ELECTRICALLY CONDUCTING POLY(VINYL ACETATE)

by

John J. Fontanella & Mary C. Wintersgill

Prepared for Publication

in

Journal of the Electrochemical Society

May 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Solid electrolytes, polymer electrolytes, poly(vinyl acetate), polymer salt complexes, electrical relaxation, electrical conductivity.

Electrically conducting polymers have recently been the subject of intense interest. Polyacetylene has been widely studied as an electronic conductor. Ionic conductors include poly(ethylene oxide), poly(propylene oxide), poly(acrylonitrile), poly(vinylidene fluoride), poly(tetramethylene oxide) and poly(ethylene succinate). In the present note, the observation of electrically conducting poly(vinyl acetate) (PVAc) is reported. Ionic conduction is inferred from the data.
ELECTRICALLY CONDUCTING POLY(VINYL ACETATE)

M.C. Wintersgill, J.J. Fontanella,* J. P. Calame
Physics Department
U.S. Naval Academy
Annapolis, MD 21402

S.G. Greenbaum
Dept. of Physics and Astronomy
Hunter College of CUNY
New York, NY 10021

C.G. Andeen
Physics Department
Case Western Reserve University
Cleveland, OH 44106
INTRODUCTION

Electrically conducting polymers have recently been the subject of intense interest. Polyacetylene has been widely studied as an electronic conductor. Ionic conductors include poly(ethylene oxide) (1), poly(propylene oxide) (2), polyacrylonitrile (3), poly(vinylidene fluoride) (3), poly(tetramethylene oxide) (4) and poly(ethylene succinate) (5). In the present note, the observation of electrically conducting poly(vinyl acetate) (PVAc) is reported. Ionic conduction is inferred from the data.

EXPERIMENT AND RESULTS

PVAc (Mw 1.5x10^6) was obtained from Polysciences, Inc. PVAc and LiClO_4 in the ratio 8:1 were dissolved in methanol then dried in air on a teflon plate at about 55°C. The result was a brittle, clear solid at room temperature. Pure PVAc was prepared by the same method for comparison. Aluminum electrodes were then evaporated onto the faces of several samples and audio frequency complex impedance measurements were performed in a vacuum at temperatures from 5.5 K to 380 K using techniques described elsewhere (6). The results for one frequency (100 Hz) are shown in figure 1. Four other frequencies from 100-10^4 Hz gave similar results and are omitted for clarity. It is seen that the d.c. conductivity of the LiClO_4 complexed material at 100°C is about three orders of magnitude larger than that of the pure material and increases exponentially with an activation energy of about 2.1 eV. However, at about 50°C the a.c. conductivity of the pure material (a.c. loss due to the relaxation peak associated with the glass transition) is slightly greater than that for the complexed material at the same temperature. The glass

* Electrochemical Society Active Member
Key words: polymer electrolytes electrical conductivity.
Fig. 1. Log(\(\sigma(\text{ohm-cm})^{-1}\)) vs. 1000/T (K\(^{-1}\)) for pure PVAc (x) and PVAc-LiClO\(_4\) (□) at 100 Hz.

Transition in the complexed material is shifted to higher temperatures where it is probably masked by the d.c. conductivity. This temperature shift is confirmed by differential scanning calorimetry (DSC) studies. The DSC results together with further electrical relaxation studies will be presented elsewhere.

In order to gain further information concerning this material, \(^7\)Li NMR linewidth and spin-lattice relaxation \(T_1\) measurements were conducted at 155 MHz with a JEOL GX400 NMR spectrometer, after sealing the sample in an evacuated quartz tube. Over the temperature range studied, the \(^7\)Li spectra exhibit a single absorption with no apparent quadrupolar broadening (as deduced by the appropriate \(\pi/2\) pulselwidth condition). The temperature dependence of the full-width-at-half-maximum (FWHM)-linewidth is shown in figure 2 (triangles). The \(T_1\)-recovery process was found to be slightly non-exponential, which may indicate the presence of more than one relaxation time. However, no significant temperature dependence of the recovery profile was observed, which allowed the use of an "effective \(T_1\)," defined as the time required...
for the magnetization to recover 63% of its maximum value. A plot of T_1 (effective) vs.
1000/T also appears in Figure 2 (squares). The value of the "rigid linewidth" (4.4 kHz),
which occurs below about 220K and the observed motional narrowing behavior bear a close
similarity to results reported for PEO-Li+-based materials,7,8 which suggests a comparable degree of Li+- and/or polymer chain
motion in PVAcg-LiClO$_4$. There are, unfortunately, no T_1 measurements above 383K
at present, but it is likely that a T_1 minimum would occur at or near the melting point of
the complex. T_1 does, however, exhibit Arrhenius behavior throughout the motional
narrowing region (above room temperature) with an activation energy of 0.14±0.03 eV. This
small value presumably reflects localized motion with a correspondingly small potential
energy barrier. The relation between the apparent localized process and motion
resulting in long-range transport is not clear at the present time.

Finally, the following cell was constructed:
Li/PVAcg-LiClO$_4$/MnO$_2$-C-PVF$_2$. The composition
of the cathode was about 82% MnO$_2$, 9.6% C and
8.4% PVF$_2$ by weight. The materials were hot-
pressed at about 205°C to form a conducting
disk about 2.54 cm in diameter and 1 mm thick.
The polymer film was about 0.4 mm thick and 2
cm in diameter, while the lithium electrode
was about 1 mm thick with a diameter of about
1.2 cm. The three disks were spring loaded
into a cell under an argon atmosphere. The
cell was not hermetically sealed. Although
the present data were obtained with the cell
in air, similar results were obtained when the
experiment was carried out under vacuum. The
discharge characteristics are shown in figure
3. Further tests showed that with a 100kΩ load, the voltage decreased gradually from 1.9V to 0.9V over a period of 16 hours. The cell failed at that time. While the discharge characteristics of the present cell are not particularly impressive, it should be emphasized that no attempt was made to optimize the performance of the cell. The construction of the cell was rather primitive and, for example, a higher operating temperature or thinner polymer would decrease the internal resistance of the cell. The "open circuit" voltage (the resistance of the Keithley 195 DMM is about 10^6 ohms) is about 3.04 volts, which is not unreasonable for a cell of this type. Further, the initial internal resistance of the cell was about 93.6 kΩ and was about 85 times larger than the resistance predicted from the a.c. conductivity measurements described above. While there is considerable uncertainty in the latter value due to the ambiguities in the geometry of the cell, it is clear that the internal resistance of the cell is larger than the a.c. resistance of the bulk polymer material. This is not surprising since, for example, anions as well as cations may be contributing to the a.c. conductivity, thus giving rise to a lower a.c. resistance.

Finally, a similar cell was constructed using a pure PVAc film in place of the PVAc−LiClO₄. No voltage was detected for this cell.

All results are consistent with ion transport.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Naval Research. S.G.G. also acknowledges support from the Research Corporation.
Fig. 2. Temperature dependences of 7Li FWHM linewidth (Δ) and effective T_1 (\Box).

Fig. 3. Voltage (V) vs. J(μA/cm2) for the cell: Li/PVAc$_8$-LiClO$_4$/MnO$_2$-C-PVF$_2$ at 125°C.
REFERENCES

5. R. Dupon, B. L. Papke, M. A. Ratner and D. F. Shriver, Submitted for publication.
| Office of Naval Research | 2 | Naval Ocean Systems Center | 1 |
| Attn: Code 413 | | Attn: Technical Library | |
| 800 N. Quincy Street | | San Diego, California 92152 | |
| Arlington, Virginia 22217 | | | |
| ONR Pasadena Detachment | 1 | Naval Weapons Center | 1 |
| Attn: Dr. R. J. Marcus | | Attn: Dr. A. B. Amster | |
| 1030 East Green Street | | Chemistry Division | |
| Pasadena, California 91106 | | China Lake, California 93555 | |
| Commander, Naval Air Systems Command | 1 | Scientiﬁc Advisor | 1 |
| Attn: Code 310C (H. Rosenwasser) | | Commandant of the Marine Corps | |
| Washington, D.C. 20360 | | Code RD-1 | |
| Naval Civil Engineering Laboratory | 1 | Washington, D.C. 20380 | |
| Attn: Dr. R. W. Drisko | | Dean William Tolles | 1 |
| Port Hueneme, California 93401 | | Naval Postgraduate School | |
| Superintendent | 1 | Monterey, California 93940 | |
| Chemistry Division, Code 6100 | | U.S. Army Research Office | 1 |
| Naval Research Laboratory | | Attn: CRD-AA-IP | |
| Washington, D.C. 20375 | | P.O. Box 12211 | |
| Dfnns: Technical Information Center | 12| Research Triangle Park, NC 27709 | |
| Building 5, Cameron Station | | Mr. Vincent Schiper | 1 |
| Alexandria, Virginia 22314 | | DTNSRDC Code 2830 | |
| DTNSRDC | 1 | Annapolis, Maryland 21402 | |
| Attn: Dr. G. Bosmajian | | Mr. John Boyle | 1 |
| Applied Chemistry Division | | Materials Branch | |
| Annapolis, Maryland 21401 | | Naval Ship Engineering Center | |
| Naval Ocean Systems Center | 1 | Philadelphia, Pennsylvania 19112 | |
| Attn: Dr. S. Yamamoto | | Mr. A. M. Anzalone | 1 |
| Marine Sciences Division | | Administrative Librarian | |
| San Diego, California 91232 | | PLASTEC/ARRADCOM | |
| | | Bldg 3401 | |
| | | Dover, New Jersey 07801 | |
Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO9 5NH
United Kingdom

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. T. Katan
Lockheed Missiles and
Space Co., Inc.
P.O. Box 504
Sunnyvale, California 94088

Dr. Sam Perone
Chemistry & Materials
Science Department
Lawrence Livermore National Lab.
Livermore, California 94550

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. G. Goodman
Johnson Controls
5757 North Green Bay Avenue
Milwaukee, Wisconsin 53201

Mr. Joseph McCartney
Code 7121
Naval Ocean Systems Center
San Diego, California 92152

Dr. B. Brummer
EIC Incorporated
111 Chapel Street
Newton, Massachusetts 02158

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Electrochemica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, California 94040

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Dr. H. Richtol
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
M.S. 68025 Forrestal Bldg.
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. William Ayers
ECD Inc.
P.O. Box 5357
North Branch, New Jersey 08876

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Corporation
111 Chapel Street
Newton, Massachusetts 02158

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton SO9 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Denton Elliott
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6130
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. David Aikens
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. A. P. B. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Code 6343, Bayside
San Diego, California 95152

Dr. Gregory Farrington
Department of Materials Science and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

M. L. Robertson
Manager, Electrochemical and Power Sources Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II
IBM Corporation
K33/281
5600 Cottle Road
San Jose, California 95193

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, SO9 5NH ENGLAND

Dr. E. Anderson
NAVSEA-56Z33 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Bruce Dunn
Department of Engineering & Applied Science
University of California
Los Angeles, California 90024

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. D. Cipris
Allied Corporation
P.O. Box 3000R
Morristown, New Jersey 07960

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Donald Sandstrom
Department of Physics
Washington State University
Pullman, Washington 99164

Dr. Carl Kannewurf
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060

Dr. Judith H. Ambrus
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 6B025 Forrestal Building
Washington, D.C. 20595

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. Farrell Lytle
Boeing Engineering and Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-226
Washington, D.C. 20545

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. John Wasson
Syntheco, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Anthony Sammells
Eltron Research Inc.
710 E. Ogden Avenue #108
Naperville, Illinois 60540

Dr. W. M. Risen
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Thomas Davis
Polymer Science and Standards Division
National Bureau of Standards
Washington, D.C. 20234