AN INTEGRAL PREDICTION METHOD FOR THREE-DIMENSIONAL FLOW SEPARATION

DAVID W TAYLOR
NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

T C TAI
MAY 84
AERO-1292

UNCLASSIFIED

DTNSRDC-84/034
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
An integral prediction method for three-dimensional flow separation

by

T. C. Tai

Approved for public release: distribution unlimited

Presented as Paper AIAA-84-0014 at the 22nd Aerospace Sciences Meeting, Reno, Nevada, on 9-12 January 1984

Aviation and Surface Effects Department Research and Development Report

May 1984

DTNSRDC-84/C34
Title: AN INTEGRAL PREDICTION METHOD FOR THREE-DIMENSIONAL FLOW SEPARATION

Author: T. C. Tai

Performing Organization:
David W. Taylor Naval Ship Research and Development Center
Bethesda, Maryland 20084

Report Date: May 1984

Report Number: Aero Report 1292

Abstract: A three-dimensional integral boundary-layer approach is developed and coupled with the streamline method for theoretically determining the vortex-type flow separation. The governing equations are solved in a streamwise system using a power-law profile for the streamwise flow and the Mager profile for the crossflow. The reduced ordinary system is then

(Continued on reverse side)
coupled with the streamline equation and integrated using the fourth-order Runge-Kutta scheme. Cross flow derivatives are evaluated and accounted for during the integration. A prolate spheroid at incidence in an incompressible turbulent flow is considered as a test case. Good comparison between the theory and the experiment has been observed for the case of \(\alpha = 10 \) degrees. For the case of high incidence, the method predicts a qualitative trend but deviated quantitatively due to the large crossflow involved.
TABLE OF CONTENTS

LIST OF FIGURES .. iii
ABSTRACT .. 1
NOMENCLATURE ... 1
INTRODUCTION ... 1
CALCULATION OF VISCOUS STREAMLINES 1
INTEGRAL SOLUTION TO THREE-DIMENSIONAL TURBULENT BOUNDARY LAYERS 2
NUMERICAL INTEGRATION ... 3
RESULTS AND DISCUSSION .. 4
CONCLUDING REMARKS ... 6
REFERENCES .. 6
APPENDIX .. 7
INITIAL DISTRIBUTION .. 8

LIST OF FIGURES

1 - Streamlines in a Boundary Layer 2
2 - Coordinate Systems .. 2
3 - Streamwise Boundary Layer Shape Factor of Flow over a Prolate Spheroid at $\alpha = 10$ Deg and $V_\infty = 45$ m/s ... 4
4 - Streamwise Momentum Thickness of Flow over a Prolate Spheroid at $\alpha = 10$ Deg and $V_\times 45$ m/s ... 4
5 - Streamwise Skin Friction Coefficients of Flow over a Prolate Spheroid at $\alpha = 10$ deg and $V_\infty = 45$ m/s ... 4
6 - Direction of Wall Shear Stress of Flow over a Prolate Spheroid at $\alpha = 10$ deg and $V_\infty = 45$ m/s ... 4
7 - Comparison of Calculated and External Inviscid Streamlines ... 5
8 - Crossflow Velocity Profiles and Resulting Shear Stress Derivatives along Streamline $\eta = 3$ of Flow over a Prolate Spheroid at $\alpha = 10$ deg and $V_\infty = 45$ m/s ... 5
9 - Crossflow Skin Friction Coefficients of Flow over a Prolate Spheroid at $\alpha = 10$ deg and $V_\infty = 45$ m/s ... 5
10 - Flow Separation Pattern on a Prolate Spheroid at $\alpha = 10$ deg and $V_\infty = 45$ m/s ... 6
11 - Flow Separation Pattern on a Prolate Spheroid at $\alpha = 20$ deg and $V_\infty = 45$ m/s ... 6
An Integral Prediction Method for Three-Dimensional Flow Separation
T.C. Tai, David Taylor Naval Ship R&D Center, Bethesda, MD
AN INTEGRAL PREDICTION METHOD FOR THREE-DIMENSIONAL FLOW SEPARATION

Tye C. Lau*

David Taylor Naval Ship Research and Development Center
Bethesda, Maryland 20884

Abstract

A three-dimensional integral boundary-layer approach is developed and coupled with the streamline method for theoretically determining the vortex-type flow separation. The governing equations are solved in a streamwise system using a power-law profile for the streamwise flow and the Mager profile for the crossflow. The reduced ordinary system is then coupled with the streamline equation and integrated using the fourth-order Runge-Kutta scheme. Crossflow derivatives are evaluated and accounted for during the integration. A prolate spheroid at incidence in an incompressible turbulent flow is considered as a test case. Good comparison between the theory and the experiment has been observed for the case of $\alpha = 10$ degrees. For the case of high incidence, the method predicts a qualitative trend but deviates quantitatively due to the large crossflow involved.

Nomenclature

a, b = major and minor axes of an ellipsoid
C_e = entrainment coefficient, defined in Eq. (9)
C_f = skin friction coefficient
f^* = local body radial distance from the centerline
H = shape factor, δ/H_1
h = $(H - 1)/2$
h_1, h_2 = metric coefficients for coordinates ξ, η
k_i = curvature parameter, $\frac{1}{h_1 h_2} \frac{\partial h_i}{\partial \xi}$
k_2 = curvature parameter, $\frac{1}{h_1 h_2} \frac{\partial h_2}{\partial \eta}$
M = Mach number
P = static pressure
Re = Reynolds number, $\rho V_w a/\mu$
s, n = distance along and normal to a streamline
U, V, W = velocity at edge of boundary layer
x, y, z = Cartesian coordinates
α = angle of attack
β = wall shear angle between external inviscid streamline and corresponding limiting streamline
γ = ratio of specific heats
δ = boundary layer thickness
δ_l = streamwise displacement thickness
δ_w = crosswise displacement thickness
Θ_{12} = streamwise momentum thickness
Θ_{21} = crossflow momentum thickness
Θ_{22} = crossflow momentum thickness
θ = streamline angle
λ = $\tan \beta$
μ = viscosity
ξ, η, ζ = streamwise coordinates
ρ = density
τ = shear stress

Subscripts
w = wall
∞ = freestream
I, I = x, y direction

Introduction

In three-dimensional flows, the envelope of limiting streamlines has been used as the separation line. Thus defined, the determination of the separation line has been found to be very difficult analytically even with the most sophisticated numerical techniques available. For most flows of practical interest, however, the separation is of the vortex type where vortices are created as a result of the convergence of viscous streamlines above the line of separation. The line of separation can be properly determined by the envelope of viscous streamlines in the boundary layer.1

The problem, therefore, is to determine the realistic streamline pattern based on realistic pressure or shear stress, either by experimental measurements or by means of viscous-inviscid interactions. An attempt at using pure inviscid pressure along with a simple friction model has had limited success.2 A more general theoretical method is yet to be developed. The purpose of this paper is to describe a theoretical procedure for determining the vortex-type flow separation using a three-dimensional integral boundary-layer solution coupled with the streamline method.1 As opposed to the usual boundary-layer approach, this method deals with the convergence of streamlines rather than with the vanishing of skin friction. A prolate spheroid at incidence in an incompressible turbulent flow is considered as a test case.

Calculation of Viscous Streamlines

To simulate the physical flow so that the flow separation can be detected, it is necessary to consider the streamlines inside the boundary layer; see Fig. 1. It is assumed that the envelope of converging viscous streamlines is above, but close to, that of the converging wall-limiting streamlines. Therefore, the line of separation can be determined by the envelope of converging streamline equations derived earlier.1, 2

The research was supported by the Naval Air Systems Command (AIR-310D, AIRTASK WR023-02) and by the Independent Research Program at the David Taylor Naval Ship R&D Center.

*Research Aerospace Engineer, Aviation and Surface Effects Department. Associate Fellow AIAA.

This paper is declared a work of the U.S. Government and therefore is in the public domain.
\[
\frac{D\phi}{Ds} = \frac{\sin \theta}{f} \tag{1}
\]
\[
\frac{Dx}{Ds} = \cos \theta \tag{2}
\]
\[
\frac{D\theta}{D\xi} = \frac{1}{\gamma M^2 P} \left(\frac{\partial P}{\partial x} \sin \theta - \frac{\partial P}{\partial \phi} \cos \theta - \frac{\partial \tau}{\partial \xi} \right) - \frac{d \sin \theta}{d \xi} \tag{3}
\]
where conventional symbols have been used with geometric variables illustrated in Fig. 2. For incompressible flows, the potential flow solution\(^1\) can be used for the pressure gradients \(\partial P/\partial x\) and \(\partial P/\partial \phi\) in Eq. (3). The problem, therefore, is to provide proper values for the shear stress derivative \(\partial \tau/\partial \xi\).

Integral Solution to Three-Dimensional Turbulent Boundary Layers

A simple analytic model for the shear stress derivative has shown some promise.\(^2\) However, in more general cases, where the flow separation is predominantly of the vortex type, a more rigorous theoretical form is in order. While it is not straightforward to derive a universal theoretical friction model, it is possible, in most cases, to provide proper friction values numerically. In so doing, the use of the integral method seems to be appropriate because of its compactness and compatibility with the streamline approach. The (longitudinal) integration can be performed along a streamline.

![Streamlines in a boundary layer](image)

Fig. 1 - Streamlines in a boundary layer

\[U = \frac{u}{U} = \left(\frac{\zeta}{\delta}\right)^h\]

or
\[\tilde{u} = z^h\]

where \(z = \xi/\delta, h = (H - 1)/2,\) and \(H\) is the shape factor. The crossflow velocity profile takes the form suggested by Mager.\(^4\)

\[\frac{v}{U} = \frac{u}{U} \left(1 - \frac{\zeta}{\delta}\right)^2 \tan \beta\]

or
\[\tilde{v} = \tilde{u} (1 - \zeta)^2 \lambda\]

where \(\lambda = \tan \beta.\) The boundary-layer solution procedure in the present work is similar to that of Smith,\(^5\) but differs in several aspects which will appear later.

The entrainment coefficient \(C_t\) is given as a function of the shape factor \(H\) by Green,\(^6\) with the constant term being modified from 0.022 to 0.032:

\[C_t = 0.025H - 0.032\]

The skin friction coefficient is related to the shape factor \(H\) and the Reynolds number based on the streamwise momentum thickness \(Re_{11}\):\(^6\)

\[C_{10} \left(\frac{C_t}{C_{10}} - 0.5\right) \left(\frac{H}{H_r} - 0.4\right) = 0.9\]
where \(C_{fo} \) and \(H_0 \) are functions of \(\text{Re}_f11 \):

\[
C_{fo} = \frac{0.01013}{\text{ln} \Re_{fo11} - 1.02} - 0.00075
\]

\[
H_0 = \frac{1}{1 - 6.55 \sqrt{0.5 \ C_{fo}}}
\]

and the \(\text{Re}_f11 \) and \(C_f \) are defined:

\[
\text{Re}_f11 = \frac{U \Theta_11}{\mu}
\]

\[
C_f = \frac{\tau_w}{0.01013 U^2}
\]

The expressions for the curvature parameters \(K_1 \) and \(K_2 \) are derived in terms of quantities along a streamline. For \(K_1 \), the geometric relationship between two surface coordinate systems \((x, \phi)\) and \((\xi, \eta)\) is used:

\[
\frac{\partial \phi}{\partial \xi} = \frac{h_1 \sin \theta}{f} \quad \text{and} \quad \frac{\partial \phi}{\partial \eta} = \frac{h_2 \cos \theta}{f}
\]

Taking cross differentiation and letting

\[
\frac{\partial^2 \phi}{\partial \eta \partial \xi} = \frac{\partial^2 \phi}{\partial \xi \partial \eta}
\]

result in

\[
K_1 = \frac{1}{h_1 h_2} \frac{\partial h_1}{\partial \eta} = \cot \theta \left(\frac{1}{h_1 h_2} \frac{\partial h_2}{\partial \xi} - \frac{1}{h_1} \frac{\partial \phi}{\partial \xi} - \frac{1}{h_2} \frac{\partial \phi}{\partial \eta} \right)
\]

\[
= \frac{1}{\gamma M^2 P} \left(- \frac{\partial \phi}{\partial \xi} \sin \theta + \frac{1}{f} \frac{\partial \phi}{\partial \xi} \cos \theta \right)
\]

(11)

where the sum of the three terms in parentheses is zero, and the inviscid form of Eq. (3) has been used.

To find \(K_2 \), the continuity equation is written for the external flow in both the \(x, \phi \) coordinate system and the \(\xi, \eta \) system. By equating, there results

\[
K_2 = \frac{1}{h_1 h_2} \frac{\partial h_2}{\partial \xi} = \frac{1}{\gamma M^2 P} \left(\frac{\partial \phi}{\partial \xi} \cos \theta + \frac{1}{f} \frac{\partial \phi}{\partial \xi} \sin \theta \right)
\]

(12)

Numerical Integration

Equations (4) through (6), with the aid of Eqs. (7) through (12), allow solutions for three basic unknowns: the shape factor \(H \), the streamwise displacement \(\Theta_11 \), and the tangent of the angle between the external inviscid streamline and the corresponding limiting streamline \(\lambda \). These equations are recast into the form of streamwise derivatives:

\[
\frac{DH}{Ds} = G_1
\]

(13)

\[
\frac{D \Theta_{11}}{Ds} = G_2
\]

(14)

\[
\frac{D \lambda}{Ds} = \frac{D \Theta_{11}}{Ds} = G_3
\]

(15)

where \(D = \left(\frac{1}{h_1 h_2} \right) \partial \), and \(G_1 \), \(G_2 \), and \(G_3 \) contain:

(a) geometric properties and outer edge flow properties

(b) variables \(H, \Theta_11, \lambda \), etc. and

(c) crossflow derivatives of \(H, \Theta_11 \), and \(\lambda \)

The detailed expressions for \(G_1 \), \(G_2 \), and \(G_3 \) are presented in the Appendix.

With the viscous solution in hand, the crossflow shear derivative required by Eq. (3) is obtained by differentiating Eq. (8) with the aid of the following relationships:

\[
\tau_\eta = \frac{\epsilon}{\partial \xi} \left(\frac{\partial \phi}{\partial \xi} \right)
\]

(16)

and

\[
\frac{\partial \tau_\eta}{\partial \xi} = \frac{\partial}{\partial \xi} \left(\frac{\partial \phi}{\partial \xi} \right)
\]

(17)

(18)

To eliminate the unknown eddy viscosity \(\epsilon \) and its derivative \(\partial \epsilon / \partial \xi \), the \(\epsilon \) value is correlated with the streamwise shear stress such that

\[
\tau_\xi = \epsilon \frac{\partial \phi}{\partial \xi} = \frac{U \epsilon}{\partial \xi} \frac{\partial \phi}{\partial \xi}
\]

(19)

It is further assumed that the streamwise shear stress varies linearly across the boundary layer:

\[
\tau_\xi = \epsilon \frac{\partial \phi}{\partial \xi} = \frac{1}{2} \varphi U^2 C_f (1 - z)
\]

(20)

which yields

\[
\frac{1}{\gamma M^2 P} \frac{\partial \tau_\xi}{\partial \xi} = \frac{C_f}{2 \delta}
\]

(21)

With the aid of relations (18) through (21), along with basic profiles (7) and (8), one obtains

\[
\frac{1}{\gamma M^2 P} \frac{\partial \tau_\xi}{\partial \xi} = \frac{C_f \lambda (1 - z)}{\delta} \left(\frac{z - 1 - z}{h} \frac{1 - z}{z} \right) \times \left[1 - \frac{(1 - h)(1 - z)}{z} \right] - 2(1 - z)
\]

(22)
The crossflow skin friction line (portrayed in Fig. 10) is apparently positive to negative implies that a zero crossflow skin friction of the streamline direction from its external pattern. The change in the sign of the wall shear angle from 0 to -0.4 exists, since $C_{i,0} = \lambda C_{i,2}$. The calculated crossflow skin friction coefficients along these lines are presented in Fig. 9. Based on the framework of the present theory, this zero crossflow skin friction line (portrayed in Fig. 10) is apparently not a line of separation. This is in agreement with experimental observation.

The change in the sign of the wall shear angle from positive to negative implies that a zero crossflow skin friction line exists, since $C_{i,0} = \lambda C_{i,2}$. The calculated crossflow skin friction coefficients along these lines are presented in Fig. 9. Based on the framework of the present theory, this zero crossflow skin friction line (portrayed in Fig. 10) is apparently not a line of separation. This is in agreement with experimental observation.

The calculated crossflow skin friction values with those obtained by a finite difference scheme and by experiment is made. Agreement is within the range of the data scattering; see Fig. 5. The crossflow characteristics are represented by the value $\lambda = \tan \beta$. Generally, λ takes on a positive value in the upstream region and turns negative downstream; see Fig. 6. This indicates that the effect of viscosity makes the streamline steeper in the upstream region and flatter downstream compared with the external inviscid streamlines based on the potential flow theory; see Fig. 7. The trend is consistent with previous findings. The deflection of streamlines in the leeside that causes vortex-type separation is clearly portrayed.

Contrary to intuition, the deviation of viscous streamlines from the inviscid pattern does not stem from the shear stress derivative in Eq. (3), but rather is attributed to the deficiency of the velocity inside the boundary layer. In Fig. 8, the crossflow velocity profiles and the resulting shear stress derivatives are plotted at five locations along the streamline $\eta = 3$. At $z = d_{f}/d$, where the layer is set for the present computation, the numerical values for $\partial u_{z}/\partial z / \nu$ from Eq. (22) are negative in the upstream region (Points A, B, and C in Fig. 8) then change to positive downstream (Points D and E). In fact, these friction values provide resistance to the change of the streamline direction from its external pattern.

Results and Discussion

Numerical results are calculated for a prolate spheroid with $a/b = 5.91$ at $V_{\infty} = 45 \text{ m/s}$ and $\alpha = 10$ and 20 deg. The flow is largely turbulent. In the calculation, the flow is tripped to turbulent at $s/a = 0.1$, where the initial conditions $H = 1.35$, $\theta_{11} = 0.0005$, and $\lambda = 0$ are applied. Results of the streamwise shape factor H and the momentum thickness θ_{11} along streamlines of $\eta = 1, 3, 10, 3$, and 70 for the case of $\alpha = 10$ deg are shown in Figs. 3 and 4, respectively. The θ_{11} values rise significantly in all four streamlines as they proceed downstream. Nevertheless, the downstream flow exhibits reasonable stability as indicated by declining H values in that region.

Figures 5 and 6 show the calculated results of the streamwise skin friction coefficient $C_{i,2}$ and the direction of the wall shear stress λ, along the above streamlines. Comparison of the present $C_{i,2}$ values with those obtained by a finite difference scheme and by experiment is made. Agreement is within the range of the data scattering; see Fig. 5. The crossflow characteristics are represented by the value $\lambda = \tan \beta$. Generally, λ takes on a positive value in the upstream region and turns negative downstream; see Fig. 6. This indicates that the effect of viscosity makes the streamline steeper in the upstream region and flatter downstream compared with the external inviscid streamlines based on the potential flow theory; see Fig. 7. The trend is consistent with previous findings. The deflection of streamlines in the leeside that causes vortex-type separation is clearly portrayed.
Fig. 7 - Comparison of calculated and external inviscid streamlines.

Curves:
1. Crossflow velocity profile, \(v/U \)
2. Crossflow shear stress derivative, \(\frac{1}{\rho M^2 P} \frac{\partial \tau}{\partial z} \)

Fig. 8 - Crossflow velocity profiles and resulting shear stress derivatives along streamline \(\eta = 3 \) of flow over a prolate spheroid at \(\alpha = 10 \) deg and \(V_\infty = 45 \) m/s.

Fig. 9 - Crossflow skin friction coefficients of flow over a prolate spheroid at \(\alpha = 10 \) deg and \(V_\infty = 45 \) m/s.
The calculated overall flow pattern is shown in Fig. 10. The flow separation is detected near the rear stagnation region. The result is compared with that obtained by the limiting streamline pattern based on the measured wall shear stress. Agreement is very good. At the line of separation, which results from the formation of the envelope of viscous streamlines, the streamlines from the windside yield higher streamwise wall friction values than those from the leeside. This implies that the windside streamlines possess more energy and, therefore, will roll over those from the leeside. A similar conclusion was reached from the analysis based on the difference in velocity components at the edge of the boundary layer normal to the separation line.13

The result of the flow pattern at \(\alpha = 20 \text{ deg} \) is shown in Fig. 11. The line of separation emerges further in the upstream creating a larger separated region in the leeside of the flow. Although a direct comparison between calculated and experimental results cannot be made because of a lack of published data for this particular angle of attack, the present result does fall in between the measurements of the \(\alpha = 10 \) to 30-deg cases.12

![Diagram showing flow separation on a prolate spheroid at \(\alpha = 10 \text{ deg} \) and \(V_\infty = 45 \text{ m/s} \)]

Concluding Remarks

A three-dimensional integral boundary-layer approach is developed and coupled with the streamline method for theoretically determining the vortex-type flow separation. The deflection of leeside streamlines that causes the vortex-type separation is found to be attributed to the deficiency of velocity inside the boundary layer. The calculated theoretical results compare very well with the experimental data for the case of the prolate spheroid at \(\alpha = 10 \text{ deg} \). For higher angle of attack, the approach yields qualitative agreement. The zero cross-flow skin friction line exists, but it is not a line of separation.

References

Appendix

Functions for \(G_1 \), \(G_2 \), and \(G_3 \)

The detailed expressions for functions \(G_1 \), \(G_2 \), and \(G_3 \) in Eqs. (13) through (15) are listed below.

\[G_1 = A_1 \]

\[G_2 = \frac{1}{\Theta_{11}} Q_{21} \left[A_2 - A_1 E_{21} \left(- \frac{R_{21} G E - A_1 H - A_1 l}{R_{01} - 1} \right) \right] \]

\[G_3 = A_1 - A_1 (E_{11} - H) \]

\[A_1 = B_1 - \frac{E_{21}}{h_2} \frac{\partial \Theta_{11}}{\partial l} \Theta_{11} \left(\frac{Q_{12}}{h_2} \frac{\partial l}{\partial l} + \frac{R_{12} \partial H}{\partial l} \right) \]

\[A_2 = B_2 - \frac{E_{22}}{h_2} \frac{\partial \Theta_{11}}{\partial l} \Theta_{11} \left(\frac{Q_{22}}{h_2} \frac{\partial l}{\partial l} + \frac{R_{22} \partial H}{\partial l} \right) \]

\[A_3 = B_3 + \frac{L_{31}}{\partial H} \Theta_{11} \left(\frac{Q_{21}}{h_2} \frac{\partial l}{\partial H} + \frac{R_{21} \partial H}{\partial H} \right) \]

\[B_1 = \frac{C_0}{2} - \Theta_{11} \left(\frac{1 + E_{11}}{U h_1} \frac{\partial U}{\partial l} - \frac{2 E_{21} - E_{22}}{E_{22}} \right) \left(K_1 - \frac{1}{U h_2} \frac{\partial U}{\partial l} \right) \]

\[B_2 = \frac{C_0}{2} - \Theta_{11} \left(\frac{2 E_{21}}{U h_1} \frac{\partial U}{\partial l} + \frac{2 E_{22}}{U h_2} \frac{\partial U}{\partial l} \right) \]

\[B_3 = C_{E1} - \Theta_{11} \left(- \left(\frac{E_{0} - H}{U h_1} \frac{\partial U}{\partial l} + K_2 \right) \right) \]

\[\delta = E_{0} \Theta_{11} \]

\[\delta_1 = E_{1} \Theta_{11} \]

\[\delta_2 = E_{2} \Theta_{11} \]

\[\Theta_{12} = E_{12} \Theta_{11} \]

\[\Theta_{21} = E_{21} \Theta_{11} \]

\[\Theta_{22} = E_{22} \Theta_{11} \]

\[E_{0} = \frac{H(H + 1)}{H - 1} \]

\[E_{1} = H \]

\[E_{2} = - \lambda E \left(\frac{2}{H + 1} - \frac{2}{H + 3} + \frac{2}{H + 5} \right) \]
Errata: An Integral Prediction Method for Three-Dimensional Flow Separation

Tsze C. Tai
David Taylor Naval Ship Research and Development Center
Bethesda, Maryland

[AIAA Paper No. 84-0014]

Equation (12) on page 3 of the paper should read:

\[
K_2 = \frac{1}{h_1 h_2} \frac{\partial h_2}{\partial \xi}
= \frac{1}{\gamma M^2 P} \left(\frac{\partial P}{\partial x} \cos \theta + \frac{1}{f} \frac{\partial P}{\partial \phi} \sin \theta \right) + \frac{1}{U} \left[\left(\frac{\partial U}{\partial x} + \frac{1}{f} \frac{\partial U}{\partial \phi} \right) + \frac{U}{f} \frac{df}{dx} \right]
\]

Equations for \(B_1\) and \(Q_{22}\) in the Appendix of the paper should read:

\[
B_1 = \frac{C_{f\xi}}{2} - \Theta_{11} \left[\frac{(2+E_1)}{U h_1} \frac{\partial U}{\partial \xi} + (2E_{21} - E_2) \left(K_1 + \frac{1}{U h_2} \frac{\partial U}{\partial \eta} \right) \right] + (1-E_{22}) K_2
\]

\[
Q_{22} = \frac{\partial E_{22}}{\partial \lambda} = \frac{2E_{22}}{\lambda}
\]
INITIAL DISTRIBUTION

<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OSD</td>
</tr>
<tr>
<td>1</td>
<td>Tech Library</td>
</tr>
<tr>
<td>1</td>
<td>R.F. Siewert (DDR&E)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>CNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>211</td>
</tr>
<tr>
<td>1</td>
<td>430B</td>
</tr>
<tr>
<td>1</td>
<td>432</td>
</tr>
<tr>
<td>1</td>
<td>438</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>CNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CNR, Boston</td>
</tr>
<tr>
<td>1</td>
<td>CNR, Chicago</td>
</tr>
<tr>
<td>1</td>
<td>CNR, London, England</td>
</tr>
<tr>
<td>1</td>
<td>CNR, Pasadena</td>
</tr>
</tbody>
</table>

| 1 | NRL/Tech Library |
| 1 | USNA/Tech Library |

1	NAVPGSCOL/Tech Library
1	NAVAIRDEV/TECH Library
1	NAVWPNC/TECH Library

<table>
<thead>
<tr>
<th>10</th>
<th>NAVAIRSYSCOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AIR-03A</td>
</tr>
<tr>
<td>1</td>
<td>AIR-310</td>
</tr>
<tr>
<td>3</td>
<td>AIR-310D</td>
</tr>
<tr>
<td>1</td>
<td>AIR-530B</td>
</tr>
<tr>
<td>3</td>
<td>AIR-5301</td>
</tr>
<tr>
<td>1</td>
<td>AIR-7226/TECH Library</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>NAVSEASYSCOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SEA 03R</td>
</tr>
<tr>
<td>1</td>
<td>SEA 55W3</td>
</tr>
<tr>
<td>1</td>
<td>SEA 63R</td>
</tr>
<tr>
<td>1</td>
<td>SEA 99612/TECH Library</td>
</tr>
</tbody>
</table>

| 1 | NAPTC/Tech Library |
| 1 | PMTC/Tech Library |

| 12 | DTIC |

CENTER DISTRIBUTION

<table>
<thead>
<tr>
<th>Copies</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>012.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1606</td>
<td>Aerodynamics Collection</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5211.1</td>
<td>Reports Distribution</td>
</tr>
<tr>
<td>1</td>
<td>522.1</td>
<td>TIC (C) + 1m</td>
</tr>
<tr>
<td>1</td>
<td>522.2</td>
<td>TIC (A)</td>
</tr>
</tbody>
</table>

| 1 | PMTC/Tech Library |
| 1 | PMTC/Tech Library |

| 12 | DTIC |