AIRWORTHINESS AND FLIGHT CHARACTERISTICS TEST OF THE JOH-6A LIGHT COMBAT HELICOPTER CONFIGURED WITH A WIRE STRIKE PROTECTION SYSTEM

JAMES L. WEBRE
CW3, AV
PROJECT OFFICER

RALPH WORATSCHEK
PROJECT ENGINEER

ERIC L. MITCHELL
CPT, TC
PROJECT PILOT

RICHARD S. ADLER
PROJECT ENGINEER

NOVEMBER 1983
FINAL REPORT

SINCE THE CONDUCT OF THIS TEST THE AIRCRAFT HAS BEEN REDESIGNATED THE AH-6C.
APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

UNITED STATES ARMY AVIATION ENGINEERING FLIGHT ACTIVITY
EDWARDS AIR FORCE BASE, CALIFORNIA 93523
DISCLAIMER NOTICE

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of the use of the commercial hardware and software.
Title: Airworthiness and Flight Characteristics of the J0H-6A Light Combat Helicopter Configured with a Wire Strike Protection System

Authors: James L. Wehre, Eric Mitchell, Ralph Woratschek, Richard Adler

Performing Organization: US Army AVN Engineering Flight Activity
Address: Edwards Air Force Base, CA 93523

Controlling Office: US Army Aviation Systems Command
Address: 4300 Goodfellow Boulevard, St. Louis, MO 63120

Report Date: November 1983
Number of Pages: 54

Abstract:
A limited airworthiness and flight characteristics test on the J0H-6A Light Combat Helicopter (LCH) configured with a wire strike protection system (WSPS) was conducted to substantiate the airworthiness. Tests were conducted at Edwards Air Force Base, California in four flights totaling 41 productive flight hours. The insufficient ground clearance of the lower cutter allows contact with the ground and is a deficiency. The handling qualities of the...
JOH-6A LCH with WSPS installed are essentially unchanged from the JOH-6A LCH without WSPS.

SEE DISTRIBUTION

1. The purpose of this letter is to establish the Directorate for Engineering position on the subject report. The report documents the handling qualities of the JOH-6A Light Combat Helicopter (LCH) with a wire strike protection system (WSPS) installed.

2. This Directorate agrees with the Conclusions and Recommendations stated in the report except as indicated below. Also, additional comments are provided and are applicable to the paragraphs as indicated.

 a. Paragraphs 13 and 15. Disagree that the insufficient ground clearance of the lower cutter assembly is a deficiency during a normal run on landing at the high gross weight of 2700 lb. This should be a shortcoming. The caution recommended adequately advises the pilot to take care and provides instructions to prevent ground contact of the lower cutter assembly. Additionally, inadvertent ground contact will result in shearing the cutter extension shear rivets and reducing the probability of structural damage. The OH-58 A/C helicopters also have the same type design with a frangible cutter extension for precluding structural damage.

 b. Paragraph 1c. The effect of the IR landing light on the operation of the WSPS is unknown. It is expected at worst to slightly increase the frontal vulnerable area as compared to the IR light being removed. It is not considered practical at this time to conduct actual wire strike tests to determine, if any, reduction in WSPS effectiveness. Consideration will be given to conducting an analysis to determine any reduction in effectiveness.

FOR THE COMMANDER:

RONALD E. GORMONT
Acting Director of Engineering
TABLE OF CONTENTS

INTRODUCTION
- Background .. 1
- Test Objectives ... 1
- Description .. 1
- Test Scope ... 2
- Test Methodology ... 2

RESULTS AND DISCUSSION
- General .. 4
- Handling Qualities .. 4
 - Static Lateral-Directional Stability 4
 - Dynamic Stability ... 4
 - Low Speed Flight Characteristics 5
- Lower Wire Cutter Ground Clearance 5
- Infrared Landing Light with WSPS Installed 5

CONCLUSIONS
- General ... 7
- Deficiency .. 7

RECOMMENDATIONS .. 8

APPENDIXES
- A. References ... 9
- B. Description .. 10
- C. Instrumentation .. 24
- D. Test Techniques and Data Analysis Methods 32
- E. Test Data ... 33

DISTRIBUTION
INTRODUCTION

BACKGROUND

1. The US Army has identified a need for a special mission helicopter that is air-transportable by C-130 aircraft. The OH-6A helicopter was selected and after modifications was designated the JOH-6A light combat helicopter (LCH). Since the conduct of this test the aircraft has been redesignated the AH-6C. The US Army Aviation Research and Development Command (AVRADCOM) requested that the US Army Aviation Engineering Flight Activity (USAAEFA) conduct a limited Airworthiness and Flight Characteristics (A&FC) test on a JOH-6A LCH configured with a wire strike protection system (WSPS) (ref 1, app A). The WSPS was developed by Bristol Aerospace Ltd., Winnipeg, Canada, and was certified for use on the Hughes 500 Helicopter. The WSPS was subjected to structural analysis, handling qualities testing, and simulated wire strike tests by the Canadians. Additionally, the Applied Technology Laboratory, Research Technology Laboratory, and AVRADCOM conducted dynamic tests of the WSPS installed on the OH-58A at the Impact Dynamics facility, NASA Langley Research Center.

TEST OBJECTIVES

2. The objectives of this test were to obtain handling qualities data necessary to substantiate the airworthiness of the JOH-6A LCH with WSPS installed.

DESCRIPTION

3. The test helicopter (USA S/N 69-16054) was manufactured by Hughes Helicopters, Incorporated. A major LCH modification replaced the standard engine (T63-A-5A) with a T63-A-720 having an uninstalled sea level rating of 420 shaft horsepower (SHP). Transmission limits restrict power to 272 SHP for takeoff. Other modifications included: installation of military avionics with secure voice capability, LTN-211 Omega/VLF navigation system, one M158A1 7 tube, 2.75 inch folding fin aerial rocket (FFAR) pod mounted on the right side and one M27E1 7.62mm minigun armament subsystem mounted on the left side of the aircraft. The WSPS was mounted on the cabin roof and lower forward canopy. Photographs of the test aircraft are presented in appendix B. A detailed description of the OH-6A is contained in the operator's manual (ref 2) and a description of modifications incorporated to configure the aircraft to the JOH-6A LCH configuration are contained in the airworthiness release (ref 3). A description of the WSPS is contained in appendix B. A description of test instrumentation is contained in appendix C.
TEST SCOPE

4. The A&FC of the J0H-6A LCH with WSPS was conducted at Edwards Air Force Base, California from 30 August to 2 September 1983. Four flights were conducted for a total of 4.1 productive flight hours. Tests were conducted at the test conditions shown in table 1. The limitations shown in the operator's manual and the airworthiness release were observed. Center of gravity (cg) andairspeed limitations from the airworthiness release are presented in figures 1 and 2, appendix B.

TEST METHODOLOGY

5. Flight test techniques used are described in reference 4, appendix A. Test methods and data analysis methods are briefly described in appendix D. Ball-centered (coordinated) flight was used for test trim conditions. Data were recorded utilizing an onboard magnetic tape recording system. Control system rigging check and aircraft weight and balance were performed by USAAEFA personnel.
Table 1. Handling Qualities Test Conditions\(^1\)

<table>
<thead>
<tr>
<th>Test</th>
<th>Average Gross Weight (lb)</th>
<th>Longitudinal Center of Gravity (FS)</th>
<th>Density Altitude (ft)</th>
<th>Calibrated Airspeed (KCAS)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Lateral-Directional Stability</td>
<td>2600</td>
<td>99.0(FWD)</td>
<td>7000</td>
<td>59-79</td>
<td>Level flight, climb and autorotation</td>
</tr>
<tr>
<td>Dynamic Stability</td>
<td>2630</td>
<td>99.0(FWD)</td>
<td>7340</td>
<td>55-75</td>
<td>Climb and level flight</td>
</tr>
</tbody>
</table>

NOTES:
1 Tests were conducted with doors off in trimmed ball-centered flight and mid-lateral center of gravity
2 Knots true airspeed
RESULTS AND DISCUSSION

GENERAL

6. A limited A&FC test of the JOH-6A LCH helicopter with WSPS installed was conducted at Edwards AFBS, California at the general test conditions listed in table 1. The handling qualities of the JOH-6A LCH with WSPS installed were essentially unchanged from the basic JOH-6A LCH. One deficiency, attributable to the WSPS installation, was identified: the insufficient ground clearance of the lower cutter allows contact with the ground during run-on landings at high gross weights. One shortcoming was identified which was previously reported for the JOH-6A LCH.

HANDLING QUALITIES

Static Lateral-Directional Stability

7. Static lateral-directional control characteristics of the JOH-6A LCH were evaluated in climbs, autorotational descents, and level flight at the conditions shown in table 1. Data are presented in figures 1 through 4, appendix E. At all conditions tested, the JOH-6A LCH with the WSPS installed exhibited positive directional stability (increased left directional control for increased right sideslip), and positive dihedral effect (increased right lateral control with increased right sideslip). The gradient of directional control position with change in sideslip angle in level flight was approximately 12 degrees of sideslip angle per inch of pedal displacement at 60 knots calibrated airspeed (KCAS) while the gradient at 79 KCAS was slightly steeper (7 degrees of sideslip angle per inch of pedal displacement). Siderforce cues were weak about trim at these airspeeds as evidenced by the small change in roll attitude with sideslip. The static lateral-directional stability characteristics of the JOH-6A with WSPS installed are essentially unchanged from those of the standard JOH-6A LCH (ref 5, app A).

Dynamic Stability

8. Lateral-directional dynamic stability was evaluated in level flight at 55 and 75 KCAS at the conditions presented in table 1. The aircraft response to pedal doublets is presented in figures 5 and 6, appendix E. An easily excited but damped lateral-directional oscillation (2.0 to 2.5 second period) developed during all flight conditions. This response was more pronounced during maximum power climbs at 60 KCAS (fig. 7, app E). The oscillation was more damped at the higher airspeed (75 KCAS) tested. The lateral-directional dynamic stability characteristics of the JOH-6A LCH with WSPS installed are essentially unchanged from those of the standard JOH-6A LCH (ref 5, app A).
Low Speed Flight Characteristics

9. The low speed flight characteristics of the JOH-6A LCH with WSPS were evaluated at the conditions presented in Table 1 using a calibrated ground pace vehicle as a speed reference. Surface wind conditions were less than 5 knots and skid height was approximately 5 feet. Control positions during low speed flight are presented in figures 8 through 11, appendix E. Less than 10% aft longitudinal control margin existed for left sideward flight at speeds in excess of 20 knots true airspeed (KTAS) and for rearward and 225 degree (crirical) relative azimuth flight at speeds in excess of 15 KTAS. The limited aft longitudinal control margin, however, was not evident to the pilot. Random pitch, roll and yaw excursions during left and right sideward flight between 10 and 20 KTAS are a shortcoming previously reported (Ref 5, app A). The low speed flight characteristics of the JOH-6A LCH with WSPS installed are essentially unchanged from the basic JOH-6A LCH.

Lower Wire Cutter Ground Clearance

10. Lower wire cutter ground clearance was evaluated at 2700 lb gross weight by conducting run-on landings. A Fome-Cor® lower cutter extension was installed to prevent damage to the airframe. Ground clearance prior to takeoff was 1.9 inches (photo 6, app B). During landing, the landing gear oleo-struts compressed sufficiently to allow the lower cutter to contact the ground which resulted in damage to the cutter extension (photo 7, app B). The insufficient ground clearance of the lower cutter assembly allows contact with the ground when making a normal run-on landing at 2700 lb gross weight and is a deficiency. Until the deficiency is corrected, the following caution should be placed in the operator's manual of the LCH configuration with WSPS installed.

CAUTION

Ground clearance of the lower WSPS cutter is minimal at high gross weights. Care should be exercised when operating from unimproved areas or when run-on landings are anticipated to prevent ground contact of the lower cutter assembly.

Infrared (IR) Landing Light with WSPS Installed

11. The IR landing light as installed in the test aircraft extends forward of the WSPS midsection deflector. The protrusion of the IR landing light (photo 8, app B) could interfere with
the proper functioning of the wire strike protection system. An evaluation of the WSPS as installed on the JOM-6A LCH should be conducted to determine what effect the IR landing light has on WSPS operation.
CONCLUSIONS

GENERAL

12. The handling qualities of the JOH-6A LCH with WSPS installed are essentially unchanged from the JOH-6A LCH as reported in reference 5, appendix A.

DEFICIENCY

13. The insufficient ground clearance of the lower cutter assembly allows contact with the ground when making a normal run-on landing at 2700 lb gross weight (para 10).
RECOMMENDATIONS

15. The following caution should be placed in the operator's manual of the JOH-6A LCH with WSPS installed (para 10).

CAUTION

Ground clearance of the lower WSPS cutter is minimal at high gross weights. Care should be exercised when operating from unimproved areas or when run-on landings are anticipated to prevent ground contact of the lower cutter assembly.

16. An evaluation of the WSPS as installed on the JOH-6A LCH should be conducted to determine what effect the IR landing light has on WSPS operation (para 11).
APPENDIX A. REFERENCES

APPENDIX B. DESCRIPTION

GENERAL
1. The test aircraft, a JOH-6A (S/N 69-16054) light combat helicopter (LCH) with the wire strike protection system (WSPS), was a standard OH-6A aircraft in accordance with Hughes Helicopter detail specification HTC-A369-V-8003A and the operator's manual except for LCH modifications and instrumentation installation (photos 1 and 2). A detailed description of the standard OH-6A is presented in reference 2, appendix A. The LCH modifications and a detailed description of the WSPS are presented in reference 3, appendix A. The longitudinal center of gravity and airspeed envelopes as modified by reference 3 are shown in figures 1 and 2.

HELICOPTER OBSERVATION OH-6A
2. The OH-6A aircraft is a four place, dual control, single engine observation helicopter. It incorporates a single 4-bladed main rotor, a 2-bladed tail rotor and an oleo-damped skid-type landing gear. The main rotor is fully articulated while the tail rotor is semi-rigid. The aircraft is powered by a single free turbine, turboshaft engine mounted in the aft fuselage section directly behind the cargo compartment.

3. The JOH-6A LCH is equipped with a T63-A-720 turbine engine having an uninstalled sea level rating of 420 shaft horsepower (SHP).

DIMENSIONAL DATA
4. Primary dimensional data is presented in figures 3 and 4.

WIRE STRIKE PROTECTION SYSTEM
5. The WSPS was installed in accordance with reference 3, appendix A. Major components are as follows:

a. An upper cutter assembly (photo 3) was installed on the cockpit roof and extended forward at a height of 9.2 inches above the roof. Supports were mounted on the upper cutter, 4 inches above the roof, and attached to the airframe at fuselage station (FS) 89.39 and on either side at buttline (BL) 9.8 left and right.
b. The lower cutter (photo 4) assembly was installed on the forward aircraft belly centerline. The assembly consists of the main cutter, the cutter extension and the support struts. The main cutter extended 10 inches below the aircraft fuselage. The cutter extension mounted to the main cutter via two shear rivets and extended an additional 3.5 inches below the main cutter. Support struts were mounted to the main cutter and to the airframe at FS 62.4 and BL 12.0 left and right.

c. The midsection deflector (photo 5) consists of 3 channels with inserts and two "U" shaped yokes. Channels with inserts and yokes provide a non-interrupted surface for cable deflection to either the upper or lower cutter assembly.

6. Detailed drawings of WSPS installation are presented in Bristol Aerospace, Limited, Drawing Nos. 441-83041 through 441-83045.
FIGURE 1
AIRWORTHINESS RELEASE GROSS WEIGHT - - LONGITUDINAL
CENTER-OF-GRAVITY ENVELOPE
JOH-6A LCM (AH-6C)

GROSS WEIGHT (POUNDS)

CENTER-OF-GRAVITY (FUSELAGE STATION)
FIGURE 2
AIRWORTHINESS RELEASE AIRSPEED LIMITS
JOH-6A LCH (AH-6C)
Figure 3. OH-6A Principal Dimensions
Photo 2. J0H-6A (LCH) with WSPS Right Side View
Channels with Inserts

Yoke

Photo 5. Mid Section Deflector Assembly
Photo 8. Infrared Landing Light Protrusion
APPENDIX C. INSTRUMENTATION

1. The test instrumentation system was designed, calibrated, installed, and maintained by USAAEFA. Digital and analog data were obtained from calibrated instrumentation and were recorded on magnetic tape and/or displayed in the cockpit. The instrumentation system consisted of various transducers, signal conditioning units, a ten-bit PCM encoder, and an Ampex AR 700 tape recorder. Time correlation was accomplished with a pilot/engineer event switch and onboard recorded and displayed Inter-Range Instrumentation Group (IRIG) B format time of day. Various specialized test indicators displayed data to the pilot and engineer continuously during the flight. A boom with the following sensors was mounted on the right skid tube of the aircraft: swiveling pitot-static head, sideslip vane, and angle-of-attack vane. Photos 1 through 3 show the instrumentation installation. The boom airspeed system calibration is shown in figures 1 through 3.

2. The following parameters were displayed on calibrated instruments in the cockpit:

- Airspeed (boom)
- Airspeed (ship's system)
- Altitude (boom)
- Rotor speed
- Engine torque
- Fuel flow rate
- Fuel used (totalizer)
- Outside air temperature
- Normal acceleration
- Angle of sideslip
- Vertical velocity
- Time of day
- Record counter

3. The following parameters were recorded on magnetic tape:

- Time code
- Run number
- Pilot/engineer event
- Fuel used
- Airspeed (boom)
- Altitude (boom)
- Main rotor speed
- Outside air temperature
- Angle of sideslip
- Angle-of-attack
- Engine torque
- Turbine outlet temperature
Gas producer speed
Power turbine output shaft speed
Fuel flow rate
Control positions
 Longitudinal
 Lateral
 Directional
 Collective
Aircraft attitudes and rates
 Pitch
 Roll
 Yaw
Aircraft center of gravity linear accelerations
 Longitudinal
 Lateral
 Normal
Pilot seat accelerations
 Longitudinal
 Lateral
 Vertical
Photo 3. Airspeed Boom (Attached to Right Skid)
BOOM AIRSPEED CALIBRATION
JOH-6A LCH (AH-6C) USA 5/N 69-16654

AVG CG AVG AVG AVG FLIGHT CONDITION
GROSS WEIGHT LONG LAT ALTITUDE OAT ROTOR SPEED
(LB) (FS) (BL) (FT) (DEG C) (RPM)
2500 98.8(FWD) 0.51N 7380 25.0 483 LEVEL

NOTE: TRAILING BOMB METHOD

BOOM TITOT STATIC SYSTEM
LINE OF ZERO ERROR

CORRECTION TO BE ADDED (KNOTS)

CALIBRATED AIRSPEED (KNOTS)

NOT FOR HANDBOOK USE
FIGURE 3
BOOM AIRSPEED CALIBRATION
UH-5A LCH (AH-6C) USA S/N 69-16054

<table>
<thead>
<tr>
<th>SYM</th>
<th>AVG GROSS WEIGHT (LB)</th>
<th>AVG CG LOCATION (FT)</th>
<th>AVG DENSITY (LBS/FT³)</th>
<th>AVG OAT (DEG C)</th>
<th>AVG ROTOR SPEED (RPM)</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>2460</td>
<td>98.8 (FWD)</td>
<td>0.5 R</td>
<td>7320</td>
<td>24.5</td>
<td>483</td>
</tr>
<tr>
<td>D</td>
<td>2520</td>
<td>98.8 (FWD)</td>
<td>0.5 R</td>
<td>7620</td>
<td>23.5</td>
<td>483</td>
</tr>
<tr>
<td>A</td>
<td>2500</td>
<td>98.8 (FWD)</td>
<td>0.5 R</td>
<td>7540</td>
<td>24.5</td>
<td>482</td>
</tr>
</tbody>
</table>

CORRECTION TO BE ADDED (KNOTS)
-10 -5 0 5 10

LINE OF ZERO ERROR

NOT FOR HANDBOOK USE
APPENDIX D. TEST TECHNIQUES AND DATA ANALYSIS METHODS

HANDLING QUALITIES

1. Stability and control data were collected and evaluated using standard test methods as described in reference 5, appendix A. Definitions of deficiencies and shortcomings used during this test are shown below.

 a. Deficiency. A defect or malfunction discovered during the life cycle of an item of equipment that constitutes a safety hazard to personnel; will result in serious damage to the equipment if operation is continued; or indicates improper design or other cause of failure of an item or part, which seriously impairs the equipment's operational capability.

 b. Shortcoming. An imperfection or malfunction occurring during the life cycle of equipment which must be reported and which should be corrected to increase efficiency and to render the equipment completely serviceable. It will not cause an immediate breakdown, jeopardize safe operation, or materially reduce the usability of the material or end product.

AIRSPEED CALIBRATION

2. The boom and ships pitot-static system was calibrated by using the trailing bomb method to determine the airspeed position error. Calibrated airspeed (V_{cal}) was obtained by correcting indicated airspeed (V_i) using instrument (ΔV_{ic}) and position (ΔV_{pc}) error corrections.

 $$V_{cal} = V_i + \Delta V_{ic} + \Delta V_{pc} \quad (1)$$

Weight and Balance

3. Prior to testing, the aircraft gross weight and center of gravity (cg) location were determined by using calibrated scales. The aircraft was weighed with full instrumentation on board, wire strike protection system installed, without fuel, and was in the light combat helicopter configuration except for the rocket pod and mount. The aircraft could not be weighed with the rocket pod and mount installed since the rocket pod mount utilizes the aircraft jacking point. The aircraft weight was calculated to be 1903 pounds after addition of the rocket pod and mount weights, with a longitudinal cg location at fuselage station 103.63 and a lateral cg location at buttline 0.50 right.
APPENDIX E. TEST DATA

INDEX

<table>
<thead>
<tr>
<th>Figure</th>
<th>Figure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Lateral-Directional Stability</td>
<td>1 through 4</td>
</tr>
<tr>
<td>Dynamic Stability</td>
<td>5 through 7</td>
</tr>
<tr>
<td>Low Speed Flight</td>
<td>8 through 11</td>
</tr>
</tbody>
</table>
FIGURE 2

STATIC LATERAL-DIRECTIONAL STABILITY

JHO-6A LCH (AH BC) USA S/N 60-16864

<table>
<thead>
<tr>
<th>AVG GROSS WEIGHT (LB)</th>
<th>AVG CG LOCATION (CFS)</th>
<th>AVG LATERAL DENSITY (CBL)</th>
<th>AVG ALTITUDE (FT)</th>
<th>AVG D.A.T (DEG C)</th>
<th>AVG ROTOR SPEED (RPM)</th>
<th>AVG CALIBRATED AIRSPEED (KTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>69.0 (FWD)</td>
<td>0.5</td>
<td>6970</td>
<td>21.5</td>
<td>484</td>
<td>76</td>
</tr>
</tbody>
</table>

NOTES:
1. TRIM FLIGHT CONDITION: LEVEL
2. VSPPS INSTALLED
3. SHADED SYMBOLS DENOTE TRIM

TOTAL LONGITUDINAL CONTROL TRAVEL = 12.0 INCHES

TOTAL LATERAL CONTROL TRAVEL = 11.3 INCHES

TOTAL DIRECTIONAL CONTROL TRAVEL = 7.4 INCHES
FIGURE 3
STATIC LATERAL-DIRECTIONAL STABILITY
JOH-6A LCH (AM-3C) USA S/N 69-16054

<table>
<thead>
<tr>
<th>GROSS WEIGHT</th>
<th>AVG CG LOCATION</th>
<th>AVG LAT DENSITY</th>
<th>AVG ALTITUDE</th>
<th>AVG OAT</th>
<th>AVG ROTOR CALIBRATED SPEED</th>
<th>AVG AIRSPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2800 lbs</td>
<td>00.0 (FWD)</td>
<td>0.5 RT</td>
<td>7280 ft</td>
<td>20°C</td>
<td>464 (RPM)</td>
<td>68 (KTS)</td>
</tr>
</tbody>
</table>

NOTES: 1. TRIM FLIGHT CONDITION: CLIMB
2. WSPS INSTALLED
3. SHADED SYMBOLS DENOTE TRIM

TOTAL LONGITUDINAL CONTROL TRAVEL = 12.9 INCHES
TOTAL LATERAL CONTROL TRAVEL = 11.3 INCHES
TOTAL DIRECTIONAL CONTROL TRAVEL = 7.4 INCHES

ANGLE OF SIDESLIP (DEGREES)
STATIC LATERAL-DIRECTIONAL STABILITY

JH-8A LCH (AH-6C) USA S/N 69-16654

<table>
<thead>
<tr>
<th>AVG GROSS WEIGHT (LB)</th>
<th>AVG LONG LOCATION (FCS)</th>
<th>AVG LAT LOCATION (BL)</th>
<th>AVG ALTITUDE (FT)</th>
<th>AVG OAT (DEG C)</th>
<th>AVG RPS (RPM)</th>
<th>AVG AIRSPEED (KTS)</th>
<th>CALIBRATED WEIGHT (LB)</th>
<th>TOTAL DENSITY (RT)</th>
<th>8810</th>
<th>20.5</th>
<th>485</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>25000</td>
<td>09.6 (FWD)</td>
<td>0.6 RT</td>
<td>8810</td>
<td>20.5</td>
<td>485</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. TRIM FLIGHT CONDITION: AUTOROTATION
2. WSPS INSTALLED
3. SHADING SYMBOLS DENOTE TRIM

Graphs:
- **Total Longitudinal Control Travel:** 12.9 inches
- **Total Lateral Control Travel:** 11.3 inches
- **Total Directional Control Travel:** 7.4 inches
Low Speed Forward and Rearward Flight
JH-BA LCH (AH-6C) USA S/N 69-18264

<table>
<thead>
<tr>
<th>AVG CG Location</th>
<th>AVG Avg</th>
<th>AVG Rotor Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS WEIGHT (LB)</td>
<td>LONG (FS)</td>
<td>LAT (BL)</td>
</tr>
<tr>
<td>2850</td>
<td>99.2 (FWD)</td>
<td>0.5 RT</td>
</tr>
</tbody>
</table>

Notes:
1. I denotes extreme travel from trim during attempted stabilized point
2. Wind conditions less than 5 knots
3. WSPS installed

Total Collective Control Travel = 6.3 inches
Total Directional Control Travel = 7.4 inches
Total Lateral Control Travel = 11.4 inches
Total Longitudinal Control Travel = 12.9 inches
FIGURE 9
SIDeward FLIGHT
UH-1A LCH (AH-6C) USA 8/N 69-15554

AVG GROSS	AVG GS LOCATION	AVG DENSITY	AVG OAT	AVG ROTOR	SKID HEIGHT			
WEIGHT (LBS)	(FT)	(SLugs)	(FT)	(KPH)	(FT)			
2970	80.1	89	98	3430	20	5	484	6

NOTES:
1. 1 DENOTES EXTREME TRAVEL FROM TRIM
 DURING ATTEMPTED STABILIZED POINT
2. WIND CONDITIONS LESS THAN 5 KNOTS
3. WSPS INSTALLED

TOTAL COLLECTIVE CONTROL TRAVEL = 8.3 INCHES

TOTAL LONGITUDINAL CONTROL TRAVEL = 12.9 INCHES

TOTAL LATERAL CONTROL TRAVEL = 11.4 INCHES

TOTAL DIRECTIONAL CONTROL TRAVEL = 7.4 INCHES
FIGURE 10
LOW-SPEED FLIGHT
UH-60A LCH (AH-60C) USA S/N 89-18054

| AVG GROSS WEIGHT (LBS) | AVG LONG LOCATION (FT) | AVG DENSITY (GFS) | AVG OAT (DEG C) | AVG ROTOR SPEED (RPM) | AVG HEIGHT (FT) | SKID ATTTEMPTED | TAB M-131 | AFT 145-15 | LATERAL CONTROL POSITION (IN FROM FULL LIT) | DIRECTIONAL CONTROL POSITION (IN FROM FULL LIT) | TOTAL COLLECTIVE CONTROL TRAVEL = 9.3 INCHES | TOTAL LATERAL CONTROL TRAVEL = 11.4 INCHES | TOTAL DIRECTIONAL CONTROL TRAVEL = 7.4 INCHES | TOTAL HORIZONTAL CONTROL TRAVEL = 12.9 INCHES |
|------------------------|-------------------------|-------------------|----------------|------------------------|----------------|-----------------|---------|---------|---|---|---|---|---|
| 28800 | 69.2 | 0.5 | RT | 3500 | 22.0 | 468 | 6 |

NOTES:
1. T DENOTES EXTREME TRAVEL FROM TRIM DURING ATTEMPTED STABILIZED POINT
2. WIND CONDITIONS LESS THAN 5 KNOTS
3. RELATIVE WIND AZIMUTH MEASURED CLOCKWISE FROM NOSE OF AIRCRAFT = 135/315 DEG
4. WSPS INSTALLED
NOTES: 1. I DENOTES EXTREME TRAVEL FROM TRIM DURING ATTEMPTED STABILIZED POINT
2. WIND CONDITIONS LESS THAN 5 KNOTS
3. RELATIVE WIND AZIMUTH MEASURED CLOCKWISE FROM NOSE OF AIRCRAFT = 045/225 DEG
4. WSPS INSTALLED

TOTAL COLLECTIVE CONTROL TRAVEL = 9.3 INCHES

TOTAL LONGITUDINAL CONTROL TRAVEL = 12.9 INCHES

TOTAL LATERAL CONTROL TRAVEL = 11.4 INCHES

TOTAL DIRECTIONAL CONTROL TRAVEL = 7.4 INCHES
DISTRIBUTION

<table>
<thead>
<tr>
<th>Role</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deputy Chief of Staff for Logistics (DALO-SMM, DALO-AV)</td>
<td>2</td>
</tr>
<tr>
<td>Deputy Chief of Staff Operations (DAMO-RQ)</td>
<td>1</td>
</tr>
<tr>
<td>Deputy Chief of Staff for Personnel (DAPE-HRS)</td>
<td>1</td>
</tr>
<tr>
<td>Deputy Chief of Staff for Research Development and Acquisition (DAMA-PPM-T, DAMA-RA, DAMA-WSA)</td>
<td>3</td>
</tr>
<tr>
<td>Comptroller of the Army (DACA-EA)</td>
<td>1</td>
</tr>
<tr>
<td>US Army Materiel Development and Readiness Command</td>
<td>6</td>
</tr>
<tr>
<td>(DRCDE-SA, DRCOA-E, DRCDE-I, DRCDE-P, DRCOA-SA, DRCSM-WA)</td>
<td></td>
</tr>
<tr>
<td>US Army Training and Doctrine Command (ATTC-II, ATCD-T, ATCD-ET, ATCD-B)</td>
<td>4</td>
</tr>
<tr>
<td>US Army Test and Evaluation Command (DRSTE-CT-A, DRSTE-TO-O)</td>
<td>2</td>
</tr>
<tr>
<td>US Army Logistics Evaluation Agency (DALO-LEI)</td>
<td>1</td>
</tr>
<tr>
<td>US Army Materiel Systems Analysis Agency (DRXSY-R, DRXSY-MP)</td>
<td>2</td>
</tr>
<tr>
<td>US Army Operational Test and Evaluation Agency (CSTF-POD)</td>
<td>1</td>
</tr>
<tr>
<td>US Army Armor Center (ATZK-CD-TE)</td>
<td>1</td>
</tr>
<tr>
<td>US Army Aviation Center (ATZO-D-T, ATZO-TSM-A, ATZO-TSM-S, ATZO-TSM-II)</td>
<td>4</td>
</tr>
<tr>
<td>US Army Combined Arms Center (ATZLCA-DM)</td>
<td>1</td>
</tr>
<tr>
<td>US Army Safety Center (ICAR-TA, ICAR-Library)</td>
<td>2</td>
</tr>
</tbody>
</table>
US Army Research and Technology Laboratories (AVSCOM)
(SAVDL-AS, SAVDL-POM (Library)) 2

US Army Research and Technology Laboratories/Applied Technology Laboratory (SAVDL-ATL-D, SAVDL-Library) 2

US Army Research and Technology Laboratories/Aeromechanics Laboratory (AVSCOM) (SAVDL-AL-D) 2

US Army Research and Technology Laboratories/Proplulsion Laboratory (AVSCOM) (SAVDL-PL-D) 1

Defense Technical Information Center (DDR) 12

US Military Academy, Department of Mechanics
(Aero Group Director) 1

MTMC-TEA (MTT-TRC) 1

ASD/AFXT 1

US Naval Post Graduate School, Department Aero Engineering (Professor Donald Layton) 1

US Army Aviation Systems Command (DRSAV-WZ, DRSAV-WO) 5

Hughes Helicopters, Inc. (Mr. M. Holland) 2