MAGNETIC POWER SUPPLY ASSEMBLY OF M509A2E1 FUZE(U)
BULOYA SYSTEMS AND INSTRUMENTS CORP
M MOSKOWITZ MAY 84
UNCLASSIFIED DAAK10-80-C-0183
CONTRACTOR REPORT ARLCD-CR-83047

MAGNETIC POWER SUPPLY ASSEMBLY OF M509A2E1 FUZE

M. MOSKOWITZ
BULOVA SYSTEMS & INSTRUMENTS CORP
VALLEY STREAM, NEW YORK

May 1984

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER
LARGE CALIBER WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed. Do not return to the originator.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>GOVT ACCESSION NO.</th>
<th>RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Report ARLCD-CR-83047</td>
<td></td>
<td>A91-2-816</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TITLE (and subtitle):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGNETIC POWER SUPPLY ASSEMBLY OF M509A2E1 FUZE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHOR(s):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mel Moskowitz, Bulova Systems & Instruments Corp</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERFORMING ORGANIZATION NAME AND ADDRESS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulova Systems & Instruments Corp</td>
<td>P.O. Box 189</td>
</tr>
<tr>
<td></td>
<td>Valley Stream, NY 11582</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTROLLING OFFICE NAME AND ADDRESS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ARDC, TSL</td>
<td>STINFO Div (DRSMC-TSS(D))</td>
</tr>
<tr>
<td></td>
<td>Dover, NJ 07801</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REPORT DATE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1984</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NUMBER OF PAGES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>186</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISTRIBUTION STATEMENT (of this Report):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
<td></td>
</tr>
</tbody>
</table>

KEY WORDS

- Encapsulation
- Magnetic power supply
- M94-process improvement
- Fuze
- VIPER fuze
- Setback generator
- Sonic welding
- Centrifugal timing
- Wave flow soldering
- Printed circuit board
- Test console
- Electrical test console
- M509A2E1 fuze
- Release mechanism
- Lead-forming system
- Computer controlled

ABSTRACT

The objective of this study was to develop the technology of manufacturing the M509A2E1 fuze used in the 105-mm heat round. In Phase I the detailed design of the assembly stations was completed and a functional layout of the line was established. In phase II the fabrication and procurement of the hardware necessary to set up the critical stations were investigated. It provided for installation and debugging of the equipment which displayed increased reliability and producibility of the setback generator, magnetic power supply assembly, and printed wiring board assembly.
SUMMARY

The efforts of Bulova Systems and Instruments Corporation (BSIC) involved in launching and successfully completing the manufacturing, methods, and technology (MM&T) program relating to the facilitization of the magnetic power supply assembly (MPSA) of the M509A2E1 PIBD Fuze are described in this report. The report reviews the tasks undertaken, problems encountered, and solutions which were developed. It shows that the assembly tooling, inspection, and test equipment met or surpassed, in almost every instance, the production rate of 63 units per hour (500 units per day in an 8-hour shift). The maintainability, reliability, and safety requirements were equally satisfied.

FOREWORD

Certain Bulova Systems and Instruments Corporation documents that are included in the Appendix were previously submitted to, and accepted by, ARRADCOM. To avoid possible confusion, those approved documents herein reproduced have not been revised in content or format. Only signatures have been deleted. Therefore, when referring to the test demonstration, any reference in these documents to "Phase A" or "Phase B" shall be understood to mean "Part A" and "Part B" respectively.

Certain documents in the Appendix are noted as a sample. The balance of the material is included in the Continuation volume of this report and is available on request.
TABLE OF CONTENTS

Summary

Foreword

Introduction 1

Setback Generator and Related Equipment 1

Generator Design 1

Related Equipment 3

Magnetic Power Supply Assembly 4

Table 1. Component Function 4

Special Semi-Automatic Computer-Controlled Test Equipment 6

Magnetic Power Supply Assembly Acceptance Test console 6

Centrifuge Arming Time Acceptance Test Console 6

Encapsulation of the Magnetic Power Supply Assembly 7

Delivered and Deliverable Hardware 8

Conclusions 8

Setback Generator 8

Solderability 8

Encapsulation 9

Testing 10

Summary 10

Expansion Recommendations 11

Distribution List 185
APPENDIXES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Sample data sheet: MPSA acceptance test console</td>
<td>13</td>
</tr>
<tr>
<td>B. Sample data sheet: Centrifuge arming time acceptance test console</td>
<td>17</td>
</tr>
<tr>
<td>C. Tool list: Manufacturing, assembly, inspection test equipment</td>
<td>21</td>
</tr>
<tr>
<td>D. Demonstration test report: Part A</td>
<td>27</td>
</tr>
<tr>
<td>E. Acceptance test procedure: Setback generator assembly</td>
<td>43</td>
</tr>
<tr>
<td>F. Magnetic charging procedure: Setback generator</td>
<td>51</td>
</tr>
<tr>
<td>G. Acceptance test procedure: Gauss charge verification</td>
<td>57</td>
</tr>
<tr>
<td>H. Traveler: Demonstration test plan, Part A</td>
<td>65</td>
</tr>
<tr>
<td>I. Sample data collection form: Part A</td>
<td>69</td>
</tr>
<tr>
<td>J. Demonstration test report: Part B</td>
<td>73</td>
</tr>
<tr>
<td>K. Acceptance test procedure: Molded housing assembly</td>
<td>87</td>
</tr>
<tr>
<td>L. Acceptance test procedure: Coil assembly</td>
<td>99</td>
</tr>
<tr>
<td>M. Acceptance test procedure: Arming time test</td>
<td>105</td>
</tr>
<tr>
<td>N. Traveler: Demonstration test plan, Part B</td>
<td>125</td>
</tr>
<tr>
<td>O. Sample data collection form: Part B</td>
<td>129</td>
</tr>
<tr>
<td>P. Demonstration test plan</td>
<td>133</td>
</tr>
<tr>
<td>Q. Sample assembly station layout</td>
<td>177</td>
</tr>
<tr>
<td>R. Sample inspection instruction card</td>
<td>181</td>
</tr>
</tbody>
</table>
INTRODUCTION

The program was divided into two phases. Each phase took approximately 18 months to complete. Phase I included the assembly, tooling, inspection, and test equipment for high volume production and improved producibility of the setback generator (10,000 per month) and the magnetic power supply assembly (MPSA) (printed wiring board assembly). It also included inspection and test of the MPSA and its encapsulation in the rotor housing.

Phase II of the program was concerned with:

1. Upgrading the setback generator to a plug-in type
2. Converting the MPSA to a thicker printed wiring board (PWB) and multiple array panel assembly
3. Upgrading the MPSA acceptance test console
4. Procuring a four-nest centrifuge and arming time test console
5. Upgrading of existing tooling, inspection, and test equipment
6. Completing all other remaining contractual requirements

SETBACK GENERATOR AND RELATED EQUIPMENT

Generator Design

The fundamental functioning of the fuze required that the setback generator (SG) provide electrical energy to a capacitor which would store it and, under proper conditions, reliably function the detonator. It was established that an output of 100 volts minimum into a 0.56 ufd capacitor load would fulfill all requirements. Several different designs were evaluated. The ARRADCOM configuration, with the addition of a shear disc, was selected for development. It was designated as the Mark I generator.

Assembly of prototype units revealed much difficulty in properly securing and bringing out lead wires through the terminals. Another problem area was in maintaining a satisfactory seal around the terminals to prevent the infiltration of potting into the SG. A matter of serious concern was that the jamming of the multipiece magnetic train could, and in certain units did, occur during setback.

Several designs were evaluated in the development phase. They included: a longer stroke, a different magnetic train, and an alternate coil winding. As predicted, higher voltages were obtained
using a longer stroke and also a single magnet. The one-piece magnet proved to be more reliable.

The SG was then completely redesigned to eliminate the aforementioned problems and to develop a component that was more easily produced and more reliable. This design was designated the Mark II generator. It included replacement of the existing magnet and two-core piece assembly with a longer single magnet of the same diameter. Tests indicated two benefits:

1. A generator output voltage higher than previously available was obtained.

2. A possible hang-up of the magnet/two core pieces on the inside of the generator coil assembly was overcome.

This new model required the design and fabrication of new manufacturing tooling such as a set of progressive dies for the armature body, a new bobbin mold, and a new mold for the plastic bottom cover. Because of the long lead time for the new tooling and parts, Mark II generators were not readily available for evaluation by ARRADCOM. A parallel testing program was pursued until May 1982 when ARRADCOM directed the sole use of the Mark II SG in the M509A2EI base detonating element.

Regarding the Mark II SG, testing indicated that the bobbin flanges had to be made thicker and the bosses seating the terminal posts be stronger. It also was necessary to change the coil wire size from 41 AWG to 38 AWG, to reduce the form factor of the coil winding, and also reduce the number of turns to lower the output voltage. Outputs in excess of 200 volts had been obtained causing concern that the 0.56 ufd capacitor would be overstressed.

As a result of laboratory testing it became evident that delrin would not provide a reliable seal against potting infiltration. When soldering the SG to the printed wiring board (PWB), the heat from the soldering iron tip on the terminal post produced local distortion of the plastic bottom cover and occasional loss of seal integrity.

To replace the delrin, an ultra high temperature plastic was found: Ultem 1000, an unfilled polyetherimide resin that had recently been marketed by General Electric Company. It was chosen over teflon for two reasons. It was a thermoplastic and could be formed in the existing mold. Secondly, its heat deflection temperature of 200°C was considered satisfactory for this application.

Further investigations were carried out to define several test parameters. It became evident that the use of a helium leak detector was unduly conservative and expensive. A vacuum leak test with air
proved sufficient to assure proper seal integrity. A lower value of magnetic leakage flux was also established. Recognizing that there were technical limitations in using leakage flux as a measure of magnetic charge, a minimum value of 95 gauss was selected.

The final improvement to the SG was accomplished by conversion to a plug-in generator (PIG). Longer terminal posts were provided to engage with mating receptacles on the PWB. It eliminated soldering of the posts to the PWB circuitry simplifying assembly of the MPSA.

Related Equipment

Analysis and evaluation showed that certain assembly processes used in the development program were not fully suitable for high volume production. The following examples show advances that have been made.

The original design for the setback generator, although functionally adequate, had some production shortcomings. An average time of 23 minutes was needed to wind the coil assembly. It took 17 of those 23 minutes to attach external leads to the coil's leads via a soldering process. In order to overcome this problem, and strengthen the bobbin, the coil assembly was redesigned. External leads were replaced by resistance welding the coil leads to pins installed in the bobbin. The resistance welding process also eliminated the need to clean up the flux residue left by the hand soldering process and further reduced the time to establish and test the coil connections to under one minute total.

BSIC recommends that, when additional funding becomes available, studies be made to eliminate the existing method of chemical stripping of the bobbin coil leads prior to welding. Among the possible alternatives are:

1. A new method of mechanically stripping the polyurethane insulation.

2. Replacing the present resistance welding with a different process such as ultrasonic welding or laser welding. (Note that laser welding might involve the use of another wire insulation.)

A Bulova owned coil winding machine was modified to accept the bobbin and to wind two coils at a time, rather than one at a time. The modified machine was thus able to produce bobbin assemblies at twice the rate compared to the older, less sophisticated winder.

A new type magnetic charger and special gaussmeter were purchased and modified by Bulova. Utilizing these in conjunction with additional special fixtures, as many as 30 setback generator assemblies could be magnetized and validated in a single charging cycle.
The various assembly stations (numbers one through eight) are described in the Demonstration Test Report, Part A. Additional details may be found by consulting that document.

MAGNETIC POWER SUPPLY ASSEMBLY (MPSA)

The printed wiring board (PWB) assembly known as the MPSA was basically a difficult task in packaging and in component selection. The functional components included in this section are described in Table 1 below.

Table 1. Component function

<table>
<thead>
<tr>
<th>Component designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor, R1</td>
<td>It provides a charging path for the stray capacitance in the wiring and in both normally open switches (the crush switch, S1, and the impact switch, S4). This would prevent functioning of the detonator, F1, at the 90° contact position causing an unnecessary dud.</td>
</tr>
<tr>
<td>Resistor, R2</td>
<td>To slowly bleed any accumulated charge from capacitor C1, maintaining safety during storage and handling.</td>
</tr>
<tr>
<td>Impact switch, S4</td>
<td>When closed on graze impact, it provides a discharge path allowing the capacitor to fire the detonator, F1.</td>
</tr>
<tr>
<td>Diode, D1</td>
<td>To prevent discharge of capacitor, C1, through the SG.</td>
</tr>
<tr>
<td>Capacitor, C1</td>
<td>To store the energy produced by the SG.</td>
</tr>
</tbody>
</table>

The PWB of the MPSA was originally designed as a round single-sided circuitry board 1.187 in. O.D. X 0.03 in. thick. With the passage of time and many tests of the base detonating element (BDE), component locations were changed as well as horizontal/vertical installation on the PWB.

In the fall of 1982, the PWB of the MPSA was redesigned to provide a two-sided board with plated through holes, the same O.D., the thickness increased by 50% to 0.048 in., and with revised

1 Included in this report as Appendix D.
component locations. This new design of the individual PWB was further improved for high volume production by ordering them in a panel configuration (approximately 5.8 in. long X 2.8 in. wide) array of two rows of four each. The individual PWB would also be screened (component configuration) and pre-punched with a die.

The PWB assemblies supplied in the panel configuration described above were mounted in holding fixtures. All components and parts required were installed (after "preforming") on a group basis taking advantage of a learning curve as compared to assembling one MPSA completely at a time. All masking, dressing, and the like was accomplished on eight boards at a time.

In the fall of 1980, a component lead forming system was purchased from Heller Industries. This system consisted of one Heller axial component lead former, model H-116, with different feed options, and two custom die sets. Also procured was one radial lead component former, model RD-70C, and one custom die set. The custom dies for both machines were predicated on the existing MPSA configuration at that time. The axial component lead forming machine setup accepts components supplied in a tape and reel configuration. It can produce up to 18,000 formed components per hour under optimum conditions. The radial component forming machine can produce up to 1,500 formed components per hour under optimum conditions.

These component lead forming machines are used to preform all the axial and radial lead components required for the MPSA. This permits full utilization of the high volume assembly technique of "group stuffing" with the PWB supplied in the "8-up" panel array.

In May, 1983, BSIC purchased from Hollis Engineering a wave soldering system model TDL with an adjustable 10-inch-wide finger conveyor and other options and accessories. Also procured was a Hollis ultra-clean vapor degreaser with certain options and accessories for cleaning the wave soldered MPSA. The hourly production rate of the wave soldering system under optimum conditions with the current panel configuration of two rows of four PWB's is approximately 425 panels (3400 PWB's) per hour. It will yield up to about 20,000 MPSA's in any 8-hour shift. The panels could easily be increased in size by a factor of eight. Then eight times as many MPSA's per hour could be processed with this system. In the case of the ultra-clean vapor degreaser for cleaning the wave soldered PWB,

2 The vendor refers to this pre-punching process as "return to web".

3 This was a PWB with a 1.187 in. O.D., 0.03 in. thickness, single-sided circuitry. The component leads were clinched over and hand soldered.
the hourly production rate under optimum conditions is up to approximately 1,000 MPSA's per hour. A new "in-line" type cleaner with greater capacity would be required should the need arise to have more than 8,000 MPSA's cleaned in a given 8-hour shift.

SPECIAL SEMI-AUTOMATIC COMPUTER-CONTROLLED TEST EQUIPMENT

Magnetic Power Supply Assembly Acceptance Test Console

During Phase I of the MM&T program, a semi-automatic acceptance test console was developed. It tested the assembled MPSA as installed in a rotor housing assembly before and after encapsulation. A total of 10 different tests were sequenced and their data displayed on a digital voltmeter. The data was then evaluated by comparison with a table of values reflecting the required accept/reject limits. Results were then manually recorded on a data sheet. This acceptance test console thus required an operator of technician caliber rather than inspector caliber. The hourly production rate for this version of the acceptance test console under optimum conditions was 15 assemblies per hour.

In Phase II of the program, this MPSA acceptance test console was upgraded by using a computerized control center with a printout for each of the 10 tests. This printout includes upper and lower limits, the test measurement, an evaluation of the data, and an accept or reject decision for each unit tested. Furthermore, a new dual nest with additional associated electronics was added to obtain more efficient utilization of the tester. While one unit is under test and the printer processing the data, the previously tested unit can be removed and replaced with a new unit to be tested. The current hourly production rate with a paper tape printout is 42 units per hour.

Centrifuge Arming Time Acceptance Test Console

A new centrifuge arming time tester was made for Phase II of the MM&T program. It incorporated many improvements over other existing equipment. The GFE centrifuge was fitted with four nests to support the sequential testing of four M509A2E1 PIBD fuzes. The centrifuge was wired with the necessary electronics to interface with the new acceptance test console. The new acceptance test console is computer controlled with computer evaluation of the data on a printout (same model computer as in the MPSA acceptance test console).

The new arming time test console contains a storage oscilloscope with provisions for playback of data from previously tested or current units. Its design also permits manual or automatic sequence

4 Test cycle time: 1 minute; printout time: 29 seconds; load and unload time for each nest of fixture: 6 to 10 seconds.
testing of units. The arming time test system can easily be adapted for many different fuze types and variations by reprogramming the computer and providing new test probe interfacing. The hourly production rate of this acceptance test console operated under optimum conditions is 40 units per hour.

ENCAPSULATION OF THE MAGNETIC POWER SUPPLY ASSEMBLY

Encapsulation method and materials used in the MM&T Part B demonstration was the result of many investigations and studies conducted during the M509A2E1 product improvement program (PIP) and the MM&T program. Among the parameters evaluated were:

1. Encapsulation materials
2. Curing temperatures
3. Loading pressures
4. Delivery techniques
5. Size and location of filler holes, vent holes, and tubing

A more definitive treatment of this evaluation is included in the Final Technical Report of the Product Improvement Program for the M509A2E1 PIBD Fuze.

The method selected to be used for demonstration fulfilled the technical and functional requirements of protecting the MPSA during setback. The process required conformally coating the diode, Dl, and capacitor, C1, prior to installing the MPSA in the rotor housing. The material used was a Dow Corning silicone resin 1-2577 with 176 catalyst conforming to MIL-I-46058. It also required several prepotting steps: sealing the 90° contact assembly to the rotor housing; sealing the port of the rotor housing and the S2 switch housing at their juncture; and sealing the hollow plastic screw to the rotor housing at their juncture.

These steps must be completed at least 18 hours prior to final potting. The potting material used was Hysol RE 2039 resin and HD 3561 catalyst. It was allowed to air cure for 24 hours before handling. Although the current method provided good units, the production rate was considered too low.

5 This document, BSIC number 316-171 was previously submitted to ARRADCOM, Dover as CDRL Item A029 under Contract DAAK10-79-C-0331. See BSIC letter CA-AGS-2400, Att:DRDAR-LCN-T, dated 27 June, 1983.
DELIVERED AND DELIVERABLE HARDWARE

As part of the Part B demonstration, 50 base detonating elements were manufactured in an air gun configuration. These units had the following features:

1. Inert heat indicator
2. Gold plated contacts on the heat indicator assy
3. Disabled drag (flush drag weight pin)
4. 0.047 in. thick PWB
5. Condition "B" leaf pins
6. Rotor shaft tang removed
7. Bleed resistor, R2, omitted (680 megohms)
8. Trembler switch, S4, omitted

For details relating to other deliverable parts and assemblies fabricated and tested in stations 9 through 23, refer to the Demonstration Test Report, Part B.

CONCLUSION

Setback Generator

Future studies should be made to replace or eliminate the existing method of chemically stripping the wire leads of the bobbin coil assembly (setback generator) prior to welding. Possible alternatives are:

1. A new non-destructive method of mechanically stripping the polyurethane insulation.

2. Ultrasonic welding or laser welding as a suitable replacement for the present resistance welding process. (Note that this alternate process might involve the substitution of a different type of wire insulation).

Solderability

A review of the PWB of the MPSA for improved solderability using the wave soldering process and the state of the art assembly techniques suggests the following:

6 Included in this report in Appendix J.
1. Reduce the plated through hole diameters to improve capillary action.

2. Increase the thickness of the PWB to 0.062 in.

3. Improve the component layout so that diode, D1, can be mounted horizontally and flush against the PWB.

4. Reduce the mounting hole diameter for the four pin jacks to obtain a press fit condition. This will ensure they remain in place during soldering.

A review of the switch assembly, S2, suggests the following to alleviate certain assembly problems which became evident when using the wave soldering process at assembly:

1. Terminal Switch. This is the tinned brass termination on the end of the movable S2 contact installed in the PWB. Even though the equivalent of the type currently used for the XM763 fuze was employed for the MM&T demonstration MPSA, it is too massive and should be reduced—in geometry and dimension. Installation in the MPSA should be a light press fit rather than by staking.

2. Contact Wire. This is the "L" shaped gold plated brass contact. It should be reduced in cross-section to about half its present size of improve solderability.

3. Switch Housing, S2. This exhibited a tendency to lift-off from the PWB surface (component side).

It was noted that during wave soldering, a temperature of approximately 500°F was experienced. An investigation should be pursued to determine if a design change (geometric—dimension) or new material would provide the solution. Modification of the existing mold or a new mold may be required.

Encapsulation

The current encapsulation process consists of two parts:

1. Prepotting; rate: 5 units per hour
 Juncture of S2 switch housing and rotor housing
 Juncture of hollow plastic screw and rotor housing
 Juncture of 90° contact and rotor housing
 Three hours cure at 60°C

2. Final encapsulation of MPSA; rate: 20 units per hour
In order to improve the hourly production rate for the prepotting operations, it is recommended the S2 switch housing, the hollow plastic screw, the 90° contact assembly, and the rotor housing be redesigned. It is also recommended that replication of this station be accomplished.

In order to improve the hourly production rate for the final encapsulation, an automatic mixing and dispensing machine should be procured. It should be designed with sufficient daughter stations to meet the required rate.

Testing

The hourly test rate of approximately 40 MPSA's at the dual nest MPSA semi-automatic acceptance test console could be improved. Currently averaging about 1.5 minutes per unit, it could be easily reduced to 1.0 minute per unit by changing the computer print out. The details of each of the 10 tests could be eliminated and replaced by a simple accept/reject. Considering recent advances in computer and electronic technology, it is also possible to design and fabricate an additional test console to insure a minimum hourly test rate of 63 units (molded housing assembly level).

The hourly test rate of approximately 40 housing and mechanism assemblies on the centrifuge arming time acceptance test console could be improved as follows:

1. Reduce the data sampled per unit from 4,000 to 2,000 points.

2. Add an additional data line and slip ring to handle sampling (and evaluation) of two units simultaneously.

3. Modify the computer program as required.

It would then be possible to upgrade the hourly test rate to almost double its present level. But until an arming time acceptance test console attains a level of approximately 65 units per hour, a replication of the current type would insure the goal of 500 units per 8-hour-shift day.

Summary

An analysis of the data from the MM&T demonstration Parts A and B indicates the following:

1. Eliminate, or replace with an alternate method, the current insulation stripping method for the Mark II SG coil assembly (prior to welding). It will provide an assembly line production rate which will equal or exceed in all operations the program goal of 10,000 per month (500 per day) with one 8-hour shift.
2. The hourly production rates of the assembly tooling and inspection/test equipment demonstrated in Part B was satisfactory for the program goal of 10,000 units per month (500 per day) with one 8-hour shift except for the operations and equipment listed below. These will require appropriate replication to meet the hourly rate of 63 per hour.

- Installation of the S2 contact on the PWB
- Installation of electronic components on the PWB
- Preliminary and final encapsulation of the MPSA
- MPSA acceptance test console station
- Centrifuge arming time acceptance test console

EXPANSION RECOMMENDATIONS

Under the provisions of the contract, this project provided the tools, equipment, and techniques needed to manufacture the M509A2E1 fuze. Presently, there are no projected requirements for the M509A2E1 fuze. There are, however, requirements for the XM763 and XM764 fuzes, both of which bear significant similarities with the M509A2E1 fuze.

It is therefore recommended that this equipment be modified so that it can accommodate the XM763 and XM764 fuzes. This modifying action, if properly executed, can be performed with the funding still remaining in the project.
APPENDIX A
SAMPLE DATA SHEET
FOR
MAGNETIC POWER SUPPLY ASSEMBLY
ACCEPTANCE TEST CONSOLE
Note: This is a sample sheet. Results of units EM 1001 through EM 1182 are available on request.
APPENDIX B
SAMPLE DATA SHEET
FOR
CENTRIFUGE ARMING TIME
ACCEPTANCE TEST CONSOLE
PROJECT 330 DATE 9/22/83
CENTRIFUGE ARMING TIME
ACCEPTANCE TEST
DATA SHEET
S/N EM 1001 thru 1003 LOT# 1
ASSY# KE 98353 -2
Rev. A

REMARKS

M509A2E1 Detonator Lot No. 441-2
M509A2E1 Detonator Installed By:
Sig: _______ Date: _______

Ball Staked By:
Sig: _______ Date: _______

Arm Time Tested By:
Sig: _______ Date: _______

Reset To 'Safe' By:
Sig: _______ Date: _______

X-Rays To Verify Safe By: N/A
Sig: _______ Date: _______

Note: This is a sample sheet. Results of units EM 1004 through EM 1162 are available on request.
APPENDIX C
TOOL LIST
OF
MANUFACTURING, ASSEMBLY, AND INSPECTION
TEST EQUIPMENT
<table>
<thead>
<tr>
<th>ASSY STA NO.</th>
<th>TOOL NUMBER</th>
<th>TOOL DESCRIPTION</th>
<th>SET-UP DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>273-19006</td>
<td>Air Press W/Sl'd'g Anvil Fixt.</td>
<td>Install (2) Terminal in Bobbin</td>
</tr>
<tr>
<td>1</td>
<td>273-60009</td>
<td>Pin Pull Out Tester</td>
<td>Pull Test (2) Terminals Installed in Bobbin</td>
</tr>
<tr>
<td>2</td>
<td>BW-157349</td>
<td>Modified Bulova Production Type Coil Winding Machine & Wire Tensioning Devices</td>
<td>Wind Coil Assembly of Setback Generator Assy Control Wire Feed to Winding Machine</td>
</tr>
<tr>
<td>2</td>
<td>273-19002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>273-19003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>273-19008</td>
<td>Tray Peg Board</td>
<td>Storage Tray for Coil Assy</td>
</tr>
<tr>
<td>2</td>
<td>273-19007</td>
<td>Holding Fixture</td>
<td>Support and Rotate Coil Assy During Application of Tape</td>
</tr>
<tr>
<td>3</td>
<td>BW-158862</td>
<td>Bulova-Resistance Welding Machine</td>
<td>Power Pack, Remote Control and Welding Head</td>
</tr>
<tr>
<td>3</td>
<td>273-19010</td>
<td>Modified Electrodes</td>
<td>Special Welding Electrodes</td>
</tr>
<tr>
<td>3</td>
<td>273-19011</td>
<td>Welding Fixture Indexing -2 Positions</td>
<td>Fixture to Position Assy for Welding</td>
</tr>
<tr>
<td>3</td>
<td>273-60007</td>
<td>Weld Test Fixture</td>
<td>To Measure Weld Strength</td>
</tr>
<tr>
<td>3</td>
<td>273-60004</td>
<td>Continuity Tester</td>
<td>V.O.M. and Interface Fxt.</td>
</tr>
<tr>
<td>3</td>
<td>273-60010</td>
<td>Polarization Tester</td>
<td>Validates Direction of Coil Winding & Start Lead of Winding</td>
</tr>
<tr>
<td>4</td>
<td>273-19013</td>
<td>Air Cylr. and Press-In Fxt.</td>
<td>Press Fit Armature Plate into Armature Body</td>
</tr>
<tr>
<td>4</td>
<td>273-19014</td>
<td>Tray, Storage</td>
<td>For Armature Sub Assy</td>
</tr>
<tr>
<td>5</td>
<td>273-19015</td>
<td>Air Cylr and Press-In Fxt.</td>
<td>Press Fit Shearing Plt. into Generator Cover</td>
</tr>
<tr>
<td>6</td>
<td>273-19016</td>
<td>Air Cylr and Press-In Fxt.</td>
<td>Press Fit Cover Sub Assy into Arm. Sub Assy</td>
</tr>
<tr>
<td>6</td>
<td>273-19017</td>
<td>Air Press and Tooling</td>
<td>Swage Body of Armature 360° Around Cover Sub-Assy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSY STA NO.</td>
<td>TOOL NUMBER</td>
<td>TOOL DESCRIPTION</td>
<td>SET-UP DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>8</td>
<td>273-60002</td>
<td>Final Assy Tester</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>273-60003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>273-60008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>273-19001</td>
<td>Magnetic Charger Charging Fxt. and Charging Tray</td>
<td>Charge Magnetic of Setback Generator Ass'y</td>
</tr>
<tr>
<td>8</td>
<td>273-60001</td>
<td>Gaussmeter and Holding Fixture W/Probe Built In</td>
<td>Measures Leakage Flux of Magnetically Charged Generator Ass'y</td>
</tr>
<tr>
<td>9</td>
<td>273-19009</td>
<td>Crimping Tool-"Automator"</td>
<td>Crimp Contact Wire in Switch Terminal</td>
</tr>
<tr>
<td>9</td>
<td>273-19018</td>
<td>Tray Storage</td>
<td>Storage Tray</td>
</tr>
<tr>
<td>11</td>
<td>273-19019</td>
<td>Press-In Fixture W/Horizontal Slide Lever</td>
<td>Press-In (1) S2 Switch Contact in S2 Housing</td>
</tr>
<tr>
<td>10</td>
<td>273-19020</td>
<td>Staking Tool Automator</td>
<td>Stake Movable S2 Switch Contact to P. C. Board</td>
</tr>
<tr>
<td>10</td>
<td>273-19022</td>
<td>Press-In Fixture "Potence"</td>
<td>Press-In Connector Jack to P. C. Board</td>
</tr>
<tr>
<td>12A</td>
<td>273-19004</td>
<td>Axial Lead Component Forming System</td>
<td>Heller Leadmaster H-116A and Custom Dies. Forming Component Leads of R1, R2, D1 and S4</td>
</tr>
<tr>
<td>12B</td>
<td>273-19005</td>
<td>Radial Lead Component Forming System</td>
<td>Heller Radial Component Former RD-70C and Custom Die For Capacitor Cl</td>
</tr>
<tr>
<td>13</td>
<td>331-19005</td>
<td>Assembly Holding Fixture</td>
<td>Holder P. C. Board Carrier during Assy</td>
</tr>
<tr>
<td>14</td>
<td>331-19006</td>
<td>Assembly Fixture P. C. Board Carrier</td>
<td>Fixture to Hold P. C. Board Carrier while Applying Spot Mask & Dress Leads</td>
</tr>
</tbody>
</table>

* Sheeted of
<table>
<thead>
<tr>
<th>ASSY STA NO.</th>
<th>TOOL NUMBER</th>
<th>TOOL DESCRIPTION</th>
<th>SET-UP DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>331-19002</td>
<td>P.C. Board Cleaning Machine</td>
<td>Hollis Ultra-Clean Cleans P.C. Board Carriers after Soldering</td>
</tr>
<tr>
<td>15</td>
<td>331-19007</td>
<td>Slide-Wavesoldering Machine</td>
<td>Soldered P.C. Carrier Slide From Soldering Machine Output End to Work Table</td>
</tr>
<tr>
<td>15</td>
<td>331-19008</td>
<td>Storage Container - Stiffeners</td>
<td>Storage container for P.C. Carrier Stiffeners</td>
</tr>
<tr>
<td>15</td>
<td>331-19009</td>
<td>P.C. Board Removal Tool</td>
<td>Remove Individual P.C. Boards from P.C. Board Carriers</td>
</tr>
<tr>
<td>15</td>
<td>331-19010</td>
<td>Soldering Fixture for S2 Switch</td>
<td>Fixture for Hand Soldering S2 Switch Assy</td>
</tr>
<tr>
<td>15</td>
<td>331-19011</td>
<td>Alignment Fixt. for S4 Impact Switch</td>
<td>Perpendicularity Alignment Fixt. for S4 Impact Switch</td>
</tr>
<tr>
<td>15</td>
<td>331-19012</td>
<td>Modified Cleaning Machine P.C. Board Basket</td>
<td>Modified Cleaning Machine Basket to Hold P.C. Board Carriers during Cleaning Operation</td>
</tr>
<tr>
<td>15</td>
<td>273-19021</td>
<td>Tray Storage</td>
<td>Storage Tray for Individual P.C. Board Assemblies</td>
</tr>
<tr>
<td>16</td>
<td>273-19027</td>
<td>Staking Tool "Automator"</td>
<td>Stake GND Wire in Rotor Housing Assy</td>
</tr>
<tr>
<td>17</td>
<td>273-19028</td>
<td>Staking Tool Air Press</td>
<td>Stake P.C. Board (M.P.S.) in Housing Assy</td>
</tr>
<tr>
<td>18</td>
<td>273-19030</td>
<td>Press-In Fixture Probe Grommets 25</td>
<td>Install (4) Grommets in Power Supply Cover</td>
</tr>
<tr>
<td>18</td>
<td>273-19031</td>
<td>Press-In Fixture Shell Receptacle</td>
<td>Installed Shell Receptacle in Power Supply Cover</td>
</tr>
</tbody>
</table>
IDENTIFICATION OF EQUIPMENT REQUIRED AND DESCRIPTION OF SET-UP

<table>
<thead>
<tr>
<th>ASSY STA NO.</th>
<th>TOOL NUMBER</th>
<th>TOOL DESCRIPTION</th>
<th>SET-UP DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>273-19032</td>
<td>Swaging Tool</td>
<td>Swage P. S. Cover to Rotor Housing</td>
</tr>
<tr>
<td></td>
<td>273-19034</td>
<td>Tray-Storage</td>
<td>Storage Tray</td>
</tr>
<tr>
<td>20</td>
<td>331-19013</td>
<td>Encapsulation Holding Fixture for Rotor Housing</td>
<td>Holding Fixture for Rotor Housing during Encapsulation of Magnetic Power Supply</td>
</tr>
<tr>
<td></td>
<td>331-19001</td>
<td>Encapsulant Dispensing Device</td>
<td>Dispenses predetermined qty of Encapsulating Material Repeatedly</td>
</tr>
<tr>
<td>21</td>
<td>273-60005-002</td>
<td>Acceptance Test Console - Magnetic Power Supply Assy</td>
<td>Electrical Check Out of Magnetic Power Supply Assembly after Encapsulation Computer Evaluated W/Print Out</td>
</tr>
<tr>
<td></td>
<td>273-19035</td>
<td>Radial Riveting Machine and Fixture</td>
<td>Install (2) Leaf Pins in Rear Bearing Bridge Plate Assembly</td>
</tr>
<tr>
<td></td>
<td>273-19036</td>
<td>Acceptance Test Console Arming Time Test</td>
<td>Arming Time Test: Computer Evaluated W/Print Out - Housing and Mechanism Assy.</td>
</tr>
<tr>
<td>22</td>
<td>331-60001</td>
<td>MOLDS</td>
<td>Next Higher Assy Bobbin Assy KC90825/KC90207</td>
</tr>
<tr>
<td></td>
<td>273-90001</td>
<td>Bobbin-KD90204</td>
<td>Next Higher Assy Setback Generator Assembly KD90830/KD90200</td>
</tr>
<tr>
<td></td>
<td>273-90002</td>
<td>Cover, Generator (Bottom)KD90198</td>
<td>Same as 273-50003</td>
</tr>
<tr>
<td>23</td>
<td>273-50003</td>
<td>Progressive Armature Body KC90203</td>
<td>Same as 273-50003</td>
</tr>
<tr>
<td></td>
<td>273-50004</td>
<td>Bumping Die KC90203</td>
<td>Same as 273-50003</td>
</tr>
<tr>
<td></td>
<td>273-70001</td>
<td>Projection Chart KC90205</td>
<td>Used for Inspection of Shear Disc.</td>
</tr>
</tbody>
</table>

Freeport

- 273-90001: Bobbin-KD90204
- 273-90002: Cover, Generator (Bottom)KD90198
- 273-50003: Progressive Armature Body KC90203
- 273-50004: Bumping Die KC90203
- 273-70001: Projection Chart KC90205
TO: UNITED STATES ARMY ARMAMENT R & D COMMAND

DOCUMENT NO. 330-043-1
DATE 29 SEPTEMBER 1983
PROGRAM M509A2E1 M.M. & T.
PURCHASE ORDER
PRIME CONTRACT DAAK10-80-C-0183

SUBJECT DEMONSTRATION TEST REPORT PHASE A FACILITIZATION OF THE MAGNETIC POWER SUPPLY ASSEMBLY OF THE M509A2E1 PIBD FUZE

P/O CDRL ITEM: A014

PREPARED BY: Irwin Probielak Reliability Engineer

APPROVED BY: A. Koul Quality Control Manager

APPROVED BY: S. B. Schulman Mgr. Special Devices Dept.

APPROVED BY: M. Moskowitz Project Engineer

APPROVED BY: B. Garfinkel Director of Quality

29
<table>
<thead>
<tr>
<th>SECTION</th>
<th>SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 SCOPE</td>
<td>4</td>
</tr>
<tr>
<td>2.0 GENERAL</td>
<td>4</td>
</tr>
<tr>
<td>3.0 APPLICABLE DOCUMENTS</td>
<td>5</td>
</tr>
<tr>
<td>4.0 SUMMARY</td>
<td>5</td>
</tr>
<tr>
<td>4.1 DESCRIPTION OF SAMPLES</td>
<td>6</td>
</tr>
<tr>
<td>4.2 DISPOSITION OF TEST SPECIMENS</td>
<td>6</td>
</tr>
<tr>
<td>4.3 CONCLUSIONS AND RECOMMENDATIONS</td>
<td>6</td>
</tr>
<tr>
<td>4.4 DATA SUMMARY</td>
<td>7</td>
</tr>
<tr>
<td>4.5 DESCRIPTION OF EQUIPMENT</td>
<td>11</td>
</tr>
<tr>
<td>4.6 TEST PROCEDURES</td>
<td>11</td>
</tr>
<tr>
<td>4.7 DATA SHEET</td>
<td>11</td>
</tr>
<tr>
<td>5.0 APPENDIX</td>
<td>12</td>
</tr>
</tbody>
</table>
1.0 **SCOPE**

1.1 This document is the Bulova Systems and Instruments Corporation (BSIC) Demonstration Test Report, CDRL Item A014, prepared for the M.M. & T. Program of the M509A2E1 base detonating element in accordance with the requirements of Contract DAAK10-80-C-0183. This report meets the requirements of Data Item DI-T-1906.

2.0 **GENERAL**

2.1 The test demonstration (Phase - A) was performed to verify the capability of the fixtures and test equipment to manufacture set-back generators for the M509A2E1 base element.

2.2 The Phase A test was demonstrated during June 20th through the 22nd. Personnel in attendance included:

BSIC
- M. Moskowitz - Proj. Eng.
- R. Noble - Proj. Engineer
- T. Hargarther - Ind. Eng.

ARRADCOM
- R. Noble - Proj. Engineer
- R. Pitman - Proj. Engineer

* Numerous Insp. Personnel

2.3 The test sample was built and tested in accordance with BSIC Demonstration Test Plan, CDRL Item A013. The sample quantity processed was two lots of (130) units each, for a total of (260) units. BSIC stations 1 through 8 were used for Phase A of the demonstration plan.
3.0 APPLICABLE DOCUMENTS

3.1 THE FOLLOWING DOCUMENTS FORM A PART OF THIS SPECIFICATION.

BSIC

- 330-017 DEMONSTRATION TEST PLAN
- 330-028 S.B.G. ACCEPTANCE TEST PROCEDURE
- 330-029 S.B.G. CHARGE PROCEDURE
- 330-030 S.B.G. MAGNETIC LEAKAGE
- 330-037 CONTINUITY TEST PROCEDURE
- 330-036 WIRE WINDING PROCEDURE
- 330-039 PROCESS SPECIFICATION/WELDING TERMINALS
- S.B.GEN DATA SHEETS
- S.B.GEN TRAVELLER

4.0 SUMMARY

THE DEMONSTRATION TEST VERIFIED THAT THESE FIXTURES AND EQUIPMENT ARE CAPABLE OF MANUFACTURING SET-BACK GENERATORS TO THE LATEST REVISION OF THE M509A2E1 DRAWINGS.

THE TEST ALSO DEMONSTRATED THAT NOT ONLY ARE THE FIXTURES CAPABLE OF MANUFACTURING S.B. GENERATORS WHICH MEET BSIC SPECIFICATIONS, BUT ARE ALSO CAPABLE WITH ONE PROCESS CHANGE OF MEETING THE MANUFACTURING RATE OF 10,000 UNITS PER MONTH, SPECIFIED IN THE STATEMENT-OF-WORK AND CONTRACT DAAK-10-80-C-0183.
4.1 DESCRIPTION OF SAMPLES
THE DEMONSTRATION SAMPLES WERE MANUFACTURED ON THE PRODUCTION TOOLING AND EQUIPMENT DEVELOPED FOR THE M509A2E1 M.M.&T. PROGRAM.

4.2 DISPOSITION OF TEST SPECIMENS

4.3 CONCLUSIONS AND RECOMMENDATIONS
THE EQUIPMENT AND TOOLING DESIGNED FOR THE M509A2E1 B.D.E. PRODUCED (260) SET-BACK GENERATORS WHICH MET ALL REQUIRED PARAMETERS.

THE DESIGN OF THE EQUIPMENT FOR THIS CONTRACT REQUIRED THAT THE EQUIPMENT BE CAPABLE OF PRODUCING A MINIMUM OF 10,000 UNITS PER MONTH OR 63 UNITS PER HOUR. ALTHOUGH THE DESIGN OF THE FIXTURES AND TEST EQUIPMENT PRODUCED HIGH QUALITY UNITS (ONLY 5 REJECTS OUT OF 265 UNITS BUILT FOR A REJECT RATE OF 1.8%), THERE WAS ONLY ONE MANUFACTURING OPERATION (WIRE STRIPPING OF COIL ASSEMBLIES) WHICH WAS SLOWER THAN ALL OF THE OTHER OPERATIONS BASED ON THE RUNNING TIME DATA SHEETS. THE AVERAGE STRIPPING RATE WAS DETERMINED TO BE 60 UNITS...
PER HOUR. THIS OPERATION PROVED TO BE THE WORST CASE LIMIT OPERATION.

OUR RECOMMENDATIONS, THEREFORE, ARE TO REVISE THE WELDING METHOD USED TO WELD THE COIL ASSEMBLY TERMINALS. WE RECOMMEND THAT THE WELDING TECHNIQUE BE REVISED TO A METHOD WHICH CAN WELD THROUGH THE WIRE VARNISH INSULATION, THEREBY DELETING THE REQUIREMENT TO STRIP THE INSULATION FROM THE ENDS OF THE COIL ASSEMBLY.

IF THIS PROCEDURE IS REVISED AS RECOMMENDED, THE OUTPUT RATE WILL BE MORE THAN REQUIRED TO MEET THE 10,000 UNITS PER MONTH RATE.

4.4 DATA SUMMARY

THE TRAVELER AND DATA SHEETS HAVE BEEN ANALYZED. THE ANALYSIS INDICATES THAT THE PRESENT OUTPUT QUALITY LEVEL OF THE DEMONSTRATION UNITS PRODUCED ON THE M.M. & T. FIXTURES AND EQUIPMENT IS ADEQUATE FOR HIGH VOLUME MANUFACTURE DURING THIS PHASE OF THE PROGRAM. TABLE-1 AND TABLE-2 ENCLOSED HEREAFTER SUMMARIZE THE DATA IN GRAPHICAL FORMAT FOR EASE OF READING. THE ACTUAL DATA IS ATTACHED AND MAY BE FOUND IN APPENDIX.
4.5 DESCRIPTION OF EQUIPMENT
A list and description of all equipment used to manufacture and test set-back generators for the M509A2E1 base detonating element is available to the reader.

The data can be found in the appendix of this document.

4.6 TEST PROCEDURES
The following is a list of the applicable test procedures, which have been enclosed in this appendix. The procedures have been enclosed for informational purposes.

330-028
330-029
330-030

4.7 DATA SHEETS
A copy of each data sheet used for recording the rate per hour of manufacture for each operation has been enclosed in the appendix.

The appendix also contains a copy of the traveller indicating the status of the (units) set-back generators all through manufacture.
<table>
<thead>
<tr>
<th>% DEFECTIVE</th>
<th>QC</th>
<th>LOT QTY START</th>
<th>DESCRIPTION</th>
<th>STATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0</td>
<td>480</td>
<td>INSTALL (2) TERM IN BOBBIN</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>480</td>
<td>WIND COIL ASSY</td>
<td>2A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2G5</td>
<td>TAPE TO COIL</td>
<td>2B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2G6</td>
<td>STRIP COIL LEADS</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2G5</td>
<td>ASSEM PLATE TO DISC</td>
<td>4C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2G5</td>
<td>ASSEM ARM TO COIL & MAGNET COVER</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2G6</td>
<td>ASSEM SHEAR SWAGE COVER GAUSS</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2G6</td>
<td>MEAS ELECT PARAM</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2G6</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

TABLE - 2

QUALITY - PERCENTAGE DEFECTS BY OPERATION
LIST AND DESCRIPTION OF EACH STATION

<table>
<thead>
<tr>
<th>STA</th>
<th>TOOL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>273-19006</td>
<td>AIR-PRESS W/SLIDING ANVIL FIXT. FOR INSTALLING TERMINALS INTO BOBBIN</td>
</tr>
<tr>
<td>1</td>
<td>273-60009</td>
<td>PIN-PULL TESTER: TESTS TERMINAL STRENGTH IN BOBBIN</td>
</tr>
<tr>
<td>2</td>
<td>273-19002</td>
<td>COIL WINDING MACHINE, CUSTOMIZED, INCLUDING WIRE TENSIONING DEVICE</td>
</tr>
<tr>
<td></td>
<td>273-19003</td>
<td>TO CONTROL WIRE FEED FOR MANUFACTURE OF SETBACK</td>
</tr>
<tr>
<td></td>
<td>BW-157349</td>
<td>GENERATOR COILS</td>
</tr>
<tr>
<td>2</td>
<td>273-19008</td>
<td>STORAGE TRAY, PEG BOARD FOR COIL ASSEMBLIES</td>
</tr>
<tr>
<td>2</td>
<td>273-19007</td>
<td>HOLDING FIXTURE TO SUPPORT AND ROTATE COIL ASSY DURING TAPE APPLICATION</td>
</tr>
<tr>
<td>3</td>
<td>BW-158862</td>
<td>WELDING MACHINE, FOR WELDING SETBACK GENERATOR COIL WIRES TO TERMINALS</td>
</tr>
<tr>
<td>3</td>
<td>273-19010</td>
<td>SPECIAL WELDING ELECTRODES</td>
</tr>
<tr>
<td>3</td>
<td>273-19011</td>
<td>SPECIAL WELDING FIXTURE WITH ELECTRODES TO POSITION SETBACK GENERATOR FOR WELDING</td>
</tr>
<tr>
<td>3</td>
<td>273-60007</td>
<td>WELD TEST FIXTURE USED TO MEASURE WELD STRENGTH</td>
</tr>
<tr>
<td>3</td>
<td>273-60004</td>
<td>A CONTINUITY TESTER TO MEASURE COIL RESISTANCE</td>
</tr>
<tr>
<td>3</td>
<td>273-60010</td>
<td>A POLARIZATION TESTER USED TO ESTABLISH COIL DIRECTION AND START LEAD OF SETBACK GENERATOR</td>
</tr>
<tr>
<td>4</td>
<td>273-19013</td>
<td>AIR CYLINDER & PRESS IN FIXTURE - FOR PRESS FIT ARMATURE PLATE INTO ARMATURE BODY</td>
</tr>
<tr>
<td>4</td>
<td>273-19014</td>
<td>STORAGE TRAY FOR ARMATURE SUB. ASSEMBLY</td>
</tr>
<tr>
<td>5</td>
<td>273-19015</td>
<td>AIR CYLINDER AND PRESS IN FIXTURE FOR PRESSING SHEAR DISC INTO GENERATOR COVER</td>
</tr>
<tr>
<td>STA NUMBER</td>
<td>TOOL NUMBER</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6</td>
<td>273-19016</td>
<td>AIR CYLINDER AND PRESS IN FIXTURE FOR PRESSING SUB ASSEMBLY COVER INTO SUB ASSEMBLY</td>
</tr>
<tr>
<td>6</td>
<td>273-19017</td>
<td>AIR-PRESS AND TOOLING TO SWAGE ARMATURE BODY 360 DEGREES</td>
</tr>
<tr>
<td>7</td>
<td>273-60002</td>
<td>SETBACK GENERATOR, TO</td>
</tr>
<tr>
<td></td>
<td>60003</td>
<td>MEASURE R/L AND INSULATION RESISTANCES</td>
</tr>
<tr>
<td></td>
<td>60006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60008</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>273-19001</td>
<td>MAGNETIC CHARGER, CHARGING FIXTURE AND TRAY USED TO CHARGE MAGNET OF SETBACK GENERATOR</td>
</tr>
<tr>
<td>8</td>
<td>273-60001</td>
<td>GAUSSMETER AND FIXTURE TO MEASURE LEAKAGE FLUX OF CHARGED GENERATOR</td>
</tr>
</tbody>
</table>
APPENDIX E
ACCEPTANCE TEST PROCEDURE
FOR
SETBACK GENERATOR ASSEMBLY
SUBJECT

ACCEPTANCE TEST PROCEDURE
SETBACK GENERATOR ASSEMBLY
KD90830

PREPARED BY:
Irwin Podbielak
Reliability Engineer

APPROVED BY:
A. Koul
Quality Control Manager

APPROVED BY:
B. Garfinkel
Director of Quality

APPROVED BY:
M. Moskowitz
Project Mgr. M. M. & T.

APPROVED BY:
S. B. Schulman
Mgr. Special Devices Dept.
1.0 SCOPE

1.1 THIS DOCUMENT DEFINES THE BSIC ACCEPTANCE TEST PROCEDURE WHICH SHALL BE ADHERED TO WHEN VERIFYING THE INSULATION RESISTANCE, RESISTANCE AND INDUCTANCE OF THE SETBACK GENERATOR PART NUMBER KD90830.

2.0 APPLICABLE DOCUMENTS

2.1 THE FOLLOWING DOCUMENTS FORM A PART OF THIS DOCUMENT TO THE EXTENT SPECIFIED HEREIN. UNLESS OTHERWISE INDICATED THE LATEST ISSUE IN EFFECT SHALL APPLY. IN CASE OF CONFLICT BETWEEN THIS DOCUMENT AND THE REFERENCED DOCUMENT(S), THIS DOCUMENT SHALL GOVERN.

BSIC
KD90830 SETBACK GENERATOR ASSEMBLY
273-60006 FINAL ASSY TESTER, S.B. GENERATOR

3.0 REQUIREMENTS

3.1 MATERIAL
KD90830 SETBACK GENERATOR ASSEMBLY

3.2 EQUIPMENT
273-60006 FINAL ASSY TESTER, S.B. GENERATOR

4.0 PROCEDURE

4.1 THE SETBACK GENERATOR ASSEMBLY SHALL BE COMPLETE IN ACCORDANCE WITH THE REQUIREMENTS OF DOCUMENT KD90830.

4.2 EVERY UNIT SHALL BE TESTED IN ACCORDANCE WITH THIS DOCUMENT USING SETBACK GENERATOR FINAL ASSEMBLY TESTER 273-60006.

CAUTION: THE USE OF THIS FIXTURE INVOLVES HIGH VOLTAGE. DO NOT TOUCH THE TEST SOCKET OR S.B. GENERATOR DURING TESTING. SET THE MEASURE-CHARGE-DISCHARGE SWITCH ON THE MEGOHMMETER TO THE DISCHARGE POSITION.
4.3 Activate main panel power switch and the power switch on each of the three meters to the on position.

4.4 Activate the home switch on the main panel. The number-1 LED on the main panel should be lit. The megohmmeter is connected to the test socket in this position.

4.5 Insert a setback generator under test into the test socket.

4.6 Set the voltage selector knob on the megohmmeter to 200 volts and the dial selector to the 100 megohm position.

4.7 Activate the measure-charge-discharge switch to the measure position. The megohmmeter dial shall indicate 5 (500 megohms) or higher. Set the measure-charge-discharge switch back to discharge (safe) position.

4.8 Activate the step switch on the main panel twice. LED number-3 should be lit indicating that the test unit is now connected to the digital multimeter. With the multimeter range selectors in the DC, k ohm and the scale factor on 200 ohms the multimeter should indicate between 40 and 50 ohms.

4.9 Activate the step switch once. LED number 4 should be lit indicating that the test unit is now connected to the Digibridge.
4.10 ACTIVATE THE L (INDUCTANCE) SWITCH AND LOW RANGE SWITCH ON THE DIGIBRIDGE. THE DIGIBRIDGE SHOULD INDICATE BETWEEN 7 AND 8 MILLIHENRY.

4.11 REMOVE UNIT UNDER TEST FROM TEST SOCKET.

5.0 PRODUCE ASSURANCE

5.1 ANY UNIT NOT MEETING THE REQUIREMENTS OF THIS DOCUMENT SHALL BE REJECTED.
APPENDIX F
MAGNETIC CHARGING PROCEDURE
FOR
SETBACK GENERATOR
<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>SETBACK GENERATOR P/N KD 90830</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGNETIC CHARGING PROCEDURE</td>
<td></td>
</tr>
</tbody>
</table>

PREPARED BY:
Irwin Podbielak
Reliability Engineer

APPROVED BY:
A. Koul
Quality Control Manager

APPROVED BY:
B. Garfinkel
Director of Quality

APPROVED BY:
M. Moskowitz
Project Mgr. M. M. & T.

APPROVED BY:
S. B. Schulman
Mgr. Special Devices Dept.
1.0 SCOPE
1.1 THIS DOCUMENT DEFINES THE PROCEDURE WHICH SHALL BE ADHERED TO WHEN MAGNETIZING THE SETBACK GENERATOR PART NUMBER KD90830.

2.0 APPLICABLE DOCUMENTS
2.1 THE FOLLOWING DOCUMENTS FORM A PART OF THIS SPECIFICATION TO THE EXTENT SPECIFIED HEREIN. UNLESS OTHERWISE INDICATED THE LATEST ISSUE IN EFFECT SHALL APPLY. IN CASE OF CONFLICT BETWEEN THIS DOCUMENT AND THE REFERENCED DOCUMENTS, THIS DOCUMENT SHALL GOVERN.

BSIC KD90830 SETBACK GENERATOR

3.0 REQUIREMENTS
3.1 MATERIALS
KD90830 SETBACK GENERATOR

3.2 EQUIPMENT
159963 CHARGING STATION, RFL INDUSTRIES MODEL 1500

4.0 PRELIMINARY
(CAUTION ! ! REMOVE WRIST WATCHES)
4.1 TURN CHARGING STATION ON BY ACTIVATING EQUIPMENT ON/OFF SWITCH TO ON POSITION. SET CHARGING VOLTAGE ON/OFF SWITCH TO HIGH POSITION.

5.0 PROCEDURE
5.1 INSTALL SETBACK GENERATORS KD90830 TO BE CHARGED INTO THE CHARGING FIXTURE HOLDER, TERMINALS UP. THIS FIXTURE CONSISTS OF TWO LAYERS HOLDING 15 UNITS PER LAYER. EACH LAYER IS MADE OUT OF TEFLON AND HAS 15 HOLES APPROXIMATELY
THE SIZE OF THE SETBACK GENERATOR. LOCK THE TOP AND BOTTOM LAYER TOGETHER FINGER TIGHT, WITH THE KNURLED SCREW. THERE SHOULD BE NO SPACE BETWEEN THE TOP AND BOTTOM LAYER.

5.2 PLACE THE CHARGING FIXTURE HOLDER INTO THE CHARGING FIXTURE HOLDER CAVITY AND SLIDE THE TOP COVER OF THE CAVITY CLOSED.

5.3 PUSH THE "PUSH-TO-CHARGE" BUTTON. THE D.C. VOLTMETER SHOULD DROP SHARPLY TOWARD ZERO AND THEN RECOVER TO APPROXIMATELY 1300 VOLTS.

5.4 AFTER METER RETURNS TO APPROXIMATELY 1300 VOLTS REPEAT STEPS 5.3.

5.5 REMOVE SETBACK GENERATORS BY SLIDING BACK THE CAVITY COVER. REMOVE THE CHARGING FIXTURE HOLDER. UNSCREW THE KNURLED SCREW AND REMOVE THE SETBACK GENERATORS FROM THE CHARGING FIXTURE HOLDER.

5.6 VERIFICATION OF SETBACK GENERATOR CHARGE SHALL BE ASCERTAINED BY MEASURING THE SETBACK GENERATOR IN ACCORDANCE WITH ACCEPTANCE TEST PROCEDURES, DOCUMENT NUMBER 330-030.

6.0 PRODUCT ASSURANCE

6.1 VERIFY THAT CHARGING STATION IS CALIBRATED BEFORE USE.
APPENDIX G
ACCEPANCE TEST PROCEDURE FOR GAUSS CHARGE VERIFICATION
<table>
<thead>
<tr>
<th>DOCUMENT NO.</th>
<th>330-030</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>14 June 1983</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>M. M. & T. - M. P. S.</td>
</tr>
<tr>
<td></td>
<td>M509A2E1 B.D.E.</td>
</tr>
<tr>
<td>PURCHASE ORDER</td>
<td></td>
</tr>
<tr>
<td>PRIME CONTRACT</td>
<td>DAAK10-80-C-0183</td>
</tr>
</tbody>
</table>

SUBJECT

GAUSS CHARGE VERIFICATION

ACCEPTANCE TEST PROCEDURE

PREPARED BY:
Irwin Podbielak
Reliability Engineer

APPROVED BY:
A. Koul
Quality Control Manager

APPROVED BY:
B. Garfinkel
Director Of Quality

APPROVED BY:
M. Moskowitz

APPROVED BY:
S. B. Schulman
Mgr. Special Devices
1.0 **SCOPE**

1.1 This document defines the test procedure which shall be adhered to in performing a verification of Gauss charge level of a setback generator assembly KD 90830.

2.0 **APPLICABLE DOCUMENTS**

2.1 The following documents form a part of this document to the extent specified herein. Unless otherwise indicated the latest issue in effect shall apply. In case of conflict between this document and the referenced documents, this document shall govern.

BSIC

KD 90830 SETBACK GENERATOR ASSEMBLY
273-60001 GAUSSMETER

3.0 **REQUIREMENTS**

3.1 **MATERIAL**

KD 90830 SETBACK GENERATOR ASSEMBLY

3.2 **EQUIPMENT**

273-60001 GAUSSMETER, RFL MODEL 750AR
4.0 PROCEDURE

4.1 VERIFY CALIBRATION, EACH TIME THE OPERATOR STARTS TO MEASURE A LOT.

4.2 TURN POWER SWITCH ON GAUSSMETER MODEL 750 AR TO ON.

4.3 WAIT THREE MINUTES FOR GAUSSMETER TO STABILIZE. SET GAUSS FULL SCALE SWITCH TO CAL POSITION. THE METER SHOULD INDICATE CAL AT THE RIGHT END OF THE DIAL. ADJUST IF NECESSARY USING THE CAL KNOB. (THE INNER KNOB OF THE DUAL KNOB CONTROL)

4.4 SET THE GAUSS FULL SCALE KNOB TO THE 200 POSITION SET THE OPERATOR - STANDARD GENERATOR INTO THE HOLDING FIXTURE.

4.5 THE METER SHALL INDICATE BETWEEN PLUS AND MINUS 5 GAUSS OF THE OPERATOR STANDARD GENERATOR. (LEVEL MARKED)

4.6 IF THE METER INDICATION IS WITHIN ± 5 GAUSS OF THE ESTABLISHED STANDARD REMOVE THE STANDARD AND TEST EACH UNIT UNDER TEST BY SETTING IT INTO THE HOLDING FIXTURE AND READING THE GAUSS LEVEL

4.7 IF THE METER INDICATION IS NOT WITHIN ± 5 GAUSS OF THE ESTABLISHED STANDARD LEVEL, DO NOT PROCEED WITH TESTING. CALIBRATION PERSONNEL SHALL RECALIBRATE THE GAUSSMETER IN ACCORDANCE WITH THE OPERATOR MANUAL.
5.0 QUALITY CONTROL

5.1 ANY UNIT NOT MEETING THE REQUIREMENTS OF THIS DOCUMENT SHALL BE REJECTED.
APPENDIX H
TRAVELER
FOR
DEMONSTRATION TEST PLAN
PART A
M509A2E1 BDE CONFIGURATION - DEMONSTRATION TEST PLAN TRAVELER

<table>
<thead>
<tr>
<th>WEEK ENDING 4/29/83 AND 6/30/83</th>
<th>QTY MADE</th>
<th>QTY SAMPLED</th>
<th>QTY ACCEPT</th>
<th>QTY REJECT</th>
<th>MFG/INSPECTION</th>
<th>SIG DATE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 K90825 BOBBIN ASSY</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>MFG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 K90825 INSPECT</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>INSPECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 K90829 WIND COIL ASSY</td>
<td>12</td>
<td>130 135</td>
<td>130 135</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 K90829 WELD & TEST</td>
<td>12</td>
<td>130 135</td>
<td>130 135</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 P/0 S.B. GEN ASSY</td>
<td>12</td>
<td>130 135</td>
<td>130 135</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 P/0 PRESS FIT SHEAR PLATE</td>
<td>12</td>
<td>130 135</td>
<td>130 135</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 KD90830 ASSY DISC & SWAGE COVER</td>
<td>12</td>
<td>130 135</td>
<td>130 135</td>
<td>3</td>
<td>INSPECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 KD90830 A-T-P IR-R-L INSPECT</td>
<td>12</td>
<td>130 135</td>
<td>130 135</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 KD90830 MAGNETIZE S.B. GEN</td>
<td>12</td>
<td>130 135</td>
<td>130 135</td>
<td>0</td>
<td>INSPECTION</td>
<td></td>
<td>DEMO PLAN</td>
</tr>
<tr>
<td>9 KD90830 MEASURE GAUSS</td>
<td>12</td>
<td>130 135</td>
<td>130 135</td>
<td>0</td>
<td>INSPECTION</td>
<td></td>
<td>DEMO PLAN</td>
</tr>
<tr>
<td>8 KD90830 AIR SEAL TEST</td>
<td>200 261</td>
<td>261 261</td>
<td>261 261</td>
<td>0</td>
<td>INSPECTION</td>
<td></td>
<td>DEMO PLAN</td>
</tr>
</tbody>
</table>

DATA REVIEWED: ENG BSIC DATE
BY QC DATE
ARRADCOM ARRADCOM REP DATE

HULONICS SYSTEMS & INSTRUMENTS CORPORATION
VALLEY STREAM, NEW YORK
APPENDIX I
SAMPLE DATA COLLECTION FORM
PART A
<table>
<thead>
<tr>
<th>DATE</th>
<th>EVENT TIME</th>
<th>EVENT CODE</th>
<th>DURATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/02</td>
<td>8:03</td>
<td></td>
<td></td>
<td>START LOT 1 (120 PCS)</td>
</tr>
<tr>
<td></td>
<td>8:51</td>
<td>00</td>
<td></td>
<td>COMPLETE LOT 1</td>
</tr>
<tr>
<td>01/03</td>
<td>9:06</td>
<td>00</td>
<td></td>
<td>START LOT 2 (120 PCS)</td>
</tr>
<tr>
<td></td>
<td>9:43</td>
<td>00</td>
<td>00</td>
<td>COMPLETE LOT 2</td>
</tr>
<tr>
<td>01/03</td>
<td>9:44</td>
<td>00</td>
<td></td>
<td>START LOT 3 (120 PCS)</td>
</tr>
<tr>
<td></td>
<td>10:00</td>
<td>00</td>
<td>00</td>
<td>BREAK, MORNING</td>
</tr>
<tr>
<td></td>
<td>10:08</td>
<td>00</td>
<td></td>
<td>RESUME OPERATION</td>
</tr>
<tr>
<td>01/03</td>
<td>10:37</td>
<td>00</td>
<td></td>
<td>COMPLETE LOT 3</td>
</tr>
<tr>
<td></td>
<td>10:57</td>
<td>00</td>
<td></td>
<td>START LOT 4 (120 PCS)</td>
</tr>
<tr>
<td>01/03</td>
<td>11:12</td>
<td>00</td>
<td></td>
<td>COMPLETE LOT 4</td>
</tr>
</tbody>
</table>

Note: This is a sample. Other stations are available on request.
APPENDIX J
DEMONSTRATION TEST REPORT
PART B
TO: UNITED STATES ARMY ARMAMENT
R & D COMMAND

DOCUMENT NO.
330-043-2

DATE 30 SEPTEMBER 1983

PROGRAM
M509A2E1 - M. M. & T.
PURCHASE ORDER
PRIME CONTRACT
DAAK10-80-C-0183

SUBJECT
DEMONSTRATION TEST REPORT PHASE B
FACILITIZATION OF THE MAGNETIC POWER
SUPPLY ASSEMBLY OF THE M509A2E1 PIBD FUZE

P/O CDRL ITEM: A014

PREPARED BY:
Irwin Poddubelak
Reliability Engineer

APPROVED BY:
A. Koul
Quality Control Manager

APPROVED BY:
E. Carfinkel
Director of Quality

APPROVED BY:
M. Moskowitz
Project Eng. M. M. & T.

APPROVED BY:
S. B. Schulman
Mgr. Special Devices Dep.
CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 SCOPE</td>
<td>4</td>
</tr>
<tr>
<td>2.0 GENERAL</td>
<td>4</td>
</tr>
<tr>
<td>3.0 APPLICABLE DOCUMENTS</td>
<td>5</td>
</tr>
<tr>
<td>4.0 SUMMARY</td>
<td>6</td>
</tr>
<tr>
<td>4.1 DESCRIPTION OF SAMPLES</td>
<td>6</td>
</tr>
<tr>
<td>4.2 DISPOSITION OF SAMPLES</td>
<td>6</td>
</tr>
<tr>
<td>4.3 CONCLUSIONS AND RECOMMENDATIONS</td>
<td>7</td>
</tr>
<tr>
<td>4.4 DATA SUMMARY</td>
<td>8</td>
</tr>
<tr>
<td>4.5 DESCRIPTION OF EQUIPMENT</td>
<td>9</td>
</tr>
<tr>
<td>4.6 TEST PROCEDURES</td>
<td>10</td>
</tr>
<tr>
<td>4.7 APPENDIX</td>
<td>11</td>
</tr>
</tbody>
</table>
1.0 **SCOPE**

1.1 This document is the Bulova Systems and Instruments Corporation (BSIC) demonstration test report, P/O CDRL Item A014, prepared for the M.M. & T. Program of the M509A2E1 base detonating element in accordance with the requirements of contract DAAK10-80-C-0183. This document is the second half of the demonstration test (Phase B) test report. The combined documents 340-043-1 and 340-043-2 form the complete demonstration test report. This report meets the requirements of data item DI-T-1910 cited in the CDRL item.

2.0 **GENERAL**

2.1 The test demonstration, Phase - B was performed to verify the capability of the fixtures and test equipment to manufacture M509A2E1 base elements. The phase B demonstration started at the completion of the set-back generator (station 8) and continued through the complete base element (station 23).

2.2 The phase B test was demonstrated during the month of September 1983. Personnel in attendance included:

BSIC

M. Moskowitz - Proj. Eng.
K. Knight - Q.C. Engineer
B. Patterson - Proj. Eng.
I. Podbielak - Rel. Eng.
T. Hargarter - Ind. Eng.

ARRADCON

R. Noble - Proj. Engineer
R. Pitman - Proj. Engineer

Additional inspection personnel
2.3 THE PHASE B TEST SAMPLE WAS BUILT AND TESTED IN ACCORDANCE WITH BSIC DEMONSTRATION TEST PLAN, CDRL ITEM A013. THE SAMPLE QUANTITIES PROCESSED VARIED IN ACCORDANCE WITH:

- S2 CONTACT ASSEMBLY 260
- S2 SWITCH ASSEMBLY 480
- MAGNETIC POWER SUPPLY 263
- HOUSING PIN & CONTACT ASSEMBLY 291
- MOLDED ASSEMBLY HOUSING 162
- DELIVERED AIR-GUN UNITS 50

IT SHOULD BE NOTED THAT MANY ASSEMBLIES WERE PRODUCED AT QUANTITIES FAR IN EXCESS OF THOSE REQUIRED FOR THE 50 DELIVERABLE UNITS, DUE TO THE OPERATING SPEED OF THE TOOLING AND FIXTURES.

3.0 APPLICABLE DOCUMENTS

3.1 THE FOLLOWING DOCUMENTS FORM A PART OF THIS SPECIFICATION:

- BSIC
 - 330-033 ENCAPSULATION PROCEDURE
 - 330-034 FINAL ELECTRICAL COMPONENT TEST
 - 330-035 ENCAPSULATION PROCESS
 - 330-040 WAVE SOLDERING PROCESS SPECIFICATION
 - 330-042 VAPOR DEGREASER PROCESS SPECIFICATION
- DATA SHEETS DATA SHEETS - PHASE B B.D.E.
- TRAVELLER TRAVELLER - PHASE B B.D.E.
4.0 SUMMARY

THE DEMONSTRATION TEST VERIFIED THAT THE FIXTURES AND EQUIPMENT ARE CAPABLE OF MANUFACTURING BASE DETONATING ELEMENTS TO THE LATEST REVISION OF THE M509A2E1 DRAWINGS.

THE TEST ALSO DEMONSTRATED THAT THE FIXTURES AND EQUIPMENT ARE CAPABLE OF PRODUCING THE B.D. ELEMENTS AT A RATE OF AT LEAST 10,000 PER MONTH, AS SPECIFIED IN THE CONTRACT DAAK10-80C-0183.

4.1 DESCRIPTION OF SAMPLES

THE PHASE B DEMONSTRATION SAMPLES WERE MANUFACTURED ON THE PRODUCTION TOOLING AND EQUIPMENT DEVELOPED FOR THE M509A2E1, M.M.& T. PROGRAM.

THE PHASE A SAMPLES OF THE S.B. GENERATORS WERE USED IN CONJUNCTION WITH THE SAMPLES MANUFACTURED FOR PHASE B BASE DETONATING ELEMENTS.

4.2 DISPOSITION OF SAMPLES

THIS EQUIPMENT CONSISTS OF 108 ENCAPSULATED UNITS WITHOUT MECHANISM AND 108 ADDITIONAL UNITS WHICH WERE ASSEMBLED BUT NOT ENCAPSULATED. FINAL DISPOSITION INSTRUCTIONS FOR THIS MATERIAL ARE PENDING.

4.3 CONCLUSIONS AND RECOMMENDATIONS

THE EQUIPMENT AND TOOLING DESIGNED AND BUILT FOR THE M509A2E1 M.M. & T. PROGRAM, PRODUCED UNITS WHICH MET ALL FINAL REQUIRED PARAMETERS. FIFTY M509A2E1 BASE DETONATING ELEMENTS (AIR-GUN CONFIGURATION) WERE DELIVERED TO ARRADCOM.

IT SHOULD BE NOTED THAT THE MECHANISM ASSEMBLIES USED WERE SUPPLIED FROM THE M509A2E1 PROGRAM SINCE NO TOOLING WAS INCLUDED IN THE M.M. & T. PROGRAM FOR BUILDING MECHANISMS.

THE TOOLS AND FIXTURES DESIGNED AND BUILT FOR THE M.M. & T. CONTRACT ARE REQUIRED TO BE CAPABLE OF PRODUCING M509A2E1, B.D.E. UNITS AT A MINIMUM RATE OF 63 PER HOUR.

A REVIEW OF THE TRAVELLER AND DATA SHEETS, PROVIDED IN THE APPENDIX, INDICATES THAT THERE ARE PROCESSES WHICH ARE CONSIDERABLY SLOWER THAN THE 63 UNITS PER HOUR REQUIRED.

SOME PROCESSES DID NOT MEET THE 63 UNITS PER HOUR RATE. WE RECOMMEND THAT ADDITIONAL FIXTURES AND PERSONNEL BE EMPLOYED TO MEET THIS REQUIREMENT AS THE PRODUCTION RATE DICTATES. SPECIFICS OF EACH PROCESS MAY BE FOUND IN THE DATA SUMMARY, PARAGRAPH 4.4.

BSIC RECOMMENDS THAT THE M.M. & T. PROGRAM BE EXPANDED TO INCLUDE TOOLING FOR THE MECHANISM ASSEMBLY TO ASSURE TOTAL CAPABILITY COMPLIANCE WITH THE 10,000 B.D.E. UNITS REQUIRED PER MONTH, AND AUTOMATIC INSERTION EQUIPMENT TO LOAD THE COMPONENTS ON THE P.C.B. SHOULD AN INCREASED RATE BECOME NECESSARY.

4.4 DATA SUMMARY

AN ANALYSIS OF THE DATA INDICATES THAT THE FIXTURES AND TOOLING ARE CAPABLE OF PRODUCING M509A2E1 B.D.E. TO THE LATEST REVISION OF THE SPECIFICATION.

THE DATA INDICATES THAT THERE WERE SEVEN PROCESSES WHICH REQUIRED MULTIPLE EQUIPMENT AND OPERATORS.

THESE PROCESSES WERE:

A INSTALLATION OF S2 CONTACT ASSEMBLY ON THE P.C.B. AT 36/HR.
B INSTALLATION OF ELECTRONIC COMPONENTS ON THE P.C.B. AT 20/HR.
C TOUCH UP - P.C.B. AT 40/ HR.

D PRELIMINARY ENCAPSULATION OF P.S. ASSEMBLY AT 5/

E ENCAPSULATION OF P.S. AT 20/HR.

F ATP AT 42/HR.

G ATP TIMING AT 26/HR.

FROM THE RATES, WHICH WERE ESTABLISHED DURING THE DEMONSTRATION TESTING, WE ARE ABLE TO MAKE THE FOLLOW DETERMINATION FOR EACH OF THESE PROCESSES.

A. ONE FIXTURE WAS ABLE TO MEET THE RATE OF 5,000 L PER MONTH. A SECOND FIXTURE OR A REDESIGN OF THE WIRE MOUNTING HOLDER ALLOWING THE UNIT TO BE WAVE SOLDERED WOULD MEET 63 UNITS PER HOUR RATE.

B. ONE OPERATOR WAS ABLE TO MOUNT ALL THE COMPONENT ONTO THE P.C.B. AT A RATE OF 20 UNITS PER HOUR. INCREASE THE RATE TO 63 UNITS PER HOUR WILL REQ (3) OPERATORS. AN ALTERNATIVE PROGRAM TO AUTOMATICALLY INSERT THE COMPONENTS WOULD REDUCE THE REQUIREMENT FOR (3) OPERATORS.

C. TOUCHING UP THE P.C.B. AFTER WAVE SOLDERING WAS PERFORMED AT THE RATE OF 40 PER HOUR. OUR ANALYSIS INDICATES THAT THE TOUCH-UP WAS REQUIRED DUE TO DESIGN OF THE PRESENT P.C.B. WHICH HAS HOLE SIZES OPTIMIZED FOR HAND SOLDERING. WHEN THE P.C.B. DESIGN IS REVISED FOR WAVE SOLDERING THE RATE SHOULD INCREASE TO OVER 63 PER HOUR.

D/E. TO PERFORM ENCAPSULATION OF THE POWER SUPPLY ASSEMBLY AT THE RATE OF 53 UNITS PER HOUR REQUIRE ADDITIONAL FIXTURES AND OPERATORS. AS AN ALTERNATIVE, WE RECOMMEND THAT A REVISED ENCAPSULATION TECHNIQUE BE EMPLOYED.
F. The acceptance testing of the components is controlled and the results printed out, by a Model 65 H.P. computer. A complete printout slows the test cycle. We recommend that a printout of accept or reject, without component parameters be employed, speeding up the test cycle.

G. We recommend that the computer software program used on the H.P. Model 85 computer to evaluate and provide accept/reject timing criteria be revised to perform the evaluation more rapidly.

4.5 Description of Equipment

A list and description of all equipment used to manufacture and test M509A2E1 B.D.E. units is available to the reader.

An up to date list can be found in the appendix of this document.

4.6 Test Procedures

The following is a list of the applicable test procedures which have been enclosed in the appendix. It should be noted that the procedures applicable to the S.B. generator were previously supplied in the phase "A" demonstration test report document number 330-043-1. The procedures required for phase "B" have been enclosed for informational purposes.

330-034
330-037
330-038
APPENDIX K
ACCEPTANCE TEST PROCEDURE
FOR
MOLDED HOUSING ASSEMBLY
TO: UNITED STATES ARMY ARMAMENT R & D COMMAND

DATE 12 SEPTEMBER 1983

PROGRAM M. M. & T. - M. P. S M509A2E1 - B. D. E.

PURCHASE ORDER

PRIME CONTRACT DAAK10. 80-C. 0183

SUBJECT ACCEPTANCE TEST PROCEDURE

COMPONENT TESTING

105 MM MOLDED HOUSING ASSEMBLY: KD 90852 CDRL: A008

PREPARED BY: ________________________________
Irwin Podbielak
Reliability Engineer

APPROVED BY: ________________________________
A. Koul
Quality Control Manager

APPROVED BY: ________________________________
BJ Garfinkel
Director of Quality

APPROVED BY: ________________________________
M. Moskowitz

APPROVED BY: ________________________________
S. B. Schulman
Mgr. Special Svrs. Dept.
<table>
<thead>
<tr>
<th>SECTION</th>
<th>CONTENTS</th>
<th>SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SCOPE</td>
<td>4</td>
</tr>
<tr>
<td>2.0</td>
<td>APPLICABLE DOCUMENTS</td>
<td>4</td>
</tr>
<tr>
<td>3.0</td>
<td>EQUIPMENT</td>
<td>4</td>
</tr>
<tr>
<td>4.0</td>
<td>GENERAL</td>
<td>5</td>
</tr>
<tr>
<td>5.0</td>
<td>TESTING</td>
<td>5</td>
</tr>
<tr>
<td>6.0</td>
<td>APPENDIX</td>
<td>7</td>
</tr>
</tbody>
</table>
1.0 SCOPE

1.1 THIS DOCUMENT HAS BEEN PREPARED BY BULOVA SYSTEMS & INSTRUMENTS CORPORATION (BSIC) IN ACCORDANCE WITH THE REQUIREMENTS OF CONTRACT NO. DAAK10-80-C-0183 FOR THE 105MM BASE ELEMENT AND IS IN COMPLIANCE WITH THE REQUIREMENTS OF CDRL ITEM: A008.

1.2 ALL 105MM MOLDED HOUSING ASSEMBLIES SHALL BE SUBJECTED TO AND PASS THE COMPONENT TEST PROCEDURE IN ACCORDANCE WITH THIS DOCUMENT.

1.3 THE COMPUTER PRINT-OUT DATA SHEET SHALL BE SERIALIZED AND SIGNED BY THE PERSONNEL PERFORMING THE TEST. THE DATA SHEET SHALL ACCOMPANY THE HARDWARE AS IT PROGRESSES THROUGH THE MANUFACTURING AND TEST PROCESS.

2.0 APPLICABLE DOCUMENTS

2.1 THE FOLLOWING DOCUMENTS FORM A PART OF THIS DOCUMENT. IN CASE OF CONFLICT THIS DOCUMENT SHALL GOVERN.

MILITARY
DAAK10-80-C-0183 CONTRACT ARRADCOM, 105MM, B.E.

BSIC
273-60005 TEST CONSOLE, COMPONENT

3.0 EQUIPMENT

273-60005 TEST, CONSOLE, COMPONENT
85 H.P. COMPUTER
4.0 GENERAL

4.1 THIS DOCUMENT DEFINES THE OPERATION OF AN AUTOMATED COMPUTER CONTROLLED TEST SET.

5.0 TEST/START-UP

5.1 ACTIVATE POWER SWITCH ON CONSOLE 273-60005 TO "ON".

5.2 ACTIVATE POWER SWITCH ON MODEL H.P. 85 COMPUTER TO "ON". THE COMPUTER WILL AUTOMATICALLY LOAD.

5.3 COMPUTER SCREEN SHALL INDICATE "SELECT PROGRAM TO BE LOADED", MESSAGE. ACTIVATE COMPUTER "K1" KEY BELOW "M509" MESSAGE.

5.4 WAIT UNTIL "ENTER DATE" MESSAGE APPEARS.

5.5 ENTER DATE OF TEST INTO COMPUTER USING THE FOLLOWING FORMAT. (EXAMPLE-JULY 4, 1983 WOULD BE ENTERED INTO THE COMPUTER AS 07/04/83).

5.6 ACTIVATE "END LINE" KEY ON COMPUTER. "ENTER TIME" MESSAGE APPEARS.

5.7 ENTER TIME OF TEST INTO COMPUTER USING THE FOLLOWING FORMAT. (EXAMPLE - 10.37) ACTIVATE "END LINE" KEY.

5.8 THE MESSAGE ON THE COMPUTER NOW INDICATES "SELECT ONE", "PRINT RUN" OR "STRAIGHT RUN".

5.9 ACTIVATE "K1" KEY ON COMPUTER BELOW "PRINT RUN" MESSAGE. COMPUTER MESSAGE NOW ASKS "WHAT TEST TO BEGIN?"

5.10 ACTIVATE NUMBER # (1) KEY ON COMPUTER.
5.11 ACTIVATE "AUTO/MANUAL" SWITCH ON CONSOLE TO "AUTO".

5.12 ACTIVATE "END LINE" KEY ON COMPUTER.

5.13 INSTALL NEXT UNIT UNDER TEST INTO FIXTURE POSITION IN ACCORDANCE WITH COMPUTER DISPLAY MESSAGE (STATION #1 OR STATION #2). INSTALL UNIT UNDER TEST BY PUSHING FIXTURE KNOB FORWARD AND ROTATING THE KNOB CLOCKWISE TO LOCK UNIT UNDER TEST INTO TEST POSITION.

5.14 WAIT FOR PRINT-OUT OF TEST.

5.15 UNLOAD UNIT UNDER TEST BY ROTATING TEST FIXTURE LEVER COUNTERCLOCKWISE AND LOAD NEXT UNIT IN ACCORDANCE WITH COMPUTER MESSAGE DIRECTION.

5.16 WRITE-IN SERIAL NUMBER OF UNIT UNDER TEST IN APPROPRIATE LOCATION ON PRINT-OUT SHEET (SAMPLE PRINT-OUT - TABLE -1).

5.17 ACCEPT OR REJECT M509A2E1 COMPONENT TEST UNITS BASED ON THE PRINT-OUT PARAMETERS AND COMPUTER DECISION INFORMATION. THE DATA PRINTOUT INDICATES PARAMETER LIMITS AND COMPONENT TEST VALUE.
MEG A261 EPE DATA SHEET

DATE: 03-20-87
TIME: 5:36

SERIAL NO.

1 F: REL. C1
MIN: 460 MOHMS
MAX: 660 MOHMS
ACTUAL: 5302.1 MOHMS
*TH: ABOVE MAXIMUM VALUE***

CONT (R1)
MIN: 30 KOHMS
MAX: 114 KOHMS
ACTUAL: 102.13 KOHMS
WITHIN SPEC

CONT (01 FWD)
MIN: 250 OHMS
MAX: 730 OHMS
ACTUAL: 543.87 OHMS
WITHIN SPEC

CONT (01 REV)
MIN: 48000 MOHMS
MAX: 9.9999 MOHMS
ACTUAL: 5111.6 MOHMS
WITHIN SPEC

CONT (L1)
MIN: 46 OHMS
MAX: 50 OHMS
ACTUAL: 41.57 OHMS
WITHIN SPEC

XLED (L1@100OHMS)

CAP (C1)
MIN: 5 MF
MAX: 7 MF
ACTUAL: 5.0889 MF
WITHIN SPEC

CONT (CONTACT)
MIN: 0 OHMS
MAX: 1 OHMS
ACTUAL: 0.05851 OHMS
WITHIN SPEC

*TEST 1 ABEVE SPEC

TAKE 1
96
410 GOTO 440
420 IF 01=4 THEN CLEAR @ DISP " REMOVE UNIT #1"
422 IF 01=0 THEN CLEAR @ DISP " REMOVE UNIT #2"
425 ENTER 410 USING "*.W" Z1
430 IF BIT(Z1,6)=0 AND BIT(Z1,7)=0 THEN GOTO 425
440 GOTO 370
450 CLEAR
460 F1P X=1 TO 12 @ F(X)=0 @ NEXT
470 REM *** HOME TI PROG ***
480 OUTPUT 410 USING "*.W" . 2+0
490 REM *** WAIT FOR HOME ***
500 ENTER 410 USING "*.W" Z1
510 IF BIT(Z1,8)=0 THEN 430
520 REM *** MAIN TEST LOOP ***
530 F1P X=1 TO 12
540 REM ***STEP TI TO NEXT TEST***
550 OUTPUT 410 USING "*.W" . 1+0
560 REM *** CHECK TEST NUMBER ***
570 ENTER 410 USING "*.W" .X1
580 Z1=BINAND(Y1,15)
590 IF Z1<9 THEN 10
600 T=INT(*TIME.360S)
610 IF T=0 THEN 750
620 IF T=10 AND T=12 THEN 550
630 IF T=20 AND T=12 THEN 430
640 REM *** GET BCD FROM DYN ***
650 WAIT W(X)
660 ENTER 5 . Z.
670 IF Z>199999 THEN DISP "OVERFLOW" @ GOTO 10
680 IF Y=7 THEN Z=2*01
690 IF Y=6 THEN Z=2*00
700 IF Y=5 THEN Z=2*0001
710 IF Y=4 THEN Z=2*00001
720 IF Y=3 THEN Z=2*000001
730 A(X)=Z
740 NEXT X
750 REM *** PRINT OUT ***
760 X=0
770 IF P<1 THEN 900
780 PRINT "MS#2 42E1 BDE DATA SH EET"
790 PRINT "DATE " :D$ 800 T=TIME
810 T1=INT(*TIME.3600)
820 T2=INT(*TIME.3600/60)
830 IF T2<2 THEN TS=VALS(T1)=" VALS(T2)"
840 IF T2<10 THEN TS=VALS(T1)=" TABLE - Z
table(t1)

PROGRAM

97
1350 RETURN
1360 CLEAR
1370 FOR X=1 TO 12
1380 IF F(X)=0 THEN 1410
1390 IF F(X)=0 THEN PRINT "-TEST"
"X:" ABOVE SPEC" @ F=1
1400 IF F(X)=0 THEN PRINT "-TEST"
"X:" BELOW SPEC" @ F=1
1410 NEXT X
1420 PRINT @ PRINT @ PRINT @ PRINT @ PRINT
1430 IF F=0 THEN 1470
1440 DISP @ DISP @ DISP @ DISP & DISP "**********

1450 IF X=0 THEN 1440
1460 WAIT 5000
1470 RETURN
1480 ON X GOTO 1500,1500,1550,1600,1650
1490 STOP
1500 L=L(X).10^-8
1510 H=H(X).10^-8
1520 A=(200.10^-8)-11.10^-5-1
1530 TS="OHMS"
1540 RETURN
1550 L=L(X).10^-8
1560 H=H(X).10^-8
1570 A=A(X).10000000.1000
1580 TS="KOHMS"
1590 RETURN
1600 L=L(X)
1610 H=H(X)
1620 A=2000000.A(X).10100
1630 IF L=0 THEN L=0
1640 TS="OMHS"
1650 IF L=10^-5 THEN 1670
1660 GOTO 1690
1670 L=L.10^-8 @ H=H.10^-8 & A=A.1
1680 TS="OHMS"
1690 RETURN
1700 L=L(X)
1710 H=H(X)
1720 A=A(X).9900
1730 TS="OMHS"
1740 RETURN
1750 L=L(X)
1760 H=H(X)
1770 A=10000*X(A).1-3-A(X).4*PI
1780 TS="MM"'
1790 RETURN
1800 L=L(X)
1810 H=H(X)
1820 A=A(X).10
1830 TS="MFD"
1840 RETURN
1850 L=L(X)
1860 H=H(X)
1870 A=200000.X(A).20-A(X)
1880 TS="OMHS"
1890 RETURN

TABLE - 2

<table>
<thead>
<tr>
<th>F(X)</th>
<th>A(X)</th>
<th>TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>"OHMS"</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>"OHMS"</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>"OHMS"</td>
</tr>
</tbody>
</table>

BULOVA SYSTEMS AND INSTRUMENTS CORPORATION
VALLEY STREAM, N. Y. 11582

SHEET 330-034

REV.
APPENDIX L
ACCEPTANCE TEST PROCEDURE
FOR
COIL ASSEMBLY
TO: UNITED STATES ARMY ARMAMENT R & D COMMAND

DOCUMENT NO. 330-037
DATE 16 JUNE 1983
PROGRAM M. M. & T. - M. P. S. M509A2E1 B. D. E.
PURCHASE ORDER PRIME CONTRACT DAAK10-80-C-0183

SUBJECT ACCEPTANCE TEST PROCEDURE COIL ASSEMBLY - KC90829

PREPARED BY: Irwin Podmelak
Reliability Engineer

APPROVED BY: A. Kbn
Quality Control Manager

APPROVED BY: B. Garfinkel
Director of Quality

APPROVED BY: M. Moskowitz

APPROVED BY: S. B. Schulman
Mgr. Special Devices Dept.
1.0 SCOPE
1.1 THIS DOCUMENT DEFINES THE BSIC ACCEPTANCE TEST PROCEDURE WHICH SHALL BE ADHERED TO WHEN VERIFYING THE CONTINUITY AND RESISTANCE OF THE COIL ASSEMBLY - KC90829.

2.0 APPLICABLE DOCUMENTS
2.1 THE FOLLOWING DOCUMENTS FORM A PART OF THIS DOCUMENT TO THE EXTENT SPECIFIED HEREIN. UNLESS OTHERWISE INDICATED THE LATEST ISSUE IN EFFECT SHALL APPLY. IN CASE OF CONFLICT BETWEEN THIS DOCUMENT AND THE REFERENCED DOCUMENTS, THIS DOCUMENT SHALL GOVERN.

BSIC
KC90829 COIL ASSEMBLY
273-60004 COIL ASSEMBLY, CONTINUITY FIXTURE

3.0 REQUIREMENTS
3.1 MATERIAL
KC90829 COIL ASSEMBLY

3.2 EQUIPMENT
273-60004 COIL ASSEMBLY, CONTINUITY FIXTURE
MULTIMETER, SIMPSON MODEL 269

4.0 PROCEDURE

4.1 SET RANGE SELECTOR SWITCH ON MULTIMETER TO R-X-1 POSITION.

4.2 SHORT LEADS OF MULTIMETER TOGETHER AND ADJUST ZERO OHMS KNOB UNTIL METER INDICATES ZERO OHMS.

4.3 CONNECT LEADS OF MULTIMETER TO TERMINALS ON CONTINUITY TEST FIXTURE 273-60004.
4.4 Plug coil assembly under test into continuity test fixture.

4.5 Multimeter should indicate continuity between 40 and 50 ohms, direct reading since multimeter is on R-X-1 scale.

5.0 Quality Assurance

5.1 Inspection personnel shall verify that the multimeter used is within calibration period.

5.2 Inspection personnel shall verify continuity in accordance with drawing requirements.
APPENDIX M
ACCEPTANCE TEST PROCEDURE
FOR
ARMING TIME TEST
SUBJECT

ACCEPTANCE TEST PROCEDURE

ARMING TIME TEST

105MM HOUSING AND MECHANISM ASSY: KF90553

PREPARED BY: ____________________________
Irwin Podbielak
Reliability Engineer

APPROVED BY: ____________________________
A. Koul
Quality Control Manager

APPROVED BY: ____________________________
S. B. Schulman
Mgr. Special Devices Dept.
<table>
<thead>
<tr>
<th>SECTION</th>
<th>SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td></td>
</tr>
<tr>
<td>1.0 SCOPE</td>
<td>5</td>
</tr>
<tr>
<td>2.0 APPLICABLE DOCUMENTS</td>
<td>5</td>
</tr>
<tr>
<td>3.0 EQUIPMENT REQUIRED</td>
<td>5</td>
</tr>
<tr>
<td>4.0 GENERAL</td>
<td>6</td>
</tr>
<tr>
<td>5.0 TESTING</td>
<td>6</td>
</tr>
<tr>
<td>6.0 APPENDIX</td>
<td>11</td>
</tr>
</tbody>
</table>
WARNING

THESE UNITS CONTAIN LIVE DETONATORS AND MUST BE HANDLED WITH EXTREME CARE IN ACCORDANCE WITH BASIC HAZARDOUS MATERIAL PROCEDURES. SAFETY GLASSES MUST BE WORN BY ALL PERSONNEL IN THE AREA AND GROUNDING STRAP MUST BE WORN BY THE TEST OPERATOR.

UNITS MUST BE TRANSPORTED ONLY IN PORTABLE MAGAZINES (RED BOXES) WITH A MAXIMUM OF ONE LAYER USED PER MAGAZINE.

ALL TEST EQUIPMENT AND FIXTURES USED MUST BE APPROVED FOR USE BY THE SAFETY ENGINEER AND THE DESIGNATED PROJECT ENGINEER.
WARNING!! THIS UNIT CONTAINS A LIVE DETONATOR

1.0 SCOPE

THIS DOCUMENT HAS BEEN PREPARED BY BULOVA SYSTEMS AND INSTRUMENTS CORPORATION (BSIC) IN ACCORDANCE WITH THE REQUIREMENTS OF CONTRACT NO. DAAK10-80-C-0183 FOR THE 105MM BASE ELEMENT AND IS IN COMPLIANCE WITH THE REQUIREMENTS OF CDRL ITEM: A008

1.1 ALL 105MM BASE ELEMENTS SHALL BE SUBJECTED TO AND PASS THE FINAL TEST PROCEDURE IN ACCORDANCE WITH THIS DOCUMENT.

1.2 THE DATA SHEET WHICH SHALL BE COMPLETED, SERIALIZED, AND SIGNED BY THE PERSONNEL PERFORMING THE TEST, SHALL BE THE COMPUTER PRINT-OUT SHEET ATTACHED TO THIS DOCUMENT. THE DATA SHEET SHALL ACCOMPANY THE HARDWARE AS IT PROGRESSES THROUGH THE MANUFACTURING AND TEST PROCESS.

2.0 APPLICABLE DOCUMENTS

THE FOLLOWING DOCUMENTS, OF THE ISSUED IN EFFECT ON THE DATE OF REQUEST FOR PROPOSAL, FORM A PART OF THIS DOCUMENT.

MILITARY
DAAK10-80-C-0183 CONTRACT ARRADCOM 105MM B.E.

3.0 EQUIPMENT REQUIRED

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>358-19012</td>
<td>ROTOR ADJUSTMENT TOOL</td>
</tr>
<tr>
<td>L1-4091</td>
<td>CENTRIFUGE</td>
</tr>
<tr>
<td>236-60007</td>
<td>CENTRIFUGE TEST CONSOLE</td>
</tr>
<tr>
<td>236-60007-13</td>
<td>CENTRIFUGE HOLDING FIXTURE</td>
</tr>
<tr>
<td>MODEL 290</td>
<td>NICOLET OSCILLOSCOPE</td>
</tr>
<tr>
<td>MODEL 206</td>
<td>NICOLET PLUG-IN AMPLIFIER</td>
</tr>
<tr>
<td>331-60001</td>
<td>ARMING TIME TEST CONSOLE</td>
</tr>
</tbody>
</table>
WARNING!! THIS UNIT CONTAINS A LIVE DETONATOR

4.0 GENERAL

4.1 ALL 105MM HOUSING & MECHANISM, BASE ELEMENTS SHALL BE SUBMITTED TO AND PASS THE ACCEPTANCE TESTS LISTED HEREIN.

A) ACCEPTANCE TEST PROCEDURE, HOUSING MECHANISM ASSY 330-038

4.3 THIS TEST MAKES USE OF A PROGRAMMED HP-85 COMPUTER TO EVALUATE THE CURVE TRACE AND ARMING TIME OF FROM (1) TO (4) HOUSING AND MECHANISM ASSEMBLIES (H.M.A.) SIMULTANEOUSLY. THE ACCEPT/REJECT CRITERIA ARE ANALYZED BY THE COMPUTER WHICH PROVIDES A PRINT-OUT FOR EACH OF THE (4) STATIONS, PROVIDING A HIGH SPEED THROUGH PUT OF THE UNITS UNDER TEST. THE OPERATOR IS ONLY REQUIRED TO WRITE IN THE APPLICABLE SERIAL NUMBER, DATE AND SIGNATURE. ALL REJECTED UNITS SHALL BE SEGREGATED AND DISPOSITIONED BY AN INSPECTION SUPERVISOR.

5.0 TESTING

5.1 COMPONENT TEST - EVERY 105MM HOUSING MOLDED ASSEMBLY BSIC P/N KD90852-1 SHALL BE TESTED IN ACCORDANCE WITH REL-330-008-2.
WARNING!! THIS UNIT CONTAINS A LIVE DETONATOR

5.2 DETONATOR TEST

OPERATOR WARNING

WEAR GROUND STRAP AND SAFETY GLASSES

5.2.1 ALL UNITS TO BE ARM TIME TESTED SHALL BE HANDLED AND TRANSPORTED IN THE SECOND SAFETY LOCK POSITION I.E.: THE ROTOR TRAP PIN SHALL BE ENGAGED WITH THE DRAG SENSOR PIN MAINTAINING A LOCKED POSITION APPROXIMATELY 51 DEGREES BEFORE THE ARM POSITION.

5.2.2 THE H.M.A. (S) SHALL BE SUBJECTED TO APPROXIMATELY 15 G'S (213 TO 219 RPM) ON THE CENTRIFUGE TO ASSURE THAT THE BASE ELEMENT ARMS WITHIN THE PRESCRIBED ENVIRONMENT.

5.2.3 TURN THE COMPUTER POWER SWITCH ON. (BACK OF COMPUTER. SEE FIGURE-4). VERIFY THAT THE PROGRAM TAPE IS INSTALLED. WAIT FOR THE COMPUTER SCREEN TO PROVIDE INSTRUCTIONS. THEN SET THE OPERATION TO AUTOMATIC BY TYPING IN THE LETTER "A" AND THEN THE "END-LINE" KEY.

ACTIVATE THE POWER ON SWITCH UNDER THE ARMING TIME TEST CONSOLE SHELF (ATTC). ACTIVATE THE POWER ON SWITCH ON THE LEFT SIDE OF CENTRIFUGE TIMER CONSOLE. (CTC) - (FIGURE-5)

ACTIVATE THE LATCH RELEASE SWITCH ON THE FRONT OF THE CENTRIFUGE. UNLATCH AND RAISE CENTRIFUGE COVER.

5.2.4 USING EXTREME CARE INSTALL THE H.M.A. (S) (AN EVEN QUANTITY UP TO (4) UNITS OR DUMMIES SHALL BE INSTALLED TO MAINTAIN BALANCE ON CENTRIFUGE ARMS) INTO THE CENTRIFUGE HOLDING FIXTURE, WHILE THE LOAD-SAFE KNOB IS IN THE LOAD POSITION ALLOWING THE H.M.A. TO SEAT. CONNECT THE CENTRIFUGE HOLDING FIXTURE, (CHF) CONNECTOR TO THE HOLDING FIXTURE.
WARNING!! THIS UNIT CONTAINS A LIVE DETONATOR

ENGAGE THE ROTOR ADJUSTMENT TOOL INTO THE ROTOR SHAFT SLOT.

CAUTION: CARE SHALL BE EXERCISED TO PREVENT SLIPPING OF THE TOOL CAUSING ROTOR TO SPIN WHICH IN TURN MAY DAMAGE THE DRAG SENSOR SLOT.

ROTATE THE ROTOR ADJUSTMENT TOOL COUNTER CLOCKWISE (CCW).

HOLDING THE ROTOR ADJUSTMENT TOOL IN THIS POSITION GENTLY PRESS PLASTIC KNOB DOWN AND TURN IT CLOCKWISE (CW) UNTIL IT LOCKS IN THE SLOT. REMOVE THE ROTOR ADJUSTMENT TOOL. THE ROTOR IS NOW LOCKED IN THE SAFE POSITION (S2a).

5.2.5 NOTE: IF THE FIXTURE DID NOT ENGAGE PROPERLY AND ALLOWED THE ROTOR TO RETURN TO THE SECOND SAFETY POSITION STEP 5.2.4 CAN BE REPEATED WITH NO DAMAGE TO THE HOUSING AND MECHANISM ASSEMBLY.

5.2.6 CLOSE AND LATCH CENTRIFUGE DOOR.

ACTIVATE CTC START SWITCH. SPIN CENTRIFUGE AT 15 G'S (213 TO 219 RPM). ALLOW CENTRIFUGE TO STABILIZE AT 15 G'S.

ACTIVATE "TEST ALL" SWITCH ON THE ARMING TIME TEST CONSOLE (ATTI). COMPUTER PRINT-OUT SHALL INDICATE TIMING OBTAINED ON ALL FOUR UNITS UNDER TEST. THE INDICATION SHALL BE ACCEPT OR REJECT.

THE ARMING TIME IS ALSO AVAILABLE FOR CORROBORATION ON THE OSCILLOSCOPE. THE TIMING SHALL BE GREATER THAN 10 AND LESS THAN 18 MILLISECONDS. THE WAVESHAPE SHALL BE EQUIVALENT TO FIGURE-1.

NOTE: ONLY THE COMPUTER PRINT-OUT IS REQUIRED.
WARNING!! THIS UNIT CONTAINS A LIVE DETONATOR

THE TIMING SHALL CONSIST OF TWO (2) TRACES, S2 AND S3. TIMING STOP PULSE (S-3) OCCURS AFTER S3 HAS CLOSED. THE S3 TRACE SHALL PROVIDE EVIDENCE OF PROPER CLOSURE AND A SIGNAL LEVEL CHANGE SHALL BE EVIDENT.

5.2.7 ACTIVATE THE PLUG STOP SWITCH ON THE CTC. DO NOT REMOVE H.M.A. FROM THE CHF. USE EXTREME CAUTION AT THIS POINT AS THE DETONATOR IS NOW IN THE ARMED POSITION AND IS MOST DANGEROUS.

5.3 SAFE RESET (REPEAT FOR EACH UNIT)

5.3.1 WITH THE H.M.A. MAINTAINED IN THE CENTRIFUGE HOLDING FIXTURE AND THE CENTRIFUGE COMPLETELY STOPPED (RPM DIAL IS ZERO), RESET THE ROTOR TO THE SECOND SAFETY POSITION BY; ROTATING THE LOAD-SAFE LEVER TO THE SAFE POSITION LIFTING THE DRAG WEIGHT OUT OF ITS LOWEST POSITION.

5.3.2 USING THE ROTOR ADJUSTMENT TOOL, ROTATE THE ROTOR SHAFT (CCW) COUNTERCLOCKWISE FOR APPROXIMATELY 90 DEGREES. WHILE HOLDING THE ROTOR IN THIS POSITION, ROTATE THE LEVER, TO LOAD POSITION. SLOWLY ALLOW THE TOOL AND ROTOR TO TURN CW. WHEN UNIT STOPS - REMOVE TOOL.

5.3.3 UNIT IS NOW IN THE SECOND SAFETY POSITION. RECORD SERIAL NUMBER(S) AND SIGN PRINT -OUT SHEET IN THE APPROPRIATE AREA.

5.3.4 CONTINUING TO USE EXTREME CAUTION AND FOLLOWING THE PROCEDURES PRESCRIBED IN THE WARNING ON SHEET 4, REMOVE THE H.M.A. UNDER TEST FROM THE CENTRIFUGE HOLDING FIXTURE:

1. REMOVE THE CENTRIFUGE HOLDING FIXTURE CONNECTOR.
WARNING!! THIS UNIT CONTAINS A LIVE DETONATOR

5.3.5 THE ARMING TIME TEST CONSOLE SHALL HAVE AUTOMATICALLY RECYCLED TO HOME AND SHALL BE READY TO EVALUATE THE NEXT SET OF H.M.A(S).

6.0 QUALITY CONTROL

6.1 THE INSPECTOR SHALL VERIFY THAT CALIBRATION OF ALL EQUIPMENT REQUIRED TO PERFORM THIS TESTING IS UP TO DATE.

6.2 ALL UNITS TESTED WHICH INDICATE REJECT ON THE COMPUTER PRINT-OUT SHALL BE SEGREGATED FOR DISPOSITION.
FIG. 1 VIEW OF NICOLET OSCILLOSCOPE TRACE FOR AN ACCEPTABLE TEST.
MODEL 85
COMPUTER

PROGRAM CARTRIDGE

PRINTOUT

"POWER" SWITCH (ON BACK)

"END LINE"

" A "

FIGURE 4

121
CENTRIFUGE TIMER
CONSOLE
(SPEED CONTROLLER
CENTRIFUGE)

FIGURE - 5
PROJECT 330 DATE 9/23/83

CENTRIFUGE ARMING TIME
ACCEPTANCE TEST
DATA SHEET

S/N EM 1013 thru 1016 LOT 1
ASSY# KF 90853.2
Rev. A

REMARKS

M509A2E1 Detonator Lot No. A4/21
M509 Detonator Installed By:
Sig: __________ Date: __________
Ball Staked By:
Sig: __________ Date: __________
Arm Time Tested By:
Sig: __________ Date: __________
Reset To "Safe" By:
Sig: __________ Date: __________
X-Ray To Verify Safe By: N/A
Sig: __________ Date: __________

UNIT # 1 EM 1013
ACCEPT 14.1 12 1 5.64 9.87 6
9.74

UNIT # 2 EM 1014
ACCEPT 15.5 13 5 6.2 10.85 6
11.37

UNIT # 3 EM 1015
ACCEPT 15.7 13.7 6 28 10.93 3
12.21

UNIT # 4 EM 1016
ACCEPT 14.3 12 3 5.72 10.81 3
10.93

INTERNAL COMPUTER DATA

INITIAL TRAVEL TIME TO REACH 90° CONTACT (MILLISECONDS)

ARMING TIME (MILLISECONDS)
APPENDIX N
TRAVELER
FOR
DEMONSTRATION TEST PLAN
PART B
Project 330 - Phase II
M509A2E1 BDE Configuration - Demonstration Test Plan Traveler

<table>
<thead>
<tr>
<th>STA #</th>
<th>ASSY #</th>
<th>DESCRIPTION</th>
<th>LOT #</th>
<th>QTY MADE</th>
<th>QTY SAMPLED</th>
<th>QTY ACCEPTED</th>
<th>QTY REJECTED</th>
<th>MFG/INSP</th>
<th>SIG</th>
<th>DATE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>KB90184</td>
<td>S2 CONT. ASSY.</td>
<td>12</td>
<td>150 130</td>
<td>130</td>
<td>0</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td>1/09/83</td>
<td>1/09/83</td>
</tr>
<tr>
<td>9</td>
<td>KB90184</td>
<td>INSPECTION</td>
<td>12</td>
<td>260</td>
<td>260</td>
<td>0</td>
<td>0</td>
<td>INSR</td>
<td></td>
<td>1/10/83</td>
<td>1/10/83</td>
</tr>
<tr>
<td>10</td>
<td>KB90839</td>
<td>S2 & JACK ASSY TO P.C.B.</td>
<td>1</td>
<td>230 200</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td>3/15/83</td>
<td>3/15/83</td>
</tr>
<tr>
<td>10</td>
<td>KB90839</td>
<td>INSPECTION</td>
<td>1</td>
<td>200</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>INSR</td>
<td></td>
<td>3/15/83</td>
<td>3/15/83</td>
</tr>
<tr>
<td>11</td>
<td>KB90841</td>
<td>S2 SW ASSY.</td>
<td>12 3 4</td>
<td>120 120</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td>3/15/83</td>
<td>3/15/83</td>
</tr>
<tr>
<td>11</td>
<td>KB90841</td>
<td>INSPECTION</td>
<td>12 3 4</td>
<td>120 120</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>INSR</td>
<td></td>
<td>3/15/83</td>
<td>3/15/83</td>
</tr>
<tr>
<td>12A</td>
<td>KB90839-2</td>
<td>LEAD FORM, AXIAL LEADS</td>
<td>1</td>
<td>160</td>
<td>160</td>
<td>0</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td>3/15/83</td>
<td>3/15/83</td>
</tr>
<tr>
<td>12I</td>
<td>KB90839-2</td>
<td>LEAD FORM, RAD.</td>
<td>1</td>
<td>160</td>
<td>160</td>
<td>0</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td>3/15/83</td>
<td>3/15/83</td>
</tr>
<tr>
<td>13</td>
<td>KB90839-2</td>
<td>INSTALL COMP</td>
<td>1</td>
<td>256</td>
<td>256</td>
<td>0</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td>3/15/83</td>
<td>3/15/83</td>
</tr>
<tr>
<td>14</td>
<td>KB90839-2</td>
<td>COMP LEAD DRESS</td>
<td>1</td>
<td>256</td>
<td>256</td>
<td>0</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td>3/15/83</td>
<td>3/15/83</td>
</tr>
<tr>
<td>15</td>
<td>KB90839-2</td>
<td>SOLDER & CLEANING</td>
<td>1</td>
<td>256</td>
<td>256</td>
<td>0</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td>3/15/83</td>
<td>3/15/83</td>
</tr>
<tr>
<td>15</td>
<td>KB90839-2</td>
<td>DISASSEMBLY & TOUCH UP</td>
<td>1</td>
<td>256</td>
<td>256</td>
<td>0</td>
<td>0</td>
<td>MFG</td>
<td></td>
<td>3/15/83</td>
<td>3/15/83</td>
</tr>
<tr>
<td>15</td>
<td>KB90839-2</td>
<td>MAGNETIC POWER SUPPLY INSPECTION</td>
<td>1 2</td>
<td>256</td>
<td>256 160</td>
<td>160</td>
<td>0</td>
<td>INSR</td>
<td></td>
<td>3/15/83</td>
<td>3/15/83</td>
</tr>
</tbody>
</table>

DATA REVIEWED
- ENG: [DATE]
- QC: [DATE]

ARRADCOM: [DATE]

SYSTEMS & INSTRUMENTS CORPORATION
<table>
<thead>
<tr>
<th>STA</th>
<th>ASSY</th>
<th>DESCRIPTION</th>
<th>LOT #</th>
<th>QTY MADE</th>
<th>QTY SAMPLED</th>
<th>QTY ACCEPT</th>
<th>QTY REJECT</th>
<th>MFG/INS</th>
<th>SIG</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>KD90834-1</td>
<td>HOUS ING, PIN & CONTACT ASSY</td>
<td>1 2 3</td>
<td>54 108 129</td>
<td>38 20 38 20</td>
<td>54 108 129</td>
<td>0 0 0</td>
<td>MFG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>KD90834-2</td>
<td>INSPECTION</td>
<td>1 2 3</td>
<td>↓↓↓↓</td>
<td>↓↓↓↓</td>
<td>↓↓↓↓</td>
<td>↓↓↓↓</td>
<td>INSP.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>KD90852-2</td>
<td>STK MPSA INTO HOUSING</td>
<td>NON APLICABLE REV B</td>
<td>MFG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>KD90852-2</td>
<td>POWER SUPPLY COVER ASSY.</td>
<td>1 2</td>
<td>150 110</td>
<td>MFG !</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>KD90852-2</td>
<td>INSPECTION</td>
<td>NON APLICABLE</td>
<td>INSP.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>KD90852-2</td>
<td>ALIGN & SWAGE PWR SUPP, CVR</td>
<td>1 2</td>
<td>126 0</td>
<td>MFG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>KD90852-2</td>
<td>M.P.S. ASSY. ENCAPSULATION</td>
<td>1 2</td>
<td>54 108</td>
<td>MFG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>KD90852-3</td>
<td>MOLDED ASSY, ACCEPT. TEST</td>
<td>1 2</td>
<td>54 108</td>
<td>51 99</td>
<td>3 9</td>
<td>INSP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>KC90827</td>
<td>PART OF REAR BEARING PLATE</td>
<td>1</td>
<td>880</td>
<td>MFG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>KF90853-1</td>
<td>INSPI, ARMING TIMING TEST INSPECTION</td>
<td>1</td>
<td>51 51 33</td>
<td>51 33 30 20</td>
<td>51 99</td>
<td>INSP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>KB90824-1</td>
<td>DRAG SENSOR WEIGHT ASSY. Inspection</td>
<td>1</td>
<td>54 54</td>
<td>54 0</td>
<td>0</td>
<td>INSP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>KF90853-2</td>
<td>HOUSING & MECHANISM ASSY. Inspection</td>
<td>1</td>
<td>50 50</td>
<td>50 0</td>
<td>0</td>
<td>INSP.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATA REVIEWED BY ENG QC ARRADCOM ARRADCOM REP

BSIC DATE DATE

ARRADCOM REP DATE

BULOVA SYSTEM & INSTRUMENTS CORPORATION VALLEY STREAM, NEW YORK
APPENDIX O
SAMPLE DATA COLLECTION FORM
PART B
<table>
<thead>
<tr>
<th>Operation</th>
<th>Start Time of Shift</th>
<th>End Time of Shift</th>
<th>Duration</th>
<th>Start</th>
<th>Load</th>
<th>Process</th>
<th>Reheat</th>
<th>End</th>
<th>Load</th>
<th>Process</th>
<th>Reheat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8:00 AM</td>
<td>4:45 PM</td>
<td></td>
<td>8:05</td>
<td>8:12</td>
<td>8:21</td>
<td>8:28</td>
<td>9:10</td>
<td>9:55</td>
<td>10:00</td>
<td>11:44</td>
</tr>
</tbody>
</table>

Note: This is a sample. Inspection reports on stations 10 through 23 available on request.
APPENDIX P
DEMONSTRATION TEST PLAN
DEMONSTRATION TEST PLAN

CDRL ITEM A013

Manufacturing, Methods & Technology
relating to the
Magnetic Power Supply Assembly
of the
M509A2E1 Base Detonating Element

Submitted to:
U. S. Army Armament R & D Command
Dover, N.J. 07801
Attn: DRDAR-QAR-E

BULOVA SYSTEMS & INSTRUMENTS CORPORATION

6 Sept. 1983
Project 330
Revision B
SUBJECT

DEMONSTRATION TEST PLAN

CDRL Item A013

PREPARED BY: M. Moskowitz

APPROVED BY: S. B. Schulman

APPROVED BY: _______________________________
Demonstration Test Plan

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Objective of the Demonstration Test</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>Major Assemblies to be Tested</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>Identification of Equipment Required and Description of Set-up</td>
<td>2</td>
</tr>
<tr>
<td>4.0</td>
<td>Sequence of Assembly Procedures</td>
<td>6</td>
</tr>
<tr>
<td>5.0</td>
<td>Assembly Station Layouts</td>
<td>6</td>
</tr>
<tr>
<td>6.0</td>
<td>Bench Layouts</td>
<td>6</td>
</tr>
<tr>
<td>7.0</td>
<td>Floor Plan</td>
<td>6</td>
</tr>
<tr>
<td>8.0</td>
<td>Test Data Collection</td>
<td>9</td>
</tr>
<tr>
<td>9.0</td>
<td>Criteria for Acceptance</td>
<td>9</td>
</tr>
<tr>
<td>10.0</td>
<td>Demonstration Procedures</td>
<td>9</td>
</tr>
<tr>
<td>11.0</td>
<td>Demonstration Test Schedule</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Appendix A- Assembly Station Layouts</td>
<td>A1 - A33</td>
</tr>
<tr>
<td></td>
<td>Appendix B- Inspection Instruction Cards</td>
<td>B1 - B13</td>
</tr>
</tbody>
</table>
1.0 Objective of the Demonstration Test

The objective of this test is to demonstrate pilot assembly, inspection, and test equipment operation of the Magnetic Power Supply equipment. This equipment was designed to support a monthly production rate of 10,000 units on a single shift, 8 hour day, 5 days a week basis. This is to be performed in conjunction with the assembly line available for the M509A2E1 Fuze.

2.0 Major Assemblies to be Assembled and Tested

<table>
<thead>
<tr>
<th>ASSY. STATION #</th>
<th>ASSY. PART #</th>
<th>DESCRIPTION OF ASSEMBLY</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>KD90830</td>
<td>SETBACK GENERATOR ASSY.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>KF90839</td>
<td>MAGNETIC POWER SUPPLY ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>KD90852-1</td>
<td>HOUSING, MOLDED ASSEMBLY</td>
<td></td>
</tr>
</tbody>
</table>
3.0 IDENTIFICATION OF EQUIPMENT REQUIRED AND DESCRIPTION OF SET-UP

<table>
<thead>
<tr>
<th>ASSY STA NO.</th>
<th>TOOL NUMBER</th>
<th>TOOL DESCRIPTION</th>
<th>SET-UP DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>273-19006</td>
<td>Air Press W/Sl'd'g Anvil Fixt.</td>
<td>Install (2) Terminal in Bobbin</td>
</tr>
<tr>
<td>1</td>
<td>273-60009</td>
<td>Pin Pull Out Tester</td>
<td>Pull Test (2) Terminals Installed in Bobbin</td>
</tr>
<tr>
<td>2</td>
<td>BW-157349</td>
<td>Modified Bulova Production Type Coil Winding Machine & Wire Tensioning Devices</td>
<td>Wind Coil Assembly of Setback Generator Assy Control Wire Feed to Winding Machine</td>
</tr>
<tr>
<td>2</td>
<td>273-19008</td>
<td>Tray Peg Board</td>
<td>Storage Tray for Coil Assy</td>
</tr>
<tr>
<td>2</td>
<td>273-19007</td>
<td>Holding Fixture</td>
<td>Support and Rotate Coil Assy During Application of Tape</td>
</tr>
<tr>
<td>3</td>
<td>BW-158862</td>
<td>Bulova-Resistance Welding Machine</td>
<td>Power Pack, Remote Control and Welding Head</td>
</tr>
<tr>
<td>3</td>
<td>273-19010</td>
<td>Modified Electrodes</td>
<td>Special Welding Electrodes</td>
</tr>
<tr>
<td>3</td>
<td>273-19011</td>
<td>Welding Fixture Indexing -2 Positions</td>
<td>Fixture to Position Assy for Welding</td>
</tr>
<tr>
<td>3</td>
<td>273-60007</td>
<td>Weld Test Fixture</td>
<td>To Measure Weld Strength</td>
</tr>
<tr>
<td>3</td>
<td>273-60004</td>
<td>Continuity Tester</td>
<td>V.O.M. and Interface Fixt.</td>
</tr>
<tr>
<td>3</td>
<td>273-60010</td>
<td>Polarization Tester</td>
<td>Validates Direction of Coil Winding & Start Lead of Winding</td>
</tr>
<tr>
<td>4</td>
<td>273-19013</td>
<td>Air Cylr. and Press-in Fixt.</td>
<td>Press Fit Armature Plate into Armature Body</td>
</tr>
<tr>
<td>4</td>
<td>273-19014</td>
<td>Tray, Storage</td>
<td>For Armature Sub Assy</td>
</tr>
<tr>
<td>5</td>
<td>273-19015</td>
<td>Air Cylr and Press-in Fixt.</td>
<td>Press Fit Shearing Plt. into Generator Cover</td>
</tr>
<tr>
<td>6</td>
<td>273-19016</td>
<td>Air Cylr and Press-in Fixt.</td>
<td>Press Fit Cover Sub Assy into Arm. Sub Assy</td>
</tr>
<tr>
<td>6</td>
<td>273-19017</td>
<td>Air Press and Tooling 139</td>
<td>Swage Body of Armature 360° Around Cover Sub-Assy</td>
</tr>
<tr>
<td>ASSY STA NO.</td>
<td>TOOL NUMBER</td>
<td>TOOL DESCRIPTION</td>
<td>SET-UP DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>273-60006</td>
<td>Setback Generator</td>
<td>Measures Generator R, L and Insulation Resistance.</td>
</tr>
<tr>
<td></td>
<td>273-60002</td>
<td>Final Assy Tester</td>
<td>Contains Tools 273-60002, 60003, 60008 and Interface Fixture.</td>
</tr>
<tr>
<td></td>
<td>273-60003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>273-60008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>273-19001</td>
<td>Magnetic Charger</td>
<td>Charge Magnet of Setback Generator Assy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charging Fixt. and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charging Tray</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>273-60001</td>
<td>Gaussmeter and Holding</td>
<td>Measures Leakage Flux of Magnetically Charged Generator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixture W/ Probe Built In</td>
<td>Assay</td>
</tr>
<tr>
<td>9</td>
<td>273-19009</td>
<td>Crimping Tool- "Automator"</td>
<td>Crimp Contact Wire in Switch Terminal</td>
</tr>
<tr>
<td>9</td>
<td>273-19018</td>
<td>Tray Storage</td>
<td>Storage Tray</td>
</tr>
<tr>
<td>11</td>
<td>273-19019</td>
<td>Press-In Fixture W/Horizontal Slide Lever</td>
<td>Press-In (1) S2 Switch Contact in S2 Housing</td>
</tr>
<tr>
<td>10</td>
<td>273-19020</td>
<td>Staking Tool Automator</td>
<td>Stake Movable S2 Switch Contact to P.C. Board</td>
</tr>
<tr>
<td>10</td>
<td>273-19022</td>
<td>Press-In Fixture "Potence"</td>
<td>Press-In Connector Jack to P.C. Board</td>
</tr>
<tr>
<td>12A</td>
<td>273-19004</td>
<td>Axial Lead Component Forming System</td>
<td>Heller Leadmaster H-116A and Custom Dies. Forming Component Leads of R1, R2, D1 and S4</td>
</tr>
<tr>
<td>12B</td>
<td>273-19005</td>
<td>Radial Lead Component Forming System</td>
<td>Heller Radial Component Former RD-70C and Custom Die For Capacitor C1</td>
</tr>
<tr>
<td>13</td>
<td>331-19005</td>
<td>Assembly Holding Fixture</td>
<td>Holder P.C. Board Carrier during Assy</td>
</tr>
<tr>
<td>14</td>
<td>331-19006</td>
<td>Assembly Fixture P.C. Board Carrier</td>
<td>Fixture to Hold P.C. Board Carrier while Applying Spot Mask & Dress Leads</td>
</tr>
<tr>
<td>ASSY STA NO.</td>
<td>TOOL NUMBER</td>
<td>TOOL DESCRIPTION</td>
<td>SET-UP DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>15</td>
<td>331-19002</td>
<td>P. C. Board Cleaning Machine</td>
<td>Hollis Ultra-Clean Cleans PC Board Carriers after Soldering</td>
</tr>
<tr>
<td>15</td>
<td>331-19007</td>
<td>Slide-Wavesoldering Machine</td>
<td>Soldered P. C. Carrier Slide From Soldering Machine Output End to Work Table</td>
</tr>
<tr>
<td>15</td>
<td>331-19008</td>
<td>Storage Container -Stiffeners</td>
<td>Storage container for P. C. Carrier Stiffeners</td>
</tr>
<tr>
<td>15</td>
<td>331-19009</td>
<td>P. C. Board Removal Tool</td>
<td>Remove Individual P. C. Boards from P. C. Board Carriers</td>
</tr>
<tr>
<td>15</td>
<td>331-19010</td>
<td>Soldering Fixture for S2 Switch</td>
<td>Fixture for Hand Soldering S2 Switch Assy</td>
</tr>
<tr>
<td>15</td>
<td>331-19011</td>
<td>Alignment Fixt. for S4 Impact Switch</td>
<td>Perpendicularity Alignment Fixt. for S4 Impact Switch</td>
</tr>
<tr>
<td>15</td>
<td>331-19012</td>
<td>Modified Cleaning Machine P. C. Board Basket</td>
<td>Modified Cleaning Machine Basket to Hold P. C. Board Carriers during Cleaning Operation</td>
</tr>
<tr>
<td>15</td>
<td>273-19021</td>
<td>Tray Storage</td>
<td>Storage Tray for Individual P. C. Board Assemblies</td>
</tr>
<tr>
<td>16</td>
<td>273-19027</td>
<td>Staking Tool "Automator"</td>
<td>Stake GND Wire in Rotor Housing</td>
</tr>
<tr>
<td>17</td>
<td>273-19028</td>
<td>Staking Tool Air Press</td>
<td>Stake P. C. Board (M. P. S.) in Housing Assy</td>
</tr>
<tr>
<td>18</td>
<td>273-19030</td>
<td>Press-In Fixture Probe Grommets in Power Supply Cover</td>
<td>Install (4) Grommets in Power Supply Cover</td>
</tr>
<tr>
<td>18</td>
<td>273-19031</td>
<td>Press-In Fixture Shell Receptacle</td>
<td>Installed Shell Receptacle in Power Supply Cover</td>
</tr>
<tr>
<td>ASSY STA NO.</td>
<td>TOOL NUMBER</td>
<td>TOOL DESCRIPTION</td>
<td>SET-UP DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>19</td>
<td>273-19032</td>
<td>Swaging Tool</td>
<td>Swage P.S. Cover to Rotor Housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.S. Cover to Rotor Housing</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>273-19034</td>
<td>Tray-Storage</td>
<td>Storage Tray</td>
</tr>
<tr>
<td>20</td>
<td>331-19013</td>
<td>Encapsulation Holding Fixt. for Rotor Housing</td>
<td>Holding Fixture for Rotor Housing during Encapsulation of Magnetic Power Supply</td>
</tr>
<tr>
<td>20</td>
<td>331-19001</td>
<td>Encapsulant Dispensing Device</td>
<td>Dispenses predetermined qty of Encapsulating Material Repeatedly</td>
</tr>
<tr>
<td>21</td>
<td>273-60005-002</td>
<td>Acceptance Test Console - Magnetic Power Supply Assy</td>
<td>Electrical Check Out of Magnetic Power Supply Assembly after Encapsulation Computer Evaluated W/Print Out</td>
</tr>
<tr>
<td>22</td>
<td>273-19035</td>
<td>Radial Riveting Machine and Fixture</td>
<td>Install (2) Leaf Pins in Rear Bearing Bridge Plate Assembly</td>
</tr>
<tr>
<td>23</td>
<td>331-60001</td>
<td>Acceptance Test Console Arming Time Test</td>
<td>Arming Time Test Computer Evaluated W/Print Out - Housing and Mechanism Assy.</td>
</tr>
</tbody>
</table>
4.0 Sequence Of Assembly Procedures
The flow of major assemblies through the manufacturing sequence is depicted in the chart KB90840 on page 7. A total of 23 assembly stations have been planned. The assembly and inspection stations designed for this project are bench type, aided - assembly fixtures, which are consistent with the desired production rate.

5.0 Assembly Station Layouts
Each of the 23 assembly stations are described in detail on the Assembly Station Layouts, pages A1 to A33. The arrangement of the work station is shown, together with a description of the operation. The applicable operation sheet is noted as well as the tooling used at the station and a listing of the input parts required to feed the station.

6.0 Bench Layouts
The floor space requirements for the individual stations are shown on Page 8. A total area not to exceed 1,500 sq. ft. is indicated using 5 ft. benches.

7.0 Floor Plan
An arrangement of the work stations to form a potential assembly line configuration is shown on Page 8. The locations indicated may not reflect the current or final locations of the equipment. Bulova Systems & Instruments Corporation is presently rearranging the entire Valley Stream plant subsequent to the transfer of metal fabrication to the Freeport plant.
8.0 Test Data Collection
Data will be collected using the form and instructions furnished by the U. S. Government as shown on pages 12 and 13, and other Bulova forms where appropriate. The Industrial Engineer shall be responsible for the entries on the data sheet and the calculation of the actual operating rate. The Quality Control Department will assure adherence to specification requirements by inspecting material in accordance with the Inspection Instruction Cards.

9.0 Criteria for Acceptance
The Assembly Flow Chart, KR90840, page 7 identifies those assembly stations whose output is subject to inspection. Where required, inspection will be conducted in accordance with the Inspection Instruction Card. Acceptance criteria shall be in accordance with the applicable drawing and Inspection Instruction Card. A further evaluation will be made by a Quality Control Engineer, together with the Project Engineer, to determine the repairable/scrap status of any non-conforming units. In no event shall the scrap rate exceed 10%.

10.0 Test Procedures
The general procedures for all assembly or inspection stations are given below.
1. The station operator will be from the Bulova hourly workforce assigned to that area, where feasible.
2. The operator shall have had a minimum of 8 hours instruction and/or operating time for the station under test, where feasible.
3. The material required for the test will be at the station prior to the start of the test. All the relevant piece part inspection sheets and identifiers will be recorded on the data sheet.
4. The test will be under the control of the Assembly Group Leader, the only person who will issue instructions to the operator and inform the test data recorder of specific reasons for stopping (if not obvious). The test data will be recorded by the Industrial Engineer Inspector.

5. Prior to the start of any test, a minimum of three assemblies/test units will be run through the station and inspected to verify that the station is operating properly, where applicable.

6. The participants from ARRADCOM shall receive a 3 working day minimum notice prior to the start of any test.

7. Testing of assembly/inspection stations will be handled as expeditiously as possible. First piece inspection will be followed by batch inspection conducted concurrently as far as is feasible.

8. A fifteen minute break will be scheduled approximately half way through each 4 hour demonstration. It will not be part of the 4 hour run time. If any unexpected work stoppages occur, the run time will be extended, where feasible, to fulfill the 4 hour run time.

11.0 Demonstration Test Schedule
Demonstration testing will occur in two phases. Phase A will encompass Assembly Stations Nos. 1 through 8 which will utilize 11 bench set-ups. The target starting date for this phase is 20 June 1983 with completion estimated to be 30 June 1983.

Phase B will cover Assembly Stations 9 through 23 which will utilize 20 bench set-ups. The target starting date for this phase is 1 September 1983 with completion estimated to be 21 September 1983.

A final report on the condition of the Demonstration Test will be furnished by 30 September 1983.
INSTRUCTIONS FOR COMPLETING DATA COLLECTION FORM

1. Enter name of production facility.
2. Print or type data collector’s name in box in lower right corner of sheet, leaving space for signature.
3. Enter station number or operation that the station performs. Only one station per data sheet.
4. Enter page number and total number of pages for the station in the format “Page No. ___ of ___.”
5. Enter assigned station number.

When the station is under observation, start up the “Start of Shift” time, to the nearest minute, using Military Time (2400 hr) format, will be recorded. If more than one activation is watched, take care to record each station’s start time on the appropriate data sheet.

(Blocks 7 through 12 are to be completed for each station stoppage following indicated start time.)

6. Enter next date on each data record line used. Start a new sheet each day. A 6-digit format should be used; e.g., 3 February 1980 would be recorded as 030280.
7. Enter the event stop time to the nearest minute, using Military time. (A timing device, such as a stopwatch, should be started immediately to measure precisely the duration of the stoppage.)
8. Enter the appropriate 1-digit event code selected from the list of codes provided at the bottom of the form.
9. After the station is restored to an operating condition, enter the duration of downtime time in minutes and seconds.
10. Enter remarks which clearly describe reason for station stoppage unless an equipment failure code (see Block 12) is applicable, in which case this block need not be completed. It is important that stoppages for the same reason result in this block being completed in a consistent manner. The entry in this block is limited to 47 alphanumeric characters including blanks.
11. If number of maintenance personnel required to restore station to operation exceeds one (1), enter number utilized.
12. If the stoppage is the result of an equipment failure requiring corrective maintenance (Event Code 5) and a previously defined 3-digit failure code describes the mode of failure, the failure code is entered.
13. At least two times a shift the actual production rate should be measured while the machine is experiencing uninterrupted operation. The rate should be measured over a period of several (3-10) minutes and averaged to get the “per minute” rate. All rate measurements must be averaged to compute an average rate for the shift. The average rate is recorded in this block.
14. Enter the End of Shift time to the nearest minute in Military Time. If the End of Shift (Event Code 4) occurs during the day data is being gathered, it is the time which is recorded in this block. Under any circumstances, the time recorded in this block is the last time the station ceased the shift. In the latter case, the time of day maintenance personnel arrive or depart is recorded.
15. Enter the total number of units processed during the shift whether it be in pounds or parts.
16. Indicate whether the entry in Block 16 is in pounds or parts. If another unit is applicable, e.g., ton, enter the term in square brackets.
17. Enter the number of acceptable (conforming or non-defective) units, parts, pounds, or pounds processed during the shift.
18. Enter the sum of the number of rejects which occurred during the shift. This includes repairs that are repairable and non-repairable (scrapped) rejects.
19. Sign completed data forms at the end of the shift and turn in to an individual responsible for gathering the data.

148
<table>
<thead>
<tr>
<th>INSTALLATION</th>
<th>DATA COLLECTION</th>
<th>NO. UNITS PRODUCED</th>
<th>POUNDS</th>
<th>PARTS</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPERATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATION NO.</th>
<th>START TIME OF SHIFT</th>
<th>END TIME OF SHIFT</th>
<th>RATE</th>
<th>ACCEPT</th>
<th>REJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>EVENT TIME</th>
<th>EVENT CODE</th>
<th>DURATION</th>
<th>REMARKS</th>
<th>EQUIPMENT FAILURE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVENT CODES:
1. END OF SHIFT
2. BREAK/LUNCH
3. CORRECTIVE MAINTENANCE
4. END OF TEST
5. EVENTIVE MAINTENANCE
6. ADMINISTRATIVE (STATE REASON)
7. ARADCOM RESERVED
8. OPERATIONAL DOWNTIME (TOOL CHANGE)

SIGNATURE

TYPE NAME
DEMONSTRATION PROCEDURE

ASSEMBLY STATION NO.1

1.0 ASSEMBLY DESCRIPTION

2.0 INSPECTION DESCRIPTION

Inspector checks first three (3) pieces from operator in accordance with Inspection Instruction Card. The inspector will use Tool No. 273-60009 to pull test 2 pins inserted in flange of Bobbin. If satisfactory, each completed lot will be inspected in accordance with the AQI of the Inspection Instruction Card. All results shall be recorded on data sheet.

3.0 ANTICIPATED ASSEMBLY RATE - 120/HOUR

4.0 RUN PLAN

Run to complete four lots of approximately 120 pieces per lot. This should take approximately four hours.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 2

1.0 ASSEMBLY DESCRIPTION

Operator installs 4 Bobbin assemblies into each of the two turrets of the coil winding machine, Tool No. 273-19002. Operator wraps wire around posts and starts coil winding on completion of coil winding at this station. The wire tension is controlled by tension device, Tool No. 273-19003. Operator advances turrets to next location and repeats operation. Operator removes completed coil assemblies, cutting leads approx. 2" from bobbin and reloads stations with new bobbin assemblies.

2nd Operator takes coil assemblies and places them into a holding fixture, Tool No. 273-19007, to rotate coil assemblies while applying tape to outside diameter of coil. On completion, this operator will chemically strip insulation from lead wires from coil. Operator places completed assemblies in tray, Tool No. 273-19008.

2.0 INSPECTION DESCRIPTION

No inspection will be conducted at this station.

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN

Run continuously for a 4 hour period to manufacture approximately 260 assemblies.
DEMONSTRATION PROCEDURE

ASSEMBLY STATION NO. 3

1.0 ASSEMBLY DESCRIPTION

Operator obtains Coil Assembly and winds the start and finish leads around designated areas on their respective terminal posts. The Coil Assembly is positioned on the indexing fixture - 2 position, Tool No. 273-19011, of the Bulova-resistance welding machine, Tool No. BW-158862. The special welding electrodes, Tool No. 273-19010 is engaged and positioned. Operator welds one terminal post; then the other. The Coil Assembly is removed from the welding machine and returned to same storage tray, Tool No. 273-19008, in which it arrived.

2.0 INSPECTION DESCRIPTION

Inspector checks first (3) pieces from operator in accordance with the Inspection Instruction Card. Inspector checks the validity of the welds using the weld test fixture, Tool No. 273-60007, continuity of the Coil Assembly using continuity tester, Tool No. 273-60004, and direction of winding and start lead of winding using polarization tester, Tool No. 273-60010. If satisfactory, operator continues. At conclusion of lot run, assemblies are inspected in accordance with AQL of the Inspection Instruction Card and results recorded on data sheet.

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN

Run to complete 2 lots of approximately 130 pieces per lot. It is anticipated that this will take approximately 4 hours.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 4

1.0 ASSEMBLY DESCRIPTION

Operator places Armature Plate over the three protruding pins of the Bobbin Assembly and lowers this assembly into the lower nest of Tool No. 273-19013.

The operator then places the Armature Body over the assembly and rotates the Body until it is located in proper position to clear the three recessed tabs.

Operator actuates tool to press plate into position in Armature Body. Operator removes assembly from nest and then installs two insulating sleeves into position over pins.

Operator then installs magnet into the central cavity of the assembly; then places assembly into storage tray, Tool No. 273-19014.

2.0 INSPECTION DESCRIPTION

No inspection will be conducted at this station.

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN

Run continuously for a four-hour period to manufacture approximately 260 assemblies.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 5

1.0 ASSEMBLY DESCRIPTION

Operator places the Generator Cover into the nest of the fixture, Tool No. 273-19015, then obtains (1) Shearing Plate from part container with tweezers and places in position on Cover.

Operator actuates tool to press Shearing Plate into position. Operator removes assembly from nest and places into tray.

2.0 INSPECTION DESCRIPTION

No inspection will be conducted at this station.

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN

Run continuously for a four-hour period to manufacture approximately 260 assemblies.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 6

1.0 ASSEMBLY DESCRIPTION

Operator places assembly of Armature Body into nest of fixture.

Operator assembles the Shear Disc onto the protruding locating pin and the (2) Terminal pins, and lowers into position.

Operator places the Cover Subassembly into the Armature, using Tool No. 273-19016 to press into position.

Operator actuates swaging fixture, Tool No. 273-19017, to swage edge of Armature over cover. Operator removes completed assemblies and places them into tray.

2.0 INSPECTION DESCRIPTION

No inspection will be conducted at this station.

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN

Run continuously for a four-hour period to manufacture approximately 260 assemblies.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 7

1.0 INSPECTION DESCRIPTION

Inspector obtains a completed Setback Generator from storage tray supplied by Station No. 6 and inspects it in the fixture of the final assembly tester of the Setback Generator tester, Tool No. 273-60006. The inspector activates the tester to measure resistance, inductance, and insulation resistance (Hi-Pot) - terminal post to armature case. If satisfactory results are obtained for the first (3) units, testing will continue in accordance with the AQL of the Inspection Instruction Card with results recorded on data sheet. Accepted assemblies will be placed in storage tray for transport to next assembly station.

2.0 ANTICIPATED INSPECTION RATE - 65/HOUR

3.0 RUN PLAN

Inspect continuously for a four-hour period yielding approximately 260 assemblies.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 8

1.0 ASSEMBLY DESCRIPTION
Operator obtains setback generators from storage tray supplied by Station 7 and loads up to (30) of them in charging tray, Tool No. 273-19001. The operator places the loaded charging tray in the charging fixture of the magnetic charger, Tool No. 273-19001, and activates the unit. The charging tray is then unloaded and the charged generators placed in a storage tray for transport to inspection.

2.0 INSPECTION DESCRIPTION
Inspection checks first (3) generator assemblies for specified flux leakage using gaussmeter and holding fixture, Tool No. 273-60001. If satisfactory, operator continues. At conclusion of run, assemblies are inspected in accordance with AQL of Inspection Instruction Card and results recorded on data sheet.

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN
Run to complete 2 lots of approximately 130 each. It is anticipated that this will take approximately 4 hours.

NOTE: The generators would normally be completed by installing a foil disc over the central hole. This operation will be conducted after the successful completion of the Pneumatic leakage test; not part of the M.M. & T. Program.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 9

1.0 ASSEMBLY DESCRIPTION

2.0 INSPECTION DESCRIPTION
Inspector checks first (3) pieces from operator in accordance with the Inspection Instruction Card. If satisfactory, operator continues. At conclusion of each lot, assemblies are inspected in accordance with the AQL of the Inspection Instruction Card. All results are recorded on data sheet.

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN
Run to complete 2 lots of approximately 130 assemblies per lot. It is anticipated that this will take approximately 4 hours.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 10

1.0 ASSEMBLY DESCRIPTION

Operator installs S2 Contact Assembly into its mounting hole and solders into position. Operator then places S2 Switch Housing Assy. into position and heat stakes its (3) legs to P.C. Board.

Operator locates Jack connector into its mounting holes and presses into position using Tool No. 273-19022. Completed assemblies to be placed in P.C. Board carrier storage rack, Tool No. 331-19004.

2.0 INSPECTION DESCRIPTION

Inspection checks first (3) pieces from the operator in accordance with the Inspection Instruction Card. If satisfactory, each completed lot will be inspected in accordance with the AQL of the Inspection Instruction Card and the results recorded on the data sheet.

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN

Run continuously to manufacture approximately 2 lots of approximately 130 per lot. It is anticipated that this will take approximately 4 hours.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 11

1.0 ASSEMBLY DESCRIPTION

Operator places S2 Switch Housing in nest in Tool No. 273-19019. Operator places (1) Wire Contact into location in Tool.

Operator activates tool and inserts Contact into Housing.

Operator places completed assembly into tray.

2.0 INSPECTION DESCRIPTION

Inspector checks first (3) pieces from the operator in accordance with the Inspection Instruction Card. If satisfactory, each completed lot will be inspected in accordance with the AQL of the Inspection Instruction Card and the results recorded on the data sheet.

3.0 ANTICIPATED ASSEMBLY RATE - 120/HOUR

4.0 RUN PLAN

Run continuously to manufacture approximately 4 lots of approximately 120 per lot. It is anticipated that this will take approximately 4 hours.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 12A
(SEE NOTE AT BOTTOM)

1.0 ASSEMBLY DESCRIPTION

Operator locates Resistors R1 or R2 and fills a supply rack on Machine No. 273-19004.
Operator activates machine to bend the leads of the Resistor and crop the legs to a predetermined length.
Operator places completed Resistors into a plastic stack bin.

2.0 INSPECTION DESCRIPTION

No inspection is required at this operation.

3.0 ANTICIPATED ASSEMBLY RATE - 480/HOUR

4.0 RUN PLAN

Run continuously for a one-hour period to manufacture 480 parts.

NOTE: Resistor R1 or R2 will be demonstrated; the machine can be reset to handle the Diode D1 and the Impact Switch S4.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 12B

1.0 ASSEMBLY DESCRIPTION
Operator locates Capacitors into nest in Machine No. 273-19005.
Operator actuates machine to cut Capacitor leads at approximately .10 from body of Capacitor. Operator places completed Capacitors into a plastic stack bin.

2.0 INSPECTION DESCRIPTION
No inspection is required at this operation.

3.0 ANTICIPATED ASSEMBLY RATE - 480/HOUR

4.0 RUN PLAN
Run continuously for a one-hour period to manufacture 480 parts.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 13

1.0 ASSEMBLY DESCRIPTION

 The operator will install the P. C. Board Carrier assembly into the Assembly Holding Fixture, Tool No. 331-19005.

 The operator will then install the following components into the marked locations on the P.C.Board. All the components will be handled using finger cots, tweezers, or needle-nosed pliers.

 Components to be installed are:
 1 Resistor R1
 1 Diode D1
 1 Capacitor C1
 4 Jack, Pin

 The P.C.Board Carrier Assemblies will stay in the Holding Fixture and proceed to next assembly station.

2.0 INSPECTION DESCRIPTION

 No inspection is required at this operation.

3.0 ANTICIPATED ASSEMBLY RATE - 8 P.C.Bd. CARRIER ASSEMBLIES/HOUR

4.0 RUN PLAN

 Assembly will continue for a four-hour period to complete approximately 32 P.C. Board Carrier Assemblies.
1.0 ASSEMBLY DESCRIPTION

The operator will remove the P.C.Board Carrier Assembly from the Assembly Holding Fixture, Tool No. 331-19005, and mount them in the Fixture, Tool No. 331-19006.

Operator will mask P.C. Boards in accordance with the model supplied by Engineering. Any final positioning of electrical components will be carried out and lead legs will be dressed if necessary.

The completed Boards will now be transferred from the Fixture, Tool No. 331-19006 into the P.C.Board Carrier Rack, Tool No. 331-19004. Transport filled rack to next station No. 15A.

2.0 INSPECTION DESCRIPTION

No inspection is required at this operation.

3.0 ANTICIPATED ASSEMBLY RATE - 8 P.C.BOARD CARRIER ASSEMBLIES/HOUR

4.0 RUN PLAN

The operation will be continued for 4 hours or until all available components have been utilized to assemble 32 P.C.Board Carrier Assemblies.

NOTE: Assembly stations 13 and 14 may be combined and run at a single work station by one operator if circumstances at rehearsals/demonstration suggest this would better serve the purpose.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 15

1.0 ASSEMBLY DESCRIPTION

The operator removes a P.C.Board Carrier Assembly from the storage rack, Tool No. 331-19004, and obtains (2) stiffeners from container, Tool No. 331-19008; then installs one stiffener each on front and rear of carrier assembly. Operator feeds carrier assembly into finger conveyor system of wavesoldering machine, Tool No. 331-19003. P.C.Board Carrier Assembly exits from the end of the conveyor onto a slide and comes to rest on the workbench. The operator removes the stiffeners from the carrier assembly and accumulates them for return to the input workbench for reuse.

The soldered carrier assemblies are placed in the cleaning machine's modified basket, Tool No. 331-19012, until the basket is filled. Additional carrier assemblies awaiting the cleaning process are temporarily stored in an additional storage rack, Tool No. 331-19004. The filled cleaning machine basket is lowered into the cleaning machine, Tool No. 331-19002, and cleaned.

After cleaning, the operator removes the filled cleaning basket from the machine. Operator then removes the P.C. Board Carrier Assemblies and places them in an additional storage rack, Tool No. 331-19004. The empty basket is returned to the input workbench of the cleaning station for reuse.

The operator removes the cleaned P.C. Board Carrier Assemblies, and using the P.C.Board removal tool, Tool No. 331-19009, removes each of the individual P.C.Board Assemblies from each carrier. Confor 166 coat Diode Dl and Capacitor Cl in
accordance with assembly drawing KF90839.

The operator examines component lead dress and installs Setback Generator Assembly XD90830. The operator places the P.C. Board Assembly in storage tray, Tool No. 273-19021, for transport to the Inspection Station.

2.0 INSPECTION DESCRIPTION

Inspection will check the first P.C.Board Carrier Assembly for workmanship and soldering process in accordance with the Inspection Instruction Card. If satisfactory, return the Carrier Assembly to the operator for separation of the (8) individual P.C.Board Assemblies from their carrier and for completion of remaining assembly tasks. The inspector will then complete the remaining inspection requirement on the (8) P.C.Board Assemblies in accordance with AQL of the Inspection Instruction Card. Results shall be recorded on data sheet.

3.0 ANTICIPATED ASSEMBLY RATE - 8 CARRIER ASSEMBLIES/HOUR

4.0 RUN PLAN

The operation will continue for 4 hours, or until 32 Carrier Assemblies have been completed and inspected, and/or all available materials utilized.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 16
SEE NOTE BELOW

1.0 ASSEMBLY DESCRIPTION
Operator places Rotor Housing in nest of Tool No. 273-19027. Operator next secures ground wire, KB90228 for part pin and locates same in position on Rotor Housing, KF90824. Operator actuates tool to stake wire to Rotor Housing. Operator removes sub-assembly from tool. The operator will then cut the ground wire to the specified length and place the assembly in tray for transport to next station.

2.0 INSPECTION DESCRIPTION
Inspector checks first three (3) pieces from operator in accordance with the Inspection Instruction Card. If satisfactory, operator continues. At conclusion of each lot, assemblies are inspected in accordance with the AQL of the Inspection Instruction Card and results recorded on data sheet. (The inspector will be inspecting item 10 of the Inspection Instruction Card only.)

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN
A. Run one lot of 55 Rotor Housing Assemblies (Ref.: P/N KF90824). Identify individually.
B. Run two lots of approximately 100 each Rotor Housing Assembly (Ref.: P/N KF90222 - obsolete type).

NOTE: The Rotor Housing will have previously been assembled with the following parts:
- 90° Contact Assembly #KD90219
- Pin Housing #KB90119
- Sleeving Insulation 168 #MIL-I-22129
and the 90° Contact Assembly will have been prepotted in position.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 17

1.0 ASSEMBLY DESCRIPTION

Operator obtains Power Supply Assembly from storage tray (Ref: Assembly Station No. 15E). Operator obtains quantity of prepared encapsulation material from Assembly Station No. 21 on an as-required basis. Operator applies a bead of this encapsulation material to the flange of the S2 Switch Housing to provide sealing at the Rotor Housing interface.

Operator then aligns the 2 pin jacks with the ground wire and 90° contact in the Pin and Contact, Housing Assembly, KD90834-1. Operator inserts Power Supply Assembly in the Housing Assembly, mating the two connectors. Operator places assembly in Tool No. 273-19028 and stakes P.C. Board into the Housing Assembly in four places. Units are then set aside to allow the encapsulation sealant to set.

2.0 INSPECTION DESCRIPTION

Inspector checks first (3) pieces from operator in accordance with items 1 & 10 of the Inspection Instruction Card. If satisfactory, operator continues. At conclusion of each lot, assemblies are inspected in accordance with the AQL of the Inspection Instruction Card and results recorded on data sheet.

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN

Run one lot of 55 Housing Assemblies and then two lots of approximately 100 each Housing Assemblies. This should take approximately four hours.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 18

1.0 ASSEMBLY DESCRIPTION

2.0 INSPECTION DESCRIPTION
Inspector checks first (3) pieces from operator in accordance with the Inspection Instruction Card, Item 1 only. If satisfactory, operator continues. At conclusion of each lot, assemblies are inspected in accordance with AQL of the Inspection Instruction card and results recorded on data sheet.

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN
Run continuously for a four-hour period to manufacture 3 lots of approximately 85 assemblies per lot.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 19

1.0 ASSEMBLY DESCRIPTION

Operator secures Housing Subassembly from Assembly Station 17 and Power Supply Cover Subassembly from Assembly Station 18. Operator aligns and locates Cover Subassembly on Housing Subassembly and places same in Tool No. 273-19032. Operator actuates tool to swage Cover Subassembly to Housing Subassembly. Operator removes assembly from tool and places in storage tray, Tool No. 273-19034.

2.0 INSPECTION DESCRIPTION

 No inspection at this station

3.0 ANTICIPATED ASSEMBLY RATE - 65/HOUR

4.0 RUN PLAN

 Run continuously for a four-hour period to manufacture approximately 260 assemblies.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 20
SEE NOTE BELOW

1.0 ASSEMBLY DESCRIPTION
Operator obtains semi-completed Molded Housing Assemblies from storage trays supplied by Assembly Station No. 19 on an as-required basis. Operator performs pre-encapsulation preparations on Rotor Housing and installs same in holding fixture, Tool No. 331-19013. The operator obtains the encapsulating material, resin and hardener, and proceeds to proportion, mix, de-air, and fill encapsulating material dispensing device, Tool No. 331-19001, in accordance with encapsulating process. The operator completes encapsulation of the Molded Housing Assembly and allows to cure. The operator removes assembly from holding fixture and all assembly/process aides. The completed Molded Housing Assemblies are placed in storage tray. The assemblies will then be machined to add slot cut per drawing, but not as part of this demonstration.

2.0 INSPECTION DESCRIPTION
Inspector checks first (3) assemblies from the operator in accordance with the Inspection Instruction Card. If satisfactory, operator continues. At conclusion of each lot, assemblies are inspected in accordance with the AQL of the Inspection Instruction Card and results are recorded on data sheet.

3.0 ANTICIPATED ASSEMBLY RATE - 25/HOUR

4.0 RUN PLAN
Run to complete one lot of 55 assemblies and two lots of approximately 50 ea. assemblies. This should take approximately four hours.

NOTE: Pre-encapsulation preparation requires two operators for approximately four hours.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 21

1.0 INSPECTION PROCEDURE

Inspector obtains Molded Housing Assemblies as required from storage tray supplied by Station No. 20. Inspector loads (2) assemblies into dual nest fixture of Magnetic Power Supply Assembly acceptance test console, Tool No. 273-60005-002, and activates device. After assembly in nest one is tested, the inspector switches to assembly in nest two and replaces assembly in nest one with new unit to be tested. Accepted units are placed in storage tray for transport to next assembly station. Unsatisfactory units are identified and put aside. If the first (3) assemblies tested are satisfactory, the inspector continues testing in accordance with the AQL of the Inspection Instruction Card and records results on a data sheet. Test console printout shall be secured to data sheet for the first 55 units.

2.0 ANTICIPATED INSPECTION RATE - 35/HOUR

3.0 RUN PLAN

Run continuously for a four-hour period to inspect approximately 140 assemblies. If necessary, certain units can be reinspected to achieve a total run quantity of approximately 140 assemblies.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 22
SEE NOTE BELOW

1.0 ASSEMBLY DESCRIPTION
Operator secures (2) Leaf Pins, KB90823 from part bin with tweezer and places in two holes in nest, 273-19036, of Tool No. 273-19035. Operator next aligns Rear Bearing Plate, KC90673 on nest and actuates to rivet the (2) Leaf Pins into this Rear Bearing Plate. Operator removes Bearing Plate from nest and places in tray.

2.0 INSPECTION DESCRIPTION
No inspection at this station.

3.0 ANTICIPATED ASSEMBLY RATE - 120/HOUR

4.0 RUN PLAN
Run continuously for a four-hour period to manufacture approximately 480 assemblies.

NOTE: If Leaf Pin, KB90823, is not available, Leaf Pin, KB90063, will be substituted. Rear Bearing Plate Assembly containing Leaf Pins, KB90063, will be clearly identified as demonstration material/sub assembly only. THEY CANNOT BE ASSIGNED FOR USE IN DELIVERABLE HARDWARE.
DEMONSTRATION PROCEDURE
ASSEMBLY STATION NO. 23

1.0 INSPECTION PROCEDURE

Inspector obtains Housing and Mechanism Assemblies from storage tray supplied by preceding assembly station on an as-required basis. Inspector installs up to (4) assemblies - one each per nest in the centrifuge, and activates equipment to proceed with test. If the first (3) assemblies test satisfactorily, they are placed in storage tray for accepted assemblies. Inspector will continue testing 100% of all assemblies submitted in accordance with Inspection Instruction Card and record results on data sheet. Any assembly which tests unsatisfactorily shall be identified and set aside with its data sheet for review. Test console printout shall be secured to data sheet for the first 55 units.

2.0 ANTICIPATED INSPECTION RATE - 65/HOUR

3.0 RUN PLAN

Run continuously for a four-hour period to test approximately 260 assemblies. In order to test 260 assemblies, certain assemblies may be recycled as required.
APPENDIX Q
SAMPLE ASSEMBLY STATION LAYOUT
ASSEMBLY STATION LAYOUT

BOBBIN ASSEMBLY
ASSY NO. KD90B25

ASSEMBLY STATION NO. 1
PROCEDURE: INSTALL TWO TERMINAL POSTS INTO BOBBIN

PARTS LIST (QTY PER ASSY)
(1) KD90204 BOBBIN
(2) KD90817 POST, TERMINAL

SPECIAL TOOLS/EQUIPMENT
TOOL NO. 273-19006
TOOLING TO INSTALL (2) TERMINAL POSTS IN BOBBIN ASSY.
TOOL NO. 273-60009
PULL TEST OF (2) PINS Pressed INTO 179 GE OF BOBBIN.

Note: This is a sample. Stations 2 through 22 are available on request.
APPENDIX R
SAMPLE INSPECTION INSTRUCTION CARD
Bobbin Assembly

Project

MM&T (105mm) Proj 330

Reference

Part Name: Bobbin Assembly

Part No.: KC90825

Date:

Rev.: A

<table>
<thead>
<tr>
<th>SEQ. NO.</th>
<th>C/D</th>
<th>A/D</th>
<th>CHARACTERISTICS TO INSPECT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>201</td>
<td>0.65</td>
<td>Workmanship</td>
<td>Visual</td>
</tr>
<tr>
<td>2</td>
<td>301</td>
<td>6.5</td>
<td>Press in as shown (2 Places)</td>
<td>Visual</td>
</tr>
<tr>
<td>3</td>
<td>302</td>
<td>2.3</td>
<td>Pins must withstand a min. pull of 5,000 lbs in direction shown (note 2) non-destructive test.</td>
<td>273-60007</td>
</tr>
</tbody>
</table>

Note: This is a sample. Additional inspection instruction cards available on request.

See: Quality Standards for Instructions

Prepared By:

APPROVED:

Quality Department

Government/Customer

REV. A

BN608-3
DISTRIBUTION LIST

Commander
U.S. Army Armament Munitions and Chemical Command
ATTN: DRSMC-TSS(D) (5)
DRSMC-CCL(D)
DRSMC-LCN-T(D), R. Noble
DRSMC-LCN(D), Dr. T. Davidson
DRSMC-LCN-T(D), A. Nash
DRSMC-LCU-CT(D), W. Joseph
DRSMC-QAR-E(D)
DRSMC-QAR-I(D)
DRSMC-QAT-A(D)
Dover, NJ 07801

Administrator
Defense Technical Information Center
ATTN: Accessions Division (12)
Cameron Station
Alexandria, VA 22314

Director
U.S. Army Materiel Systems Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005

Commander/Director
Chemical Research and Development Center
ATTN: DRSMC-CLJ-L(A)
DRSMC-CLB-PA(A)
Aberdeen Proving Ground, MD 21010

Director
Ballistic Research Laboratory
U.S. ARDC
ATTN: DRSMC-TSB-S(A)
Aberdeen Proving Ground, MD 21005

Chief
Benet Weapons Laboratory
LCWSL, U.S. Armament Research and Development Center
ATTN: DRSMC-LCB-TL(W)
Watervliet, NY 12189

Commander
Headquarters, U.S. Army Armament,
Munitions and Chemical Command
ATTN: DRSMC-LEP-L(R)
DRSMC-IR(R), W. Hyrkas
Rock Island, IL 61299