DETERMINATION OF THE ELASTIC CONSTANTS OF INHOMOGENEOUS MATERIALS WITH X-RAY DIFFRACTION

BY

Ismail Cevdet Noyan
DETERMINATION OF THE ELASTIC CONSTANTS OF INHOMOGENEOUS MATERIALS WITH X-RAY DIFFRACTION

I. C. Noyan

Department of Materials Science and Engineering
The Technological Institute
Northwestern University
Evanston Ill. 60201

ABSTRACT

Experimental determination of the elastic constants is of fundamental importance in residual stress analysis with x-rays. Such constants are usually termed "x-ray elastic constants". In certain materials changes have been observed in these elastic constants as a result of plastic deformation. However, since for some of such cases the d vs. sin^2\theta plots used in the analysis were not linear, as predicted by theory, but oscillatory, the meaning of these variations was not fully understood. In this paper the meaning of "x-ray elastic constants" obtained from materials with oscillatory d vs. sin^2\theta plots is examined. It is shown that x-ray diffraction analysis is a powerful tool that can be used to determine the "effective elastic constants" of the material under investigation, even when the material is inhomogeneous.
INTRODUCTION

X-ray diffraction techniques are used widely in non-destructive measurement of residual stresses caused during production operations such as shot-peening, grinding, quenching. Currently there are several x-ray methods for measuring residual stresses that utilize different assumptions as to the stress state existing in the near-surface layers sampled by the x-ray beam. All of these techniques, however, utilize an interatomic spacing \(d \) in the material as an internal strain gage and determine the strain tensor existing in the surface layers from the slope of the \(d \) vs. \(\sin \theta \) line. The residual stress tensor is then calculated through the use of Hooke's law.

This procedure, of course, requires that the appropriate elastic constants of the material be known accurately. The elastic constants used in the x-ray determination of residual stress are called "x-ray elastic constants" and are usually measured by x-ray diffraction\(^1\). When measured data is not available, these constants can be calculated from single crystal elastic constants using procedures given by Voigt, Reuss, Hill, or Kerner\(^2,4\). A review of the literature shows that in some cases the measured values do not fall between the Reuss and Voigt limits as postulated by theory\(^7\). In other cases a large dependence of measured elastic constants on plastic deformation (35-40 % for hardened steel undergoing uniaxial plastic deformation\(^8\)) has been observed, while in other studies no such dependence was found\(^2\). Since in most of the cases discussed
above no error analysis of the results are given or, in some cases, elastic constants are calculated from oscillatory "d" vs. sin data, the causes of these anomalies are not clear.

In this paper the meaning of the "x-ray elastic constants" obtained from analysis of oscillatory "d" vs. sin data is investigated. It will be shown that even for oscillatory "d" vs. sin data, current techniques for x-ray elastic constant determination measure the total linear elastic response of the material in question to an applied load. The x-ray elastic constants determined from such data are 'effective elastic constants' and contain contributions from the shape and orientation distributions of the constitutive grains of the material. The possible causes for the variation of x-ray elastic constants with plastic deformation are also discussed.

THEORY

Assume that a homogeneous, normal stress \(\sigma_{ii}^0 \), which is below the elastic limit, is applied to the boundary of a residual-stress-free textured material. At a point A in the interior of the material \(\sigma_{ii}^0 \) will cause the strains \(\varepsilon_{ij} \). The strain \(\varepsilon_{ij} \) may be expressed as the sum of two components:

\[
\varepsilon_{ij} = \varepsilon_{ij}^0 + \varepsilon_{ij}^{1n}
\]

(1)

Here \(\varepsilon_{ij}^0 \) is the homogeneous elastic strain that would be observed if the stress was applied to a homogeneous isotropic
material. The reaction strain component, arises because of the variation of elastic constants along a given direction in the surface plane of the sample. Consider figure 1 where six grains of various orientations along a surface direction (\(\mathbf{F}_1 \)) are shown. If these grains were subjected separately to \(\sigma_{
} \) on their boundaries, each would have a different strain \(\varepsilon_{\|} \) along \(\mathbf{F}_1 \), related to \(\sigma_{\|} \) through the general Hooke's law,

\[
\varepsilon_{\|} = S_{\|kl} \sigma_{kl}
\]

These different strains indicate different displacements in the different grains. However in a solid body where grains are in rigid contact, displacements across a grain boundary along \(\mathbf{F}_1 \) must be constant in order to avoid having voids, and a reaction stress field constraining the possible displacements arises and causes the reaction strains \(\varepsilon_{\|} \). The magnitude of the reaction stresses (and hence the reaction strains) depend on the difference between the displacements that have to be made compatible at a point and varies from point to point since the effect of surrounding grains at each point is different. However as long as the total stress at a point is lower than the microscopic elastic limit at any point, the magnitude of the reaction stresses and strains at any point will be directly proportional to the applied stress.

Thus if a homogeneous stress \(\sigma_{\|} \) in the \(\mathbf{F}_1 \) direction is applied at the boundary
of the material, the components of the strain tensor at any
point \(A \) in the material may be expressed as:

\[
\begin{align*}
\varepsilon_{xx}(x,y,z) &= \sigma_{xx}^0 \left\{ \frac{1}{E} + K'_1(x,y,z) \right\} \\
\varepsilon_{yy}(x,y,z) &= \sigma_{yy}^0 \left\{ \frac{1}{E} + K'_2(x,y,z) \right\} \\
\varepsilon_{zz}(x,y,z) &= \sigma_{zz}^0 \left\{ \frac{1}{E} + K'_3(x,y,z) \right\} \\
\varepsilon_{ij}(x,y,z) &= \sigma_{ij}^0 \cdot K'_{ij}(x,y,z)
\end{align*}
\]

(3)

where \(x, y, z \) are the coordinates of the point \(A \) with respect to a coordinate system describing the surface, and \(K'_{ij}(x,y,z) \) are the proportionality constants at \(A \) between the applied load and the resulting reaction strains. The constants \(K'_1, K'_2, K'_3 \) may be finite depending on the symmetry of the constitutive grains of the material. Also in certain cases the local symmetry changes as one approaches a grain boundary. In the following discussion it is assumed that \(K'_1 = K'_2 = K'_3 = 0 \).

If the material also has an inhomogeneous residual stress distribution the total elastic strain \(\varepsilon^t_{ij} \) at a point will also have a residual strain component in addition to the strains caused by the applied stress. Thus for this case equations (3) become:

\[
\varepsilon^t_{ij}(x,y,z) = \varepsilon_{ij}(x,y,z) + \varepsilon^r_{ij}(x,y,z)
\]

(4)

where \(\varepsilon^r_{ij}(x,y,z) \) is the residual strain at the point \((x,y,z)\).

Now assume that this material is placed, applied stress and
all on a diffractometer and a beam of x-rays, (whose edges extend from \(x_1 \) to \(x_2 \) along \(S_1 \), \(y_1 \) to \(y_2 \) along \(S_2 \) and which penetrates a distance \(z \) along \(S_3 \) into the material), is used to measure the average strain along \(S_3 \) in the \(L_3 \) coordinate system, which makes the angles \(\alpha \) and \(\gamma \) with the sample coordinate system \(S_1 \) (fig. 2). This is done by measuring the lattice spacing \(d_{\phi\gamma} \) along \((L_3)_{\phi\gamma} \), and then obtaining the average strain along \((L_3)_{\phi\gamma} \) from:

\[
< \varepsilon_{33}^\prime >_{\phi\gamma} = \frac{< d_{\phi\gamma} > - d_0}{d_0}
\]

(5)

where \(d_0 \) is the unstressed lattice spacing, and carats represent averages over the diffracting volume.

The relationship between the average strains \(< \varepsilon_{ij} > \) in the sample coordinate system and the average strains measured by x-rays in the laboratory coordinate system is given by the transformation rule for tensors of second rank:

\[
< \varepsilon_{jk}^\prime >_{\phi\gamma} = a_{jk}^t a_{\phi\gamma} < \varepsilon_{kl} >
\]

(6)

For \(\phi = 0 \), and \(\gamma = \gamma'_j \), substituting the actual values for the direction cosines \(a_{jk} \) into the above equation:

\[
< \varepsilon_{33}^\prime >_{\gamma_j} = \frac{< d_{\phi\gamma} > - d_0}{d_0} = \left\{ < \varepsilon_{ui}^t >_{\gamma_j} - < \varepsilon_{33}^t >_{\gamma_j} \right\} \sin^2 \gamma_j + < \varepsilon_{33}^t >_{\gamma_j}
\]

(7)
The average strains $\langle E_{ij} \rangle$ in equation (7) are related to the strains at a point (equations 3, 4) through equations of the form:

$$\langle E_{ij} \rangle = \sum_{i=1}^{N_j} \frac{\int_{V_i} E_{ij}^t(x, y, z) f(z) \, dV}{\int_{V_i} f(z) \, dV} \sum_{i=1}^{N_j} V_i$$ \hspace{1cm} (8)

Here, $E_{ij}^t(x, y, z)$ is the strain at point (x, y, z) in a diffracting grain in the irradiated volume, V_i is the volume of this grain, $f(z)$ is a function relating the variation of diffracted intensity to depth (z), and N_j is the total number of grains diffracting at a tilt angle γ_j. The summation is used instead of an integral since the diffracting grains are not necessarily contiguous. It must also be noted that because X-rays may penetrate to a different depth (z) for each γ-tilt due to absorption and, for finite beam sizes, the intersection of the tilting specimen with the beam changes the dimensions $x_0 - x_1$, $y_0 - y_1$, the total irradiated volume is also a function of the tilt angle γ_j. This means that parameters that are a function of volume can also be expressed as a function of γ.

The evaluation of the average x-ray strains in terms of the strains at a point is extremely complicated since, to date, the exact nature of the coupling terms in equation (8) is not known. However, by inspection of equations (8), (3) and (4) it can be seen that the average strain may be written in terms of
the average strain components contributing to it:

\[
\langle \varepsilon_{ij}^b \rangle = \langle \varepsilon_{ij}^a \rangle + \langle \varepsilon_{ij}^{in.} \rangle + \langle \varepsilon_{ij}^r \rangle
\]

(9)

or, from equations 3, 8, 9:

\[
\langle \varepsilon_{ij}^b \rangle = \sigma_{ij}^a \left\{ \frac{1}{E} + K_i(\gamma) \right\} + \langle \varepsilon_{ij}^r \rangle
\]

\[
\langle \varepsilon_{23}^b \rangle = \sigma_{ij}^a \left\{ \frac{2}{E} + K_3(\gamma) \right\} + \langle \varepsilon_{23}^r \rangle
\]

(10)

and similar equations may be written for the other terms of the strain tensor. Here \(K_i(\gamma) \) is the average proportionality constant describing the average response (described by equations 3, 8) of the population of grains diffracting at tilt angle \(\gamma_j \) to an applied load, and \(\langle \varepsilon_{ij}^r \rangle \) is the average (inhomogeneous) residual strain in this population.

By substituting equations (10) into equation (7) the relationship between the applied stress and the measured strain is obtained:

\[
\langle \varepsilon_{ij}^b \rangle \equiv \frac{d \gamma_j - d_0}{d_0} = \left[\sigma_{ij}^a \left\{ \frac{1 + \gamma_j}{E} + K_i(\gamma) - K_3(\gamma) \right\} + \langle \varepsilon_{ij}^r \rangle \right] \\
+ \langle \varepsilon_{ij}^r \rangle \sin^2 \gamma_j + \sigma_{ij}^a \left\{ \frac{2}{E} + K_3(\gamma) \right\} \\
+ \langle \varepsilon_{ij}^r \rangle \gamma_j
\]

(11)

Since \(K_i(\gamma), \sigma_{ij}^r \) are not constant in \(\sin^2 \gamma \), equation 11 describes a function that is non-linear in \(\sin^2 \gamma \). On the other hand, in a homogeneous material the interaction terms are zero by
definition and for a homogeneous residual stress distribution
the terms \(\langle \varepsilon_x \rangle \) are constant for all \(\psi \) tilts, thus for this
case a linear "\(d \)" vs. \(\sin^2 \psi \) plot will be obtained.

If a linear least-squares line is fitted to the data,
described by equation (11), (as is usually done in practice), it
is assumed that the function,

\[
d_{\psi_j} = \beta_0 + \beta_1 \sin^2 \psi_j + e
\]

(12)
describes the relationship between \(d \) and \(\sin^2 \psi \). Here \(e \) is the
random error component. The regression parameters \(\beta_i \) are then
obtained from the equation:

\[
\beta_i = \frac{\sum_{j=1}^{n} (\sin^2 \psi_j - \overline{\sin^2 \psi_j}) (d_{\psi_j} - \overline{d_{\psi}})}{\sum_{j=1}^{n} (\sin^2 \psi_j - \overline{\sin^2 \psi_j})}
\]

(13-a)

\[
\beta_0 = \overline{d_{\psi}} - \beta_1 \overline{\sin^2 \psi_j}
\]

(13-b)

where \(n \) is the number of \(\psi \) tilts and:

\[
\overline{\sin^2 \psi_j} = \frac{\sum_{j=1}^{n} \sin^2 \psi_j}{n}
\]

(14)

\[
\overline{d_{\psi_j}} = \frac{\sum_{j=1}^{n} d_{\psi_j}}{n}
\]
It must be noted that, because a "linear" fit is forced on oscillatory data, the parameters \(\beta_0, \beta_1 \) can not be called "slope" and "intercept" of the least-squares line in the traditional sense (e.g. as in the conventional analysis of linear "d" vs. \(\sin \gamma \) plots). Here they are simply mathematical functions described by equations (13 a, b).

Substituting equation (11) into equation (13-a) we obtain:

\[
\beta_i = \frac{d_i}{\sum_{j=1}^{n} c_j^2} \left\{ \sigma_{hi} \sum_{j=1}^{n} c_j \left[\left\{ \frac{(1+\nu)}{E} \right\} + k_1(\gamma_j) - k_2(\gamma_j) \right] \cdot \sin^2 \gamma_j
\right.
\left. + k_2(\gamma_j) - \frac{\nu}{E} \sum_{j=1}^{n} \left\{ \left\{ \frac{(1+\nu)}{E} \right\} + k_1(\gamma_j) - k_2(\gamma_j) \right\} \cdot \sin^2 \gamma_j
\right.
\left. + k_2(\gamma_j) - \frac{\nu}{E} \right\]
\left. + \sum_{j=1}^{n} c_j \left[\left\{ \left\{ \frac{(1+\nu)}{E} \right\} - \epsilon_{12} \right\} \cdot \sin^2 \gamma_j + \epsilon_{12} \right] \right)
\]

which can be written simply as:

\[
\beta_i = \sigma_{hi} \bar{s}_i \left(\frac{1+\nu}{E}, k_1(\gamma) \right) + \bar{s}_2(\epsilon_{12})
\]

(14)

Where the function \(\bar{s}_i \left(\frac{1+\nu}{E}, k_1(\gamma) \right) \) is an average, defined by equation 15, of the terms \(\frac{1+\nu}{E}, k_1(\gamma), k_2(\gamma) \). The term \(\bar{s}_2 \) is an average residual stress term.

A similar equation can be written for \(\beta_0 \). However this case is more complicated and will not be treated here.

From equation 14 it is seen that the variation of the parameter \(\beta_i \) with applied load \(\sigma_{hi} \) is linear. The slope of the \(\beta_i \) vs. \(\sigma_{hi} \); \(\bar{s}_i \left(\frac{1+\nu}{E}, k_1(\gamma) \right) \) is a measure of the average elastic...
response of the inhomogeneous material to an applied load and contains the interaction terms $K_i(\gamma)$. Thus it is not an elastic constant (σ_{ijkl}, C_{ijkl}) in the strict sense defined by linear elasticity theory. In figure 3, "d" vs. $\sin^2\gamma$ plots for α-brass (a), β-brass (b), 1008 steel (c) and 1075 steel (d) loaded in-situ on a diffractometer to various elastic loads are shown. The variation of the parameter β_i calculated from these curves vs. applied load for these materials is shown in figure 4. The "x-ray elastic constants" obtained from figure 4, and average macroscopic elastic constants calculated from single crystal elastic constants for these materials in the Voigt3 (constant strain in all grains), Reuss3 (constant stress in all grains), and Kroner3 (anisotropic precipitate coupled to an isotropic matrix) limits are given in table I.

DISCUSSION

The differences between the average elastic constants calculated from single crystal values without taking coupling effects into account, and those obtained from the experimental procedure described above are measures of the reaction stresses (and strains) caused by the inhomogeneity of the material in question. It is thus seen that a study in the variation of "x-ray elastic constants" with plastic deformation for a given specimen is really a study of the change in the inhomogeneous distribution of crystallographic directions (and the grains) along a direction in the surface coordinate system, and the constraining effect such a distribution has on the strains.
caused by an applied stress. If during the study, the plastic deformation causes changes in this distribution such that the average reaction stresses, and hence $k_i(\mathcal{M})$ changes, the "x-ray elastic constants" will change also. In fact one should not use the term "elastic constants" for these parameters when they have been evaluated from oscillatory "d" vs. $\sin^2 \gamma$ plots, where the oscillations are due to the reaction stresses generated by σ_i^0, since, in this case they are not fundamental material properties that depend only on the interatomic forces like E or V, but also contain simple configurational parameters. If the plastic deformation is such that the inhomogeneous residual strains ε_{ij}^r change, but the coupling constants are not affected, then no change in the "x-ray elastic constants" will be observed since, even though such a residual strain (or stress) distribution causes oscillations in "d" vs. $\sin^2 \gamma$, the residual strain distribution itself is not a function of the elastic loads applied (after plastic deformation) during the measurement and will affect only the intercept of the β_i vs. σ_i^0 plot (equation (16)).

The configurational parameters contributing to such "effective elastic constants" may have two main components. The shape distribution of the grains in the material is one of the possible components. Well has treated the effect of the inclusion shape on the average elastic moduli of a two phase material and determined that disk shaped precipitates cause a significant increase in the average Young's modulus. For a textured material the non-random distribution of crystallographic directions (and hence elastic moduli S_{ijkl})
within the material volume will also contribute to such "effective elastic constants".

One other conclusion from this line of reasoning is that even if the oscillations in "d" vs. \(\sin^2 \gamma \) plots from two samples of the same material look alike, unless the shapes of any precipitates that might be present and the distribution of crystallographic directions in the constitutive grains of the matrix along surface directions are the same for both specimens, and in both cases the oscillations are due to the same effect, they may not have the same "x-ray elastic constants". In fact such effective elastic constants may be different along different surface directions of a given specimen.

It must be emphasized that, even though it is possible to measure the effective elastic constants of a textured material accurately along any direction in the specimen surface using x-ray methods, these constants may not be used to determine the residual stress state by x-rays. This is due to the fact that when "d" vs. \(\sin^2 \gamma \) is oscillatory the stress/strain state is inhomogeneous and an average value for an inhomogeneous distribution (where the distribution function is not known), is of dubious utility. Rather, one may utilize the x-ray elastic constant measurements for such materials to determine the effect of shape/orientation distributions on the elastic properties of a given material.
CONCLUSIONS

1) Conventional methods of "x-ray elastic constant" determination measure the total elastic response of the material under analysis whether the \(d \) vs. \(\sin^2 \gamma' \) plots obtained from this material are linear or oscillatory. For both of these cases the plot of applied load vs. linear-least-squares-regression-parameter will be linear as long as the test is carried out within the elastic range.

2) "X-ray elastic constants" obtained from oscillatory \(d \) vs. \(\sin^2 \gamma' \) plots, where the oscillations are due to the reaction stresses (caused by an applied stress) contain configurational parameters in addition to Young's modulus and Poisson's ratio and are not, in a strict sense, "elastic" constants. A better name for such constants may be 'effective elastic constants'.

3) The configurational parameters contributing to these effective elastic constants may be due to shape and/or crystallographic direction distributions of the constitutive grains in the material.

4) If during plastic deformation the distribution of crystallographic directions in individual grains, or the shape of any precipitates along surface directions changes, such change may reflect in the configurational parameters and cause an apparent change of (x-ray) "elastic constants" with plastic deformation.

5) If, on the other hand, in a given sample plastic deformation only changes the residual stress distribution, but does not affect the distribution of crystallographic orientations or precipitate shapes along surface directions, there will be no
4) The average interaction parameters can not be evaluated easily from first principles since, in order to calculate the interaction among non-random composite elements, the boundary value problems of elasticity must first be solved. The x-ray average of the fields calculated by these solutions must then be calculated using a formula similar to (8).

ACKNOWLEDGEMENTS

The author would like to thank Professors T. Mura and J. S. Cohen of Northwestern University for discussions and comments on this paper. Thanks are also due to Professor P. J.Mahar for help with equation 13, and to the Turkish Scientific and Technical Research Foundation for a NATO grant, which enabled the author to study in the U.S.A. This research was supported by ONR under contract No. N00014-C-0116. The x-ray measurements were made in the diffraction facility of Northwestern University's Materials Research Center, supported in part by the MRL-NSF Program under grant no. DMR-8216972.
REFERENCES

 SAE J784a, 2nd Ed. Soc. Automotive Eng. Inc.,
 New York (1971)

[16] T. Mura, Micromechanics of Defects in Solids,
 Martinus-Nijhoff Publishers, Hague, Netherlands
 (1982)

 Constants, M.S. Thesis, Northwestern University,
 Evanston, Ill. (1982)

 (1977) 355

[19] J. F. Nye, Physical Properties of Crystals,

 London, A386, (1983) 95

 27, (1984) 129
FIGURE CAPTIONS

Figure 1: Grains with various crystallographic orientations along a sample coordinate S_i. The strains forming in each grain in response to a uniform applied stress at the boundary (σ_{N}^{b}) will be different due to Hooke's law.

Figure 2: Definition of the specimen S_i and laboratory L_i coordinate systems.

Figure 3: "d" vs. $\sin^2\psi$ plots at various loads from alpha-brass (a), beta-brass (b), 1008 steel (c), 1075 steel (d). The specimens were loaded in-situ on the diffractometer. For a description of the apparatus see reference 7.

Figure 4: Variation of regression parameter β_i (determined from figures 3 a,b,c, d) vs. applied load.
Table I: Bulk elastic constants \((1+v)/E\) (Mpa\(^{-1}\)) calculated from single crystal elastic compliances in various limits and obtained from figures 3 a,b,c,d.

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Alpha-Brass(^*)</th>
<th>Beta-Brass(^*)</th>
<th>1008 Steel(^{**})</th>
<th>1075 Steel(^{***})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit</td>
<td>(220)</td>
<td>(211)</td>
<td>(211)</td>
<td>(211)</td>
</tr>
<tr>
<td>VOIGT(^3)</td>
<td>9.97.10^{-6}</td>
<td>9.47.10^{-6}</td>
<td>5.63.10^{-6}</td>
<td>5.63.10^{-6}</td>
</tr>
<tr>
<td>REUSS(^2)</td>
<td>1.20.10^{-6}</td>
<td>1.75.10^{-6}</td>
<td>5.84.10^{-6}</td>
<td>5.84.10^{-6}</td>
</tr>
<tr>
<td>KRONER(^8)</td>
<td>1.07.10^{-6}</td>
<td>1.14.10^{-6}</td>
<td>5.71.10^{-6}</td>
<td>5.71.10^{-6}</td>
</tr>
<tr>
<td>EXPERIMENTAL(^+)</td>
<td>9.90.10^{-6}</td>
<td>4.494.10^{-6}</td>
<td>6.19.10^{-6}</td>
<td>6.84.10^{-6}</td>
</tr>
</tbody>
</table>

* Experimental data obtained from respective phases of a 60-40 Cu-Zn specimen, machined from cold-rolled sheet. This configuration maximises the interaction coefficients \(K_1(\gamma)\).

** Specimen machined from as-received cold-rolled plate.

*** Specimen solution-treated at 740°C for 2 hrs. to facilitate carbide precipitation, then grit-blasted to randomise the surface and annealed at 450°C for 45 minutes.

+ The total (statistical plus geometric) error associated with each value is less than 15%. The equations used in error calculations are from reference 7.
\[\sigma \approx 7.2 \text{ Mpa} \]

\[\sigma \approx 47.6 \text{ Mpa} \]

\[\sigma \approx 95.2 \text{ Mpa} \]
\[\sigma \approx 6.4 \text{MPa} \]

\[\sigma \approx 108 \text{MPa} \]

\[\sigma \approx 209 \text{MPa} \]
\[
\sigma \approx 8 \text{ Mpa} \\
\sigma \approx 106 \text{ Mpa} \\
\sigma \approx 192 \text{ Mpa}
\]
Experimental determination of the elastic constants is of fundamental importance in residual stress analysis with x-rays. Such constants are usually termed "x-ray elastic constants". In certain materials changes have been observed in these elastic constants as a result of plastic deformation. However, since for some of such cases the "d" vs. \(\sin^2 \phi \) plots used in the analysis were not linear, as predicted by theory, but oscillatory, the meaning of these variations was not fully understood. In this paper the meaning of "x-ray elastic constants" obtained from materials with oscillatory "d" vs. \(\sin^2 \phi \) plots is examined. It is shown that x-ray diffraction analysis is a powerful tool that can be used to determine the "effective elastic constants" of the material under investigation, even when the material is inhomogeneous.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray elastic constants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>elastic constants</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>