The reduction of thyroxine (T_4), triiodothyronine, diiodothyronine, diiodotyrosine and moniodotyrosine has been studied at silver rotating disk electrodes in 0.10 M NaOH. All compounds give one reduction wave; the potential for the reduction of T_4 on silver is about one-half volt more positive than on mercury, where it reduces stepwise. The reduction is shown to be convective diffusion-controlled at the rotating silver disk electrode. Potential step and coulometric experiments are...
employed to show that, in the case of T₄, the reduction is an eight-electron process which results in cleavage of four iodine atoms from the T₄ molecule. Detection limits for these compounds are reported.
Reduction of Thyroxine and Related Compounds on Silver

by

Mizuho Iwamoto, Andrew Webber and Robert A. Osteryoung

Prepared for Publication

in

Analytical Chemistry

Department of Chemistry
State University of New York at Buffalo
Buffalo, New York 14214

April, 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for Public Release: Distribution Unlimited
BRIEF

The reduction of thyroxine, liothyronine, diflodothyronine, diiodotyrosine and monoiodothyrosine has been studied on a rotating silver disk electrode. Only one convective diffusion-controlled reduction wave is observed.
ABSTRACT

The reduction of thyroxine (T4), liothyronine, diiodothyronine, diiodotyrosine and monofiodotyrosine has been studied at silver rotating disk electrodes in 0.10 M NaOH. All compounds give one reduction wave; the potential for the reduction of T4 on silver is about one-half volt more positive than on mercury, where it reduces stepwise. The reduction is shown to be convective diffusion-controlled at the rotating silver disk electrode. Potential step and coulometric experiments are employed to show that, in the case of T4, the reduction is an eight-electron process which results in cleavage of four iodine atoms from the T4 molecule. Detection limits for these compounds are reported.
Iodoamino acid derivatives of thyronine and tyrosine including thyroxine (T₄), liothyronine (T₃), diiodothyronine (T₂), diiodotyrosine (Ty₂) and monoiodotyrosine (Ty₁) are important biological components produced in the thyroid gland.

I Thyroxine (T₄): R₁=R₂=R₃=R₄=I
Liothyronine (T₃): R₁=R₃=R₄=I, R₂=H
3',3,5-triiodothyronine
3,5-diiodothyronine (T₂): R₃=R₄=I R₁ and P-

II 3,5-diiodotyrosine (Ty₂): R₅=R₆=I
3-iodotyrosine (Ty₁): R₅=I, R₆=H

Various biological and chemical methods proposed for determination of T₄ have been critically examined [1] and are generally very complicated.

For example, chemical methods are usually based on measuring the organically combined iodine. In view of the unsatisfactory nature of these methods, the polarographic behavior of T₄ and related compounds has been studied and used to determine those compounds [2-4]. Recently differential pulse polarography has been applied to the determination of T₄ and T₃ [5,6].
Most studies on the electrochemical reduction of T4 and related compounds have been carried out at mercury electrodes. However, the electrode reactions have not been investigated in detail. Although polarographic methods have proven to be useful for detection of T4 and related compounds, the dropping mercury electrode (DME) is cumbersome for practical work and also poses a toxicity problem. Hence, the application of solid electrodes to detect thyroid hormones is of interest. The use of a carbon electrode as an electrochemical HPLC detector for T4 and T3 [7] has been reported, but involved oxidation, not reduction.

Electrochemical properties of silver are of considerable interest since the metal is widely used in a number of industrially important electrochemical and catalytic processes. Furthermore, the hydrogen overvoltage on silver is intermediate between the corresponding values for mercury and platinum. Therefore, it was expected that the reduction of organic compounds on silver could be analytically useful. Little exists in the literature involving the use of these electrodes for reductive processes; a recent paper describes the use of silver electrodes for the determination of some nitrate esters [8]. Here we report on the reduction of T4 and related compounds at a silver electrode, particularly the silver rotating disk electrode (RDE).

EXPERIMENTAL

Chemicals

L-thyroxine (3,3',5,5'-tetraiodo-L-thyronine), liothyronine (3,3',5-triiodo-L-thyronine), 3,5-diiodo-L-thyronine and 3,5-diiodo-L-tyrosine were obtained from Sigma Chemical Co., and 3-iodo-L-tyrosine from Aldrich Chemical Co. Stock solutions of 5.0 x 10^{-3} in 0.1 M NaOH were prepared.
for each measurement series. Analytical grade sodium hydroxide and sodium chloride was used. Stock solutions were stored in the absence of light and used within 8 hours.

Apparatus

Three silver electrodes were used for this work. One, a commercial rotating silver disk mounted on a Model ASR rotator (Pine Instrument Co., Grove City, PA) had a geometric area of 0.442 cm2. A coiled silver wire of area 44.6 cm2 (284 cm long, 0.05 cm diameter) was used for controlled potential coulometry. The third silver electrode consisted of a wire sealed in epoxy (Buehler Ltd. #20-8130-032) which was sawn in half with a diamond saw to expose a circular cross-section of the wire. The other end of this silver wire had been soldered to a nut that screwed onto a connecting rod. The nut and connecter were isolated from the electrolyte by a Tygon sleeve. The method of construction was taken from a recent publication [9]. A Unitron Bi 5-3214 measuring microscope was used to measure eight diameters of this silver disk (0.5272 ± 0.0015 mm) giving an electrode area of 0.00218 cm2. This small electrode was used for all cyclic voltammetry and pulse voltammetry. Both the large and small silver disks were polished on a Minimet polisher (Buehler Ltd.) with 0.05 μm alumina (dry powder, Type A, Fisher) prior to immersion in the electrolyte. The potential was then held at -0.8 V to condition the electrode.

All potentials were measured and are reported against a saturated calomel electrode (SCE). Solutions were deoxygenated by purging with argon. Long experiments such a coulometry were performed in darkened cells since it has been reported that thyroxine is unstable in basic media in the
presence of light [6]. An IRM 225 voltammetric analyzer was used for cyclic voltammetry and an EG&G PARC 173 potentiostat/galvanostat with an EG&G PARC 179 digital coulometer in conjunction with an EG&G PARC 175 universal programmer for all experiments with the large rotating disk electrode. Pulse voltammetry and polarography were carried out with an EG&G PARC 174 polarographic analyzer. The flow rate of the DME was 0.813 mg s\(^{-1}\).

Controlled potential coulometry.

Controlled potential coulometry of 125 mL of 1.0 mM T\(_4\) in 0.1 M NaOH was carried out at the large silver wire electrode at -1.2 V. The cell was placed in an ultrasonic bath to enhance the rate of transport of material to the electrode and hence increase the current. The current at -1.2 V prior to addition of T\(_4\) was 1.18 mA and the total charge passed (72.6 C) was corrected for this, giving a net charge passed of 57.0 C. The EG&G PARC 173 and 179 were used for the coulometry and, with the EG&G PARC 175, for voltammetry at the small silver disk electrode prior and subsequent to the electrolysis. 25 mL aliquots of the electrolysis solution were titrated with 0.01 M silver nitrate solution using a Metrohm 636 titroprocessor and E635 dosimat. Both the silver nitrate solution and the electrolysis sample were brought to pH 1 with concentrated sulfuric acid prior to the titration. The silver nitrate solution was standardized against a sodium chloride solution (0.01 M).

RESULTS AND DISCUSSION

RDE voltammograms for various concentrations of T\(_4\) in 0.1 M NaOH are shown in Figure 1. T\(_4\) gives one well-defined wave with a half-wave potential, \(E_{1/2}\), of -0.86 V. The limiting current \((i_d)\) is proportional
to the concentration of T_4 over a range 10^{-5}-10^{-4} M. The voltammograms for T_3, T_2, Ty_2 and Ty_1 are compared with that of T_4 in Figure 2. T_3 and T_2 show one reduction wave with an $E_{1/2}$ of -0.87 V and -0.86 V respectively, and are similar to that of T_4 except for the lower limiting current. The tyrosines Ty_2 and Ty_1, give smaller, drawn-out waves with $E_{1/2}$ values of -1.00 V and -0.99 V.

The concentration dependence of the limiting currents for the five compounds is shown in Figure 3. $E_{1/2}$ and i_d at the Ag RDE are listed in Table I. As can be seen from Table I and Figure 3, the current ratio among T_4, T_3 and T_2 is approximately 4:3:2, and the ratio between Ty_2 and Ty_1 is 2:1. The results suggest that the reduction current depends on the number of iodine atoms in each molecule.

The dependence of the limiting current on the square root of the rotation rate for T_4, T_3 and T_2 is shown in Figure 4. The linearity of the i_d-$\omega^{1/2}$ plots indicates that each limiting current is convective diffusion-controlled. A deviation from linearity was observed at rotation rates in excess of 3600 rpm at a scan rate of 10 mV s$^{-1}$.

A hysteresis appears on current-potential curves of T_4 at rotation rates greater than 2500 rpm at a scan rate of 10 mV s$^{-1}$ or, at a scan rate of 50 mV s$^{-1}$, for rotation rates greater than 6600 rpm (Figure 5). This phenomena could be caused by adsorption of T_4, T_3 and T_2 at the electrode surface. Thus, the cathodic limiting current has the characteristic of convective diffusion affected by adsorption. A scan rate of 50 mV s$^{-1}$ and rotation rate of 2500 rpm were used for analytical studies of T_4, T_3 and T_2.

The reduction of these organic iodoamino acids on the silver RDE was
compared to that on a DME. When examined in 0.1 M NaOH at the DME, T₄
gave a series of three polarographic waves and T₃ and T₂ two waves, as
shown in Figure 6. On the other hand, Ty₂ gave one wave at a much more
negative potential and Ty₁ showed no wave (Figure 6). In differential
pulse polarographic studies of T₄ by Holak et al [4], it was suggested
that the first wave of T₄ results from cleavage of the iodide from the 5-
position, the second from the cleavage of iodide from the 3' and 5'
positions and the third from cleavage of iodide from the 3-position. The
reduction of Ty₂ to tyrosine on mercury occurs at more negative
potentials [10].

Comparison of the behavior of these compounds on silver and at the DME
(Figure 2 and 6) can be summarized as follows:

1. The thyronines T₄, T₃ and T₂ are reduced in one step on a silver
electrode, but stepwise at a DME.

2. All the iodoamino acids are reduced at more positive potentials on
silver than on mercury. Even Ty₁, which does not give a reduction wave
on mercury, is reduced on silver.

3. The total current at both electrodes depends on the number of
iodine atoms in each molecule.

Reduction of thyroxine.

Since T₄ is the most biologically important compound we chose to
investigate it further. The DC polarographic limiting current of T₄ is
diffusion-controlled at the DME. Assuming an eight-electron reduction for
the total wave height [3], the Ilkovic equation [11] gives a value
for the diffusion coefficient of T₄ of 3.3 x 10⁻⁶ cm² s⁻¹
in excellent agreement with value of 3.6 x 10⁻⁶ cm² s⁻¹.
estimated from the Stokes-Einstein relationship [12]. Reverse pulse polarography [13] of T4 in 0.2 M sodium carbonate solution at a DME showed an anodic wave corresponding to the oxidation of mercury in the presence of iodide formed from the reduction of T4 at the initial potential (-1.9 V). This data suggests that T4 is reduced at the DME in an eight-electron process:

\[
\text{IIH} \xrightarrow{\text{O}} \text{CO} \xrightarrow{\text{O}} \text{C} \xrightarrow{\text{O}} \text{CH}_{2}\text{CHCOOH} + 8\text{e}^+ + 4\text{H}^+ \rightarrow \text{HO} \text{C} \xrightarrow{\text{O}} \text{C} \xrightarrow{\text{O}} \text{CH}_{2}\text{CHCOOH} + 4\text{I}^{-}
\]

However, this can not, per se, be taken to apply to the reduction at a silver cathode. Indeed, the evidence for the number of electrons involved and the number of iodide ions produced at mercury is not conclusive. We therefore used RDE voltammetry, cyclic voltammetry and controlled potential coulometry to study the reduction at silver.

The value of n for T4 at the silver RDE was estimated from the limiting currents at various rotation rates and the Levich equation [14]. Data were obtained at a scan rate of 10 mV s\(^{-1}\) and the value of the diffusion coefficient was that determined from polarography at the DME. Values of n between 8.0 and 8.5 were obtained (Table III). Since the value of the diffusion coefficient is based on the assumption that n is eight for the total wave at the DME, this really means that we are assuming that n for the reduction of T4 at -1.1 V at the silver RDE equals that for the
reduction at -1.9 V at the DME.

Proof that T4 is reduced at silver electrodes to give iodide ions is presented in the cyclic voltammograms at the small silver disk electrode in Figures 7 and 8. Figure 7a shows the diffusion-controlled irreversible reduction of T4 (Ip vs v^1/2 at 0.878 mM T4, slope = 4.29 ± 0.05 μA s^1/2 V^-1/2, intercept = 0.06 ± 0.02 μA) while 7b shows that no iodide is present in the bulk solution. (Iodide ions exhibit an oxidation wave at -0.15 V, due to formation of silver iodide, and a stripping peak at -0.3 V for the reduction of this silver iodide film.) Figure 7a shows that when the potential is swept to -1.2 V (i.e. reducing T4) and then back to -0.1 V an oxidation peak and cathodic stripping peak due to the presence of iodide ions in the region of the electrode as a product of the reduction of T4 is seen. When the following sequence of potential pulses was applied; -0.6 V, -1.2 V for t1, 0 V for t2; a film of silver iodide was formed.

The cathodic stripping peak of the silver iodide is shown in Figure 8. The silver iodide is on the electrode surface rather than distributed throughout the bulk of the electrode and thus behavior for the stripping of an insoluble compound is expected [15]. The peak height of the stripping peak is proportional to the shorter of times t1, and/or t2 (when t1 = 30 s, t2 = 0-20 s, Ip vs t2^1/2 gives slope = 0.44 ± 0.01 μA s^-1/2, intercept = -0.02 ± 0.03 μA, and when t2 = 20 s, t1 = 0 - 10 s, Ip vs t1^1/2 gives a slope = 0.49 ± 0.02 μA s^-1/2, intercept = 0.01 ± 0.05 μA, concentration 0.878 mM, v = 0.1 V s^-1). This is because the amount of silver iodide formed is limited by both the amount of iodide ions formed from the reduction of T4 during t, and the proportion of the iodide ions that can form silver iodide during t. If t1 = t2 = t
then the peak current is proportional to \(t^{1/2} \). The \(t^{1/2} \) dependence of the peak current is consistent with diffusion-control of both the reduction of \(T_4 \) and the formation of silver iodide. If the potential during \(t_1 \) is held at \(-0.6 \) V, rather than \(-1.3 \) V, so that \(T_4 \) is not reduced, no iodide is formed and no stripping peak is observed (the current is the same as the background, Figure 7b).

The stripping peak current is proportional to \(\nu \) (\(I_p \) vs \(\nu \); slope = 16.7 \pm 0.2 \mu A s \text{ V}^{-1}, \) intercept = 0.001 \pm 0.02 \mu A, concentration = 0.879 mM, \(t_1 = t_2 = 30 \) s) as expected for the reduction of a surface-bound species. For the reversible reduction of an adsorbed film, the difference in potentials at half the peak height equals 3.53 RT/nF (90.6/n mV at 25° C) [15]. This gives a value for \(n \) of 0.99 \pm 0.08. The peak current is given by [15].

\[
I_p = \frac{n^2 F^2 \nu A \Gamma}{4RT}
\]

(1)

and the charge under the peak by:

\[
Q = nFA\Gamma
\]

(2)

Combining Eqn. 1 and 2 gives:

\[
\frac{I_p}{Q} = \frac{nF\nu}{4RT}
\]

(3)

Using data obtained at 0.2 V s\(^{-1}\), 2.8 mM \(T_4 \), \(t_1 = 60 \) s, \(t_2 = 10 \) s where \(I_p = 105 \) \mu A and \(Q = 53.8 \) \mu C, we find a value for \(n \) of 1.00. This confirms that the stripping peak corresponds to a one-electron reduction, consistent with the reduction of silver iodide.

The value of \(n \) for the reduction of \(T_4 \) obtained from the RnE data is based on the value of the diffusion coefficient determined by polarography at the DME and assuming that \(n \) at the DME is eight. While the theoretical value of the diffusion coefficient is in excellent agreement with the
experimental value, an unequivocal method, controlled potential coulometry, was employed to determine n at a silver wire electrode. A 125 mL solution of 1.0 mM T$_4$ in 0.1M NaOH was reduced at -1.2V (see Experimental Section). Cyclic voltammograms were run at the small silver disk electrode before and after the electrolysis. This indicated that 57% of the T$_4$ had been electrolyzed. The charge passed, after allowance and correction for the background current, corresponded to a value of 8.3 for n. Cyclic voltammetry also showed that iodide ions were present in solution. From the $I_p/v^{1/2}$ ratio of the oxidation peak at -0.15V (8.18 ± 0.61 μA s$^{1/2}$ V$^{-1/2}$, N = 5) the concentration of iodide ions present in the electrolyte was estimated to be approximately 3.1 mM. A more accurate method was to take three 25 mL portions of the electrolyte and titrate them with a standardized silver nitrate solution. This gave a concentration of iodide of 2.172 ± 0.005 mM, corresponding to 3.80 iodide ions produced per reduced T$_4$ molecule. This, then confirms that T$_4$ is reduced at silver in an eight-electron process to give four iodide ions as depicted previously. Presumably the other thyronines undergo a similar reduction process, although additional work is required to verify this.

Finally, Table IV shows the detection limits for these compounds with the rotating silver disc electrode calculated according to the equation $C_L = (X_L - \bar{X}_B)/m$, where C_L is the detection limit, \bar{X}_B the mean value of the blank response, m the slope of the calibration curve, and X_L the smallest discernible analytical signal [16]. For the calculations in Table IV, \bar{X}_B was determined as 15 x 10$^{-6}$ A for the silver disc electrode rotating at
2500 rpm in 0.1 M NaOH at -1.2 V (see Figures 1 and 2), \(X_L \) was taken as \(18 \times 10^{-6} \) A; i.e., a signal 3 microamperes above background could be detected. Diffusion-limited currents were measured at -1.2 V.

Conclusion.

It is clear that these compounds undergo reduction on silver in one concerted step at potentials up to one volt less negative than at mercury. This makes silver a very attractive electrode material for analytical work with these, and possibly other, organohalides. Direct determination of T4 at the RDE down to the \(\mu \)M level is possible. Other methods that can be envisaged are reduction at a silver electrode to give iodide ions that are detected in a variety of ways: (a) direct voltammetry, (b) titration with silver ions, (c) oxidation, chemical or electrochemical, to iodine with spectroscopic detection, and (d) stripping voltammetry of iodide on a silver electrode. For liquid chromatography applications a coulometric cell could be used to form the iodide ions by reduction at one electrode followed by either oxidation of the iodide to iodine at another electrode prior to, for example, u.v. detection, or collection as AgI at a second in-line Ag electrode, followed by cathodic stripping. Stripping voltammetry in a flow system is feasible and sensitive, has been employed by Wang [17,18] and others [19] in flow injection analysis work, and could be employed here, as indicated above. Additional work in this area is in progress in our laboratory.
ACKNOWLEDGMENTS

The assistance of Mr. Neal Sleszynski, Dr. Marek Wojciechowski and Dr. Malcolm Carter in aspects of this work are appreciated.

CREDIT

This work was supported in part by The Office of Naval Research.
References

5. Holak, W.; Shostak, D. J. Pharm. Sci. 1979, 68, 33R.

15. Ref. 11, Page 522.

Figure Captions

1. Limiting current of T_4 during cathodic polarization at various concentrations.
 Solutions: a) 9.6×10^{-5}, b) 7.7×10^{-5}, c) 3.9×10^{-5},
 d) 2.0×10^{-5}, e) 1.0×10^{-5} M T_4 in 0.1 M NaOH; $\omega = 2500$ rpm,
 $\nu = 50$ mV s$^{-1}$.

2. Current-potential curves of T_4, T_3, T_2, T_y2 and T_y1 on silver
 RDE in 0.1 M NaOH; $\omega = 2500$ rpm, $\nu = 50$ mV s$^{-1}$.
 a) T_4, 7.7×10^{-5} M, h) T_3, 6.0×10^{-5} M, c) T_2, 5.0×10^{-5}
 M, d) T_y2, 7.5×10^{-5} M, e) T_y1, 5.0×10^{-5}, f) background.

3. Concentration dependence of the limiting current of T_4(-o-),
 T_3(-A-), T_2(-□-), T_y(-*-), and T_y(-A-); $\omega = 2500$ rpm, $\nu = 50$
 mV s$^{-1}$, $E = -1.2$V vs SCE.

4. Dependence of limiting current on the square root of rotation rate;
 T_4(o,ø), T_3(A,△), T_2(-ø,-△); in 1.0×10^{-4} M at a rate of 50 mV
 s$^{-1}$ (o,△, and □); in 5.0×10^{-5} M at a rate of 10 mV s$^{-1}$ (ø,△, and □);
 $E = -1.12$ V vs SCE.

5. Cathodic polarization curves of T_4 at various rotation rates.
 A: 5.0×10^{-5} M T_4 at a scan rate of 50 mV s$^{-1}$, B: 1.0×10^{-4}
 M T_4 at a scan rate of 50 mV s$^{-1}$.
6. Polarograms of 1 mM iodoamino acids in 0.1 M NaOH
 a) T_4, b) T_3, c) T_2, d) T_2, e) T_y1
 Scan rate = 2 mV s\(^{-1}\), drop time 1 s.

7. Voltammetry in 0.1 M NaOH at the small silver disk electrode. (+) indicates initial potentials. 0.2 V s\(^{-1}\). (a) With 2.89 mM T_4 present, (b) background.

8. Voltammetry of 2.89 mM T_4 in 0.1 M NaOH at the small silver disk electrode. Potential sweep was begun at -0.6 V and then swept to -1.2 V, held there for 10 s, stepped to -0.1 V, held there for 10 s and finally swept to -0.5 V at 0.2 V s\(^{-1}\).
Table I. Half-wave potentials and limiting currents of 5.0×10^{-5} M iodoamino acids in 0.1 M NaOH at a silver RDE

<table>
<thead>
<tr>
<th></th>
<th>T_4</th>
<th>T_3</th>
<th>T_2</th>
<th>T_{y2}</th>
<th>T_{y1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{1/2}^a$</td>
<td>-0.86</td>
<td>-0.87</td>
<td>-0.86</td>
<td>-1.00</td>
<td>-0.99</td>
</tr>
<tr>
<td>$i/\omega^{1/2}^b$</td>
<td>1.71</td>
<td>1.15</td>
<td>0.73</td>
<td>0.60</td>
<td>0.36</td>
</tr>
</tbody>
</table>

a: V vs. SCE, at a scan rate of 50 mV s$^{-1}$.
b: μA rpm$^{-1/2}$, average value obtained at various rotation rates at scan rate of 10 mV s$^{-1}$.
Table II. Polarographic half-wave potentials and limiting currents of 1 mM iodoamino acids in 0.1 M NaOH.

<table>
<thead>
<tr>
<th></th>
<th>1st wave</th>
<th>2nd wave</th>
<th>3rd wave</th>
<th>total i_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_4</td>
<td>$E_{1/2}$</td>
<td>-1.19</td>
<td>-1.37</td>
<td>-1.73</td>
</tr>
<tr>
<td></td>
<td>i_d</td>
<td>2.8</td>
<td>3.6</td>
<td>2.6</td>
</tr>
<tr>
<td>T_3</td>
<td>$E_{1/2}$</td>
<td>-1.23</td>
<td><-----</td>
<td>-1.67</td>
</tr>
<tr>
<td></td>
<td>i_d</td>
<td>2.7</td>
<td><-----</td>
<td>3.5</td>
</tr>
<tr>
<td>T_2</td>
<td>$E_{1/2}$</td>
<td><-----</td>
<td>-1.35</td>
<td>-1.68</td>
</tr>
<tr>
<td></td>
<td>i_d</td>
<td><-----</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Ty_2</td>
<td>$E_{1/2}$</td>
<td><-----</td>
<td><-----</td>
<td>-1.82</td>
</tr>
<tr>
<td></td>
<td>i_d</td>
<td><-----</td>
<td><-----</td>
<td>3.1</td>
</tr>
<tr>
<td>Ty_1</td>
<td>$E_{1/2}$</td>
<td><-----</td>
<td><-----</td>
<td><-----</td>
</tr>
<tr>
<td></td>
<td>i_d</td>
<td><-----</td>
<td><-----</td>
<td><-----</td>
</tr>
</tbody>
</table>

a: $E_{1/2}$, V vs SCE; i_d, μA.
Table III

n-Values from the Levich Equation for Reduction of Ti in 0.1N NaOH

<table>
<thead>
<tr>
<th>ω/rpm</th>
<th>ω^{1/2}</th>
<th>I_d/μA</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>16.18</td>
<td>83</td>
<td>8.0</td>
</tr>
<tr>
<td>1600</td>
<td>12.94</td>
<td>68</td>
<td>8.2</td>
</tr>
<tr>
<td>900</td>
<td>9.71</td>
<td>51</td>
<td>8.2</td>
</tr>
<tr>
<td>400</td>
<td>6.47</td>
<td>35</td>
<td>8.5</td>
</tr>
</tbody>
</table>

\[A = 0.442 \text{ cm}^2 \]
\[\nu^{1/6} = 2.15 (\text{cm}^2 \text{ s}^{-1})^{1/6} \]
\[C = 5.0 \times 10^{-5} \text{ M} \]
\[D = 3.3 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1} \]

Average \(n = 8.22 \pm 0.21 \)
Table IV

Detection Limits of T_4 and Related Compounds

<table>
<thead>
<tr>
<th></th>
<th>T_4</th>
<th>T_3</th>
<th>T_2</th>
<th>$T_{\gamma 2}$</th>
<th>$T_{\gamma 1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m (A/mol)</td>
<td>1.90</td>
<td>1.30</td>
<td>0.90</td>
<td>0.68</td>
<td>0.32</td>
</tr>
<tr>
<td>C_L ($\times 10^{-6}$M)</td>
<td>1.6</td>
<td>2.3</td>
<td>3.3</td>
<td>4.4</td>
<td>9.4</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2

E, V vs. SCE

25 μA
Figure 3

The graph shows the relationship between $i/10^{-4}A$ and $c/10^{-5}M$ for different concentrations of chemical species T_1, T_2, T_3, T_4, T_y_1, and T_y_2. The data points and lines indicate a linear relationship with increasing concentration.
Figure 4
Figure 5
Figure 6

E, V vs. SCE

Figure 6
Figure 7
<table>
<thead>
<tr>
<th>Organization</th>
<th>No. Copies</th>
<th>Organization</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Attn: Technical Library</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>San Diego, California</td>
<td>92152</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONR Pasadena Detachment</td>
<td>1</td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. J. Marcus</td>
<td></td>
<td>Attn: Dr. A. B. Amster</td>
<td></td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td></td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California 91106</td>
<td></td>
<td>China Lake, California</td>
<td>93555</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superintendent</td>
<td>1</td>
<td>Dean William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Monterey, California 93940</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. Vincent Schaper</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>DTNSRDC Code 2830</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Annapolis, Maryland 21402</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. A. M. Anzalone</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Administrative Librarian</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLASTEC/ARRADCOM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bldg 3401</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dover, New Jersey 07801</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. M. B. Denton</td>
<td>Department of Chemistry, University of Arizona, Tucson, Arizona 85721</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. R. A. Osteryoung</td>
<td>Department of Chemistry, State University of New York, Buffalo, New York 14214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. J. Osteryoung</td>
<td>Department of Chemistry, State University of New York, Buffalo, New York 14214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. B. R. Kowalski</td>
<td>Department of Chemistry, University of Washington, Seattle, Washington 98105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. H. Freiser</td>
<td>Department of Chemistry, University of Arizona, Tucson, Arizona 85721</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. H. Chernoff</td>
<td>Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. A. Zirino</td>
<td>Naval Undersea Center, San Diego, California 92132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor George H. Morrison</td>
<td>Department of Chemistry, Cornell University, Ithaca, New York 14853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Alan Bewick</td>
<td>Department of Chemistry, Southampton University, Southampton, Hampshire, ENGLAND 5095NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. S. P. Perone</td>
<td>Lawrence Livermore Laboratory L-370, P.O. Box 808, Livermore, California 94550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. L. Jarvis</td>
<td>Code 6100, Naval Research Laboratory, Washington, D.C. 20375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. G. M. Hieftje</td>
<td>Department of Chemistry, Indiana University, Bloomington, Indiana 47401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Christie G. Enke</td>
<td>Department of Chemistry, Michigan State University, East Lansing, Michigan 48824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. D. L. Venezky</td>
<td>Naval Research Laboratory, Code 6130, Washington, D.C. 20375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walter G. Cox</td>
<td>Naval Underwater Systems Center, Building 148, Newport, Rhode Island 02840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor Isiah M. Warner</td>
<td>Department of Chemistry, Emory University, Atlanta, Georgia 30322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Kent Eisenraut</td>
<td>Air Force Materials Laboratory, Wright-Patterson AFB, Ohio 45433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Adolph B. Amster</td>
<td>Chemistry Division, Naval Weapons Center, China Lake, California 93555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. B. E. Douda</td>
<td>Chemical Sciences Branch, Code 50 C, Naval Weapons Support Center, Crane, Indiana 47322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. John Eyler</td>
<td>Department of Chemistry, University of Florida, Gainesville, Florida 32611</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST, 0518

Professor J. Janata
Department of Bioengineering
University of Utah
Salt Lake City, Utah 84112

Dr. J. DeCorpo
NAVSEA
Code 05R14
Washington, D.C. 20362

Dr. Charles Anderson
Analytical Chemistry Division
Athens Environmental Laboratory
College Station Road
Athens, Georgia 30613

Dr. Ron Fleming
B 108 Reactor
National Bureau of Standards
Washington, D.C. 20234

Dr. David M. Hercules
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania

Dr. Frank Herr
Office of Naval Research
Code 422CB
800 N. Quincy Street
Arlington, Virginia 22217

Professor E. Keating
Department of Mechanical Engineering
U.S. Naval Academy
Annapolis, Maryland 21401

Dr. M. H. Miller
1133 Hampton Road
Route 4
U.S. Naval Academy
Annapolis, Maryland 21401

Dr. Clifford Spiegelman
National Bureau of Standards
Room A337 Bldg. 101
Washington, D.C. 20234

Dr. Denton Elliott
AFOSR/NC
Bolling AFB
Washington, D.C. 20362

Dr. B. E. Spielvogel
Inorganic and Analytical Branch
P.O. Box 12211
Research Triangle Park, NC 27709

Ms. Ann De Witt
Material Science Department
160 Fieldcrest Avenue
Raritan Center
Edison, New Jersey 08818

Dr. A. Harvey
Code 6110
Naval Research Laboratory
Washington, D.C. 20375

Dr. John Hoffsommer
Naval Surface Weapons Center
Building 30 Room 208
Silver Spring, Maryland 20910

Mr. S. M. Hurley
Naval Facilities Engineering Command
Code 032P
200 Stovall Street
Alexandria, Virginia 22331

Ms. W. Parkhurst
Naval Surface Weapons Center
Code R33
Silver Spring, Maryland 20910

Dr. M. Robertson
Electrochemical Power Sources Division
Code 305
Naval Weapons Support Center
Crane, Indiana 47522

CDR Andrew T. Zander
10 Country Club Lane
ONR Boston
Plaistow, New Hampshire 03865
TECHNICAL REPORT DISTRIBUTION LIST, 051B

Dr. Robert W. Shaw
U.S. Army Research Office
Box 12211
Research Triangle Park, NC 27709

Dr. Marvin Wilkerson
Naval Weapons Support Center
Code 30511
Crane, Indiana 47522

Dr. J. Wyatt
Naval Research Laboratory
Code 6110
Washington, D.C. 20375

Dean William Tolles
Naval Post Graduate School
Spanaugel Hall
Monterey, California 93940

Dr. H. Wohltjen
Naval Research Laboratory
Code 6170
Washington, D.C. 20375
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton S09 5NH
United Kingdom

Dr. T. Katan
Lockheed Missiles and
Space Co., Inc.
P.O. Box 504
Sunnyvale, California 94088

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Mr. Joseph McCartney
Code 7121
Naval Ocean Systems Center
San Diego, California 92152

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. H. Richtol
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Sam Perone
Chemistry & Materials
Science Department
Lawrence Livermore National Lab.
Livermore, California 94550

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. G. Goodman
Johnson Controls
5757 North Green Bay Avenue
Milwaukee, Wisconsin 53201

Dr. B. Brummer
EIC Incorporated
111 Chapel Street
Newton, Massachusetts 02158

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Electrochemica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, California 94040

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute
of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
M.S. 68025 Forrestal Bldg.
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. William Ayers
ECD Inc.
P.O. Box 5357
North Branch, New Jersey 08876

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Corporation
111 Chapel Street
Newton, Massachusetts 02158

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Denton Elliott
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6130
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555
Dr. David Aikens
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. A. P. B. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Looe 6343, Bayside
San Diego, California 95152

Dr. Gregory Farrington
Department of Materials Science
and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

M. L. Robertson
Manager, Electrochemical
and Power Sources Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II
IBM Corporation
K33/281
5600 Cottle Road
San Jose, California 95193

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, SO9 5NH ENGLAND

Dr. E. Anderson
NAVSEA-56Z33 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Bruce Dunn
Department of Engineering &
Applied Science
University of California
Los Angeles, California 90024

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. D. Cipris
Allied Corporation
P.O. Box 3000R
Morristown, New Jersey 07960

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Donald Sandstrom
Department of Physics
Washington State University
Pullman, Washington 99164

Dr. Carl Kannewurf
Department of Electrical Engineering
and Computer Science
Northwestern University
Evanston, Illinois 60201
Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060

Dr. Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Judith H. Ambrus
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 6B025 Forrestal Building
Washington, D.C. 20595

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. Dr. John Wasson
Syntheco, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Dr. Anthony Sammells
Eltron Research Inc.
710 E. Ogden Avenue #108
Naperville, Illinois 60540

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. W. M. Risen
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Farrell Lytle
Boeing Engineering and Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Dr. Thomas Davis
Polymer Science and Standards Division
National Bureau of Standards
Washington, D.C. 20234

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-226
Washington, D.C. 20545