BAYESIAN ANALYSIS OF
ITEM RESPONSE CURVES

Robert K. Tsutakawa
and
Hsin Ying Lin

Research Report 84-1
Mathematical Sciences Technical Report No. 132
July 1984

Department of Statistics
University of Missouri
Columbia, MO 65211
Title: Bayesian Analysis of Item Response Curves

Authors: Robert K. Tsutakawa and Hsin Ying Lin

Performing Organization: Department of Statistics, University of Missouri, Columbia, Missouri 65211

Grant Numbers: N00014-81-K 0265

Program Area: NR-150-464

Report Date: July 1984

Number of Pages: 30

Security Classification: Unclassified

Distribution Statement: Approved for public release; distribution unlimited.

Abstract: Item response curves for a set of binary responses are studied from a Bayesian viewpoint of estimating the item parameters. For the two-parameter logistic model with normally distributed ability, restricted bivariate beta priors are used to illustrate the computation of the posterior mode via the EM algorithm. The procedure is illustrated by data from a mathematics test.
BAYESIAN ANALYSIS OF ITEM RESPONSE CURVES

by

Robert K. Tsutakawa
and
Hsin Ying Lin

University of Missouri-Columbia

This work was supported under Contract No. N00014-81-K-0265, NR150-464, from Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research. The authors wish to thank Mark D. Reckase for providing the ACT data used in the illustration.

Requests for reprints should be sent to Robert K. Tsutakawa, Dept. of Statistics, University of Missouri, Columbia, MO 65211.
Bayesian Analysis of Item Response Curves

Abstract

Item response curves for a set of binary responses are studied from a Bayesian viewpoint of estimating the item parameters. For the two-parameter logistic model with normally distributed ability, restricted bivariate beta priors are used to illustrate the computation of the posterior mode via the EM algorithm. The procedure is illustrated by data from a mathematics test.

Key Words: Item responses, Bayesian estimation, EM algorithm.
Introduction

We will consider dichotomous responses to a set of test items which are designed to measure the abilities of individuals. We assume that each item is characterized by an item response curve, a function of ability which is indexed by unknown parameters called item parameters. We consider a Bayesian method for estimating these parameters when the abilities of the individuals are assumed to have a normal prior distribution.

A standard method for estimating abilities and item parameters in the absence of prior information is maximum likelihood (see Lord [1980]). Under the assumption that abilities are normally distributed, the maximum likelihood (m.l.) estimates of item parameters have been studied through various applications of the EM algorithm [Dempster, Laird, and Rubin, 1977] by Sanathanan and Blumenthal [1978], Bock and Aitkins [1981], and Rigdon and Tsutakawa [1983], among others.

The Bayesian hierarchical approach developed for linear models by Lindley and Smith [1972] has been adapted to estimating item parameters by Swaminathan and Gifford [1982]. The procedure is dependent on obtaining modal estimates as a solution to a simultaneous system of a large number of equations. As suggested by the illustration in Novick, Jackson, Thayer, and Cole [1972], one of the drawbacks of the hierarchical approach is the difficulty of specifying the hyperparameter for the prior distribution.

In this paper we show how the computational simplicity of the EM algorithm for m.l. estimation of item parameters continues to hold in finding the posterior mode, provided the item parameters
have independent prior distributions. This simplicity consists of being able to work iteratively one item at a time rather than with all items simultaneously.

We also introduce a new family of priors for the item parameters, which we believe can be more readily specified in practice. It is based on the user's prior belief about the probability of correct response to each item for subjects at given percentiles of the ability distribution.

An important difference between Swaminathan and Gifford's result and ours is that, whereas they obtain the joint posterior mode of ability and item parameters, we obtain the marginal posterior mode of the item parameters. The work by O'hagan [1976] on linear models suggests the two approaches can lead to different results and the marginal mode is preferred when the ability parameters are considered nuisance parameters.

We will start by stating the general model and assumptions. For the general model we derive expressions for the marginal posterior distribution of item parameters and show how the EM algorithm can be used to compute the posterior mode. For the two-parameter logistic model [see Lord, 1980] we introduce prior distributions on the item parameters via restricted bivariate beta distributions. The Bayesian approach is illustrated with responses to a mathematics test used by the American College Testing Program (ACT). A preliminary sample of 40 examinees is used to formulate priors. These priors are then used on the main sample of 400 examinees. The uncertainty in the estimates is given by the posterior covariance matrix, which is approximated through the curvative of the posterior distribution at the mode. The posterior modes are then compared to the more conventional m.l. estimates by using LOGIST [Wingersky, Barton, and Lord, 1982] and, as might be expected for the sample size used, the two point estimates are shown to be in close agreement.
General Model for Item Responses

Consider binary responses to a set of \(k \) test items by a set of \(n \) examinees for evaluating some characteristics of the items. Let \(Y_{ij} = 0 \) or \(1 \), according as the response of examinee \(i \) to item \(j \) is incorrect or correct, \(i = 1, \ldots, n; j = 1, \ldots, k \). Assume a probability model

\[
P_{ij} = P(Y_{ij} = 1 | \theta_i, \xi_j)
\]

depending on a real valued ability parameter \(\theta_i \) and a real or vector valued item parameter \(\xi_j \). Although our numerical illustration will be for the 2-parameter logistic model, the discussion in this section applies more generally to the one and three-parameter logistic models and corresponding probit models.

We assume conditional independence among the responses, so that given \(\theta = (\theta_1, \ldots, \theta_n)^T \) and \(\xi = (\xi_1, \ldots, \xi_k)^T \), the joint probability of the \(n \times k \) matrix of responses \(Y \) is

\[
P(Y \mid \theta, \xi) = \prod_{i=1}^{n} \prod_{j=1}^{k} P_{ij} Y_{ij} (1 - P_{ij})^{1 - Y_{ij}}.
\]

We further assume that \(\theta \) and \(\xi \) have independently distributed prior distributions with pdf's \(p(\theta) \) and \(p(\xi) \), respectively.

The posterior distribution of \((\theta, \xi)\) is then given by the pdf

\[
p(\theta, \xi | Y) = \frac{P(Y \mid \theta, \xi)P(\theta)p(\xi)}{P(Y)}
\]

where \(P(Y) \) is the marginal probability function of \(Y \). The marginal posterior pdf's of \(\theta \) and \(\xi \) are then
A relation between \(p(\theta | y) \) and \(p(\xi | y) \) may be seen in the alternative expressions

\[
p(\theta | y) = \frac{p(\theta) \int p(y | \xi) p(\xi) d\xi}{p(y)}
\]

(4)

and

\[
p(\xi | y) = \frac{p(\xi) \int p(y | \theta, \xi) p(\theta) d\theta}{p(y)}
\]

(5)

where

\[
p(\theta | y, \xi) = \frac{p(y | \theta, \xi) p(\theta)}{p(y | \xi)}
\]

(8)

and

\[
p(\xi | y, \theta) = \frac{p(y | \theta, \xi) p(\xi)}{p(y | \theta)}
\]

(9)

which are the posterior pdf's of \(\theta \) and \(\xi \), given \(\xi \) and \(\theta \), respectively.

The equivalence of (4) to (6) and (5) to (7) may be seen by noting that

\[
p(\theta | y) / p(y | \theta) = p(\theta) / p(y)
\]

(10)

and

\[
p(\xi | y) / p(y | \xi) = p(\xi) / p(y),
\]

(11)

whenever \(p(y), p(\theta), \) and \(p(\xi) \) are positive.

If \(\xi_1, \ldots, \xi_k \) are independent then (4) reduces to

\[
p(\theta | y) = p(\theta) \prod_{j=1}^{n} \int_{\xi_j}^{\infty} p(y_{1j} | \theta_1, \xi_j) p(\xi_j) d\xi_j
\]

(12)

and similarly if \(\theta_1, \ldots, \theta_n \) are independent then (5) reduces to

\[
p(\xi | y) = p(\xi) \prod_{i=1}^{k} \int_{\theta_i}^{\infty} p(y_{ij} | \theta_i, \xi_j) p(\theta_i) d\theta_i.
\]

(13)

We note that the integrals in (12) have dimensions equal to the dimensions of the item parameters \(\xi_j \), but those in (13) are single.
Computing the Posterior Mode of ξ

When $\xi_1, \ldots, \xi_k; \theta_1, \ldots, \theta_n$ are independent, the EM algorithm [Dempster, Laird and Rubin, 1977] is a powerful tool for computing the posterior mode $\hat{\xi}$ of ξ. The computation of the posterior mode of θ is somewhat more difficult since multiple integrals of order equal to the dimension of ξ_j must be numerically evaluated. Here we restrict our discussion to ξ.

In the terminology of the EM algorithm, (Y, θ) is the complete data and ξ the unknown parameter. Y is the incomplete (or observed) data and θ the missing data. The joint distribution of (Y, θ) given ξ is

$$P(Y, \theta | \xi) = \prod_{i=1}^{n} \prod_{j=1}^{k} P(y_{ij} | \theta_{ij}, \xi_j) P(\theta_{ij}).$$

(14)

To find the m.l. estimate of ξ, the EM algorithm uses a function of ξ defined by

$$Q(\xi | \xi^o) = \mathbb{E} \{ \log p(Y, \theta | \xi) | Y, \xi^o \},$$

(15)

where the expectation is with respect to θ conditionally on Y and some fixed value ξ^o of ξ [see Ridgon and Tsutakawa, 1983]. To find the posterior mode of ξ, we append to Q the log of the pdf of ξ and work with the function,

$$R(\xi | \xi^o) = Q(\xi | \xi^o) + \log p(\xi).$$

(16)

(See end of section 2 in Dempster, Laird and Rubin [1977].)

In the case of independence, described above, R reduces to

$$R(\xi | \xi^o) = \prod_{i=1}^{n} \prod_{j=1}^{k} \log p(y_{ij} | \theta_{ij}, \xi_j) p(\theta_{ij} | y, \xi^o) d\theta_{ij}$$

$$+ \prod_{j=1}^{k} \log p(\theta_j) p(\theta_j | y, \xi^o) d\theta_j$$

$$+ \prod_{j=1}^{k} \log p(\xi_j).$$

(17)
Basically, the EM algorithm starts with some initial value ξ^0 and iteratively maximizes $R(\xi \mid \xi^0)$ with respect to ξ while holding ξ^0 fixed and replacing ξ^0 by the maximizing value at the beginning of the successive iterations. The iteration continues until some convergence criterion is satisfied. We note that the middle term on the right hand side of (17) may be ignored since it does not depend on ξ. Moreover, since the summands, with respect to j, of the remaining terms of (17) are each a function of a single ξ_j, we may maximize $R(\xi \mid \xi^0)$ by maximizing separately for $j = 1, \ldots, k$,

$$
\frac{\partial}{\partial \theta_i} \log p(y_{ij} \mid \theta_i, \xi_j) p(\theta_i \mid y, \xi^0) \, d\theta_i \\
+ \log p(\xi_j).
$$

(18)

Upon convergence the final value $\hat{\xi}$ of ξ^0 maximizes the posterior pdf (4).
Class of Priors for Two-parameter Logistic Curves

To illustrate some of the computational work needed to implement the EM algorithm we consider the two-parameter logistic model defined by

\[P_{ij} = \frac{1}{1 + \exp(-\alpha_j(\theta_i - \beta_j))} \]

or equivalently

\[P(Y_{ij} | \theta_i, \alpha_j, \beta_j) = \frac{\exp(y_{ij} \alpha_j(\theta_i - \beta_j))}{1 + \exp(\alpha_j(\theta_i - \beta_j))} \] \hspace{2cm} (19)

for \(Y_{ij} = 0,1; i = 1,...,n; j = 1,...,k \) where we now have \(\xi_j = (\alpha_j, \beta_j)^T \) with \(\alpha_j > 0 \) and \(-\infty < \beta_j < \infty \). We assume that \(\theta_1, ..., \theta_n \) are iid \(N(0,1) \). Note that if we use \(N(\mu, \sigma^2) \) with unknown \((\mu, \sigma^2) \) in place of \(N(0,1) \), the parameterization in (19) would not be unique without some restriction on \((\alpha_j, \beta_j) \).

For the prior distribution of \((\alpha_j, \beta_j) \) we consider the family of bivariate pdf's of the form

\[p(a, \beta | w) = \begin{cases} \alpha p_1(1 - p_1)^{s_1} p_2(1 - p_2)^{s_2}, & \text{if } a > 0 \\
0 & \text{if } a \leq 0, \end{cases} \] \hspace{2cm} (20)

where

\[P_u = \frac{1}{1 + \exp(-a(t_u - \beta))}, \quad u = 1,2, \]

and

\[w = (r_u, s_u, t_u; u = 1,2). \]

is a known hyperparameter with \(t_1 < t_2 \) and \(r_u, s_u > 0, u = 1,2 \). When \((\alpha_1, \beta_1), ..., (\alpha_k, \beta_k) \) are independent with possibly different hyperparameters \(w = (w_1, ..., w_k)^T \), the joint pdf is
The use of this family of priors may be motivated through the examinee's prior belief about the probability of correct responses to the items at different ability levels. The family of natural conjugate priors for the binomial distribution with parameter p is the set of beta distributions,

$$p(\xi|w) = \prod_{j=1}^{k} p(\alpha_{j}, \beta_{j}|w_{j}).$$ (22)

where the hyperparameter is (α_{j}, β_{j}). For two independent binomials having parameters p_{1} and p_{2} with the restriction $p_{1} < p_{2}$, the family of natural conjugate priors is the restricted beta,

$$g(p|r, s) = \begin{cases} p^{r-1}(1-p)^{s-1} & \text{if } 0 < p < 1 \\ 0 & \text{if otherwise}, \end{cases}$$ (23)

where the hyperparameter is (r, s) with $r, s > 0$. For two independent binomials having parameters p_{1} and p_{2} with the restriction $p_{1} < p_{2}$, the family of natural conjugate priors is the restricted beta,

$$g(p_{1}, p_{2}, r_{1}, s_{1}, r_{2}, s_{2}) = \begin{cases} p_{1}^{r_{1}-1}(1-p_{1})^{s_{1}-1} p_{2}^{r_{2}-1}(1-p_{2})^{s_{2}-1} & \text{if } 0 < p_{1} < p_{2} < 1 \\ 0 & \text{if otherwise}, \end{cases}$$ (24)

where the hyperparameter is $(r_{1}, s_{1}, r_{2}, s_{2})$ with $r_{u}, s_{u} > 0$, $u = 1, 2$. The constant of proportionality K is given by

$$K^{-1} = \int_{0}^{1} \int_{0}^{1} p_{2}^{r_{2}-1} p_{1}^{r_{1}-1} (1-p_{1})^{s_{1}-1} (1-p_{2})^{s_{2}-1} dp_{1} dp_{2},$$ (25)

which is finite since $r_{u}, s_{u} > 0$.

Conjugate priors have been advocated for many distributions because of their richness, tractability and interpretability [see Raiffa and Schlaifer, 1961]. The fact that the pdf's have the same functional form as the likelihood functions makes it convenient to interpret the prior as the likelihood function from a previous ex-
periment or for some subjective and hypothetical one. A member of the restricted bivariate beta may be selected by specifying the mode \((\hat{P}_1, \hat{P}_2)\), \(\hat{P}_1 < \hat{P}_2\) and the amount of weight, \(n_u = r_u + s_u\), \(u = 1, 2\) to be placed on the prior. Given these specifications, the value for \((r_u, s_u)\) may be determined from

\[
\begin{align*}
 r_u &= 1 + (n_u - 2)p_u \\
 s_u &= n_u - r_u.
\end{align*}
\]

For a given item, suppose the prior distribution of probability of correct responses, \(p_1\) and \(p_2\), at ability levels \(t_1\) and \(t_2\), \(t_1 < t_2\), is the restricted bivariate beta (24). Under the two parameter logistic model, this then implies a prior on \((\alpha, \beta)\) through the relation

\[
P_u = \frac{1}{1 + \exp(-\alpha(t_u - \beta))},
\]

\(u = 1, 2\). Using standard methods for deriving distribution of functions of random variables, it is readily shown that the pdf of \((\alpha, \beta)\) is then given by (20).

We have thus shown how the prior of \((\alpha, \beta)\) for a given item may be obtained through the prior for \((p_1, p_2)\). Many investigators may find it easier to select a prior for \((p_1, p_2)\) at levels \((t_1, t_2)\) than one for \((\alpha, \beta)\) directly. Although the choice of \((t_1, t_2)\) is arbitrary and may vary from item to item, or user to user, familiar levels such as the 25 and 75 percent points of the ability levels are likely to be easier to work with. In working with the \(N(0,1)\) distribution these are \(\pm 0.674\). The use of these ideas will be illustrated in the examples to follow.
Computational Notes

The computation required for deriving the posterior mode under the two-parameter logistic model is an extension of that developed for m.l. estimation by Tsutakawa [1983]. We now summarize some of the computational formulas when the restricted bivariate prior is used.

According to (18), at each iteration of the EM algorithm we are given $\xi^o = (\alpha_1^o, \beta_1^o, \ldots, \alpha_k^o, \beta_k^o)^T$ and must maximize, with respect to (α_j, β_j) the functions

$$F_j = T_j + S_j$$

$j = 1, \ldots, k$, where

$$T_j = \frac{p}{i=1} \log \left\{ \frac{\exp[y_{ij} \alpha_j^o (\theta_i - \beta_j^o)]}{1 + \exp[\alpha_j^o (\theta_i - \beta_j^o)]} \right\} p(\theta_i | y_i, \xi^o) d\theta_i,$$

$$S_j = \log \alpha_j + \frac{2}{u=1} (r_{uj} \log p_{uj} + s_{uj} \log q_{uj}),$$

and

$$p(\theta_i | y_i, \xi^o) \propto \exp(-\theta_i^2/2) \prod_{j=1}^k \frac{\exp[y_{ij} \alpha_j^o (\theta_i - \beta_j^o)]}{1 + \exp[\alpha_j^o (\theta_i - \beta_j^o)]},$$

the posterior pdf of θ_i given ξ^o. The maximization must be performed numerically by some iterative method such as that of Marquardt [1963]. The computational expressions for the first two derivatives of F_j with respect to (α_j, β_j), which are needed for Marquardt's method, have been used for m.l. estimation and summarized in Tsutakawa [1983]. The first two derivatives of S_j are considerably simpler to evaluate.
and given by

\[\frac{\partial S_j}{\partial \alpha_j} = \alpha_j^{-1} + \frac{2}{u_{ij}^1}(t_{uj} - \beta_j)(r_{uj} - n_{uj}P_{uj}), \]

(31)

\[\frac{\partial S_j}{\partial \beta_j} = -\alpha_j \frac{2}{u_{ij}^1}(r_{uj} - n_{uj}P_{uj}), \]

(32)

\[\frac{\partial^2 S_j}{\partial \alpha_j^2} = -\alpha_j^{-2} - \frac{2}{u_{ij}^1}(t_{uj} - \beta_j)^2 w_{uj}, \]

(33)

\[\frac{\partial^2 S_j}{\partial \alpha_j \partial \beta_j} = -\frac{2}{u_{ij}^1}(r_{uj} - n_{uj}P_{uj}) + \alpha_j \frac{2}{u_{ij}^1}(t_{uj} - \beta_j) w_{uj}, \]

(34)

\[\frac{\partial^2 S_j}{\partial \beta_j^2} = -\alpha_j \frac{2}{u_{ij}^1} w_{uj}, \]

(35)

where

\[w_{uj} = n_{uj}P_{uj}q_{uj}, \]

and

\[P_{uj} = 1 - q_{uj} = \frac{1}{1 + \exp(-\alpha_j(t_{uj} - \beta_j))}. \]

(36)

With some additional computation, the posterior covariance matrix of \(\xi \) may be approximated by the inverse of the second derivative matrix of the negative log posterior of \(\xi \) evaluated at the posterior mode [see Leonard, 1975]. From (13) and (19) we see that the log of the posterior pdf of \(\xi \) is the sum of two terms

\[\log p(\xi) + \sum_{l=1}^k \log \int_{\theta_l}^\infty p(y_{ij} | \theta_l, \alpha_j, \beta_j) p(\theta_l) d\theta_l \]

(37)

where the first term is \(j \sum S_j \) and the second is the log marginal likelihood function. The second derivatives of the first term
are simply the sums, over items, of the second derivatives of \(S_j \) used in computing the mode. Expressions needed for computing the second derivatives of the second term are given in Tsutakawa [1983].
Example

The Bayesian method will now be illustrated using responses from a random sample of 400 examinees to 39 items used in the mathematics portion of a 1983 ACT examination. Although the original set consisted of 40 items, one item was deleted, because its low item score and apparent high frequency of guessing suggested its departure from the two-parameter logistic model.

In order to formulate prior distributions, a preliminary random sample of 40 examinees was taken and a probit analysis [Finney, 1971] was performed on each item against the raw scores, i.e., \(\hat{Y}_{ij} \). (In practice one may use data from a preliminary test of the items.) For each item the estimated probability of correct responses \(\hat{p}_1 \) and \(\hat{p}_2 \) at the 25th and 75th percentiles of the raw scores were computed. These estimates were then used as the prior modes at the 25th and 75th percentiles of the \(N(0,1) \) distribution of abilities, i.e., \(t_{2j} = \hat{t}_{1j} = 0.674 \). (Although the logit analysis would seem more appropriate than the probit, due to the similarities of the normal and logistic curves, the difference in the estimated probabilities should be negligible.) For all items, \(n_{uj} = 7 \) was used as the prior weight and \((r_{uj}, s_{uj}) \) computed according to (26). (See listing in Table 1.) Although the choice of 7 is partly subjective, it seemed more realistic and conservative than the somewhat larger values suggested by the asymptotic variances obtained from the probit analysis.

Insert Table 1 about here
Table 1 lists the posterior modes and approximate variances and covariances of \((\alpha_j, \beta_j)\). Under the normal approximation these values may be used to compute interval estimates and to assess the uncertainties in the parameter values. For comparison the joint m.l. estimate of item and ability parameters were computed by LOGIST. Due to the different parameterizations used, the LOGIST estimates were rescaled to correspond to the Bayesian ones. The scatter diagrams in Figures 1 and 2 show that both methods produce very similar point estimates of the item parameters, as might be expected for such a large sample size. The m.l. estimate obtained via the EM algorithm [see Tsutakawa, 1983] were also computed for the same 400 examinees and found to be indistinguishable from the posterior modes.

One advantage of the Bayesian over the m.l. approach is that it provides results which have probabilistic interpretations based on the observed data. This advantage however is at the expense of having to specify a prior distribution for the item parameters. For data sets as large as the one considered here, the resulting posterior distributions are not likely to be very sensitive to changes in priors, provided they are not excessively "informative". This was verified by performing additional runs with \(n_{uj} = 3.5\) and 14.0, corresponding to one half and double the weights used in our example.
REFERENCES

Raiffa, H. & Schlaifer, R. Applied statistical decision theory. Division of Research, Graduate School of Business Administration, Harvard University, Boston, 1961.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>$\hat{P}_1 \times 100$</th>
<th>$\hat{P}_2 \times 100$</th>
<th>Item Score</th>
<th>Mode α</th>
<th>Mode β</th>
<th>$V(\alpha) \times 100$</th>
<th>Cov(α, β) $\times 100$</th>
<th>$V(\beta) \times 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67</td>
<td>80</td>
<td>281</td>
<td>1.42</td>
<td>-0.88</td>
<td>2.89</td>
<td>0.73</td>
<td>0.96</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>81</td>
<td>251</td>
<td>1.90</td>
<td>-0.73</td>
<td>1.86</td>
<td>0.96</td>
<td>2.08</td>
</tr>
<tr>
<td>3</td>
<td>53</td>
<td>100</td>
<td>258</td>
<td>1.48</td>
<td>-0.64</td>
<td>2.96</td>
<td>0.35</td>
<td>0.70</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>84</td>
<td>241</td>
<td>1.01</td>
<td>-0.55</td>
<td>2.02</td>
<td>0.55</td>
<td>1.36</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>67</td>
<td>194</td>
<td>0.68</td>
<td>0.05</td>
<td>1.44</td>
<td>-0.24</td>
<td>2.30</td>
</tr>
<tr>
<td>6</td>
<td>33</td>
<td>76</td>
<td>236</td>
<td>1.42</td>
<td>-0.41</td>
<td>3.00</td>
<td>0.15</td>
<td>0.65</td>
</tr>
<tr>
<td>7</td>
<td>59</td>
<td>97</td>
<td>298</td>
<td>1.32</td>
<td>-1.11</td>
<td>2.97</td>
<td>1.36</td>
<td>1.61</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>83</td>
<td>241</td>
<td>0.99</td>
<td>-0.55</td>
<td>1.98</td>
<td>0.55</td>
<td>1.39</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>72</td>
<td>225</td>
<td>1.07</td>
<td>-0.34</td>
<td>2.13</td>
<td>0.22</td>
<td>1.06</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>70</td>
<td>218</td>
<td>1.21</td>
<td>-0.25</td>
<td>2.44</td>
<td>0.05</td>
<td>0.83</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>82</td>
<td>193</td>
<td>1.13</td>
<td>0.01</td>
<td>2.29</td>
<td>-0.23</td>
<td>0.94</td>
</tr>
<tr>
<td>12</td>
<td>33</td>
<td>86</td>
<td>215</td>
<td>1.42</td>
<td>-0.22</td>
<td>3.08</td>
<td>-0.06</td>
<td>0.63</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>89</td>
<td>168</td>
<td>1.50</td>
<td>0.23</td>
<td>3.44</td>
<td>-0.48</td>
<td>0.65</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>64</td>
<td>179</td>
<td>1.01</td>
<td>0.19</td>
<td>1.99</td>
<td>-0.41</td>
<td>1.20</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
<td>82</td>
<td>215</td>
<td>1.54</td>
<td>-0.21</td>
<td>3.48</td>
<td>-0.11</td>
<td>0.54</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>69</td>
<td>170</td>
<td>1.05</td>
<td>0.30</td>
<td>2.07</td>
<td>-0.52</td>
<td>1.18</td>
</tr>
<tr>
<td>17</td>
<td>27</td>
<td>87</td>
<td>182</td>
<td>1.19</td>
<td>0.12</td>
<td>2.45</td>
<td>-0.35</td>
<td>0.89</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>63</td>
<td>161</td>
<td>1.45</td>
<td>0.31</td>
<td>3.28</td>
<td>-0.56</td>
<td>0.72</td>
</tr>
<tr>
<td>19</td>
<td>31</td>
<td>85</td>
<td>196</td>
<td>0.95</td>
<td>-0.02</td>
<td>1.91</td>
<td>-0.16</td>
<td>1.25</td>
</tr>
<tr>
<td>20</td>
<td>37</td>
<td>89</td>
<td>191</td>
<td>0.81</td>
<td>0.05</td>
<td>1.64</td>
<td>-0.24</td>
<td>1.66</td>
</tr>
<tr>
<td>21</td>
<td>26</td>
<td>87</td>
<td>232</td>
<td>1.25</td>
<td>-0.40</td>
<td>2.55</td>
<td>0.22</td>
<td>0.83</td>
</tr>
<tr>
<td>22</td>
<td>14</td>
<td>49</td>
<td>133</td>
<td>1.48</td>
<td>0.59</td>
<td>3.23</td>
<td>-0.76</td>
<td>0.81</td>
</tr>
<tr>
<td>23</td>
<td>48</td>
<td>87</td>
<td>199</td>
<td>0.88</td>
<td>-0.06</td>
<td>1.75</td>
<td>-0.09</td>
<td>1.42</td>
</tr>
<tr>
<td>24</td>
<td>19</td>
<td>91</td>
<td>172</td>
<td>1.37</td>
<td>0.20</td>
<td>2.95</td>
<td>-0.44</td>
<td>0.73</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>63</td>
<td>206</td>
<td>0.96</td>
<td>-0.11</td>
<td>1.92</td>
<td>-0.04</td>
<td>1.21</td>
</tr>
<tr>
<td>26</td>
<td>19</td>
<td>60</td>
<td>174</td>
<td>1.31</td>
<td>0.20</td>
<td>2.77</td>
<td>-0.45</td>
<td>0.79</td>
</tr>
<tr>
<td>27</td>
<td>29</td>
<td>71</td>
<td>146</td>
<td>1.05</td>
<td>0.57</td>
<td>1.99</td>
<td>-0.79</td>
<td>1.40</td>
</tr>
<tr>
<td>28</td>
<td>9</td>
<td>93</td>
<td>162</td>
<td>2.03</td>
<td>0.22</td>
<td>6.96</td>
<td>-0.69</td>
<td>0.44</td>
</tr>
<tr>
<td>29</td>
<td>33</td>
<td>91</td>
<td>180</td>
<td>1.63</td>
<td>0.00</td>
<td>4.01</td>
<td>-0.35</td>
<td>0.53</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>46</td>
<td>125</td>
<td>0.90</td>
<td>0.97</td>
<td>1.68</td>
<td>-1.34</td>
<td>2.64</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>70</td>
<td>168</td>
<td>1.48</td>
<td>0.24</td>
<td>3.43</td>
<td>-0.51</td>
<td>0.67</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td>47</td>
<td>107</td>
<td>0.87</td>
<td>1.28</td>
<td>1.66</td>
<td>-1.87</td>
<td>4.02</td>
</tr>
<tr>
<td>33</td>
<td>28</td>
<td>77</td>
<td>213</td>
<td>1.01</td>
<td>-0.21</td>
<td>2.00</td>
<td>0.06</td>
<td>1.13</td>
</tr>
<tr>
<td>34</td>
<td>5</td>
<td>30</td>
<td>116</td>
<td>0.75</td>
<td>1.30</td>
<td>1.55</td>
<td>-2.25</td>
<td>5.70</td>
</tr>
<tr>
<td>35</td>
<td>14</td>
<td>61</td>
<td>121</td>
<td>0.75</td>
<td>1.18</td>
<td>1.47</td>
<td>-1.86</td>
<td>4.63</td>
</tr>
<tr>
<td>36</td>
<td>48</td>
<td>64</td>
<td>181</td>
<td>0.71</td>
<td>0.23</td>
<td>1.46</td>
<td>-0.51</td>
<td>2.27</td>
</tr>
<tr>
<td>37</td>
<td>12</td>
<td>44</td>
<td>93</td>
<td>1.37</td>
<td>1.10</td>
<td>2.73</td>
<td>-1.19</td>
<td>1.43</td>
</tr>
<tr>
<td>38</td>
<td>11</td>
<td>47</td>
<td>113</td>
<td>0.93</td>
<td>1.12</td>
<td>1.73</td>
<td>-1.54</td>
<td>2.96</td>
</tr>
<tr>
<td>39</td>
<td>4</td>
<td>56</td>
<td>80</td>
<td>1.20</td>
<td>1.39</td>
<td>2.34</td>
<td>-1.65</td>
<td>2.44</td>
</tr>
</tbody>
</table>
Figure 1. Bayesian vs. Logist Estimates of α.
Figure 2. Bayesian vs. Logist Estimates of β.

![Graph showing Bayesian vs. Logist Estimates of β.]
Navy

1 Dr. Nick Bond
Office of Naval Research
Liaison Office, Far East
APO San Francisco, CA 94103

1 Dr. Robert Breaux
NAVTRAERIPRCEN
Code N-075R
Orlando, FL 32813

1 Dr. Stanley Caliyer
Office of Naval Technology
900 N. Quincy Street
Arlington, VA 22217

1 COR Mike Curran
Office of Naval Research
900 N. Quincy St.
Code 270
Arlington, VA 22217

1 Dr. John Ellis
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Richard Elster
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 DR. PAT FEDERICO
Code P13
NPRDC
San Diego, CA 92152

1 Mr. Dick Hoshaw
NAVOP-133
Arlington Annex
Room 2834
Washington, DC 20350

1 Dr. Morean J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (T5)
Millington, TN 38054

1 Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152

1 Daryl Lang
Navy Personnel R&D Center
San Diego, CA 92152

Navy

1 Dr. William L. Hallo (D2)
Chief of Naval Education and Training
Naval Air Station
Pensacola, FL 32508

1 Dr. James McBride
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr Wilhan Montague
NPRDC Code 13
San Diego, CA 92152

1 Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152

1 Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

6 Personnel & Training Research Group
Code 442PT
Office of Naval Research
Arlington, VA 22217

1 DR. MARTIN F. NISKOFF
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Dr. Carl Ross
CMET-PSCD
Building 90
Great Lakes NTC, IL 60088

1 Mr. Drew Sands
NPRDC Code 62
San Diego, CA 92152

1 Mary Schratz
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Robert B. Smith
Office of Chief of Naval Operations
DF-MO7H
Washington, DC 20350

1 Dr. Alfred F. Sande, Director
Department N-7
Naval Training Equipment Center
Orlando, FL 32813
Navy

Dr. Richard Snow
Liaison Scientist
Office of Naval Research
Branch Office, London
Box 39
FPO New York, NY 09510

Dr. Richard Sorenson
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Frederick Steinheiser
CNO - OP113
Navy Annex
Arlington, VA 20370

Mr. Brad Syapson
Navy Personnel R&D Center
San Diego, CA 92152

Dr. James Tweeddale
Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Frank Vicino
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Edward Wexman
Office of Naval Research (Code 4115AP)
800 North Quincy Street
Arlington, VA 22217

Dr. Ronald Weitzman
Naval Postgraduate School
Department of Administrative Sciences
Monterey, CA 93940

Dr. Douglas Wetzel
Code 12
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Martin F. Wiskoff
Navy Personnel R&D Center
San Diego, CA 92152

Mr. John M. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152
Marine Corps

1 Jerry Lehnus
CAT Project Office
HQ Marine Corps
Washington, DC 20380

1 Headquarters, U. S. Marine Corps
Code HPI-20
Washington, DC 20380

1 Special Assistant for Marine Corps Matters
Code 100W
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217

1 Major Frank Yoshman, USMC
Headquarters, Marine Corps
(Code HPI-20)
Washington, DC 20380

Army

1 Dr. Kent Eaton
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

1 Dr. Myron Fischl
U.S. Army Research Institute for the Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Clessen Martin
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

1 Dr. William E. Nordbrock
FMC-ABC Box 25
APO, NY 09710

1 Dr. Harold F. O’Neil, Jr.
Director, Training Research Lab
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Commander, U.S. Army Research Institute for the Behavioral & Social Sciences
ATTN: PERI-IR (Dr. Judith Orasanu)
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Robert Ross
U.S. Army Research Institute for the Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Robert Sassor
U. S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joyce Shields
Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Hilda Wing
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333
Air Force

1 Dr. Earl A. Altmisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

1 Mr. Raymond E. Christal
AFHRL/HOE
Brooks AFB, TX 78235

1 Dr. Alfred R. Fregly
AFOSR/HL
Bolling AFB, DC 20332

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332

1 Dr. Patrick Kyllomen
AFHRL/HOE
Brooks AFB, TX 78235

1 Mr. Randolph Park
AFHRL/HJAN
Brooks AFB, TX 78235

1 Dr. Roger Pennell
Air Force Human Resources Laboratory
Lowry AFB, CO 80230

1 Dr. Malcolm Rae
AFHRL/HMP
Brooks AFB, TX 78235

1 Major John Welsh
AFHRL/HOAN
Brooks AFB, TX 78235

Department of Defense

12 Defense Technical Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC

1 Military Assistant for Training and
Personnel Technology
Office of the Under Secretary of Defense
for Research & Engineering
Room 30129, The Pentagon
Washington, DC 20301

1 Dr. W. Steve Sellam
Office of the Assistant Secretary
of Defense (NRO & L)
2B269 The Pentagon
Washington, DC 20301

1 Dr. Robert A. Wisher
OSIHE (ELS)
The Pentagon, Room 30129
Washington, DC 20301
Civilian Agencies

1 Dr. Vern W. Urry
Personnel R&D Center
Office of Personnel Management
1900 E Street NW
Washington, DC 20415

1 Mr. Thomas A. Wara
U. S. Coast Guard Institute
P. O. Substation 19
Oklahoma City, OK 73169

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Private Sector

1 Dr. James Algina
University of Florida
Gainesville, FL 32605

1 Dr. Erling B. Andersen
Department of Statistics
Studiestrasse 6
1433 Copenhagen
DENMARK

1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08540

1 Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
Israel

1 Dr. Werner Birke
Personalstammamt der Bundeswehr
D-5000 Koeln 70
WEST GERMANY

1 Dr. Darrell Bock
Department of Education
University of Chicago
Chicago, IL 60637

1 Mr. Arnold Bohrer
Section of Psychological Research
Caserne Petits Chateau
CNS
1000 Brussels
Belgium

1 Dr. Robert Brennan
American College Testing Programs
P. O. Box 168
Iowa City, IA 52243

1 Dr. Glenn Bryan
6208 Pce Road
Bethesda, MD 20817

1 Dr. Ernest R. Cadotte
307 Stokely
University of Tennessee
Knoxville, TN 37916

1 Dr. John B. Carroll
409 Elliott Rd.
Chapel Hill, NC 27514
Private Sector

1 Dr. Norman Cliff
Dept. of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

1 Dr. Hans Cronbach
Education Research Center
University of Leyden
Bovenhaavelen 2
2334 EN Leyden
The NETHERLANDS

1 Lee Cronbach
14 Laburnum Road
Atherton, CA 94023

1 CTB/McGraw-Hill Library
2500 Garden Road
Monterey, CA 93940

1 Dr. Walter Cunningham
University of Miami
Department of Psychology
Gainesville, FL 32611

1 Dr. Dattpradad Digvi
Syracuse University
Department of Psychology
Syracuse, NY 32210

1 Dr. Emmanuel Donchin
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Dr. Hei-Ki Dong
Bell Foundation
Room 314, Building B
800 Roosevelt Road
Glen Ellyn, IL 60137

1 Dr. Fritz Dragom
Department of Psychology
University of Illinois
603 E. Daniel St.
Champaign, IL 61820

1 Dr. Susan Embertson
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
Lawrence, KS 66045

Private Sector

1 ERIC Facility-Acquisitions
4033 Ruby Avenue
Bethesda, MD 20014

1 Dr. Benjamin A. Fairbank, Jr.
McFann-Gray & Associates, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78228

1 Dr. Lecnard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

1 Univ. Prof. Dr. Berhard Fischer
Liebiggassee 5/3
A 1010 Vienna
AUSTRIA

1 Professor Donald Fitzgerald
University of New England
Armidale, New South Wales 2351
AUSTRALIA

1 Dr. Dexter Fletcher
University of Oregon
Department of Computer Science
Eugene, OR 97403

1 Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Hutton Street
Cambridge, MA 02138

1 Dr. Janice Biford
University of Massachusetts
School of Education
Amherst, MA 01002

1 Dr. Robert Glaser
Learning Research & Development Center
University of Pittsburgh
3739 O'Hara Street
PITTSBURGH, PA 15260

1 Dr. Marvin B. Glock
217 Stone Hall
Cornell University
Ithaca, NY 14853
Private Sector

1. Dr. Bert Green
 Johns Hopkins University
 Department of Psychology
 Charles & 34th Street
 Baltimore, MD 21210

1. Dr. James G. Green
 LRDC
 UNIVERSITY OF PITTSBURGH
 3700 O'HARA STREET
 PITTSBURGH, PA 15213

1. Dr. Ron Hambleton
 School of Education
 University of Massachusetts
 Amherst, MA 01002

1. Dr. Paul Horst
 677 S Street, Box 84
 Chula Vista, CA 92010

1. Dr. Lloyd Humphreys
 Department of Psychology
 University of Illinois
 603 East Daniel Street
 Champaign, IL 61820

1. Dr. Steven Hunka
 Department of Education
 University of Alberta
 Edmonton, Alberta
 CANADA

1. Dr. Earl Hunt
 Dept. of Psychology
 University of Washington
 Seattle, WA 98105

1. Dr. Jack Hunter
 2122 Coolidge St.
 Lansing, MI 48906

1. Dr. Huynh Huynh
 College of Education
 University of South Carolina
 Columbia, SC 29208

1. Dr. Douglas H. Jones
 Advanced Statistical Technologies Corporation
 10 Trafalgar Court
 Lawrenceville, NJ 08648

Private Sector

1. Dr. Marcel Just
 Department of Psychology
 Carnegie-Mellon University
 Pittsburgh, PA 15213

1. Dr. Demetrios Karis
 Department of Psychology
 University of Illinois
 603 E. Daniel Street
 Champaign, IL 61820

1. Professor John A. Keats
 Department of Psychology
 The University of Newcastle
 N.S.W. 2308
 AUSTRALIA

1. Dr. William Koch
 University of Texas-Austin
 Measurement and Evaluation Center
 Austin, TX 78703

1. Dr. Alan Lengold
 Learning R&D Center
 University of Pittsburgh
 3739 O'Hara Street
 Pittsburgh, PA 15260

1. Dr. Michael Levine
 Department of Educational Psychology
 210 Education Bldg.
 University of Illinois
 Champaign, IL 61801

1. Dr. Charles Lewis
 Faculteit Sociale Wetenschappen
 Rijksuniversiteit Groningen
 Oude Boteringestraat 23
 9712SC Groningen
 Netherlands

1. Dr. Robert Lion
 College of Education
 University of Illinois
 Urbana, IL 61801

1. Mr. Phillip Livingston
 Systems and Applied Sciences Corporation
 6011 Kemilworth Avenue
 Riverdale, MD 20840
Private Sector

1 Dr. Robert Lockman
Center for Naval Analysis
200 North Beauregard St.
Alexandria, VA 22311

1 Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

1 Dr. James Luandan
Department of Psychology
University of Western Australia
Medlands W.A. 6009
AUSTRALIA

1 Dr. Dom Lyon
P. O. Box 44
Higley, AZ 85236

1 Dr. Gary Marco
Stop S1-E
Educational Testing Service
Princeton, NJ 08541

1 Dr. Scott Maxwell
Department of Psychology
University of Notre Dame
Notre Dame, IN 46556

1 Dr. Samuel T. Mayo
Loyola University of Chicago
820 North Michigan Avenue
Chicago, IL 60611

1 Dr. Robert McKinley
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

1 Dr. Barbara Mean
Human Resources Research Organization
300 North Washington
Alexandria, VA 22314

1 Professor Jason Milligan
Department of Education
Stone Hall
Cornell University
Ithaca, NY 14853

1 Dr. Robert Mislevy
711 Illinois Street
Geneva, IL 60134

Private Sector

1 Dr. W. Alan Nicewander
University of Oklahoma
Department of Psychology
Oklahoma City, OK 73106

1 Dr. Donald A. Norma
Cognitive Science, C-015
Univ. of California, San Diego
La Jolla, CA 92039

1 Dr. Helvin A. Novick
336 Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

1 Dr. James Olson
MCGIT, Inc.
1875 South State Street
Gree, UT 84057

1 Wayne N. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036

1 Dr. James Paulson
Dept. of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

1 Dr. James W. Pellegrino
University of California,
Santa Barbara
Dept. of Psychology
Santa Barbara, CA 93106

1 Dr. Douglas N. Jones
Advanced Statistical Technologies Corporation
10 Trafalgar Court
Lawrenceville, NJ 08648

1 Dr. Steven E. Poltrack
Bell Laboratories 2B-444
600 Mountain Ave.
Murray Hill, NJ 07974

1 Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243
Private Sector

1 Dr. Thomas Reynolds
University of Texas-Dallas
Marketing Department
P. O. Box 688
Richardson, TX 75080

1 Dr. Lawrence Rudner
403 Elm Avenue
Takoma Park, MD 20012

1 Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

1 PROF. FUMIKO SAMEJIMA
DEPT. OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37916

1 Frank L. Schmidt
Department of Psychology
Bldg. 68
George Washington University
Washington, DC 20052

1 Dr. Walter Schneider
Psychology Department
603 E. Daniel
Champaign, IL 61820

1 Lowell Schreer
Psychological & Quantitative Foundations
College of Education
University of Iowa
Iowa City, IA 52242

1 Dr. Emmanuel Donchin
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Dr. Kazuo Shigeno
7-9-24 Kogenuma-Kaigan
Fejusawa 231
JAPAN

1 Dr. William Sias
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

Private Sector

1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

1 Martha Stocking
Educational Testing Service
Princeton, NJ 08541

1 Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

1 Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801

1 DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

1 Dr. Hariharan Swaminathan
Laboratory of Psychometric and Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

1 Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory
Urbana, IL 61801

1 Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61820

1 Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

1 Dr. Douglas Twome
Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277
<table>
<thead>
<tr>
<th>Private Sector</th>
<th>Private Sector</th>
</tr>
</thead>
</table>
| 1 Dr. Robert Tsutakawa
Department of Statistics
University of Missouri
Columbia, MO 65201 | 1 German Military Representative
ATTN: Wolfgang Niedergrube
Streittraefteamt
D-5300 Bonn 2
4000 Brandywine Street, NW
Washington, DC 20016 |
| 1 Dr. Ledyard Tucker
University of Illinois
Department of Psychology
603 E. Daniel Street
Champaign, IL 61820 | 1 Dr. Bruce Williams
Department of Educational Psychology
University of Illinois
Urbana, IL 61801 |
| 1 Dr. V. R. R. Uppuluri
Union Carbide Corporation
Nuclear Division
P. O. Box Y
Oak Ridge, TN 37830 | 1 Ms. Marilyn Wingersky
Educational Testing Service
Princeton, NJ 08541 |
| 1 Dr. David Vale
Assessment Systems Corporation
2233 University Avenue
Suite 310
St. Paul, MN 55114 | 1 Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940 |
| 1 Dr. Howard Wainer
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08540 | 1 Dr. Michael T. Waller
Department of Educational Psychology
University of Wisconsin—Milwaukee
Milwaukee, WI 53201 |
| 1 Dr. Brian Waters
Hewlett Packard
300 North Washington
Alexandria, VA 22314 | 1 Dr. David J. Weiss
N400 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455 |
| 1 Dr. Rand R. Wilcox
University of Southern California
Department of Psychology
Los Angeles, CA 90007 | 1 Dr. David J. Weiss
N400 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455 |