your AV script is important because it describes how the final product will appear in a hard copy format and thus, gives an idea of how long the finished lesson will be.

Bibliography for 4.2.1

TRADOC PAMPHLET 350-30. ISD Phase III. Fort Monroe, Virginia: U. S. Army Training and Doctrine Command, August 1975. (Pp. 239-244 discuss stimulus time for visuals.)

Consult recent TEC Request for Proposals (RFPs) for any specific guidance that may be included for stimulus/response times.

4.2.2 AV Graphic Arts

Although the GAGK contains specific criteria for graphic arts, general technical criteria on color usage and contrast may also assist your development of AV visuals.
- USE COLOR FOR STIMULATION
- EMPHASIZE CONTRASTS FOR IMPORTANT INFORMATION
- USE GAGK FOR SPECIFIC INSTRUCTIONS ON AV LESSON DEVELOPMENT

a superiority of color presentations over black and white ones. Color does, however, seem to vitalize lesson content and to stimulate the user. On the other hand, careless use of color may destroy its value. (See GAGK for 35 mm slides of representative colors and palettes.)

Contrast. Strong contrasts should be used to emphasize important information (i.e., the main theme of a frame). Subtle contrasts are more appropriate for supplemental information. Projected slides are less fatiguing to the eye when light lettering on dark background is used.

Bibliography for 4.2.2

TPD Graphic arts guidance kit (GAGK). Fort Eustis, Virginia: U. S. Army Training Support Center - Training Programs Directorate (no date available). (p. 16-20 discuss resolution and type as they pertain to the Beseler Cue/See. Pp. 21-22 discuss color and contrast. Examples of color usage and contrasts are provided in 35 mm and Super 8 mm.)

4.2.3 Audio Technical Considerations of AV Lessons

Synchronization, running time, and cueing can be used to assist student interaction with the Beseler Cue/See. Properly applied, these will insure ease of operation of the Beseler and thus, contribute to user acceptability.
Synchronization. Because AV lessons are a combination of two media, you must insure the quality of both. Of particular concern is the physical synchronization of the audio to the video. The audiotape contains the inaudible pulses to advance the Super 8 film cartridge. Therefore, when you review the TEC kit in the Super 8 format you have to verify that the pulses do advance the video portion to the correct frame at the correct time.

Cueing. Normally, the audio track automatically cues the visual track to advance, but the pause feature of the Beseler Cue/See system stops both tracks and requires manual cueing to continue. In this case, you have to provide, within the script, audio directions on how to proceed. Do not assume that everyone has used a Beseler Cue/See before. You can provide a general instruction at the beginning of a lesson (e.g., "whenever the green light comes on you may proceed when you are ready") or you can remind the student to press the proceed button at every stop point.
AN AO TEC LESSON IS A FUNCTION OF:

1. LENGTH
 - FORMAT AND DEVELOPMENT
 - STIMULUS/RESPONSE TIME

2. TECHNICAL PROCEDURES
 - RUNNING TIME
 - CUEING

The criteria that you can apply to AO lessons under development are length, running time, and cueing. The length criteria are described in terms of format and development, and stimulus/response time. As with the audio track of AV lessons, the AO technical procedures are running time and cueing procedures.

4.3.1 AO Lesson Development

Format and Development.
Choosing the AO medium for lesson development limits your design freedom. Because the entire lesson is in audio, lessons have to employ techniques stimulating to the auditory sense. Effective lessons will depend on the proper use of music, sound effects, voice intensity, and pacing. Audio lessons can be especially useful as a JPA or a procedural guide which supports either an AV or PT lesson.

The development process for AO lessons requires precise and clear verbal explanation of learning objectives and learning steps. Your verbal explanations should be organized into a written script. This procedure allows you to examine everything that will be taught aurally and to edit accordingly.

<table>
<thead>
<tr>
<th>AUDIO SCRIPT</th>
<th>PAGE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESSON N', PROGRAMm</td>
<td>TITLE</td>
</tr>
<tr>
<td>LECTURE no.</td>
<td>LECTURE no.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4-44</td>
<td>44-44</td>
</tr>
</tbody>
</table>
Stimulus/Response Time. In AO lessons the narrative should be flowing, well paced, and integrated with review questions and practical exercises. This method will actively involve the student in the lesson and reduce boredom. Guidelines for your AO lesson length, according to a TEC RFP, are the same as the AV guidelines (See 4.2.1).

- **AVERAGE KIT LENGTH:** 25 MINUTES Stimulus Time and 45 MINUTES of Student Response Time
- **MINIMUM KIT LENGTH:** 15 MINUTES Stimulus Time and 30 MINUTES of Student Response Time
- **MAXIMUM KIT LENGTH:** 40 MINUTES Stimulus Time and 90 MINUTES of Student Response Time
- **MODIFY ABOVE KIT LENGTHS IF NO HANDS-ON COMPONENT IS INCLUDED**

Bibliography for 4.3.1

Consult Recent TEC Request for Proposals (RFPs) for any specific guidance that may be included for stimulus/response time.

4.3.2 Audio Technical Considerations

Running Time. With AO lessons, the student has full control over the player operation. Therefore, you can have instructional material presented on both sides of the tape cassette. For ease of operation, however, you should try to limit a single kit to the running time of one side of the tape cassette (30, 45, or 60 minutes per side).

Cueing. Unlike AV lessons, AO lessons do not automatically stop at cued points in the tape. You will have to insure that the audio script includes the necessary audio comments. For example, if your lesson has review questions or requests that a particular procedure be carried out, then you will have to tell...
the student to turn the player off until he is ready to proceed, e.g., "turn me off until you are ready to go on to the next step". In addition, if the tape is recorded on both sides, provide script that directs the student to turn the tape over, e.g., "this is the end of side 1 of TEC lesson xxx - xxx, turn me over for the continuation of (lesson title)."
4.4 PT TEC LESSON DESIGN

PT lesson development is very similar to AV lesson development. The general criteria given in Section 4.1 apply, as well as unique length criteria and graphics.

A PT TEC LESSON IS A FUNCTION OF:

1. LENGTH
 - DEVELOPMENT PROCESS
 - STIMULUS/RESPONSE TIME
 - FORMAT

2. GRAPHIC ARTS
 - COLOR
 - CONTRAST
 - PRINT AND LINE SPECIFICATIONS

4.4.1 PT Lesson Development

PT length is a function of the lesson development process. In particular, you should evaluate the length requirement according to the stimulus/response guidelines and use the lesson format procedures to determine how the layout will alter overall lesson length.
Lesson Development Process.
PT lesson development should parallel the AV lesson development process. A manuscript is composed from the CCSS. From the manuscript, a visual dummy (comparable to the storyboard in the AV lesson development process) of print and visuals is developed. The final stage is the camera-ready copy or master mechanical which is developed from the visual dummy. The GAGK provides complete instructions for developing a master mechanical.

Care should be taken in deciding to use PT lessons in any particular MOS because some soldiers may have difficulty understanding printed material. You should emphasize the pictorial component rather than the verbal component.

Stimulus/Response Time. PT lesson construction should parallel AV lesson construction. In fact, a PT lesson may be an exact hard copy of an AV lesson, i.e., extensive visuals with the accompanying printed narration. Because PT lessons are completely self-paced, exercise caution when deciding on overall length; the length is a function of individual reading speed (average reading speed for the U. S. adult is 200-300 words per minute) and study time of the accompanying visual.
Lesson Format. The critical factor in preparing PT lessons is page layout. Based on the guidelines from a human factors handbook, the user of the lesson visually enters each page at the upper left-hand corner. Therefore, attention should be focused on the reader's interest point, e.g., using an attention-getting lead-off visual to direct the reader through the material.

* Adapted from Woodson & Conover, 1970.
PT GRAPHIC ARTS

Bibliography for 4.4.1

TPD Graphic arts guidance kit (GAGK). Fort Eustis, Virginia: U. S. Army Training Support Center - Training Programs Directorate (no date available). (Pp. 29-31 discuss technical guidelines for printed texts.)

4.4.2 PT Graphic Arts

Graphic arts for PT lessons can be evaluated in terms of color usage, contrast and print/line specifications.

Color Usage. ((The criteria presented for AV lessons are appropriate. See sections 4.1.3, 4.2.2, and GAGK for specific guidance)).

<table>
<thead>
<tr>
<th>USE DARK PRINT ON LIGHT BACKGROUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE BLACK PRINT ON HIGHLY REFLECTING BUT NON-GLOSSY WHITE PAPER</td>
</tr>
<tr>
<td>USE PAPER OF SUFFICIENT WEIGHT TO AVOID BLEED-THROUGH OF PRINT FROM THE OPPOSITE SIDE OF PAGE</td>
</tr>
</tbody>
</table>

Contrast. Most of the time, PT lessons will use a black and white medium. Therefore, your use of contrast will be important for conveying the lesson objectives.
The following table presents detailed recommendations for designing printed material (Woodson & Conover, 1970):

<table>
<thead>
<tr>
<th>PRINT STYLE</th>
<th>Bookman Old Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical (roman) print is recommended for normal use. Italic is permissible for special emphasis, but should be used sparingly.</td>
<td>Goranand Cheltenham Scotch Roman (Styles under labels, etc., can also be used for headings, graphs, tables, etc.)</td>
</tr>
<tr>
<td>PRINT FORM</td>
<td>Combinations of capital and lower-case letters</td>
</tr>
<tr>
<td>PRINT SIZE</td>
<td>10 point type preferred; 9 to 12 points permissible. (1 point = 0.0138 inch)</td>
</tr>
<tr>
<td>LINE LENGTH</td>
<td>19 picas preferred; 14 to 28 picas permissible. (1 pica = 0.166 inch)</td>
</tr>
<tr>
<td>LINE SPACING</td>
<td>With 10-point type, space between lines should not be less than 2 points.</td>
</tr>
</tbody>
</table>

Bibliography for 4.4.2

TPD Graphic arts guidance kit (GAGK). Fort Eustis, Virginia: U. S. Army Training Support Center - Training Programs Directorate, (no date available). (Pp. 21-22 discuss color usage and contrast.)

Presently TEC JPAs are only developed in one medium, print; although all media are likely candidates. The main consideration is deciding when a JPA is appropriate.

4.5.1 The Appropriateness of a JPA

Definition and Use. A JPA is any device which permits an individual to perform a task he would not normally be able to do without extensive training or complex problem solving. A JPA can be a set of procedures, charts, tables of data, or checklists (the most common).

A specialized use of a JPA is the checklist which directs the individual through the major steps of a particular procedure. When used as part of an existing TEC lesson the checklist is not issued as a separate TEC lesson. Rather, it supports the TEC lesson and serves as a reminder. The independent TEC JPA is a TEC lesson and contains all the information needed to perform particular tasks. Although usually in a printed-pictorial format, you can also construct JPAs in the AO and AV media. Research has shown the printed pictorial format to be the most cost-effective medium, but, the task itself determines the medium. For example, a procedure that requires hands-on operation (e.g., preparing to swim a tank) can be performed with an AO checklist. The cassette player is attached to the student's belt and the ear phone is placed in his ear. This leaves a student's hands free to perform all needed procedures.

USE JPAs FOR:

- Behavior sequences that are long and complex
- Tasks that are rarely performed
- Tasks that involve readings and tolerances
- Tasks that are aided by the presence of illustrations
- Tasks that utilize reference information, such as tables, graphs, flowcharts, and schematics
The final consideration is the availability of the JPA. The printed medium permits unlimited distribution. The JPAs can be given to every soldier that needs one and/or the JPA can be packed with the equipment. Employment of either the AO or AV medium do not afford you this flexibility.
you decide that a JPA is needed, determine all the steps of the procedure that a novice would need to know. Keep the activities simple; compound activities can lead to confusion. Next, group the activity steps into small manageable units. For example, if nine steps are required to checkout a radio, group all nine into one activity. Finally, produce the JPA according to the media guidelines mentioned earlier.

Bibliography for 4.5.1

4.5.2 JPA Technical Procedures

Decide on the appropriate medium for the JPA. Then consult the previous sections of this chapter for the technical procedures which are appropriate.
Sections 4.1 to 4.5 gave you the human factors criteria to use in order to develop TEC lessons. This section provides some sample checklists based on those criteria which can be used to assess the quality of a TEC lesson at various stages of development. These checklists can be used to assess a contractor's lesson development as well as your own in-house efforts. These, or similar devices, should be applied to all lessons and negative findings should be corrected. Although the ultimate responsibility for assessing lesson quality rests with the Naval Training Equipment Center (NTEC), you should assist in the quality check by assessing lesson design quality at all review points from the initial draft to final approval of the preproduction sample.

4.6.1 Review and Revision of the Initial Draft

After the first draft of a TEC lesson has been developed (either in-house or under contract), you should review the lesson for completeness and accuracy. Doctrinal accuracy should be reviewed by school experts (i.e., SMEs) and completeness of script according to the lesson outline (Kit Design Approach, if under contract) by school TEC project officers.

You should use this review to determine what you want the final product to look like. Document all discrepancies because a failure to validate may be a result of poor design. This record will help you decide what
validate the lesson. Generally, non-rejection of poor kit design will lead to validation problems and to the possible acceptance of a poorly designed TEC lesson.

To assist you in assessing TEC lesson quality at the initial draft, two checklists are provided. One, the "TEC Script/Manuscript Evaluation Instrument" (developed by the Combat Arms Training Board - CATB), is useful in determining the completeness of the lesson and in determining the responsibility for errors.
This instrument is designed to be used as a guide in reviewing lesson drafts. It is designed to be used by personnel who have the responsibility of insuring that a lesson is achieving its objectives. This instrument, once filled out, is to become part of the historical file for each lesson.

1. Place a copy of the script as received from contractor in the historical file. File a copy on the script when received from contractor.

2. Read over this instrument so you become familiar with the information required:

 a. Materials required for lesson Draft Review:
 i. LESS
 ii. LESS
 iii. LESS
 iv. LESS
 b. LESS
 c. LESS
 d. LESS

3. As you review each section of the script, note the section using the criteria described below. If an item has been met, place an "X" in the "YES" column. If you feel the item has not been met, place the "NO" column and note explanation in "NO" and "Cannot Determine" responses at the end of this instrument.

4. Read the script over once without stopping so as to get an overview, then review script on as to answer all the items.

Throughout this instrument, script will be in accordance with lesson scripts whenever applicable.

1. Is Contractor following RSM outline?

2. Have the school's changes to Contractor's script been incorporated into script?

3. Is the relationship (part of: precursor, successor) with prior TEC lesson stated in the beginning of the lesson?

4. Does the introduction that states the soldier what the kit is about (overview)?

5. In the beginning of the lesson, is the soldier told what equipment will be required to take the kit?

6. Is the soldier told in the beginning what he will be able to do as a result of completing the kit (i.e., the objectives clearly defined)?

7. Does the kit contain work and actions that will be understandable by the target audience?

8. Is the sequence or chaining of behaviors appropriate to training the objective?

9. Does the kit provide the soldier with conditions (problem cases, situations, task requirements, reference data) and where appropriate standards for proving and scoring which have been identified?
1.1 Does the letter to the contractor contain the following information:
 a. Approval/disapproval for a particular Kitt?
 b. Recommended corrections, deletions, or additions to the script and callouts identified by frame number?
 c. Corrections, deletions, or additions to the Kitt and visual callouts that must be made because they are technically and/or doctrinally incorrect, identified by frame number?
 d. Information the contractor needs to make corrections, deletions, or additions?
 e. "No" response as the Script Evaluation Instrument identified and explained to the contractor?
 f. Instructions for the contractor on how words and sounds are pronounced in the military that are pronounced differently by civilians?
The second checklist, the "Human Factors Criteria Checklist", is based on the human factors criteria given in Sections 4.1 - 4.5. Based on these criteria you can use this checklist to determine if the design is acceptable. The analysis of "no" answers will lead to an improved design.
REVIEW AND REVISION OF INITIAL DRAFT

HUMAN FACTORS CRITERIA CHECKLIST

1. If the TEC kit is part of a larger lesson or lesson series, is the content compatible with related TEC lessons (e.g., the contents of each related kit should be equal in level of difficulty and should not overlap)?

2. If the TEC kit is in a different medium than previous kits, is it still a logical part of the total lesson or lesson series?

3. If the TEC kit is part of a larger lesson or lesson series, is its content compatible with related TEC lessons?

4. If the TEC kit is in a different medium than planned kits, is it still a logical part of the total lesson or lesson series?

5. What is the approximate total time?

 a) If it contains no hands-on or practical exercises, is it less than 30 minutes?
 b) If it contains a hands-on or practical exercises component, is it less than 110 minutes?
 c) Is it all the response time critical to learning kit objectives?
 d) Is the level of material at the reading comprehension level of the target audience?

6. Is there enough quiet time to review the kit objectives?

7. Do the review questions reflect specific kit objectives?

8. Does the TEC kit have a visual track? (If the answer is "yes," answer Items 9a - 9g, otherwise, go on to Item 10.)

 a) Are there enough visuals to illustrate the kit objectives?
 b) Are estimated and motion sequences used in appropriate places? (Applies to AV kit only.)
 c) Are the visuals acceptable in terms of current doctrine?
 d) Is the level of detail acceptable? (The more detail you want and/or need, the more costly, both in development time and money. The longer you put off an acceptable/acceptable form of the kit, the harder it will be to change your mind now.)
 e) Are harmonious colors used?
 f) Do the contrasts conform to the established criteria?
 g) Do the print and line specifications conform to the established criteria?

9. Does the TEC kit contain an audio track? (If the answer is "yes," answer Items 9a - 9b, otherwise, go on to Item 11.)

 a) Is the running time of the kit less than the running time of the tape cassette?
 b) Are tape procedures included as part of the kit?

10. If the TEC kit is a PDA

 a) Is it used for tests or procedures that should be supported with a PDA?
 b) Is it in the appropriate medium (e.g., if the test is required to have full use of both hands, the highest medium is the procedure, PT would not be
All noted problems should be corrected (by the contractor if it is a contractor effort; by the school if it is an in-house effort). Once revisions are made, you should review those revisions to insure that acceptable changes have been made.

4.6.2 Review and Revision of the Final Draft

The final draft should incorporate the revisions and corrections drawn from individual trials, small group trials, large group trials, and your own prior application of the checklists and questionnaires. This review is your last chance to change the lesson before production of the master materials (master tapes, master art, camera-ready mechanicals, etc.).

Assess the quality of this draft the same way you reviewed the initial draft, using the two checklists given in Section 4.6.1. In addition, check to see that all visuals are in the correct order and that all visuals match up with a corresponding narration on the script or visual dummy. All problems should be corrected (by contractor if it is a contractor effort; by the school if it is an in-house effort) before preparation of the master materials.

An additional consideration for assessing the quality of TEC lessons is user acceptability. Designing a lesson that is not disliked
is half the battle. The soldiers you use for individual trials, small group trials, and large group trials can also provide information relating to user acceptability.

One means of obtaining the information is to use a simple checklist questionnaire similar to the one below. Following up the "no" answers should provide you with additional information for insuring an effective TEC lesson.

<table>
<thead>
<tr>
<th>USER EVALUATION</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Was the lesson interesting?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Was the information useful?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. To the best of your knowledge was the information accurate?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Did you have trouble understanding some of the words used in the lesson?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Is this lesson pertinent to your Army career?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Were the lesson objectives clear?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Was the lesson well organized?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Was the lesson too difficult?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Was the lesson too long?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. If the lesson required practical exercises to learn the objectives, were there enough?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Did the lesson provide enough review questions?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. If the lesson contained illustrations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Were they interesting?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) To the best of your knowledge, were they technically correct?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Was their meaning clear?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. If the lesson contained an audio recording:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Was it paced slow enough?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Was the narrator's voice pleasant?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Could you understand the narrator?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.6.3 Inspection of the Master Kit

The Master Kit is the complete TEC kit/lesson prepared for mass production. This final review affords the opportunity of previewing exactly what will be placed in the final product.

Again, use the checklists given in Section 4.6.1 to assist in your review. Remember; though, make technical changes not preferential changes. This is not the time to decide that the sky is not blue enough or that wind is bending the grass the wrong way.

Examine the total kit (audio and visual simultaneously for AV lessons) to assure it is correct and complete. Because you are viewing 35 mm copies of the final art, you may not be able to detect all the minor mistakes that will cause projection distortions. Don't worry, because the NTEC Project Engineer (PE) will review the master for technical quality. NTEC will also check to see that all components of the Master Kit are in compliance with the specifications of the applicable contract. Thus, you should concentrate on technical content, and forward all comments to the NTEC PE.

4.6.4 Review of the Preproduction Sample

This is the last time you will see the kit before mass distribution; once approved, copies will be made. Again, you should scrutinize the kit using the checklists previously provided. Although you are not expected to assess the quality (e.g., exposure, positive dirt, etc.), do comment on all problems that you can detect and forward your comments to NTEC for final approval.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>TEC LESSON VALIDATION</td>
<td>5-2</td>
</tr>
<tr>
<td>5.1</td>
<td>VALIDATION: DEMONSTRATION OF TEC LESSON TRAINING EFFECTIVENESS</td>
<td>5-3</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Pre- And Posttest Development Phase</td>
<td>5-6</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Validity and Reliability</td>
<td>5-6</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Developing a Valid Test</td>
<td>5-7</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Establishing a Reliable Test</td>
<td>5-11</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Individual Trial Phase</td>
<td>5-15</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Small Group Phase</td>
<td>5-17</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Effectiveness Training Phase</td>
<td>5-18</td>
</tr>
<tr>
<td>5.1.4</td>
<td>The Testing Location</td>
<td>5-21</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Determining the Target Audience and Drawing a Sample</td>
<td>5-21</td>
</tr>
<tr>
<td>5.1.4</td>
<td>TEC Lesson Testing</td>
<td>5-26</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Fixed Sample</td>
<td>5-26</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Sequential Testing Sample</td>
<td>5-26</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Testing Sequence Errors</td>
<td>5-27</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Pretest Administration</td>
<td>5-27</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Lesson Administration</td>
<td>5-28</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Posttest Administration</td>
<td>5-29</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Validation Decision-Making Phase</td>
<td>5-30</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Scoring by Objective</td>
<td>5-31</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Selecting Charts for Each Training Objective</td>
<td>5-32</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Plotting GO - NO GO Scores</td>
<td>5-34</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Acceptance/Rejection of TEC Lesson by Objective</td>
<td>5-39</td>
</tr>
<tr>
<td>5.2</td>
<td>MONITORING THE CONTRACTOR'S DEVELOPMENT EFFORT</td>
<td>5-42</td>
</tr>
<tr>
<td>5.2.1</td>
<td>The TEC Manager's Role</td>
<td>5-42</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Minimizing Error</td>
<td>5-43</td>
</tr>
<tr>
<td>TEC VALIDATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IN-HOUSE EVALUATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PRE- AND POSTTEST DEVELOPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• INDIVIDUAL TRIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SMALL GROUP TRIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• EFFECTIVENESS TESTING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SCORING AND LESSON VALIDATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CONTRACT LESSON EVALUATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This chapter has two uses. First, it is designed to aid you in evaluating TEC lessons developed in-house. Second, the chapter is to be used in conjunction with TEC contract specifications when monitoring the evaluation of lessons developed under contract.

Section 5.1 discusses the TEC lesson evaluation process and provides needed background for understanding the finer points of that process while Sections 5.1.1 through 5.1.5 define the five phases in the TEC lesson evaluation process, viz., pre- and posttest development, individual trials, small group trials (optional), evaluation test, and the validation decision. Section 5.2 provides a description of your role in monitoring TEC lessons developed under contract and presents information relative to minimizing errors during evaluation testing.
The TEC lesson validation process is a training effectiveness evaluation. The iterative process of lesson development and the subsequent testing of instruction are creating, through trial and revision, training effective TEC lessons for job relevant tasks.

The purpose of TEC lesson evaluation is to demonstrate the training effectiveness of a given TEC lesson at each stage of development. The weaknesses are identified that can be strengthened by modifying any combination of the lesson's content, visuals, or sound track. Once modified, the lesson is evaluated again. In a sense, the process resembles the method of adjusting artillery fire by the bracketing process. Fire, and adjust; fire, and adjust. The process is repeated until the target is hit and then there is fire for effect. A TEC lesson is tried on members of the target population until it works. That is, until the trainees achieve the learning objectives. Then the lesson is ready to be packaged and distributed for "Training For Effect."

The training effectiveness evaluation, (shown below) if properly conducted, will ensure that the instruction teaches, i.e., a majority of the target audience will achieve established learning objectives at a specified criterion level.
THE TRAINING EFFECTIVENESS EVALUATION PROCESS

A PROVEN EFFECTIVE TEC LESSON

ITERATIVE TESTING OF LESSON EFFECTIVENESS OR "VALIDATION"

TRANSFORM TRAINING OBJECTIVES INTO TEC LESSONS FOR USE BY TRAINEES

TRANSLATE TRAINING OBJECTIVES INTO TEC LESSONS FOR USE BY TRAINEES

DEVELOP PRE- AND POSTTESTS TO BE USED TO MEASURE TRAINING EFFECTIVENESS

TRAINING NEED REPRESENTED IN TERMS OF TRAINING OBJECTIVES

REAL WORLD TRAINING NEED

POTENTIAL WEAKNESS STILL EXISTS

OPPORTUNITY FOR ERROR RESULTING FROM INAPPROPRIATE INSTRUCTION REDUCED THRU APPLICATION OF THE TEC LESSON. EVALUATION PROCESS.

OPPORTUNITY FOR ERROR REDUCED THRU APPLICATION OF FORMAL VALIDATION TECHNIQUES.
will also be able to perform the required soldiers' tasks at a criterion level.

The training objectives for a TEC lesson are usually provided to the TEC Manager by other elements of the TRADOC school. (If training objectives are not provided, you have to develop them.) These objectives are derived directly from complete task analyses of soldiers' jobs. Nevertheless, you are responsible for verifying the validity of the training objectives. At the minimum, your SMEs should carefully assess the content validity of all training objectives. Content validity can be established by systematically checking that objectives have been derived from an analysis of what the soldier must know and/or do in order to perform the task to be taught in the TEC lesson.

The training effectiveness of a lesson is measured in terms of the pre- and posttest accompanying it. The difference in posttest scores over pretest scores is a direct measure of how well the lesson trains. Pre- and posttests have to be validated to insure they are measuring what is intended to be measured. This will lead to reduced error in testing and lesson development and to increased effectiveness of TEC lessons. Methods for validation of the pre- and posttest are presented in the "Developing a Valid Test" section.

THE SUCCESS OF THE INSTRUCTIONAL DEVELOPMENT PROCESS IS BASED ON TWO ASSUMPTIONS:

- The training objectives are valid
- The criterion referenced test items used in the pre- and posttests in the effectiveness evaluation are valid

THE FIVE PHASES OF THE TEC LESSON EVALUATION PROCESS:

- Pre- and posttest development phase
- Individual trial phase
- Small group trial phase (optional)
- Effectiveness testing phase (large group phase)
- Validation decision-making phase
Your responsibility as a TEC lesson evaluator begins in the stage where training objectives are translated into performance to be measured by criterion-referenced test items. For example, the training objective—field strip an M16A1 rifle in total darkness within 5 minutes—is measured by criterion-referenced and performance test items that record the GO-NO GO of the field stripping and the time required to perform it.

In the TEC lesson development process, the criterion-referenced test items are developed prior to the design of the lesson itself. These test items are incorporated into the pre- and post-tests. Without a valid test to measure training effectiveness of a lesson, you cannot know when you have a valid lesson.

Although the pre- and the posttest are usually the same test, you may prefer to have the posttest differ from the pretest in some situations. You must be absolutely sure, however, that the test items in the two tests measure the same training objectives. Pre- and posttests may be one or a combination of two types of tests: a paper-and-pencil test or a performance test. If you do not incorporate a performance component into the pre- and the post-tests, you should include a performance test in addition to the pre- and post-tests for the purpose of evaluating training effectiveness.

Validity and Reliability. Test construction, like lesson development, is an iterative process of trial and error. It begins with the selection of a large pool of test items—either performance items or written items—which are related to the performance objectives. Next, you must examine,
construct the test and invalid ones are discarded.

Validity and reliability are the two elements which describe the utility and accuracy of a test. Validity is the most important aspect of any type of test. The validity of a test is defined as the degree to which a test measures the performance it was designed to measure.

The reliability of a test is defined as the consistency of the measure. That means only that the test, no matter what it is measuring, will produce the same value (score) or one very close, every time a person takes the test. To evaluate TEC training effectiveness of the lesson, the test must be dependable. But, that is not enough; it may measure consistently, and still not be valid, i.e., measure what is intended to measure. Tests used for TEC lessons must be both reliable and valid. They must consistently measure the effectiveness of the lesson with respect to the soldiers' real performance requirements.

Developing a Valid Test. One can only estimate the validity of a test. But, there are known techniques to use in developing a valid test.

To determine item content validity you must examine the initial pool of test items on an item by item basis to see if each
appears to measure what it was intended to measure. The examination should involve two steps:

- Making systematic comparisons between training objectives and the test items designed to measure those objectives (for greater detail see Swezey and Pearlstein, 1975).

- Having SMEs review the objectives plus the test items developed to measure them.

The SME review should result in necessary revisions of the test items with respect to required tasks, applicable conditions, and scoring standards. The review should also examine administrative feasibility and define the standardized testing conditions. This process should produce content-valid test items which are usable for the test.

Test items should then be empirically validated through testing the performance of two groups of subjects. One group should be experts (Masters) in the performance requirement the lesson is to support. The other group should be novices (Non-masters). Candidate Masters and Non-masters should be identified by school personnel. The candidates should be identified either by skill levels, by rank, or preferably by sound judgments of individual job performance capability. For this analysis to be effective, you must be sure that the Masters have truly mastered the required skills. Select your subjects using the sampling procedures discussed in Section 5.1.4. After selection, administer the criterion-referenced test items to both groups. Remember, the lesson itself is not involved in the test validation process; your concern is only with the test items and the performance requirements.
After you have administered the test and collected the data, submit the data to analysis using the Phi coefficient (shown below). The Phi coefficient is used to identify those items which are valid measures of job proficiency. Test items which discriminate between Masters and Non-masters are considered to be valid (i.e., valid items are those which most Masters pass and most Non-masters fail). Valid items will then be included in the test. Items that do not discriminate consistently are invalid and should be eliminated from the test. The test may have to be revised and examined several times before it can be considered valid.
USE OF THE PHI COEFFICIENT TO ESTABLISH
EMPIRICAL ITEM VALIDATION:

1. \(\phi \) is best used when items are scored pass-fail, go-no go, acceptable-unacceptable, or 1-0, and when there are about the same number of persons in the "Masters" and "Non-Masters" groups.

2. To compute \(\phi \) for an item, determine:
 A. How many "Masters" passed the item
 B. How many "Masters" failed the item
 C. How many "Non-Masters" passed the item
 D. How many "Non-Masters" failed the item

3. Fill in the information determined above in a table such as this one (and make the additions indicated in the right and bottom margins of the table):

<table>
<thead>
<tr>
<th>Item</th>
<th>Fail</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Masters"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Non-Masters"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Calculate \(\phi \) by substituting the values from the table into this formula:

\[
\phi = \frac{AD - BC}{\sqrt{(A+B)(C+D)(A+C)(B+D)}}
\]

5. If the value of \(\phi \) for an item is less than .30, consider it a "Warning Flag" for that item: Pay careful attention to the item because it may be a poor one - it is often better to throw out that item, develop a new one and try it out.

\(^{a}\)Swezey and Pearlstein, 1975.
Remember, if any test item is determined to be invalid, you must reject it or redesign it and submit it to the same test development process. Repeat the procedure using different students until you have an empirically valid test. Once you have determined that a test is valid, you should examine its reliability.

Establishing a Reliable Test. There are many methods which may be used to estimate a test's reliability. The split-half method (given below) divides a test into two half-length tests. These half tests are scored, correlated, and used in an additional calculation to estimate the reliability of the test.

The test items should be split so that one or more items related to each training objective falls into each half of the test. This will make the two halves more rationally equivalent. If there are not at least two items for a given training objective, try to match the item by placing an item for a related training objective in the second half-test. Now, number these items in one test with even integers and those in the other with odd integers, and then combine all of the items into one overall test. Administer the test as though it had never been split. Score the test to produce two separate scores - one for the odd numbered items and one for the even numbered items. Keep the two scores for each student's test together; they are the "matched pair" scores you will correlate.

To correlate the scores, you will have to compute r, a correlation coefficient, by the method given below.

TO DETERMINE RELIABILITY

- SPLIT TEST IN HALF
- SCORE EACH HALF
- CORRELATE SCORES
- USE CORRELATION OF SCORES FOR ESTIMATING RELIABILITY
CORRELATING TEST SCORES - AN EXAMPLE

<table>
<thead>
<tr>
<th>Student</th>
<th>Scores on Odd Items (X)</th>
<th>Scores on Even Items (Y)</th>
<th>X²</th>
<th>Y²</th>
<th>XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>3</td>
<td>64</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
<td>64</td>
<td>36</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>14</td>
<td>225</td>
<td>196</td>
<td>210</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>12</td>
<td>121</td>
<td>144</td>
<td>132</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>9</td>
<td>169</td>
<td>81</td>
<td>117</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>4</td>
<td>36</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>5</td>
<td>36</td>
<td>25</td>
<td>30</td>
</tr>
</tbody>
</table>

n = 10 \(\Sigma X = 78 \) \(\Sigma Y = 61 \) \(\Sigma X^2 = 760 \) \(\Sigma Y^2 = 533 \) \(\Sigma XY = 618 \)

Next, substitute your data into the formula.

\[
\begin{align*}
\Sigma XY & - (\bar{X})(\bar{Y}) \\
\sigma & = \frac{\sqrt{\left(\Sigma X^2 - (\bar{X})^2\right)\left(\Sigma Y^2 - (\bar{Y})^2\right)}}{n}
\end{align*}
\]

The above example data yield:

\[
\begin{align*}
\frac{618 - (78)(61)}{10} & = \frac{142.2}{156.2} \\
& = 0.91
\end{align*}
\]
Finally, to arrive at your goal of a reliability estimate, you will have to compute \(\hat{r} \) by the method given below.

COMPUTING \(\hat{r} \)

\[
\hat{r} = \frac{2r}{1+r}
\]

Where:
- \(\hat{r} \) = the estimated reliability of the full length test
- \(r \) = the correlation coefficient between the even scores and the odd scores

EXAMPLE:

Using \(r = 0.91 \)

\[
\hat{r} = \frac{2(0.91)}{1+(0.91)} = \frac{1.82}{1.91} = 0.953
\]

You should be aware that the value of \(\hat{r} \) can range from -1.00 through zero to +1.00. If the value of \(\hat{r} \) is less than +0.60 or is negative, the test has questionable reliability. Therefore, regard values between +0.60 and -1.00 as a warning flag and consider the alternatives given below.
QUESTIONABLE RELIABILITY ALTERNATIVES:

- CHECK ALL FIGURES FOR ERRORS.
- CHECK EACH HALF-LENGTH TEST FOR EQUIVALENT ITEMS, i.e., each item in the even part of the test has to have an "equivalent" item in the odd part of the test.
- CHECK THE VALIDATION PROCEDURE FOR BOTH ITEM CONTENT VALIDATION AND EMPirical ITEM VALIDATION.
- ADD EQUIVALENT ITEMS THAT CORRESPOND TO THE LESSON OBJECTIVES TO EACH HALF-LENGTH TEST. ADDING ITEMS OFTEN INCREASES THE RELIABILITY OF A TEST.
- IF NO WEAKNESSES CAN BE DETECTED AND ADDITIONAL ITEMS DO NOT HELP, YOU WILL HAVE TO DEVELOP NEW ITEMS AND MODIFY THE TEST UNTIL IT IS BOTH VALID AND RELIABLE.

Bibliography for 5.1.1

Swezey, R. W. and Pearlstein, R. B. Guidebook for developing criterion-referenced tests. Arlington, Virginia: U. S. Army Research Institute for the Behavioral and Social Sciences. August 1975. (AD - A014 497) (Pp. 5-1 to 5-15 and 7-6 to 7-12 provide information on test validity and reliability. Also, the use of the Phi coefficient is demonstrated.)

5.1.2 Individual Trial Phase

You need to prepare for and conduct individual trials with great care. The results of these trials will point out weaknesses in your lesson for revision and help you decide when to proceed to full validation trials.

Individual trials are conducted during the development of a master TEC lesson, i.e., the storyboard or a sound/slide format. The trials must test all of the lesson materials, the tests, the instructional materials, models, etc. Everything required to implement the lesson must be evaluated. In preparing for the individual trial, you must consider the eight requirements given below.

AN INDIVIDUAL TRIAL IS

- Conducted by trying instructional materials individually on 3 to 5 students representative of the target population.
- Conducted for the purpose of identifying those areas within the lesson subject kit which require revision to insure instructional effectiveness.

PREPARING FOR THE INDIVIDUAL TRIAL:

- Identify and provide the equipment required to conduct the trials, i.e., 35 mm projectors, audio equipment, materials, and any military equipment necessary for performance testing.
- Insure that enough copies of all materials are available.
- Insure that all necessary pretest instructions (i.e., time limits, etc.) are identified and used for each trial.
- Train the evaluators in testing (if necessary).
- Provide guidance for the evaluator on answering student’s questions.
- Provide any other material necessary for the trial, i.e., answer sheets, note pads, and reference documents.
- Insure that each participant belongs to the target audience.
- Provide participant interview formats. (Use a form similar to the user questionnaire in section 4.6 of chapter 4.)
Because the individual trial is feedback to the developmental process, the writer or designer of the kit must participate. The designer will then know what revisions, based on problems identified in the trials are needed.

Immediately prior to the individual trials, transport all test materials and equipment to the test location. Be sure you are familiar with all of the test materials and equipment. Once at the test site, set up and check the materials and equipment and conduct the individual trials.

Feedback from the individual trials will tell you what to do next. First, if the trials are completely successful, i.e., no instructional errors are noted, the trainees encountered no procedural problems, and the trainees passed the posttest, you may proceed to the large group trial. Second, if you identify problems within the lesson itself, or with the way the lesson is intended to be used, you must revise or modify the lesson. Then, proceed to the large group trial if the lesson can be easily corrected. Finally, if you identify problems which require major revisions, you may want to repeat the individual trials, or conduct a small group trial, after revisions are made.

Bibliography for 5.1.2.

TRADOC PAMPHLET 350-30. ISD Phase III. Fort Monroe, Virginia: U. S. Army Training and Doctrine Command, August 1975. (Pp. 298-303 discuss the procedures to follow in order to conduct individual trials.)
5.1.3 Small Group Trial Phase

Small group trials can be conducted after individual trials. If no problems were identified in the final individual trials, you may elect to skip these and move immediately into the evaluation testing phase.

Preparations for conducting the small group trial are identical to those involved in the individual trials. But, you will need more materials to handle more trainees.

The difference between the individual trial and the small group trial is solely the number of trainees using the lesson and the equipment. Otherwise, the small group trial is identical to the individual trial with similar purposes and options based on results.

A SMALL GROUP TRIAL IS
- CONDUCTED BY SIMULTANEOUSLY TRYING INSTRUCTIONAL MATERIALS ON 6 TO 10 STUDENTS WHO ARE REPRESENTATIVE OF THE TARGET POPULATION BUT, NOT INCLUDED IN THE INDIVIDUAL TRIAL.
- CONDUCTED FOR THE PURPOSE OF IDENTIFYING THOSE AREAS WITHIN THE LESSON SUBJECT KIT WHICH REQUIRE REVISION TO INSURE INSTRUCTIONAL EFFECTIVENESS.

SMALL GROUP TRIAL OPTIONS
- PROCEED TO LARGE GROUP TRIAL
- MODIFY OR REVISE LESSON AND THEN PROCEED TO LARGE GROUP
- REVISE LESSON AND RETURN TO INDIVIDUAL TRIALS

RETURNING THE KIT

If either the individual or the small group trial discloses problem areas within the TEC lesson kit, return it to the writer/designer for revision. Be sure to include appropriate problem identifying comments like: "THE ILLUSTRATIONS IN FRAMES 5, 7, and 9 OF LESSON "A" ARE "BLURRED" OR "THE ANSWER KEY IS WRONG" OR "THE LESSON DOES NOT TEACH OBJECTIVE NUMBER_____."
The effectiveness testing phase is the most important aspect of development of training effective TEC lessons. In this phase you can determine whether the lesson you have developed (or monitored) is truly effective with the soldiers for whom it was designed. You will know after conducting this phase that the lesson will train most of the target soldiers in the required skills to a given level of proficiency. You and the School will have set the level of proficiency (by defining the standards for GOs on each training objective) and the percentage of soldiers who must achieve those standards based on the importance of the training objective. When the lesson has been demonstrated to be effective to the levels you have set, you can be confident that the lesson will also be effective in the field. Of course, the demonstration of training effectiveness may require revision and retesting until the criterion level of effectiveness is achieved.

That is the iterative nature of lesson development and evaluation.
Because this phase is so important to effective lesson development, it must be conducted extremely carefully and in accordance with these guidelines. Poor development and evaluation costs time and money and results in ineffective training. Proper development and evaluation results in better trained, more effective and more satisfied soldiers. Remember, your job is to ensure proper conduct of the effectiveness testing and lesson evaluation.

The overall effectiveness of the testing sequence is shown below. The steps are addressed in the following paragraphs and in Section 5.2.
THE EVALUATION TESTING SEQUENCE

1. DETERMINE THE TESTING LOCATION
2. SELECT TARGET AUDIENCE SAMPLE
3. ADMINISTER PRETEST
4. ADMINISTER THE LESSON
5. ADMINISTER POSTTEST
6. SCORE & VALIDATE BY OBJECTIVE

- NO RESERVATIONS
- YES
- VALID?
- NO
- REJECT
- WITH RESERVATIONS
The Testing Location.
The testing location is very important to the proper validation of a TEC lesson. If the lesson requires use of the LAW (Light Anti-tank Weapon) and no LAW can be made available at the chosen location, that location is no good. You need to consider other, just as obvious, points.

CONSIDERATIONS FOR SELECTING TEC LESSON VALIDATION LOCATIONS:

- **IS THE TASK BEING TRAINED PERFORMED THERE?**

- **IS THERE A LARGE ENOUGH TARGET AUDIENCE AVAILABLE FROM WHICH TO DRAW A SAMPLE?**

- **CAN THE NECESSARY COOPERATION BE SMOOTHLY ATTAINED?**

- **CAN THE NECESSARY FACILITIES BE MADE AVAILABLE?**

- **CAN THE NECESSARY ADMINISTRATIVE SUPPORT BE MADE AVAILABLE?**

Having selected the location, you can now proceed with the evaluation.

Determining the Target Audience and Drawing A Sample.
The target audience for a given lesson consists of the entire population of soldiers who must be trained. This means every person in the MOS for which the lesson was designed. Or, it means every soldier who can benefit from the lesson through: 1) upgrading his/her MOS; 2) retraining into the MOS; 3) reviewing, practicing, and/or maintaining MOS skills.

IDENTIFYING THE TARGET AUDIENCE

- **IDENTIFY THE MOS FOR WHICH THIS TEC LESSON IS BEING PREPARED.**

- **IDENTIFY THE NUMBERS OF PEOPLE ASSIGNED THE MOS.**

- **IDENTIFY SKILLS THAT CAN BE TRAINED, REVIEWED, PRACTICED, OR MAINTAINED BY USING THE LESSON.**

- **IDENTIFY REQUISITE SKILLS.**
The sub-population sample must not differ from the target population in any way that would affect the lesson evaluation.

Drawing a representative sample from the target population is the next step. The sample must be representative of the population - not confined to some peculiar subgroup, such as highly trained personnel, or especially selected personnel - so that the results of the lesson testing can be expected to apply to the whole population. The usual scientific way to assure a representative sample is to draw randomly from the total population until a sufficiently large group is obtained to provide a reliable sample of the population. This is impractical for TEC lesson testing because the population is widely dispersed and individuals in the target MOS cannot be called back from U.S. Army-Europe (USAREUR), Alaska, or Korea, just to participate in lesson evaluation. Therefore, we settle for a sample drawn from the sub-population available at the testing installation - assuming there are no special qualifiers about the troops at this installation, such as special selection GT score, that makes this group non-representative of the population. If the sub-population is suspected of being very different from the population - better or worse - in ways that would affect the TEC lesson evaluation, then find another sub-population.

After identifying the sub-population to be sampled, there are several ways to draw the actual sample of 30 or more
in lesson training. The most scientific would be to throw the names (or SSANs) into a hat or barrel, stir them up thoroughly, and draw one name/SSAN at a time until you had enough individuals for the sample. This would assure a truly random sample. However, this is also somewhat impractical; and a simpler method can be used which provides nearly as good results.

The simple method is to obtain an ordered list of SSANs of the available individuals across units and to sample systematically from the list. That is, if there are 500 troops in the desired MOS at an installation and you want a sample of 35 troops for testing, get the list of the SSANs of the 500 troops, and select every 14th one on the list for your sample. This will give you 35 names out of the 500. Since some of these people will not be available for testing, it is wise to take every 15th name as an alternate for the preceding name on the list and use that individual only when the original pick is not available. Although this process is not

*The number 14 comes from dividing the sub-population size (500) by the desired sample size (35). The number counted to the person to be picked thus varies with the sub-population size and sample size.
strictly a random one, it will yield an essentially random sample of the sub-population because there are normally no systematic biases in either SSAN assignments or list aggregation. It can be shown that SSAN assignment is essentially a random process, and that systematically sampling from SSANs provides essentially a random sample.

In general, the rules, given below must be observed.

RULES FOR SAMPLE SELECTION

- **STUDENTS FOR THE EVALUATION TEST MUST BE RANDOMLY SELECTED FROM THE STUDENTS AVAILABLE.** (THIS RULE IS MODIFIED BY THE FOLLOWING RULES.)
- **STUDENTS USED FOR THE EVALUATION SAMPLE MUST NOT HAVE BEEN USED FOR DEVELOPMENTAL TESTING COVERING THE OBJECTIVES BEING EXAMINED.**
- **STUDENTS MUST HAVE MASTERED PREREQUISITES AND HAVE PASSED POSTTESTS OF PREREQUISITE TEC LESSONS, ADMINISTERED BY THE SERVICE SCHOOL, IN ORDER TO BE USED AS SUBJECTS FOR VALIDATION TESTS FOR MATERIALS WHICH ARE DESIGNED TO BUILD UPON PREVIOUS INSTRUCTION.**
- **STUDENTS WHO PASS THE PRETEST SHALL NOT BE USED AS PART OF THE VALIDATION SAMPLE.**
- **IF TESTING IS CONDUCTED USING A FIXED SAMPLE SIZE, THAT SAMPLE SHOULD INCLUDE AT LEAST 30 STUDENTS.**

In some cases, you may have to make sure the lesson is equally effective for different subgroups in the population. For example, if the lesson is to be used for both male and female soldiers, and if you think there may be different training effectiveness for the two groups, you will have to test it on sufficient numbers of both groups to demonstrate its effectiveness for
both groups. This calls for about 30 - 35 persons to be tested in each group and for stratified sampling development.

For this type of testing situation, you would break your 500 troops into the two subgroups: let's say it breaks into 350 males and 150 females. To select your two samples, each of 35 troops, you would then take every 10th male on the list for the male sample; and every 4th female on the list for the female sample. Similar sampling might be necessary by Branch or by MOS when testing lessons to be equally effective across Branches or across MOSs. Such multiple group testing would only be necessary when you or your School had serious reason to believe there were real differences between the soldiers in the different Branches or MOSs that could cause different reactions to the lessons and thus different training effectiveness results. This is not believed to be the usual case, but you should be aware of the possible need for multiple group testing, and should consider it in relation to each TEC lesson you are developing. Use it when you have to.
TEC LESSON TESTING METHODS

- FIXED SAMPLE
- SEQUENTIAL TESTING SAMPLE

In TEC contracts let to date, two methods for testing TEC lessons have been specified: those are the "Fixed Sample" method and the "Sequential Testing Sample" method.

Fixed Sample. The Fixed Sample method requires you to select the number of soldiers to be tested in advance (at least 30). These soldiers are then given a pretest, TEC lesson, and a posttest. The lesson is accepted if for each training objective (TO) the proportion of sampled soldiers passing the posttest for the TO exceeds a prespecified criterion value. However, in practice it has turned out that even if 30 soldiers all view a TEC lesson at the same time in a group, they can rarely be tested simultaneously. Since testing (or at least test scoring) occurs sequentially, it is recommended here that the Sequential Testing Sample method be used in all cases.

Sequential Testing Sample. The Sequential Testing Sample method requires you to make an entry in each of a set of charts (one for each TO) after scoring each test. Based on these entries, you then decide whether to accept the lesson, reject it or go on to the next test. The use of the charts is described in more detail in Section 5.1.5.

While the number of soldiers that must be tested cannot be known in advance using this
method, experience has shown that you will rarely have to test more than 30 soldiers before reaching a decision on the lesson. For very good or very bad lessons, you will probably reach a decision with considerably less than 30 soldiers.

Testing Sequence Errors. You can minimize the opportunities for testing sequence errors by reviewing the TEC Lesson Evaluation Process in relation to the questions below.

MINIMIZE TESTING SEQUENCE ERRORS

- CAN THE VALIDATION SESSIONS BE EXECUTED WITHIN THE FRAMEWORK OF EXISTING ARMY REGULATIONS?
- ARE THE IDENTIFIED TESTING MATERIALS READILY AVAILABLE?
- IS THE IDENTIFIED EQUIPMENT READILY AVAILABLE?
- IS THE NEEDED ADMINISTRATIVE SUPPORT READILY AVAILABLE?
- ARE THERE ANY OBVIOUS ERRORS OR PROBLEMS CONTAINED WITHIN THE PLAN?
- IS THE PROPOSED SEQUENCE OF EVENTS CORRECT AND REASONABLE?

Pretest Administration.
Before administering the pretest, be sure that the students know the purpose of the test and the lesson following it. Explain the TEC Lesson Evaluation Process, and provide the trainees information about the sequence of events in which they will...
be involved. That is, explain to them what they will be doing during each step of the evaluation process. During the conduct of the test, make sure the testers maintain an impartial attitude.

Pretesting should be easy and routine, if the proper prior attention is given to the administration requirements. Be sure the pretest has been validated (See Section 5.1.1). Also, students passing the pretest cannot continue in the evaluation process. Finally, do not give any feedback to the students who don't pass because they may learn the test and not the lesson objectives.

Lesson Administration.

Since your goal is to determine the training effectiveness of a TEC lesson, you must be sure that the test situation duplicates the real learning situation. If the lesson is going to be used in a learning center, try to validate it using a learning center environment. If the lesson is for field or maintenance hanger use, test it in that situation.

When a TEC lesson is ready for evaluation in a large group trial, the lesson will usually be in the sound-slide stage of development, with only one copy being available for use in the evaluation. For this reason, most schools elect to present the lesson to the sampled soldiers in groups of five or more at a time rather than having each soldier view the lesson individually. However,

FOR PROPER LESSON ADMINISTRATION

- Be sure all trainers have reviewed the instructional materials to be evaluated in detail and are able to use them appropriately.
- Be sure all trainers know that they must keep an impartial attitude during the conduct of a lesson and do so.
- Insure that the test items/answers are kept from compromise.
It should be kept in mind that when a lesson is viewed in a group mode, there is little or no self-pacing. For certain tasks (disassembly of an M60 machinegun for example) the lack of self-pacing may decrease the effectiveness of the lesson.

Posttest Administration.
The posttest does not have to differ from the pretest. Therefore, the procedures, materials, equipment, and manpower required for the posttesting effort can be essentially the same as those required to implement the pretest effort.

CONSIDERATIONS FOR POSTTEST ADMINISTRATION

- HAVE POSTTESTING PROCEDURES BEEN CLEARLY IDENTIFIED?
- ARE THE TYPES OF TESTING FACILITIES NEEDED (RIFLE RANGE, CLASSROOM, DRILL FIELD, ETC.) IDENTIFIED AND AVAILABLE?
- ARE THE REQUIRED TESTING MATERIALS (BOOKS, PAPER, FILM, PENCILS, ETC.) IDENTIFIED AND AVAILABLE?
- IS THE NEEDED TESTING EQUIPMENT (HARDWARE, PROPS LIKE LAW OR A RADIO, ETC.) IDENTIFIED? IS IT AVAILABLE?
- IS NEEDED MANPOWER (NUMBER OF TESTERS, AIDES TO GRADE, TRAINERS, ETC.) IDENTIFIED? IS IT AVAILABLE?

After the posttest you should provide full feedback of results to each trainee and question each one about the quality and acceptability of the lesson. Although
bearing on the acceptability of the lesson in the statistical sense, these often provide you with the best information about where to start in further revisions to the lesson if it should be rejected. Even if the lesson is accepted, the trainee comments should be seriously considered and when faults have been identified which can be easily or cheaply corrected, these revisions should be made. Remember, these soldiers are the people you're designing the lesson for. Their opinions are important and can make your job easier and your output better. Even effective lessons won't train if people don't use them; and if the soldiers don't like them, they won't use them. Pay attention to the consumer!

Bibliography for 5.1.4

5.1.5 Validation Decision-Making Phase

This phase of TEC effectiveness evaluation is critical and is perhaps the most complex procedurally. Based on the recommendation of Section 5.1.4, above, we present only the process for making the decision about lesson validity based on the sequential sampling decision technique. This technique provides high confidence that
will be trained to the selected criterion with the least expenditure of manpower and other resources. The rules, given below, will assist you in evaluating the effectiveness of a TEC lesson.

RULES FOR EVALUATION

- **INSTRUCTION SHALL BE EVALUATED ON AN OBJECTIVE BY OBJECTIVE BASIS.**
- **ALL OBJECTIVES SHALL BE ACHIEVED ON A GO - NO GO BASIS.**
- **EACH OBJECTIVE SHALL HAVE BEEN RATED FOR IMPORTANCE AND CERTIFIED ACCEPTABLE BY A MEMBER OF THE SERVICE SCHOOL OR OTHER GOVERNMENTAL OFFICIAL.**
- **DECISION CRITERIA FOR LESSON EFFECTIVENESS WILL VARY WITH THE IMPORTANCE OF THE OBJECTIVE.**

Scoring by Objective.
All posttests must be scored in correspondence with the criteria defined for pass/fail with respect to each objective. These criteria relate to the correct answers/performance in response to each criterion-referenced item related to each training objective. They must have been defined before hand by school personnel and made into a scoring key for the posttest. Each soldier's responses on the posttest are now scored with this key. After individual responses are scored, it must be determined whether the soldier has passed or failed with respect to each training objective.
The GOs and NO-Gos for each soldier are the data you use to determine whether the lesson is training effective for each objective. These scores must be entered on the appropriate charts in the order scored to preserve the validity of the process (see the Plotting Scores Section below).

Selecting Charts for Each Training Objective.
The TEC contracts include five distinct charts (for the sequential scoring process) to be used to evaluate the training effectiveness of a TEC lesson with respect to each objective. The chart to be used for each objective is determined by the importance rating (given below) assigned to that objective (that is, there is a specific chart associated with each importance rating). Remember you are not responsible for determining the importance of the objective. You are responsible for seeing to it that the objective has been rated with respect to its importance.

IMPORTANCE RATING FOR EACH OBJECTIVE IS DETERMINED BY:

- **THE CONSEQUENCES OF INADEQUATE PERFORMANCE OF THE OBJECTIVE.**
- **THE TIME AVAILABLE FOR LEARNING ON THE JOB.**
- **THE AVAILABILITY OF TECHNICAL ASSISTANCE AND REFERENCES ON THE JOB.**
- **THE AMOUNT OF INSTRUCTION AVAILABLE CONCERNING THIS OBJECTIVE AND THE NUMBER OF PLACES WHERE THAT INSTRUCTION IS AVAILABLE.**
An example of a sequential testing chart is shown below.

SEQUENTIAL TESTING CHART - AN EXAMPLE

<table>
<thead>
<tr>
<th>HIGH</th>
<th>75%</th>
<th>LESSON NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIRABLE</td>
<td>65%</td>
<td>KIT TITLE</td>
</tr>
<tr>
<td>LOW</td>
<td>55%</td>
<td>OBJECTIVE NO.</td>
</tr>
<tr>
<td>(\alpha = 0.05)</td>
<td>(\beta = 0.25)</td>
<td>CERTIFICATION</td>
</tr>
</tbody>
</table>

(SIGNATURE OF U.S. GOV. REP.)

Number of NO GOS vs. Number of Trials

Area of Rejection

Area of Acceptance
Plotting GO-NO Scores.

As illustrated above, the sequential testing charts are graphs on which are to be plotted the GO-NO scores of each soldier with respect to an individual objective. Five numbers are given on each chart. These are a "High", "Desirable" and "Low" value for the percent of soldiers receiving a GO on the test for a given training objective, along with two other numbers, "a" and "β". The numbers are interpreted as follows:

- **a** is the probability that an objective would be rejected if the percent of soldiers in the target population receiving GO for that objective, after reviewing the lesson, were equal to the "High" value.

- **β** is the probability that an objective would be accepted if the percent of soldiers in the target population receiving GO for that objective, after reviewing the lesson, were equal to the "Low" value.

The horizontal axis counts the number of trials (soldiers taking the test) and the vertical axis counts the cumulative number of NO GOs. The graph is simply a mechanical way to determine whether the lesson should be accepted or rejected, based on the results of the tests, for that objective. The parallel lines on the chart mark the regions for acceptance or rejection.
The area on each group between the diagonal lines is the "continue testing area." Above the lines is the "reject" area. The area below the lines is the "accept" area.

To mark the charts, place an X on the graph for each trial. Regardless of how you have presented the lesson to the soldiers - one-by-one, in a large group, or in a series of small groups - data must be recorded in the order tested and one-at-a-time. If soldiers are tested individually, plot the data immediately after each test. This is the optimum procedure and will maximize the benefits of the sequential testing and scoring method. If soldiers are tested in small groups, score and record all data collected after each group and before you test the next group - you may not have to do any more testing at all.

Each successive trial is plotted, horizontally along the chart. NO GOs are plotted to the right and up one box, GOs are plotted just to the right. For example:
If the first trial is a NO GO, place an X in the 1 column for Number of Trials beside the 1 row for Number of NO GOs.

If all the trials are NO GOs, the chart would look like this and the 4th trial is in the reject area and testing can stop (providing that a decision has been reached on all other training objectives).

If the first trial is a GO, place an X in the 1 column for Number of Trials and beside the 0 row for Number of NO GOs.
Continue to place the X's horizontally for each GO and diagonally for each NO GO.

If all the trials are GOs, the chart would look like this and the 3rd trial is in the accept area and testing can stop (providing a decision has been reached on all other training objectives.)

Sometimes the maximum number of trials will be reached without a decision. In that case, count the squares up to the reject area and down to the accept area. Whichever is closer should be chosen.

When a maximum number is reached (an example)
Rather than a testing situation that results in all G0s or NO G0s, the more usual result would be a mixture of G0s and NO G0s. In this example, it takes 21 trials to reach the accept area. Remember, there will be a graph like the one above.
for each objective in the lesson. Testing must continue until a decision has been reached on all training objectives.

Acceptance/Rejection of TEC Lesson by Objective. The procedure described above must be carried out for each training objective. When this has been accomplished, you can determine directly from your charts which training objectives have been successfully accomplished by an acceptable number of soldiers and which objectives have not. At this point there is no decision to be made about the training effectiveness of the lesson with respect to each objective: this has been shown by the data - the lesson either teaches well or it does not for each objective. The decision now is with respect to the total lesson: Is it effective enough to be sent forward for final development? Is it effective enough to be worth revising
where it is weak? Or, is it so poor that it should be scrapped and started over?

If the lesson has satisfactorily met the criteria on all training objectives (and if trainee comments have not indicated any serious quality or acceptance problems) the lesson should obviously be passed on to the final stages of development, production and distribution. If the lesson has achieved the criteria with respect to most of the objectives, it probably should be worth revision and retesting to produce a training effective lesson. It appears that only lessons which totally fail to train on any of the major objectives should be scrapped.

Any lesson which fails to validate with respect to any training objective must be revised. Depending on the extent of failure, the revision may require going back to the early (e.g., Individual trials) stages of effectiveness evaluation procedure. But, whatever the extent of revision that is required and accomplished after this stage, the lesson must be reevaluated through the training effectiveness testing phase - using another sample of the appropriate target population. That means that when revisions are completed, you must start all over with Sections 5.1.4.
and 5.1.5. The process must be performed fully and accurately to assure that the soldiers in the field get the "certified training effective" lesson that we have promised them.

Bibliography for 5.1.5

Consult Recent TEC Requests for Proposals (RFPs) for any specific guidance that may be provided for large group validation procedures.
IF THE LESSON IS UNDER CONTRACT, THE CONTRACTOR WILL:

- IDENTIFY PROCEDURES AND NEEDS FOR ADMINISTERING THE PRETEST.
- IDENTIFY PROCEDURES AND NEEDS FOR ADMINISTERING THE TEC LESSON.
- IDENTIFY PROCEDURES AND NEEDS FOR ADMINISTERING THE POSTTEST.
- IDENTIFY A METHOD FOR MEANINGFULLY REPORTING TRAINEE COMMENTS.
- IDENTIFY EFFECTIVENESS DECISION MAKING CRITERIA ACCORDING TO CONTRACT SPECIFICATIONS.

The previous sections (5.1.1-5.1.5) described what you had to do in order to produce effective lessons. Because lessons can be produced both in-house and under contract you can apply these guidelines to in-house lesson development and use them as a basis for monitoring what the contractor does.

5.2.1 The TEC Manager's Role

When a TEC lesson is being developed under contract, you have two primary roles. First, you are an evaluator. In your role as an evaluator, you are responsible for assuring the government that the contractor has properly conducted an evaluation effort for the newly developed TEC lesson. You are also responsible for certifying the results of the effort. That is, you insure the government that validation results presented by the contractor are the ones that actually occurred.

Your second role is that of a facilitator. Here, you assume the responsibility of assisting
the contractor in accomplishing his task by helping him secure necessary military cooperation in terms of personnel (administrative support), testing facilities, soldiers from the target audience, equipment, and other items requisite to the implementation and conduct of his evaluation effort.

Ask the contractor for a time schedule that reflects where and when he will be conducting each phase of his evaluation effort. When you receive the schedule, compare the events planned into the effort with those in the TEC contract under which he is operating. Remember, a school representative must be present for all trials and lesson evaluation sessions.

5.2.2 Minimizing Error

There are two primary opportunities for error. First, errors can occur on the part of the contractor as a result of a misunderstanding of the contract specifications. Second, errors can occur on your part as a result of misunderstanding the contractor's responsibility for providing testing materials and not being aware of the Government's responsibility for providing military equipment needed to conduct the evaluation effort. In
MINIMIZING ERROR

• IN ORDER TO INFERENCE THAT THE TRAINING MATERIALS ARE EFFECTIVE UNDER THE INTENDED CONDITIONS OF USE, THE STUDENT'S EXPOSURE TO THE MATERIALS DURING THE ADMINISTRATION OF THE LESSON SHALL MATCH THE INTENDED CONDITIONS FOR USE OF THE MATERIALS.

• THE CONTRACTOR SHALL PROVIDE THE FOLLOWING, PRIOR TO COMMENCEMENT OF EACH VALIDATION TEST:

 - A LIST OF EQUIPMENT, e.g., 35 MM PROJECTORS, TAPE CASSETTE PLAYERS AND ANY MILITARY EQUIPMENT FOR PERFORMANCE TESTING REQUIRED. EQUIPMENT WILL BE PROVIDED BY THE GOVERNMENT.

 - A LIST OF MATERIALS PROVIDED BY THE CONTRACTOR, e.g., STORY-BOARDS AND/OR 35 MM SLIDES, SCRIPT AND SCRATCH TAPES (AV KIT) VISUAL DUMMY (PT KIT) AND SCRATCH TAPE (AO KIT).
When the contractor is ready to implement the evaluation effort, he must notify you. (Refer to the TEC contract for details.) Once properly notified, the Government will supply all of the military equipment, subjects, and material requisite to conducting the evaluation effort. The contractor, however, is responsible for supplying certain materials. Errors here could nullify the trials.

MATERIALS TO BE PROVIDED BY THE CONTRACTOR

(AS REQUIRED)

- SUFFICIENT COPIES OF PRE- AND POSTTESTS AND ANSWER KEYS.

- NECESSARY FORMS FOR RECORDING PERTINENT INFORMATION CONCERNING TRIAL, e.g., STUDENT RESPONSES, PRE- AND POSTTEST RESULTS.

- INSTRUCTIONS TO THE STUDENT, e.g., TIME LIMITS, IF ANY, ACCURACY OR SPEED.

- GUIDANCE FOR THE EVALUATOR ON ANSWERING STUDENT'S QUESTIONS.

- ANY OTHER MATERIAL NECESSARY FOR THE TRIAL, e.g., ANSWER SHEETS, NOTE PADS, AND REFERENCE DOCUMENTS.

Remember, a Government representative must certify each test result. Remember, also, that the contractor must provide personnel to administer the test.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0 DISTRIBUTION OF TEC LESSONS</td>
<td>6-2</td>
</tr>
<tr>
<td>6.1 PREPARING LAIs AND SISs</td>
<td>6-3</td>
</tr>
<tr>
<td>6.1.1 Writing the LAI</td>
<td>6-3</td>
</tr>
<tr>
<td>6.1.2 Writing the SIS</td>
<td>6-7</td>
</tr>
<tr>
<td>6.1.3 Shipment of the LAIs and SISs</td>
<td>6-10</td>
</tr>
<tr>
<td>6.2 DEVELOPING AND PACKAGING HISTORICAL DATA AND MATERIALS</td>
<td>6-11</td>
</tr>
<tr>
<td>6.2.1 Itemizing Historical Data and Materials</td>
<td>6-11</td>
</tr>
<tr>
<td>6.2.2 Itemized Packing List and Its Distribution (Historical Data)</td>
<td>6-12</td>
</tr>
<tr>
<td>6.3 SHIPMENT TO TRAINING MATERIEL SUPPORT DETACHMENT (TOBYHANNA)</td>
<td>6-15</td>
</tr>
<tr>
<td>6.3.1 Overview of TEC Lesson Distribution</td>
<td>6-15</td>
</tr>
<tr>
<td>6.3.2 Palletizing Procedures</td>
<td>6-17</td>
</tr>
<tr>
<td>Packaging Instructions</td>
<td>6-18</td>
</tr>
<tr>
<td>Marking and Identifying the Containers</td>
<td>6-18</td>
</tr>
<tr>
<td>6.3.3 Advance Notice to Tobyhanna</td>
<td>6-19</td>
</tr>
<tr>
<td>6.4 REQUEST FOR ADJUNCTIVE MATERIAL AND SHIPMENT</td>
<td>6-20</td>
</tr>
<tr>
<td>6.5 TEC LESSON ANNUAL REVIEW PROCEDURES</td>
<td>6-23</td>
</tr>
<tr>
<td>6.5.1 Determining Significant Errors</td>
<td>6-23</td>
</tr>
<tr>
<td>6.5.2 Recommendations and Actions for Changes or No-Changes</td>
<td>6-24</td>
</tr>
<tr>
<td>6.6 PROCEDURES FOR A SAFETY VIOLATION</td>
<td>6-25</td>
</tr>
<tr>
<td>6.7 SAFEGUARDING DEFENSE INFORMATION</td>
<td>6-26</td>
</tr>
</tbody>
</table>
DISTRIBUTION OF TEC LESSONS

- PREPARATION AND SHIPMENT OF
 - LAIs
 - SISs
 - HISTORICAL PACKAGE
- TEC LESSON ANNUAL REVIEW
- SAFETY VIOLATION PROCEDURES
- SAFEGUARDING CLASSIFIED INFORMATION

The first sections (6.2 - 6.4) of this chapter cover the final stages of TEC lesson development and the role the TEC manager must play to insure that the TEC lessons enter into the distribution process in good shape. That is, the TEC manager must see to it that the Lesson Administrative Instructions (LAIs) and the Student Instruction Sheets (SISs) are prepared and shipped, the historical package is put together and shipped, and any adjunctive material (Army FMs or TMs) required of a TEC lesson are properly requested from the AG Centers.

The last sections of this chapter provide intital guidance for conducting the TEC Annual Review, procedures for a safety violation noted in a TEC lesson, and safe-guarding classified information.
Concurrent with the development of each TEC lesson you will develop the accompanying LAI and SIS. The LAI provides detailed information on the TEC lesson while the SIS is a brief, concise outline to assist students in the use of the lesson. TEC Training Managers use this information to make decisions on the need for the lesson in their training programs, the use of group or individual modes, and so forth. Included in the LAI is the pretest. This pretest is the same as, or equivalent to, the criterion post-test.

6.1.1 Writing the LAI

LAIs have a standard format. Users familiar with the LAIs can quickly extract the desired information. They must be written to the target audience just like a TEC kit -- brief, concise, clear. The format given below should be followed.

<table>
<thead>
<tr>
<th>LAI FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE OF LESSON: Common Semi-Common Administrative Instruction</td>
</tr>
<tr>
<td>Branch/MOS TEC Lesson No. ______</td>
</tr>
<tr>
<td>(Name of Lesson)</td>
</tr>
</tbody>
</table>

1. Training Objectives: Soldiers completing this lesson should be able to:
2. Pretraining Actions:

a. Prerequisites: Many TEC lessons require that the soldier have certain prior knowledge or skills before taking the lesson. Isolate these prerequisites and define them in terms of other required lessons or tasks that the soldier must be able to perform.

b. Test: This is the diagnostic pretest to determine whether the soldier needs the lesson. This test is either a PERFORMANCE TEST or a CRITERION-REFERENCED TEST. You can combine the two, if necessary.

The PERFORMANCE TEST contains all needed instructions and details for a real world performance test.

The CRITERION-REFERENCED TEST is a written test containing criterion test facts from the lesson itself. This paragraph in the LAI provides the guidelines for the test and the standards for determining whether the soldier needs the lesson.

3. Lesson Materials: This paragraph describes the components making up the TEC lesson (audio-visual kits, audio tapes only, skill practice exercises, etc.).

4. Equipment and/or Materials Required: This paragraph precisely describes the items a soldier must have in his possession to adequately take the lesson. Everything must be specified (weapon, pencil and paper, etc.). Also, you specify here how lesson materials can be reordered or resupplied.

5. Length: This paragraph indicates the average length of time the lesson takes in both group and individual modes. The exact or average time for the stimulus presentation is given first.
a. Stimulus Time: __________ minutes

b. __________ minutes -- Individual

c. __________ minutes -- Group

6. Additional Study References: List specific study references related to the lesson objectives. Give the page and/or paragraph numbers in the FMs and TMs.

7. Skill Practices: This paragraph provides trainers with guidance on skill practice exercises necessary to develop proficiency in the tasks learned from the TEC lesson. You may refer the trainer to other training material or provide instructions in an inclosure.

8. Recommendations to the Instructor: This paragraph goes beyond the general information already provided. It gives trainers specific suggestions on how to get maximum efficiency from the TEC lesson. These recommendations should be essential to the development of a sound training program.

The approach in TEC IV is to use one-liners as often as possible. This approach is quick, direct, and to the point. For example:

- **Recommendations to the Instructor:** This lesson is self-contained and needs no special consideration when used in the individual mode except for gathering the equipment and/or materials required. A maximum of 10 soldiers is recommended for group mode. Place pretest in a document protector and use a grease pencil to conserve paper.

- **Recommendations to the Instructor:**
 a. Distribute the lesson
 b. Make sure the soldier has all required materials and equipment
 c. Use no more than 10 students for group study
 d. Keep the pretest in a document protector
 e. Use grease pencil to conserve paper.
EXAMPLE OF A WRITTEN LAI

TYPE OF LESSON: Common Subject
Applicable to all soldiers in the
Common Area MIL's

ADMINISTRATIVE INSTRUCTIONS

The lesson 541-271-0024-7

1. Training Objective: Soldiers completing this lesson should be able to:
 a. Identify the proper position and grip for firing the M14 on the hip and
 tripod.
 b. Calculate deflection correction.
 c. Use the weapon's three axes of fire and when the barrel should be
 charged for each.

2. Pre-Training Notes:
 a. Prerequisites: The following must be taken as a prerequisite to this
 lesson:
 b. Equipment and Materials Available: To complete this lesson the
 soldier must have in his possession the following:
 c. Written Material: This lesson consists of one training exercise and
 one answer sheet.
 d. Typical Questions:
 e. Typical Answers:

3. Individual Qualification Group Requirements: 95 minutes

- Additional Study Material: 51-444-271-0024

- Additional Information: This lesson is designed for students in the
 common area MIL's. Seven cards were designed at the rate that
 the student will need practice with the gun. The student
 will learn the proper position and grip for firing the
 M14 on the hip and tripod.

- Pre-Test: This lesson is self-contained and can be used
 in the following order: 1-7 for the exercise. The
 student must fill out the answer sheet and keep the
 exercise set for the next lesson. The instructor will then
 give the student the proper position and grip for
 firing the M14 on the hip and tripod.

- Recommendations to the Instructor: This lesson is self-contained and can be
 used in the following order: 1-7 for the exercise. The
 student must fill out the answer sheet and keep the
 exercise set for the next lesson. The instructor will then
 give the student the proper position and grip for
 firing the M14 on the hip and tripod.

- Record Keeping: This lesson is self-contained and can be
 used in the following order: 1-7 for the exercise. The
 student must fill out the answer sheet and keep the
 exercise set for the next lesson. The instructor will then
 give the student the proper position and grip for
 firing the M14 on the hip and tripod.

- Pre-Test/Answer Key

- Administrative Instructions

- Answer to Lesson 541-271-0024-7, "The M14 Machinegun
 and Tripod”. The student must complete this lesson
 before proceeding to the next lesson. The student should
 be able to correctly answer at least 11 out of 12 questions
 correctly to pass this test. If the student fails to answer
 at least 11 questions correctly, the student should
 review the lesson and try again. If the student is still
 unable to answer 11 questions correctly, the
 instructor should review the lesson with the
 student. If the student is still unable to answer
 11 questions correctly, the
 instructor should review the lesson with the
 student.

- Pre-Test/Answer Key

- Administrative Instructions

- Answer to Lesson 541-271-0024-7, "The M14 Machinegun
 and Tripod”. The student must complete this lesson
 before proceeding to the next lesson. The student should
 be able to correctly answer at least 11 out of 12 questions
 correctly to pass this test. If the student fails to answer
 at least 11 questions correctly, the student should
 review the lesson and try again. If the student is still
 unable to answer 11 questions correctly, the
 instructor should review the lesson with the
 student. If the student is still unable to answer
 11 questions correctly, the
 instructor should review the lesson with the
 student.

- Pre-Test/Answer Key

- Administrative Instructions

- Answer to Lesson 541-271-0024-7, "The M14 Machinegun
 and Tripod”. The student must complete this lesson
 before proceeding to the next lesson. The student should
 be able to correctly answer at least 11 out of 12 questions
 correctly to pass this test. If the student fails to answer
 at least 11 questions correctly, the student should
 review the lesson and try again. If the student is still
 unable to answer 11 questions correctly, the
 instructor should review the lesson with the
 student. If the student is still unable to answer
 11 questions correctly, the
 instructor should review the lesson with the
 student.
The SIS is simple. Take the LAI and transfer the information required for the SIS according to the format given below.

SIS FORMAT

STUDENT INSTRUCTION SHEET

Lesson No. _________

(Lesson Title)

AUDIENCE:
- Applicable to what group of soldiers.

TRAINING OBJECTIVES:
- Soldiers completing this lesson should be able to:
 a. Verb + object + (complement)
 b. Verb + object + (complement)

MATERIALS REQUIRED:
- This is a list of materials needed to complete the lesson.

TIME:
- Overall time needed to take lesson (includes both stimulus and response times).

GENERAL INSTRUCTIONS:
- If you have never taken a(n) ________ (medium of lesson) TEC lesson before, ask for assistance.
- Work through the lesson as many times as necessary to master all skills taught.

PREREQUISITE:
- TEC lessons, if any, that are prerequisites to this lesson should be listed here.
EXAMPLE OF AN SIS

STUDENT INSTRUCTION SHEET

AUDIENCE:
- Applicable to Switchboard Operator.

TRAINING OBJECTIVES:
- Place line-issuing party calls
- Place emergency calls to busy numbers

MATERIALS REQUIRED:
- Switchboard, 80-80/P (Operations)
- Pen and Paper
- Telephone Switchboard Call Simulator
- Field Telephone 6-x
- Operator Operator

TIME:
- 30-35 minutes

REFERENCES:
- TM 11-2124, Para 30-30
- ACP 13L(A), Para 204, 870-877

GENERAL INSTRUCTIONS:
- Work through the lesson until you feel you have acquired the skills and knowledge taught. Then arrange for a qualified operator to assist you in the skill practice exercise portion of the lesson.
- FOLLOW INSTRUCTIONS — DON'T TAKE SHORTCUTS.

PREREQUISITE:
- LESSON NO. 530-113-110-A

Add information to SIS that will cross-reference the LAI. For example, under General Instructions you might add:

- If you think you can perform the training objectives, ask your supervisor for the pre-test in the Lesson Administrative Instructions.
6.1.3 Shipment of the LAIs and SISs

After the completion of the LAI and SIS, you must insure that:

- The SIS is sent to the development contractor.
- The LAI is reproduced by the school.
- Tobyhanna is sent advance notice of shipment (see 6.3.3).
6.2 DEVELOPING AND PACKAGING HISTORICAL DATA AND MATERIALS

TEC Managers are responsible for preparing and shipping historical files for each TEC lesson. This section contains the procedures for this responsibility.

6.2.1 Itemizing Historical Data and Materials

Historical data for each TEC lesson must be collected and shipped to the Training Materiel Support Detachment Depot at Tobyhanna. The list of items that must be included in the historical file are given below.
1. NARRATION SCRIPT.
2. SHOOTING SCRIPT.
3. STORYBOARDS.
4. COPY OF 35MM SLIDES (MASTER).
5. COPY OF LAI WITH PRETEST/POSTTEST AND ANSWER KEYS.
6. TYPED COPY OF SIS.
7. COPY OF ADJUNCTIVE MATERIALS (IF REQUIRED).
8. VALIDATION COPY (COMPLETE).
9. CORRECTED COORDINATION AND CONTRACT SUMMARY SHEET TO REFLECT ACCURATELY WHAT THE FINAL PRODUCT CONTAINED.
10. COPY OF APPROVED TREATMENT AND ANY CHANGES.
11. COST DATA (DEVELOPMENT) XEROX OF PAID DD FORM 250.
12. WRITTEN APPROVALS/DISAPPROVALS RELATING TO TREATMENTS (LDA's), SCRIPTS, STORYBOARDS, BOARD ART, 35MM SLIDES, 8MM PRINTS, AUDIO TAPES, AND OTHER CORRESPONDENCE PERTAINING TO GUIDANCE ISSUED PERTINENT TO LESSON DEVELOPMENT.
13. MILESTONE SCHEDULE OF LESSON DEVELOPMENT.
14. ANY OTHER HISTORICAL DATA NOT LISTED BUT WHICH SHOULD BE INCLUDED TO ACCURATELY CASE THE HISTORY OF THE LESSON IN DETAIL.
15. VISUAL DUMMIES FOR PRINTED TEXT LESSONS, WORKBOOKS, ETC.
16. DOCUMENTATION TO INCLUDE LEGAL CLEARANCES, PHOTOGRAPHIC CLEARANCES, COPYRIGHTS, AND NON-STANDARD MUSIC CLEARANCES.
The reproduction contractor is responsible for shipping the Board Art. Board Art will include the following items:

- Board Art.
- Shooting Script.
- Original Narration Script with Latest Changes Annotated.
- Original Motion Sequences (if applicable).
- Work Print of Motion Sequences (if applicable).

The school must provide the camera-ready copy for printed text lessons, workbooks, LAlts, and adjunctive material.

6.2.2 Itemized Packing

List and Its Distribution (Historical Data)

When shipping historical files to Tobyhanna, schools are responsible for preparing five (5) copies of the itemized packing list (6.3.1). Disposition will be as shown below.
ITEMIZED PACKING LIST - TEC HISTORICAL DATA

1. DISPOSITION WILL BE AS FOLLOWS:
 A. ONE COPY PLACED INSIDE OF SHIPPING CONTAINER WITH MATERIALS.
 B. ONE COPY PLACED IN AN ENVELOPE AND AFFIXED TO THE OUTSIDE OF THE SHIPPING CONTAINER.
 C. ONE COPY SENT TO COMMANDER, U. S. ARMY TRAINING SUPPORT CENTER, ATTN: ATTSC-TP-PD, FORT EUSTIS, VIRGINIA 23604.
 D. ONE COPY SENT TO COMMANDER, TOBYHANNA ARMY DEPOT, ATTN: ATTSC-TP-TM (TEC), TOBYHANNA PENNSYLVANIA 18466.
 E. ONE COPY RETAINED BY SCHOOL AS A FILE COPY.

2. ALL PACKAGES BEING SENT TO TOBYHANNA ARMY DEPOT WILL BE ADDRESSED AS FOLLOWS:

 COMMANDER
 TOBYHANNA ARMY DEPOT
 TRAINING MATERIEL SUPPORT DETACHMENT
 ATTN: ATTSC-TP-TM (TEC)
 WAREHOUSE 3 BAY 3
 TOBYHANNA, PENNSYLVANIA 18466
TEC lessons and adjunctive material go to Tobyhanna for distribution. As the TEC program has grown, the amount of material periodically received by Tobyhanna has grown enormously. Consequently, Tobyhanna has a problem of coordinating and predicting the arrival times of lessons, adjunctive material, LAIs, and historical files. The TEC manager can assist Tobyhanna by giving them advanced notice of anything soon to be shipped. By using the Shipment and Utilization Report for advanced notice, the Tobyhanna people can better prepare for efficient storage and distribution. This translates into getting the TEC lessons to the field faster. Until Tobyhanna has the LAIs and adjunctive material to accompany the TEC lesson (if applicable), NOTHING GOES OUT!

6.3.1 Overview of TEC Lesson Distribution

The process of preparing for distribution involves the following:

- The school sends the SIS to the development contractor.
• The school reproduces the LAIs and notifies Tobyhanna well in advance.

• The school sends a request to AG Publication Center for adjunctive materials which AG subsequently ships to Tobyhanna.

• The school sends a letter of distribution instructions to Tobyhanna for the adjunctive materials.

• Tobyhanna receives an approved copy of the answer print from the project engineer (Orlando, Fla.).

• DCAS sends an advance copy of DD 250 from the contractor site.

• If text is printed in-house, TEC manager should see that Tobyhanna gets advanced notice of shipment.

The flow of TEC lesson materials among and between the schools, ATSC/TPD, the Development Contractor, the Reproduction Contractor, and Tobyhanna is given below. As you can see, the flow of TEC materials coming from all the schools and the Reproduction contractors for all TEC lessons can really become a mess without timely communications.
6.3.2 Palletizing Procedures

Each pallet should contain printed matter relating to one TEC lesson only. When materials from several lessons come into Tobyhanna on one pallet, there is a great possibility that a mix-up will occur. It requires the sorting out
of the material and often the repackaging of materials.

Heavy or bulky containers should be metal strapped or bound securely in a manner that ensures the cartons will arrive at Tobyhanna undamaged.

Packaging Instructions.
Separately pack any adjunctive materials, including workbooks, LAIs, lesson texts, errata sheets, change sheets, DA Forms, and Technical manuals. These items should be sorted out and packed one subject per box only.

In partially filled containers use a lightweight filler to use up the empty space. **AT NO TIME SHOULD PART OR ALL OF ANOTHER LESSON BE USED TO FILL THE EMPTY SPACE.**

Marking and Identifying the Containers. Each cardboard container should be clearly marked with one inch high lettering to indicate:

- Lesson Number
- Quantity
- Type printed matter (LAI, printed text, workbook)

Each carton should be numbered to indicate the amount of cartons in the shipment. For example:
Box 1 of ___; Box 2 of ___;
Box 3 of ___.

6-18
Place an itemized packing list of the entire shipment in Box No. 1. The list should include the following information:

- Complete or partial shipment.
- Release number of the lesson.
- Subject title.
- Type printed matter (LAIs, TMs, Workbooks, etc.).
- Quantity of contents.
- Total carton number in the shipment.

6.3.3 Advance Notice to Tobyhanna

As we pointed out in 6.3.1, Tobyhanna sorely needs advanced notice of any impending shipment. Tobyhanna personnel suggest you always use the Shipment and Utilization Report form to provide them with advanced notice of anything. You can use the explanation section if it is something not covered in the form itself.
6.4 REQUEST FOR ADJUNCTIVE MATERIAL AND SHIPMENT

If Army publications (FMs, TM's) are required for a TEC lesson, then you requisition them from AG Publication Centers at St. Louis and Baltimore. The AG Publication Centers will ship directly to Tobyhanna provided you follow the procedures given below:

Procedures

- Identify adjunctive materials required for a lesson.

- Prepare for the appropriate AG Publication Center the following:

 a. DA Form 17 in accordance with the following guidance:

 (1) Block 1 Type of Requisition: Regular

 (2) Block 2 Justification for Special Requisition:

(3) Block 6 Ship To:
Commander
Training Materiel Support Detachment
Warehouse 3, Bay 3
510-091-6456-F (TEC
Lesson No. material for)
Tobyhanna Army Depot
Tobyhanna, PA 18466

(4) Block 7 Requirements:
One requisition item
per request (i.e., if
lesson requires a TM
and a blank form,
two separate DA Form
17's are required).

(5) Block 8 Requester:
Place AV phone number
of a person to be contacted if any
questions should arise on requested
order.

b. Send a cover letter along
with its inclosures with
each DA Form 17.

Send a letter to:
Commander
Training Support Center
ATTN: ATTSC-TP-TM
Training Materiel Support
Detachment
Tobyhanna, PA 18466

and a courtesy copy to:
Commander
U.S. Army Training Support
Center
ATTN: ATTSC-TP-PD
Fort Eustis, VA 23604

providing the following information:

a. Copies of all separate
DA Form 17 actions.

b. Instructions on how
to distribute ad-

SCHOOL HEADING

SUBJECT: Special Handling of DA Form 17, Request for Training
Extension Course (TEC) Program

10 June 1976, subject: Request for Exception to Policy at AG
Publication Centers with 1st Indorsement, DMC-PAD, DA TAGE ZH, same
subject, Enclosure 1.

2. As approved, request special handling on the attached DA Form 17,
Acquisition for Publications and Blank Forms, Enclosure 2.

Junctive materials per lesson (i.e., four blank
DA form 2404's per TEC
Lesson No. 510-091-6456-F).

c. Provide address and phone number of a person to be
contacted at school so as
to verify receipt of your
order at Tobyhanna.

Set up a suspense file allowing seven weeks to be notified
of the receipt of adjunctive
materials at Tobyhanna. If
not notified, call:

1st -- Tobyhanna, AV
247-9437 (TEC)

2nd -- Appropriate AG
Publication Center

Baltimore, MD --
AV 594-2045

St. Louis, MO --
AV 698-7361

6-22
The responsibility for annual review and revisions of TEC lessons belongs to the school that has been designated the proponent agency for that particular lesson series. As TEC manager, you are responsible for insuring that the school:

- conducts a formal annual review of each lesson that is at least one-year old after approval for mass production.
- maintains records of the reviews and submits the results to ATSC/TPD.

6.5.1 Determining Significant Errors

During the annual review of a TEC lesson, particular care and attention should be paid to changes or modifications in:

- training tasks
- performance standards
- training objectives
6.5.2 Recommendations and Actions for Changes or No-Changes

Based on the lesson review, the school will make a formal recommendation to ATSC/TPD. If no changes are required, the report will have the no-change format. If the review establishes that changes are needed, the school will make a formal recommendation to that effect along with the extent and method of revising the lesson.

A change requiring more than an errata sheet is a serious problem in terms of time and money. A decision must be reached as to the value of making the necessary corrections or deleting the lesson altogether.

SANSER Form

ERRATA SHEET

Instructions: (must include typed revision, page numbers, insertions or deletions, i.e., EUI, Pre/Post test, and any special points or result data)

Specific Comments:

Once you are notified of a possible safety violation in a TEC lesson that could result in injury to a soldier or damage to Government property, you must do three things:

- Immediately notify ATSC/TPD that a possible safety violation exists.
- Conduct an evaluation to determine whether a safety violation indeed exists.
- Make a recommendation to ATSC/TPD.

ATSC/TPD will take the necessary actions to stop distribution of the specific TEC lesson when a violation has been identified.
Classified TEC lessons are now being developed. If you are going to develop Classified TEC, you should:

- Contact the TEC Classification Officer.
- Obtain a copy of DOD Directives and Security Regulations (DOD 500, 1-2).
- Review the TEC document on classified lessons.
GLOSSARY

Advanced Individual Training (AIT). Training given enlisted personnel subsequent to completion of basic training, so as to render them qualified for the award of a military occupational specialty.

Annual Review. Review of each TEC lesson on the anniversary of its approval for mass reproduction. Review is conducted to assure lesson currency.

Answer Print. Audiovisual preproduction sample. It consists of Super 8 color-corrected film, loaded in a cartridge, and a pulsed audio cassette.

Army Training and Evaluation Program (ARTEP). A listing of training and evaluation outlines that contain minimum collective training objectives and guidance pertaining to specific missions. ARTEPs can serve as the basis for evaluation by which the level of training proficiency of a particular unit can be determined and future training requirements can be diagnosed.

Army Training Extension Course Program (ATECP). One of the three Army-wide training programs managed by the Training Programs Directorate, US Army Training Support Center. The Chief, ATECP is responsible for centrally managing the planning, evaluation, development, production, distribution, and field implementation of all Training Extension Course lesson materials and supporting hardware.

Army Training Support Center Training Programs Directorate Project Officer (ATSC-TPD PO). Coordinates the preparation of contractual requirements and helps solve problems as they occur at all schools, after a contract has been awarded.

Audio Only Kit. An audio tape cassette which "talks" a student through a series of actions. Generally, used in conjunction with a hands on orientation, i.e., maintenance procedures.
Audiovisual Kit. A TEC kit consisting of a Super 8mm continuous loop film cartridge with an accompanying audio tape cassette, pulsed to drive the film. Both film and tape are compatible to the Beseler Cue/See.

Basic Combat Training (BCT). Training in basic military subjects and fundamentals of basic infantry combat given to newly inducted and enlisted Active Army and Reserve components personnel without prior military service.

Basis of Issue Plan (BOI, BOIP). Plan for the distribution of TEC lessons developed by ATSC and coordinated with the proponent service school or plan for the distribution of TEC hardware developed by ATSC.

Beseler Cue/See. Audiovisual device used for viewing TEC audiovisual lessons.

Commandant's Contract. Contract between Commander, TRADOC, and the School Commander with each service school portraying resources provided to each school and products expected from each school on a FY basis.

Composite Task List. A listing of all tasks taught by all current or programmed TEC lessons. Maintained by USATSC-TPD.

Conditions. Occurs in terminal learning objectives; describes what is presented to the student in order to accomplish the specified action, that is, it describes the important aspects of the performance environment.

Contract. Formal document between the contractor and the government that specifies exactly what and how many TEC lessons will be developed during a particular time period.
Contract Developed Lessons. Lessons designed and developed by a contractor which follow contractual specifications and are evaluated for technical accuracy and instructional and audiovisual quality by ATSC, schools, PM TRADE, and NTEC personnel throughout the development cycle.

Contracting Officer's Technical Representative (COTR). Individual who is normally located at the site of a development or reproduction contractor to assist ATSC, schools, PM TRADE, and the Contracting Officer in expediting the contractual process.

Contractually Cancelled Lessons/Kit. Lesson/kit, that by mutual agreement between proponent and contractor, is cancelled from the delivery schedule. Contractor is paid for work accomplished through the cancellation.

Coordination and Contract Summary Sheet (CCSS). A CCSS is completed for each subject area submitted for development. The CCSS outlines the scope and purpose of lessons being developed for each subject area, target audience, lesson objectives, acceptable standards of performance and criterion-referenced test items. It accompanies all GFM or references provided contractor for development of a lesson series.

Criteria. States how well something is to be performed.

Criterion-Referenced Instruction (CRI). Instruction which is designed to teach only those performances which are specified as critical to the successful accomplishment of a defined task.

Criterion-Referenced Test (CRT). Measures what an individual can do or knows, compared to what he must be able to do or must know in order to successfully perform a task. Here an individual's performance is compared to external criteria or performance standards which are derived from an analysis of what is required to do a particular task.
Criteria-Referenced Test Items (CRTI).	**The individual measures of a CRT.**
Critical Task.	**The lowest level of behavior that describes the performance of a function critical to the job.**
Development Phase.	**Phase of TEC lesson development process that includes the development of initial instructional materials; conduct of individual, small group and large group tests; and approval of camera-ready kits.**
Duty.	**One of the major subdivisions of work performed by one individual. One or more duties constitute a job.**
Effectiveness Testing/Large Group Testing.	**Part of development phase which determines whether or not the lesson trains the soldiers for whom it was designed.**
Final Draft.	**Last version of a lesson before the production of the master material; i.e., camera-ready materials.**
Fixed Sample.	**In testing the effectiveness of a lesson, a preset number of soldiers are selected in advance. Decisions are based on the outcome of that preset sample.**
Flow Diagram.	**Used in TEC contracts to visually depict actions/events required of each participant involved in developing TEC lessons. Frequently accompanied by a narrative description, the flow diagram provides specific instructions and precise sequencing for TEC developers.**
Front-end Phase.	**Phase of TEC lesson development process that uses the job/task analyses to define what and how TEC lesson subject areas should be described.**
Government Furnished Material (GFM).	**Documents and equipment supplied to a contractor before and during performance under that contract.**
GLOSSARY

Graphic Arts Guidance Kit (GAGK).
Kit available from ATSC-TPD that specifies standards for development of visuals in audiovisual and printed text lessons.

Historical Package.
Originals or copies of all correspondence and attendant training materials for a specific TEC lesson from concept to completion. Master historical data for all lessons are maintained at Tobyhanna Army Depot, Pennsylvania.

Individual Trial.
In testing the effectiveness of a lesson, this is the initial tryout of lesson materials on 3 to 5 soldiers representative of the target population.

In-House Development.
Lessons designed and developed within an individual school using school resources or contract services procured by the school from local civilian community, using a local installation procurement contracting office.

Initial Draft.
First complete compilation of a TEC lesson.

Instructional Systems Development (ISD).
A five volume text that presents a fully documented, detailed, systematic approach to instructional development.

Job.
The duties and tasks performed by a single worker constitute his job. If identical duties and tasks are performed by several individuals, they all hold the same job. The job is the basic unit used in carrying out the personnel actions of selection, training, classification, and assignment.

Job Performance Aid (JPA).
One of the four types of TEC lessons. Consists normally of operating instructions for simple equipment or "how to" instructions to complete a process.
Job/Task Analysis.
The basic method used to obtain a detailed listings of duties, tasks, and elements necessary to perform a clearly defined, specific job or task, involving observations of workers and conversations with those who know the job, in order to describe in detail the work involved, including the classes of behaviors, conditions of performance, and degrees of proficiency required.

Job Training Package.
A totally designed group of training materials in a self-contained, exportable, primarily TEC configuration. The package is designed to train and evaluate all skills associated with a specified job, duty position, skill level or MOS.

Kit.
A kit is the self-contained instruction material developed, reproduced and packaged for distribution to soldiers in the field. A kit will be in an audio-visual, printed text or audio only format. Closely related kits, those dealing with the same subject ares, will constitute a lesson.

Kit Design Approach (KDA).
Prepared by contractor and contains the description of the kit, how the kit will be developed, outline of size and content, outline of administrative requirements to support the kit, and provisions for design changes.

Large Group Testing.
(SEE Effectiveness Testing).

Lesson.
A lesson is the instructional material within one (1) subject area. A lesson may be composed of one or several closely related kits.

Lesson Administrative Instruction (LAI).
Accompanies each TEC lesson and provides detailed information on the lesson. The LAI includes both a pretest and a posttest.
Glossary

Lesson Content Analysis Report (LCAR). Contractor developed outline of general approach for constructing instructional material to support a lesson specified by a proponent. Contains an appraisal of the adequacy of GFM.

Master Kit. Kit containing all the master materials, i.e., camera-ready copies, which are constructed from an approved final draft.

Master Mechanicals. Final copy of a printed TEC lesson which is camera-ready for printing.

Masters. Soldiers who are experts at one particular job or task.

Master Tape. Final recording of an audio only lesson or the audio portion of an audiovisual lesson ready for mass reproduction.

Naval Training Equipment Center Contracting Officer's Technical Representative (NTEC COTR). Placed with reproduction contractor for quality control and to coordinate between the school and the reproduction contractor.

Naval Training Equipment Center Project Engineer (NTEC PE). Insures quality control through inspection of products for compliance with the technical standards required by the contract, and is directly responsible to PM TRADE.

Non-Masters. Soldiers who are new to a job or task and have no expertise in that job or task.

Objectives. Describes precisely what the personnel undergoing instruction must be able to do at the end of that training. A properly structured training objective contains three elements: (1) Task to be accomplished stated in performance terms using action verbs, (2) Conditions under which the task is to be accomplished, and (3) Standards of acceptable performance.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance-oriented Training.</td>
<td>Emphasizes the knowledges and skills that are needed to perform a task or job.</td>
</tr>
<tr>
<td>Performance Test.</td>
<td>The absolute standard by which the performance of a skill is measured. It lists the exact steps a person must follow in performing the skills being tested. The tests are prepared in terms of the specific task to be performed, conditions under which it will be performed and the absolute standards for acceptable performance.</td>
</tr>
<tr>
<td>Posttest</td>
<td>A test administered after the completion of instruction to assess whether a student has mastered the objectives of the course or unit.</td>
</tr>
<tr>
<td>Pre-award Phase.</td>
<td>Phase of TEC lesson development process during which the contract is written. Also called the Front-end Phase.</td>
</tr>
<tr>
<td>Preproduction Sample.</td>
<td>Sample product of a TEC kit submitted to the proponent school and PM TRADE for approval prior to the mass reproduction run. In the audiovisual medium the sample is an answer print. In audio only the sample consists of a duplicate of the master tape in an appropriate tape cassette. In printed text the sample consists of proof prints of master mechanicals.</td>
</tr>
<tr>
<td>Pretest</td>
<td>Administered prior to instruction to determine how much the student already knows.</td>
</tr>
<tr>
<td>Printed Text Kit.</td>
<td>A printed TEC lesson. Used when this medium is educationally sounder than others.</td>
</tr>
<tr>
<td>Project Manager for Training Devices, Acquisition Director (PM TRADE AD).</td>
<td>Monitors contract performance, and directs and coordinates the development and implementation of remedial actions when problems occur. Does not normally interact directly with the school.</td>
</tr>
</tbody>
</table>
GLOSSARY

Project Manager for Training Devices, Contracting Officer's Technical Representative (PH TRADE COTR).

Monitors and facilitates the orderly progress of the contract while residing at the contractor's place of work. Serves as a direct point of contact between the school and the contractor.

Reliability.

The consistency with which a test measures the amount of student achievement.

Reproduction Phase.

Phase of TEC lesson development process which covers the reproduction and distribution of approved TEC lessons.

Response Time.

The time that the student actively participates in a lesson.

Scratch Tape.

Initial narrative recorded on tape for review, correction, improvement, and approval for finished narrative.

Script.

A detailed plan of all that constitutes an audiovisual or an audio only lesson.

Sequential Testing.

A method of testing which allows the random selection of a single sample at a time, with the pass/fail result of a criterion test plotted on a control graph. The graph is constructed to ensure that acceptance or rejection of instructional materials is done with a known probability of error.

Skill Qualification Test (SQT).

A test to improve the combat effectiveness of Army units by getting soldiers to do a better job. Measures how well a soldier can do the tasks of his assigned job. Measures performance, not knowledge.

Small Group Trial.

In testing the effectiveness of a lesson, this is the second tryout (which is optional) of lesson materials on a group of 6 to 10 soldiers representative of the target population.
<table>
<thead>
<tr>
<th>Glossary Entry</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldier's Manual (SM)</td>
<td>Manuals published by proponents which contain all critical tasks for a specific MOS, normally organized by skill level.</td>
</tr>
<tr>
<td>Sound/Slide Kit.</td>
<td>35mm slides and a draft narrative tape to represent what the finished audiovisual lesson will be. Used in the review/approval cycle.</td>
</tr>
<tr>
<td>Standards.</td>
<td>Occurs in terminal learning objectives; describes the criterion or standard of performance which must be attained.</td>
</tr>
<tr>
<td>Stimulus Time.</td>
<td>The time the student spends viewing or listening to the TEC lesson materials.</td>
</tr>
<tr>
<td>Student Instruction Sheet (SIS)</td>
<td>Printed instructions accompanying each TEC kit to assist students in use of the kit.</td>
</tr>
<tr>
<td>Subject Matter Expert.</td>
<td>A soldier who has professional skill in the performance of some job and who is consulted by an instructional designer during the TEC lesson development process.</td>
</tr>
<tr>
<td>Target Audience/Population.</td>
<td>The pool of potential entrants to training for which instructional materials are designed and tried out.</td>
</tr>
<tr>
<td>Task Analysis.</td>
<td>(SEE Job/Task Analysis).</td>
</tr>
<tr>
<td>Training Extension Course (TEC)</td>
<td>Validated, interactive, performance oriented, exportable training materials developed by contract or in-house and fielded under the sole direction of the US Army Training Support Center (ATSC). TEC materials are multimedia and are designed for individual self-paced or small group study. TEC is designed to assist the field commander in maintaining the individual skills of his soldiers.</td>
</tr>
<tr>
<td>Training Extension Course (TEC) Manager.</td>
<td>Individual at each school who is responsible for the development of TEC lessons that cover the subject areas for which the school is responsible.</td>
</tr>
</tbody>
</table>
GLOSSARY

Training Task Analysis. Takes tasks selected for training and structures them in ways that help the soldier master the performance of those tasks. Often approximates the job/task analysis.

Validation. Testing instructional materials after course development to ensure that the materials are effective and the students are mastering the learning objectives.

Visual Dummy. A stage in the development of printed text lessons that illustrates how the narration and visuals will appear in the Final draft.
APPENDIX B

ACRONYMS
<table>
<thead>
<tr>
<th>ACRONYMS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Acquisition Director</td>
</tr>
<tr>
<td>ARI</td>
<td>Army Research Institute for the Behavioral and Social Sciences</td>
</tr>
<tr>
<td>ATSC</td>
<td>Army Training Support Center</td>
</tr>
<tr>
<td>ATECP</td>
<td>Army Training Extension Course Program</td>
</tr>
<tr>
<td>AV</td>
<td>Audiovisual</td>
</tr>
<tr>
<td>AO</td>
<td>Audio Only</td>
</tr>
<tr>
<td>ARTEP</td>
<td>Army Training and Evaluation Program</td>
</tr>
<tr>
<td>ATB</td>
<td>Army Training Board (previously CATB)</td>
</tr>
<tr>
<td>BCT</td>
<td>Basic Combat Training</td>
</tr>
<tr>
<td>BER</td>
<td>Budget Execution Review</td>
</tr>
<tr>
<td>BMG</td>
<td>Budget Manpower Guidance</td>
</tr>
<tr>
<td>CA</td>
<td>Contractor Assisted</td>
</tr>
<tr>
<td>CAI</td>
<td>Computer Aided Instruction</td>
</tr>
<tr>
<td>CATB</td>
<td>Combat Arms Training Board</td>
</tr>
<tr>
<td>CCSS</td>
<td>Coordination and Contract Summary Sheet</td>
</tr>
<tr>
<td>CONUS</td>
<td>Continental United States</td>
</tr>
<tr>
<td>COTR</td>
<td>Contracting Officer's Technical Representative</td>
</tr>
<tr>
<td>CRI</td>
<td>Criterion-Referenced Instruction</td>
</tr>
<tr>
<td>CRT</td>
<td>Criterion-Referenced Test</td>
</tr>
<tr>
<td>COB</td>
<td>Close of Business</td>
</tr>
<tr>
<td>DARCOM</td>
<td>U. S. Army Materiel Development and Readiness Command</td>
</tr>
<tr>
<td>DAVIS</td>
<td>Defense Audiovisual Information System</td>
</tr>
<tr>
<td>B-2</td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>DCAS</td>
<td>Defense Contract Administrative Services</td>
</tr>
<tr>
<td>DCSRM</td>
<td>Deputy Chief of Staff Resource Management</td>
</tr>
<tr>
<td>DD</td>
<td>Department of Defense (Used on forms, e.g., DD 633-4)</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DOE</td>
<td>Directorate of Evaluation</td>
</tr>
<tr>
<td>DTD</td>
<td>Directorate of Training Development</td>
</tr>
<tr>
<td>EOE</td>
<td>Element of Expense</td>
</tr>
<tr>
<td>EPMS</td>
<td>Enlisted Personnel Management System</td>
</tr>
<tr>
<td>FM</td>
<td>Field Manual</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>GAGK</td>
<td>Graphic Arts Guidance Kit</td>
</tr>
<tr>
<td>GFM</td>
<td>Government Furnished Materials</td>
</tr>
<tr>
<td>IH</td>
<td>In-House</td>
</tr>
<tr>
<td>ISD</td>
<td>Instructional Systems Development</td>
</tr>
<tr>
<td>JPA</td>
<td>Job Performance Aid</td>
</tr>
<tr>
<td>JPM</td>
<td>Job Performance Measure</td>
</tr>
<tr>
<td>JTP</td>
<td>Job Training Package</td>
</tr>
<tr>
<td>KDA</td>
<td>Kit Design Approach</td>
</tr>
<tr>
<td>LADA</td>
<td>Lesson Analysis Design Approach</td>
</tr>
<tr>
<td>LAI</td>
<td>Lesson Administrative Instructions</td>
</tr>
<tr>
<td>LCA</td>
<td>Lesson Content Analysis</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MOS</td>
<td>Military Occupational Specialty</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NCO</td>
<td>Non-Commissioned Officer</td>
</tr>
<tr>
<td>NLT</td>
<td>No Later Than</td>
</tr>
<tr>
<td>NTEC</td>
<td>Naval Training Equipment Center</td>
</tr>
<tr>
<td>OJT</td>
<td>On-Job Training</td>
</tr>
<tr>
<td>PE</td>
<td>Project Engineer</td>
</tr>
<tr>
<td>PM Trade</td>
<td>Project Manager for Training Devices</td>
</tr>
<tr>
<td>PO</td>
<td>Project Officer</td>
</tr>
<tr>
<td>POC</td>
<td>Point(s) of Contact</td>
</tr>
<tr>
<td>PT</td>
<td>Printed Text</td>
</tr>
<tr>
<td>RCS ATTNG-SS</td>
<td>Report Control Symbol for Quarterly TEC Product Requirement</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposal(s)</td>
</tr>
<tr>
<td>SIS</td>
<td>Student Instruction Sheet</td>
</tr>
<tr>
<td>SM</td>
<td>Soldier's Manual</td>
</tr>
<tr>
<td>SME</td>
<td>Subject Matter Expert</td>
</tr>
<tr>
<td>SQT</td>
<td>Skill Qualification Test</td>
</tr>
<tr>
<td>TC</td>
<td>Training Circular</td>
</tr>
<tr>
<td>TDI</td>
<td>Training Developments Institute</td>
</tr>
<tr>
<td>TDY</td>
<td>Temporary Duty</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TEC</td>
<td>Training Extension Course</td>
</tr>
<tr>
<td>TM</td>
<td>Technical Manual</td>
</tr>
<tr>
<td>TO</td>
<td>Training Objective</td>
</tr>
<tr>
<td>TPD</td>
<td>Training Programs Directorate</td>
</tr>
<tr>
<td>TRADOC</td>
<td>U.S. Army Training and Doctrine Command</td>
</tr>
<tr>
<td>USACATB</td>
<td>U.S. Army Combat Arms Training Board</td>
</tr>
<tr>
<td>USATSC-TPD</td>
<td>U.S. Army Training Support Center-Training Programs Directorate</td>
</tr>
</tbody>
</table>