ANALYSIS OF THE DOUBLE OVERLAP
FATIGUE SPECIMEN

by

J. PAUL and R. JONES

© COMMONWEALTH OF AUSTRALIA 1984

APRIL 1984
ANALYSIS OF THE DOUBLE OVERLAP FATIGUE SPECIMEN

by

J. PAUL and R. JONES

SUMMARY

In recent years an analogy has been proposed between the behaviour of a bonded overlap joint and a bonded repair. This paper examines the behaviour of the fibre and the adhesive stresses in a bonded overlap joint and shows that the results of previous one-dimensional analyses of this problem are invalid in the vicinity of the gap in the specimen. The fibre and adhesive stresses are also shown to be strongly dependent on the gap size.
CONTENTS

<table>
<thead>
<tr>
<th>NOTATION</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. THE D.O.F.S. SPECIMEN</td>
<td>2</td>
</tr>
<tr>
<td>3. CONCLUSION</td>
<td>4</td>
</tr>
<tr>
<td>4. ACKNOWLEDGEMENTS</td>
<td>5</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td></td>
</tr>
<tr>
<td>DOCUMENT CONTROL DATA</td>
<td></td>
</tr>
</tbody>
</table>
NOTATION

\(u, v \)
Displacements of nodes in \(x \) or \(y \) direction

\(\sigma_y, \tau \)
Adhesive peel and shear stresses

\(g \)
Gap

\(\sigma_u \)
Unnotched failure stress for the boron-epoxy

\(a_0 \)
Critical damage zone size

\(\sigma_f \)
Fibre stress

\(\sigma_x \)
Stress in \(x \)-direction
1. INTRODUCTION

The Aeronautical Research Laboratories (ARL) in Australia has pioneered the use of adhesively bonded boron fibre reinforced plastic (BFRP) patches to repair cracks in aircraft components [1]. This procedure has been successfully used in several applications to RAAF aircraft, including the field repair of fatigue cracks in the lower wing skin of Mirage IIId aircraft [2] and in the landing wheels of Macchi aircraft [1, 2]. In each case, repairs were made by adhesively bonding a BFRP patch to the component with the fibres spanning the crack, the aim being to restrict the opening of the crack under load thereby reducing the stress intensity factors and thus preventing further crack growth.

Two approaches have been developed in Australia for the analysis and design of bonded repairs to thin metal sheets. The first approach to be developed is based on the use of the finite element method and is presented in detail in [3]. The second approach is based on a postulated analogy to an overlap joint [4, 5]. It has been shown in [3] that this analogy gives a good approximation for the stress intensity factor at the tip of a patched crack, provided that the crack grows in a self-similar fashion. Experimental work [6] has also shown that the overlap-joint specimens yield data on adhesive material properties which are particularly useful in aiding the choice of adhesive and surface preparation for a bonded repair. Indeed, from the experimental point of view, the overlap joint approach is particularly worthwhile. Unfortunately this paper shows that the approximate theory used in [4, 5] is invalid in the vicinity of the crack (i.e. gap). Consequently the accuracy of the expressions given in [4, 5] for the peak fibre stresses in the repair and the adhesive stresses over the crack, requires further investigation.

2. THE D.O.F.S. SPECIMEN

Let us begin by considering the simple double overlap joint (D.O.F.S.) specimens which are currently used in the joint UK/USA/Canada/Australian demonstrator program on crack patching. The geometry of these specimens is shown in Fig. 1.

A detailed finite element analysis was undertaken for each specimen geometry. The adhesive layer, aluminium, and the boron epoxy were modelled separately. The resultant finite element model consisted of sixty-eight of the eight-noded isoparametric elements. In this idealization the modulus for the aluminium was taken to be \(E = 73 \times 10^3 \text{ MPa} \), \(\nu = 0.3 \), whilst for the adhesive \(E = 13.5 \times 10^3 \text{ MPa} \), \(\nu = 0.35 \), and the boron epoxy the values \(E_{11} = 208 \times 10^3 \text{ MPa} \), \(E_{22} = E_{33} = 2.5 \times 10^3 \text{ MPa} \), \(\nu_{13} = \nu_{23} = \nu_{12} = 0.1677 \) and \(G_{13} = G_{23} = G_{12} = 5 \times 10^2 \text{ MPa} \) were used.

The resulting variation of the peak fibre stresses and adhesive stresses, and the displacements along the plane \(AA' \) (see Fig. 1) are given in Tables 1 and 2 for several values of the gap parameter \(g \) and for a stress of 137.9 MPa applied uniformly to the ends of the aluminium (see Fig. 1).
TABLE 1
Boron DDOF, Adhesive and Fibre Stresses

<table>
<thead>
<tr>
<th>g (mm)</th>
<th>(\sigma_y) (MPa)</th>
<th>(\tau) (MPa)</th>
<th>(\sigma_t) MPa Stress Distribution through Laminate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom (nodes)</td>
<td>Top (node 4)</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>-24.1</td>
<td>-41.3</td>
<td>635.0 472.5</td>
</tr>
<tr>
<td>4.0</td>
<td>-19.7</td>
<td>-42.5</td>
<td>670.0 433.0</td>
</tr>
<tr>
<td>2.0</td>
<td>-15.5</td>
<td>-43.7</td>
<td>715.0 396.5</td>
</tr>
<tr>
<td>1.0</td>
<td>-12.1</td>
<td>-44.9</td>
<td>765.0 371.5</td>
</tr>
<tr>
<td>0.25</td>
<td>-8.2</td>
<td>-46.7</td>
<td>855.0 348.5</td>
</tr>
<tr>
<td>0.0</td>
<td>-6.8</td>
<td>-48.0</td>
<td>930.0 341.0</td>
</tr>
</tbody>
</table>

TABLE 1(a)
Boron DDOF, Displacements Along Al Face, See Fig. 1(b), in mm

<table>
<thead>
<tr>
<th>g (mm)</th>
<th>Nodes</th>
<th>9</th>
<th>183</th>
<th>192</th>
<th>209</th>
<th>218</th>
<th>235</th>
<th>7</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>u</td>
<td>0.02400</td>
<td>0.02393</td>
<td>0.02370</td>
<td>0.02330</td>
<td>0.02267</td>
<td>0.02173</td>
<td>0.02003</td>
<td>0.01132</td>
</tr>
<tr>
<td>4.0</td>
<td>u</td>
<td>0.01917</td>
<td>0.01910</td>
<td>0.01887</td>
<td>0.01847</td>
<td>0.01784</td>
<td>0.01689</td>
<td>0.01519</td>
<td>0.00625</td>
</tr>
<tr>
<td>2.0</td>
<td>u</td>
<td>0.01671</td>
<td>0.01664</td>
<td>0.01641</td>
<td>0.01601</td>
<td>0.01537</td>
<td>0.01442</td>
<td>0.01272</td>
<td>0.00352</td>
</tr>
<tr>
<td>1.0</td>
<td>u</td>
<td>0.01545</td>
<td>0.01538</td>
<td>0.01515</td>
<td>0.01474</td>
<td>0.01410</td>
<td>0.01315</td>
<td>0.01144</td>
<td>0.00202</td>
</tr>
<tr>
<td>0.25</td>
<td>u</td>
<td>0.01447</td>
<td>0.01439</td>
<td>0.01474</td>
<td>0.01376</td>
<td>0.01311</td>
<td>0.01216</td>
<td>0.01043</td>
<td>0.00064</td>
</tr>
<tr>
<td>0.0</td>
<td>u</td>
<td>0.01413</td>
<td>0.01405</td>
<td>0.01382</td>
<td>0.01341</td>
<td>0.01276</td>
<td>0.01180</td>
<td>0.01006</td>
<td>0.000</td>
</tr>
</tbody>
</table>

TABLE 2
Boron DOF, Adhesive and Fibre Stresses

<table>
<thead>
<tr>
<th>g (mm)</th>
<th>(\sigma_y) (MPa)</th>
<th>(\tau) (MPa)</th>
<th>(\sigma_t) MPa Stress Distribution through Laminate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom (node 3)</td>
<td>Top (node 4)</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>-25.0</td>
<td>-34.5</td>
<td>630.0 600.0</td>
</tr>
<tr>
<td>4.0</td>
<td>-22.6</td>
<td>35.0</td>
<td>650.0 570.0</td>
</tr>
<tr>
<td>2.0</td>
<td>-19.8</td>
<td>-35.7</td>
<td>685.0 530.0</td>
</tr>
<tr>
<td>1.0</td>
<td>-17.0</td>
<td>-36.5</td>
<td>725.0 495.5</td>
</tr>
<tr>
<td>0.25</td>
<td>-13.1</td>
<td>-37.1</td>
<td>800.0 453.0</td>
</tr>
<tr>
<td>0.0</td>
<td>-10.6</td>
<td>-38.8</td>
<td>895.0 432.5</td>
</tr>
</tbody>
</table>
for overlap joints is not valid in the vicinity of the gap; however, the overlap joint analogy can still be used, and the critical design parameters for crack patching evaluated, provided that a detailed two-dimensional analysis of the joint configuration is undertaken.

4. ACKNOWLEDGEMENTS

This work was done for Dr A. A. Baker as part of the TTCP panel PTP-4 demonstrator program on crack patching. The authors also wish to acknowledge discussions with Dr J. Hart-Smith of the McDonnell Douglas Corp.
DISTRIBUTION

AUSTRALIA

DEPARTMENT OF DEFENCE

Central Office
Chief Defence Scientist
Deputy Chief Defence Scientist
Superintendent, Science and Technology Programmes
Controller, Projects and Analytical Studies
Trials Directorate, Director of Trials
Defence Science Adviser (U.K.) (Doc. Data sheet only)
Counsellor, Defence Science (U.S.A.) (Doc. Data sheet only)
Defence Science Representative (Bangkok)
Defence Central Library
Document Exchange Centre, D.I.S.B. (18 copies)
Joint Intelligence Organisation
Librarian H Block, Victoria Barracks, Melbourne
Director General—Army Development (NSO) (4 copies)

Aeronautical Research Laboratories
Director
Library
Superintendent—Structures
Divisional File—Structures
Authors: R. Jones
J. Paul

Materials Research Laboratories
Director/Library

Defence Research Centre
Library

Navy Office
Navy Scientific Adviser
Directorate of Naval Aircraft Engineering
Superintendent, Aircraft Maintenance and Repair

Army Office
Army Scientific Adviser
Engineering Development Establishment, Library
US Army Research, Development and Standardisation Group

Air Force Office
Air Force Scientific Adviser
Technical Division Library
Director General Aircraft Engineering—Air Force
HQ Operational Command (SMAINTSO)
HQ Support Command (SLENGO)

DEPARTMENT OF DEFENCE SUPPORT

Government Aircraft Factories
Library

DEPARTMENT OF AVIATION

Library
Flying Operations and Airworthiness Division

STATUTORY AND STATE AUTHORITIES AND INDUSTRY

CSIRO
Materials Science Division, Library
Trans-Australia Airlines, Library
Ansett Airlines of Australia, Library
Commonwealth Aircraft Corporation, Library
Hawker de Havilland Aust. Pty Ltd, Bankstown, Library

UNIVERSITIES AND COLLEGES

Adelaide Barr Smith Library
Flinders Library
Latrobe Library
Melbourne Engineering Library
Monash Hargrave Library
Professor I. J. Polmear, Materials Engineering
Newcastle Library
Sydney Engineering Library
N.S.W. Physical Sciences Library
Professor R. A. A. Bryant, Mechanical Engineering
Assoc. Professor R. W. Traill-Nash, Civil Engineering
Queensland Library
Tasmania Engineering Library
Western Australia Library
R.M.I.T. Library
Dr H. Kowalski, Mech. & Production Engineering

CANADA

CAARC Coordinator Structures
NRC
Aeronautical & Mechanical Engineering Library

Universities and Colleges
Toronto Institute for Aerospace Studies
FRANCE
ONERA, Library

INDIA
CAARC Coordinator Structures
Defence Ministry, Aero Development Establishment, Library
Hindustan Aeronautics Ltd, Library
National Aeronautical Laboratory, Information Centre

INTERNATIONAL COMMITTEE ON AERONAUTICAL FATIGUE
Per Australian ICAF Representative (25 copies)

ISRAEL
Technion-Israel Institute of Technology
Professor J. Singer

JAPAN
National Research Institute for Metals, Fatigue Testing Division

Universities
Kagawa University Professor H. Ishikawa

NETHERLANDS
National Aerospace Laboratory (NLR), Library

NEW ZEALAND
Defence Scientific Establishment, Library

SWEDEN
Swedish National Defense Research Institute (FOA)

SWITZERLAND
F+W (Swiss Federal Aircraft Factory)

UNITED KINGDOM
Ministry of Defence, Research, Materials and Collaboration
CAARC, Secretary
Royal Aircraft Establishment
Farnborough, Dr G. Wood, Materials Department
Commonwealth Air Transport Council Secretariat
Admiralty Marine Technology Establishment
Holton Heath, Dr N. J. Wadsworth
St Leonard’s Hill, Superintendent
National Physical Laboratory, Library
National Engineering Laboratory, Library
British Library, Lending Division
CAARC Coordinator, Structures

Universities and Colleges
Bristol Engineering Library
Nottingham Science Library
Southampton Library
Strathclyde Library
Cranfield Inst. of Technology Library
Imperial College Aeronautics Library

UNITED STATES OF AMERICA

NASA Scientific and Technical Information Facility
Metals Information
Boeing Company
Mr W. E. Binz
Mr J. C. McMillan
Lockheed-California Company
Lockheed Missiles and Space Company
Lockheed Georgia
McDonnell Aircraft Company, Library

Universities and Colleges
Iowa Professor R. I. Stephens
Illinois Professor D. C. Drucker
Massachusetts Inst. of Technology M.I.T. Libraries
Lehigh Inst. of Fracture and Solid Mechanics Professor G. C. Sih

SPARES (20 copies)

TOTAL (160 copies)
4. Title
ANALYSIS OF THE DOUBLE OVERLAP FATIGUE SPECIMEN

9. Downgrading Instructions

U. U.

14. Descriptors
- Repair
- Crack patching
- Fatigue (materials)
- Reinforcement (structures)

16. Abstract
In recent years an analogy has been proposed between the behaviour of a bonded overlap joint and a bonded repair. This paper examines the behaviour of the fibre and the adhesive stresses in a bonded overlap joint and shows that the results of previous one-dimensional analyses of this problem are invalid in the vicinity of the gap in the specimen. The fibre and adhesive stresses are also shown to be strongly dependent on the gap size.