ON THE FORM OF THE COLLECTIVE BREMSSTRAHLUNG RECOIL FORCE IN A NONEQUILIBRIUM RELATIVISTIC BEAM-PLASMA SYSTEM (U)

HARRY DIAMOND LABS ADELPHI MD  H E BRANDT

UNCLASSIFIED JAN 84 HDL-TR-2026
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS—1953-A
On the Form of the Collective Bremsstrahlung Recoil Force in a Nonequilibrium Relativistic Beam-Plasma System

by Howard E. Brandt
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturers' or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

A preliminary version of this report was issued as HDL-PRL-63-17 in August 1963.
**Title:** On the Form of the Collective Bremsstrahlung Recoil Force in a Nonequilibrium Relativistic Beam-Plasma System

**Abstract:**
The general form is derived, from first principles, for the collective bremsstrahlung recoil force on a test particle participating in a bremsstrahlung process in a relativistic nonequilibrium beam-plasma system. The force is expressed in terms of the particle and photon distribution functions and the bremsstrahlung transition rate. This relationship is needed in calculations of collective radiation processes and the conditions for the occurrence of bremsstrahlung radiative instability in relativistic beam-plasma systems.
CONTENTS

1. INTRODUCTION .......................................................... 5
2. PARTICLE BALANCE EQUATIONS ........................................ 6
3. SOFT PHOTON AND SMALL MOMENTUM TRANSFER APPROXIMATION .... 11
4. INDUCED RECOIL FORCE DUE TO BREMSSTRAHLUNG .................. 16
5. CONCLUSION ............................................................. 28
SELECTED BIBLIOGRAPHY ................................................ 30
DISTRIBUTION .................................................................. 33

FIGURES

1. Elementary bremsstrahlung process which removes particles of species \( \alpha \) from point \( \mathbf{\hat{p}}_\alpha \) in momentum space .................. 6
2. Inverse bremsstrahlung process which removes particles of species \( \alpha \) from point \( \mathbf{\hat{p}}_\alpha \) in momentum space .................. 7
3. This process adds particles at point \( \mathbf{\hat{p}}_\alpha \) in momentum space .......... 8
4. This process also adds particles at point \( \mathbf{\hat{p}}_\alpha \) in momentum space ...... 8
1. INTRODUCTION

The collective bremsstrahlung recoil force on a relativistic test particle participating in a bremsstrahlung process in a nonequilibrium relativistic beam-plasma system is given by\(^1,2\)

\[
\mathbf{F}_a^{\text{collective}} = \int (2\pi)^{-9} d^3\mathbf{p}_\beta d^3\mathbf{k} d^3\mathbf{r} \mathbf{r}((\mathbf{k} - \mathbf{r}) \cdot (\mathbf{p}_\beta - \mathbf{p}_\alpha)) \\
\times \mathbf{v}_a^{\text{collective}}(\mathbf{k}, \mathbf{r}) N_{\mathbf{k}}(\omega_{\mathbf{k}} - \mathbf{r} \cdot \mathbf{v}_a + (\mathbf{k} - \mathbf{r}) \cdot \mathbf{v}_\beta).
\]

(1)

Here, \(\mathbf{v}_a^{\text{collective}}(\mathbf{k}, \mathbf{r}) N_{\mathbf{k}}(\omega_{\mathbf{k}} - \mathbf{r} \cdot \mathbf{v}_a + (\mathbf{k} - \mathbf{r}) \cdot \mathbf{v}_\beta)\) is the bremsstrahlung transition rate (probability per unit time) for scattering of particles of species \(a\) and \(\beta\), velocities \(\mathbf{v}_a\) and \(\mathbf{v}_\beta\), and momenta \(\mathbf{p}_a\) and \(\mathbf{p}_\beta\), where the scattering produces momentum transfer \(\mathbf{r}\) and the emission of a photon in mode \(a\) with wave vector \(\mathbf{k}\) and frequency \(\omega_{\mathbf{k}}\); \(N_{\mathbf{k}}\) is the photon (plasmon) distribution function; and \(f_{p_\beta}^{+}\) is the charged particle distribution function. Here and throughout, the units are chosen such that \(\hbar = 1\). In this report equation (1) is derived from first principles. This expression is useful in obtaining an expression for the collective bremsstrahlung transition rate by direct comparison with another expression for the collective bremsstrahlung recoil force, which is determined from the equation of motion for a dynamically polarized test particle undergoing bremsstrahlung\(^1,2\). This transition rate is important in calculations of collective bremsstrahlung and the conditions for the occurrence of the bremsstrahlung radiative instability in relativistic beam-plasma systems (see the work of Akopyan and Tsytovich, Selected Bibliography).

In section 2 the particle balance equations, including bremsstrahlung and inverse bremsstrahlung processes, are derived in terms of the basic bremsstrahlung transition rate. In section 3, the soft photon or quasiclassical limit of these equations is obtained and separated into spontaneous and

---


induced contributions. Expressions are obtained for the diffusion coefficient and induced recoil force due to induced bremsstrahlung. In section 4, the general form of the induced recoil force is determined in terms of the bremsstrahlung radiation field, particle distributions, dielectric permittivity, and bremsstrahlung transition rate. Section 5 summarizes the main results of the derivation.

2. PARTICLE BALANCE EQUATIONS

We here derive the particle balance equations in terms of the basic bremsstrahlung transition rate, for beam-plasma configurations in which bremsstrahlung and inverse bremsstrahlung are the dominant processes. For this purpose, consider the elementary bremsstrahlung process depicted in figure 1. Here a particle of species \( \alpha \) and momentum \( \vec{p}_\alpha \) scatters off a particle of species \( \beta \) and momentum \( \vec{p}_\beta \) and emits a photon of momentum \( \vec{k} \). Figure 1 is not a Feynman diagram since it represents the probability for the process and not its amplitude. If the momentum decrease of particle \( \alpha \) is denoted by \( \vec{k} \), then the momentum \( \vec{p}_\alpha' \) of particle \( \alpha \) after the collision is given by

\[
\vec{p}_\alpha' = \vec{p}_\alpha - \vec{k} .
\]

Then, by conservation of momentum, the momentum of particle \( \beta \) after the collision is given by

\[
\vec{p}_\beta' = \vec{p}_\beta + \vec{k} - \vec{k} .
\]
The quantity \( w_{p_a, p_B}^g(\mathbf{z}, \mathbf{k}) \) is the probability per unit time that in the scattering of a particle of the species \( a \) and initial momentum \( \mathbf{p}_a \) off a particle of species \( \beta \) and initial momentum \( \mathbf{p}_\beta \), a photon of momentum \( \mathbf{k} \) in mode \( \sigma \) is emitted, and there occurs momentum transfer \( \mathbf{z} - \mathbf{k} \) to particle \( \beta \). By time-reversal invariance, the transition rate for the inverse process (in which a particle of momentum \( \mathbf{p}_\beta \) absorbs a photon of momentum \( \mathbf{k} \) and scatters off a particle of momentum \( \mathbf{p}_a \) with momentum transfer \( \mathbf{z} \) to particle \( \alpha \)) is then given by \( w_{p_a, p_B}^g(\mathbf{z}, \mathbf{k}) \). This process is depicted in figure 2 in the leftmost figure, which is the time-reversed process of the figure to its right; therefore, the transition probabilities of the two processes are equal. The inverse process is denoted by \( w_{p_a, p_B}^g(\mathbf{z}, \mathbf{k}) \) in the notation of figure 1. The equality of the probabilities of the direct and inverse processes due to time-reversal invariance is also known as the principle of microscopic reversibility or reciprocity, and leads to the principle of detailed balance. The processes of figures 1 and 2 both deplete the density of particles of type \( a \) at point \( \mathbf{p}_a \) in momentum space by adding or subtracting momentum.

\[
\begin{align*}
\mathbf{p}_a &\rightarrow \mathbf{p}_a + \mathbf{z} \\
\mathbf{p}_\beta &\rightarrow \mathbf{p}_\beta - \mathbf{z} + \mathbf{k}
\end{align*}
\]

Figure 2. Inverse bremsstrahlung process which removes particles of species \( a \) from point \( \mathbf{p}_a \) in momentum space. First equality follows from time-reversal invariance.

\[
= w_{p_a, p_B}^g(\mathbf{z}, \mathbf{k})
\]

The particle density at point \( \mathbf{p}_a \) increases because of the following two processes. The inverse process to that in figure 1 produces gain at point \( \mathbf{p}_a \). By time-reversal invariance, this is again given by \( w_{p_a, p_B}^g(\mathbf{z}, \mathbf{k}) \), as depicted in figure 3. Similarly, the time reversal of the process in figure 2 also adds particles at point \( \mathbf{p}_a \) with transition rate \( w_{p_a, p_B}^g(\mathbf{z}, \mathbf{k}) \), as depicted in figure 4.
Taking these four processes into account including both spontaneous and induced emission, we find that the particle-balance equation giving the time rate of change of the particle distribution $f_{\vec{p}_\alpha}$ for particles of type $\alpha$ at point $\vec{p}_\alpha$ in momentum space is
\[
\frac{\partial f_{p_a}}{\partial t} = -\int (2\pi)^{-9} d^3\delta d^3\delta' d^3\kappa \ f_{p_a} \ f_{p_{\delta'}} \ \hat{W}_{p_a, p_{\delta'}, p_{\delta'} + \kappa, (\kappa', \kappa)} (N_{k'} + 1)
\]

\[
- \int (2\pi)^{-9} d^3\delta d^3\delta' d^3\kappa \ \hat{N}_{k}^{P} \ f_{p_{\delta'}} \ f_{p_{\delta'}}+\kappa \ \hat{W}_{p_{\delta'}, p_{\delta'} + \kappa + \kappa, (\kappa, \kappa)}
\]

\[
+ \int (2\pi)^{-9} d^3\delta d^3\delta' d^3\kappa \ \hat{N}_{k}^{P} \ f_{p_{\delta'}} \ f_{p_{\delta'} - \kappa - \kappa} \ \hat{W}_{p_{\delta'}, p_{\delta'} + \kappa + \kappa, (\kappa, \kappa)} (N_{k}^{P} + 1)
\]

The first term in equation (4) represents the rate of decrease of particle density at point \(\vec{p}_a\) due to the bremsstrahlung process of figure 1. The function \(f_{P_{\delta}}\) is the distribution function for particles of species \(\beta\), and \(\hat{N}_{k}^{P}\) is the photon distribution function. The factor \(N_{k}^{P} + 1\) takes account of both induced and spontaneous emission. An integral over all possible photon wave vectors, scattered particle momenta \(\vec{p}_{\delta}\), and momentum transfers \(\vec{\kappa}\) also necessarily appears in equation (4). The factors of \(2\pi\) arise from counting quantum states. Thus, for example, \(d^3\kappa/(2\pi)^3\) is the number of quantum states per unit volume with momentum \(\vec{\kappa}\) in the interval \(d^3\kappa\). The same phase-space normalization for the particle distribution function as in Tsytovich\(^1\) is used here, namely,

\[
n_{a} = \int \frac{d^3p_{a}}{(2\pi)^3} \ f_{P_{a}} ,
\]

where \(n_{a}\) is the number of particles of species \(a\) per unit volume. The second term in equation (4) represents the rate of decrease due to the inverse bremsstrahlung process of figure 2. The third term represents the rate of increase.

due to the inverse bremsstrahlung process of figure 3. The fourth term represents the rate of increase due to the bremsstrahlung process of figure 4.

Combining terms in equation (4) produces

$$\frac{\partial f^+_{\alpha}}{\partial t} = -\int \frac{d^3k^* d^3p_{\beta}^* d^3K}{(2\pi)^9} \frac{\omega_{\alpha \beta} + (k,k)}{W_{\alpha \beta}^* + (k,k)} \left[ f^+_\alpha f^+_{\beta} (N^0_{\kappa} + 1) - N^0_{\kappa} f^+_\alpha + f^+_{\beta} + f^+_{\kappa} \right]$$

$$+ \int \frac{d^3k^* d^3p_{\beta}^* d^3K}{(2\pi)^9} \frac{\omega_{\alpha \beta} + (k,k)}{W_{\alpha \beta}^* + (k,k)} \left[ f^+_\alpha f^+_{\beta} N^0_{\kappa} - N^0_{\kappa} f^+_\alpha + f^+_{\beta} + f^+_{\kappa} \right]$$

(6)

Breaking equation (6) into its induced and spontaneous parts results in

$$\frac{\partial f^+_{\alpha}}{\partial t} = \left( \frac{\partial f^+_{\alpha}}{\partial t} \right)_i + \left( \frac{\partial f^+_{\alpha}}{\partial t} \right)_s$$

(7)

where the induced part \( \left( \frac{\partial f^+_{\alpha}}{\partial t} \right)_i \) is that proportional to the photon number density \( N^0_{\kappa} \) and the spontaneous part \( \left( \frac{\partial f^+_{\alpha}}{\partial t} \right)_s \) is that independent of \( N^0_{\kappa} \).

Thus

$$\left( \frac{\partial f^+_{\alpha}}{\partial t} \right)_i = -\int \frac{d^3k^* d^3p_{\beta}^* d^3K}{(2\pi)^9} \frac{\omega_{\alpha \beta} + (k,k)}{W_{\alpha \beta}^* + (k,k)} \left[ f^+_\alpha f^+_{\beta} - f^+_{\alpha} f^+_{\beta} f^+_{\kappa} + f^+_{\kappa} \right]$$

$$+ \int \frac{d^3k^* d^3p_{\beta}^* d^3K}{(2\pi)^9} \frac{\omega_{\alpha \beta} + (k,k)}{W_{\alpha \beta}^* + (k,k)} \left[ f^+_\alpha f^+_{\beta} N^0_{\kappa} - N^0_{\kappa} f^+_{\alpha} + f^+_{\beta} + f^+_{\kappa} \right]$$

(8)
3. SOFT PHOTON AND SMALL MOMENTUM TRANSFER APPROXIMATION

We next assume that the momentum transfer \( \not{k} \) and the momentum \( \not{K} \) of the radiated quantum are small relative to the relativistic particle momenta \( \not{P}_A \) and \( \not{P}_B \), thereby enabling Taylor series expansions for \( W_{\not{P}_A+\not{K},\not{P}_B-\not{K}+\not{K}} \), \( f_{\not{P}_B-K} \), \( f_{\not{P}_B+K} \), and \( f_{\not{P}_B-K} \) in equation (8). Thus we assume that

\[
|\not{k}|, |\not{K}| \ll |\not{P}_A|, |\not{P}_B|.
\]

This is evidently consistent with the Born approximation for plasma, namely that the relativistic particle momentum is much greater than the electromagnetic impulse received by a plasma particle in a time interval given by the inverse plasma frequency.\(^{1-5}\) First expanding \( W_{\not{P}_A+\not{K},\not{P}_B-\not{K}+\not{K}} \) about \( \not{P}_A \) in the first variable, we obtain

\[
\left( \frac{\partial^2}{\partial \not{t}} \right)_s = -2 \int \frac{\partial^2 }{(2\pi)^3} \left[ W_{\not{P}_A+\not{K},\not{P}_B-\not{K}+\not{K}} (\not{K}) f_{\not{P}_A+\not{K}} f_{\not{P}_B-\not{K}+\not{K}} \right].
\]

---


Next expanding equation (11) to second order about $\hat{P}_\beta$ in the second variable gives

\[ w_{\hat{P}_a + a, \hat{P}_\beta - a + h}^{\hat{P}_a + a, \hat{P}_\beta - a + h} = w_{P_a + a, P_\beta - a + h}^{P_a + a, P_\beta - a + h} + \frac{\partial w_{P_a + a, P_\beta - a + h}}{\partial P_{a1}} \cdot \frac{\partial w_{P_a + a, P_\beta - a + h}}{\partial P_{a2}} \]

\[ + \frac{1}{2} \left( k_1 - k_1 \right) \left( k_j - k_j \right) \frac{\partial^2 w_{P_a + a, P_\beta - a + h}}{\partial P_{a1} \partial P_{a2}} + k_j \frac{\partial w_{P_a + a, P_\beta - a + h}}{\partial P_{a1}} \]

\[ + k_i (k_j - k_j) \frac{\partial^2 w_{P_a + a, P_\beta - a + h}}{\partial P_{a1} \partial P_{a2}} + \frac{1}{2} \frac{\partial^2 w_{P_a + a, P_\beta - a + h}}{\partial P_{a1} \partial P_{a2}} \cdot \frac{\partial^2 w_{P_a + a, P_\beta - a + h}}{\partial P_{a1} \partial P_{a2}} \cdot \]

Also in equation (8) the following Taylor series expansion applies:

\[ \left[ f_{P_a + a, P_\beta - a + h}^{P_a + a, P_\beta - a + h} - f_{P_a + a, P_\beta - a + h}^{P_a + a, P_\beta - a + h} \right] = f_{P_a + a, P_\beta - a + h}^{P_a + a, P_\beta - a + h} \]

\[ - \left[ f_{P_a + a, P_\beta - a + h}^{P_a + a, P_\beta - a + h} - f_{P_a + a, P_\beta - a + h}^{P_a + a, P_\beta - a + h} \right] \frac{\partial f_{P_a + a, P_\beta - a + h}^{P_a + a, P_\beta - a + h}}{\partial P_{a1}} \]

\[ + \frac{1}{2} \left( k_1 - k_1 \right) \left( k_j - k_j \right) \frac{\partial^2 f_{P_a + a, P_\beta - a + h}^{P_a + a, P_\beta - a + h}}{\partial P_{a1} \partial P_{a2}} \frac{\partial f_{P_a + a, P_\beta - a + h}^{P_a + a, P_\beta - a + h}}{\partial P_{a1}} \]

or combining terms produces
\[
\left[ f^+_{\alpha\beta} - f^+_{\alpha+\kappa} f^+_{\beta+\kappa} \right] = -\left( \kappa_{L} - \kappa_{l} \right) f^+_{\alpha} \frac{\partial f^+}{\partial \beta} + \frac{3}{2} f^+_{\alpha} f^+_{\beta} \frac{\partial^2 f^+}{\partial \beta \partial \beta} + \frac{3}{2} f^+_{\alpha} f^+_{\beta} \frac{\partial^2 f^+}{\partial \beta \partial \beta} + \frac{3}{2} f^+_{\alpha} f^+_{\beta} \frac{\partial^2 f^+}{\partial \beta \partial \beta} + \frac{3}{2} f^+_{\alpha} f^+_{\beta} \frac{\partial^2 f^+}{\partial \beta \partial \beta} + \frac{3}{2} f^+_{\alpha} f^+_{\beta} \frac{\partial^2 f^+}{\partial \beta \partial \beta} .
\]

\[
\text{(14)}
\]

Also,

\[
\left[ f^+_{\alpha\beta} - f^+_{\alpha+\kappa} f^+_{\beta+\kappa} \right] = -\left( \kappa_{I} - \kappa_{l} \right) f^+_{\alpha} \frac{\partial f^+}{\partial \beta} + \frac{3}{2} f^+_{\alpha} f^+_{\beta} \frac{\partial^2 f^+}{\partial \beta \partial \beta} + \frac{3}{2} f^+_{\alpha} f^+_{\beta} \frac{\partial^2 f^+}{\partial \beta \partial \beta} + \frac{3}{2} f^+_{\alpha} f^+_{\beta} \frac{\partial^2 f^+}{\partial \beta \partial \beta} + \frac{3}{2} f^+_{\alpha} f^+_{\beta} \frac{\partial^2 f^+}{\partial \beta \partial \beta} .
\]

\[
\text{(15)}
\]
Substituting equations (12), (14), and (15) in equation (8) produces

\[
\left( \frac{\partial f_{Pa}}{\partial t} \right)_i = - \int \frac{d^3 k_1 d^3 P_\beta d^3 k}{(2\pi)^9} \frac{e^i}{k} \left\{ \omega^2 \frac{e^i}{P_{\alpha} P_{\beta}} (k, k) \left[ -(\kappa_L - \kappa_L) f_{P_{\alpha}} \frac{\partial f_{P_{\beta}}}{\partial P_{\beta}} + \kappa_1 \frac{\partial f_{P_{\alpha}}}{\partial P_{\alpha}} f_{P_{\beta}} \right.ight.
\]

\[- \frac{1}{2} (\kappa_L - \kappa_L) (\kappa_m - \kappa_m) f_{P_{\alpha}} \frac{\partial^2 f_{P_{\beta}}}{\partial P_{\beta} \partial P_{\beta m}} + \kappa_1 \frac{\partial f_{P_{\alpha}}}{\partial P_{\alpha i}} f_{P_{\beta}} \right.
\]

\[+ \kappa_1 (\kappa_L - \kappa_L) \frac{\partial f_{P_{\alpha}}}{\partial P_{\alpha i}} \frac{\partial f_{P_{\beta}}}{\partial P_{\beta l}} - \frac{1}{2} \kappa_1 \kappa_j \frac{\partial f_{P_{\alpha}}}{\partial P_{\alpha i}} \frac{\partial f_{P_{\beta}}}{\partial P_{\beta j}} \left. \right] \]

\[- (k_i - k_i) f_{P_{\alpha}} \frac{\partial f_{P_{\beta}}}{\partial P_{\beta i}} - \frac{1}{2} (k_L - k_L) (k_m - k_m) f_{P_{\alpha}} \frac{\partial^2 f_{P_{\beta}}}{\partial P_{\beta l} \partial P_{\beta m}} - \kappa_1 f_{P_{\alpha}} \frac{\partial f_{P_{\beta}}}{\partial P_{\alpha i}} \]

\[- \kappa_1 (k_L - k_L) \frac{\partial f_{P_{\alpha}}}{\partial P_{\alpha i}} \frac{\partial f_{P_{\beta}}}{\partial P_{\beta l}} - \frac{1}{2} \kappa_1 \kappa_j f_{P_{\alpha}} \frac{\partial f_{P_{\beta}}}{\partial P_{\beta j}} \left. \right] \]

\[\frac{\partial^2 f_{P_{\alpha}}}{\partial P_{\alpha i} \partial P_{\beta j}} \left[ -(k_i - k_i) (k_m - k_m) f_{P_{\alpha}} \frac{\partial f_{P_{\beta}}}{\partial P_{\beta m}} - (k_i - k_i) \kappa_m f_{P_{\beta}} \frac{\partial f_{P_{\alpha}}}{\partial P_{\beta m}} \right] \]

\[\frac{\partial^2 f_{P_{\beta}}}{\partial P_{\alpha i} \partial P_{\beta j}} \left[ -\kappa_1 (k_m - k_m) f_{P_{\alpha}} \frac{\partial f_{P_{\beta}}}{\partial P_{\beta m}} - \kappa_1 \kappa_j f_{P_{\alpha}} \frac{\partial f_{P_{\beta}}}{\partial P_{\alpha j}} \right] \right) .
\]

The first and sixth terms of equation (16) cancel. Also, the third and eighth terms cancel. Combining the fifth and tenth terms, the second and seventh terms, and the fourth and ninth terms, and integrating the eleventh and twelfth terms by parts, we find that equation (16) becomes

\[\text{(16)}\]
\[
\left( \frac{\partial f_{+}}{\partial \tau} \right)_{i} = \int \frac{d^{3}k \, d^{3}p_{\beta} \, d^{3}k}{(2\pi)^{9}} \, \kappa_{k}^{+} \, \left\{ w_{k}^{\alpha} + n_{k}^{\alpha} \, \left( \frac{\partial f_{+}}{\partial \tau} \right) \left( -\kappa_{k} - \kappa_{l} \right) \left( \kappa_{m} - \kappa_{m} \right) \frac{\partial f_{+}}{\partial \tau} \right\} \\
+ 2\kappa_{i} \left( \kappa_{l} - \kappa_{l} \right) \frac{\partial f_{+}}{\partial \tau} \frac{\partial f_{+}}{\partial \tau} - \kappa_{k} \kappa_{j} \frac{\partial f_{+}}{\partial \tau} \\
+ \frac{w_{k}^{\alpha}}{w_{l}^{\alpha}} \left[ \left( \kappa_{i} - \kappa_{l} \right) \left( \kappa_{m} - \kappa_{m} \right) \frac{\partial f_{+}}{\partial \tau} \right] \\
+ \frac{w_{k}^{\alpha}}{w_{l}^{\alpha}} \left[ \left( \kappa_{l} - \kappa_{l} \right) \left( \kappa_{m} - \kappa_{m} \right) \frac{\partial f_{+}}{\partial \tau} \right] \\
+ \frac{w_{k}^{\alpha}}{w_{l}^{\alpha}} \left[ \left( \kappa_{l} - \kappa_{l} \right) \left( \kappa_{m} - \kappa_{m} \right) \frac{\partial f_{+}}{\partial \tau} \right] \\
+ \frac{w_{k}^{\alpha}}{w_{l}^{\alpha}} \left[ \left( \kappa_{l} - \kappa_{l} \right) \left( \kappa_{m} - \kappa_{m} \right) \frac{\partial f_{+}}{\partial \tau} \right].
\]

The first and fourth terms cancel; the second and fifth terms combine; and after terms are rearranged, equation (17) becomes

\[
\left( \frac{\partial f_{+}}{\partial \tau} \right)_{i} = \int \frac{d^{3}k \, d^{3}p_{\beta} \, d^{3}k}{(2\pi)^{9}} \, \kappa_{k}^{+} \, \left\{ w_{k}^{\alpha} + n_{k}^{\alpha} \, \left( \frac{\partial f_{+}}{\partial \tau} \right) \left( \kappa_{j} - \kappa_{j} \right) \left( \kappa_{m} - \kappa_{m} \right) \frac{\partial f_{+}}{\partial \tau} \right\} \\
+ \kappa_{i} \kappa_{j} \frac{w_{k}^{\alpha}}{w_{l}^{\alpha}} \left( \kappa_{m} - \kappa_{m} \right) \frac{\partial f_{+}}{\partial \tau} \\
- \kappa_{i} \left( \kappa_{i} - \kappa_{j} \right) \frac{\partial f_{+}}{\partial \tau} \\
+ \kappa_{i} \left( \kappa_{i} - \kappa_{j} \right) \frac{w_{k}^{\alpha}}{w_{l}^{\alpha}} \left( \kappa_{m} - \kappa_{m} \right) \frac{\partial f_{+}}{\partial \tau} \right].
\]
Equivalently,

\[ \left( \frac{\partial f^*_{\alpha}}{\partial t} \right)_i = \frac{3}{\partial \rho_{\alpha i}} \left\{ \left[ \int \frac{d^3k}{(2\pi)^9} \frac{d^3p^*_\beta}{(2\pi)^3} \frac{d^3p^*_\beta}{(2\pi)^3} \kappa_1 \kappa_j \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} (k, k) \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} \right] \frac{\partial f^*_{\alpha}}{\partial \rho_{\alpha j}} \right\} \]

\[ + \frac{3}{\partial \rho_{\alpha i}} \left\{ \left[ \int \frac{d^3k}{(2\pi)^9} \frac{d^3p^*_\beta}{(2\pi)^3} \frac{d^3p^*_\beta}{(2\pi)^3} \kappa_1 (k_j - k_j) \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} (k, k) \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} \right] \frac{\partial f^*_{\alpha}}{\partial \rho_{\alpha j}} \right\} , \tag{19} \]

4. **INDUCED RECOIL FORCE DUE TO BREMSSTRAHLUNG**

Equation (19) may be rewritten in the form of a diffusion equation as follows:

\[ \left( \frac{\partial f^*_{\alpha}}{\partial t} \right)_i = \frac{3}{\partial \rho_{\alpha i}} \left( D^\sigma_{\alpha ij} \frac{\partial f^*_{\alpha}}{\partial \rho_{\alpha j}} \right) + \frac{3}{\partial \rho_{\alpha i}} \left( f^\sigma_{\alpha j} f^*_{\alpha j} \right) , \tag{20} \]

where the induced diffusion coefficient \( D^\sigma_{\alpha ij} \) is given by

\[ D^\sigma_{\alpha ij} = \int \frac{d^3k}{(2\pi)^6} \frac{d^3p^*_\beta}{(2\pi)^3} \frac{d^3p^*_\beta}{(2\pi)^3} \kappa_1 \kappa_j \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} (k, k) \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} , \tag{21} \]

and the induced dynamic friction force or bremsstrahlung recoil force is given by

\[ f^\sigma_{\alpha j} = - \int \frac{d^3k}{(2\pi)^9} \frac{d^3p^*_\beta}{(2\pi)^3} \frac{d^3p^*_\beta}{(2\pi)^3} \kappa_1 (k_j - k_j) \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} (k, k) \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} . \tag{22} \]

Equation (22) is the sought-after expression for the recoil force on particle \( a \) due to the induced bremsstrahlung process. Energy conservation can be explicitly factored out of the transition rate appearing in equation (22) as follows. The bremsstrahlung transition probability \( \frac{\sigma}{P_{\alpha \rho_{\beta}}^*} (k, k) \) in equation (22) must conserve energy. Therefore
$$\varepsilon'^\alpha + \varepsilon'^\beta = \varepsilon'^\alpha - \hat{\kappa} + \varepsilon'^\beta + \hat{\zeta} + \omega^\gamma, \quad (23)$$

where $\varepsilon'^\alpha$ denotes the total energy of the particle of species $\alpha$ and momentum $\hat{\kappa}$. Using the conditions in equation (10) produces, to lowest order,

$$\varepsilon'^\alpha - \hat{\kappa} = \varepsilon'^\alpha - \hat{\kappa} + \hat{\nu} \varepsilon'^\alpha \quad \quad (24)$$

and

$$\varepsilon'^\alpha + \hat{\zeta} = \varepsilon'^\alpha + (\hat{\zeta} - \hat{\kappa}) + \hat{\nu} \varepsilon'^\alpha \quad \quad (25)$$

Next, using relativistic kinematics, we obtain

$$\hat{\nu} \varepsilon'^\alpha = \hat{\nu} \varepsilon'^\alpha \left[ \left( m_0 c^2 \right)^2 + \rho_0 c^2 \right]^{1/2} = \frac{\hat{p}_0 c^2}{\varepsilon'^\alpha} = \frac{\hat{p}_0 c^2}{\varepsilon'^\alpha} = \hat{\nu} \quad (26)$$

Using equation (26) in equations (23) to (25), then to lowest order in $\hat{\kappa}$ and $\hat{\zeta}$, we obtain

$$\omega^\gamma = \hat{\kappa} + \hat{\nu} \hat{\kappa} + (\hat{\zeta} - \hat{\kappa}) + \hat{\nu} \hat{\zeta} \quad \quad (27)$$

Factoring this expression of energy conservation explicitly into the bremsstrahlung probability $w^c_{\hat{\nu} \hat{\kappa}}(\hat{\zeta}, \hat{\kappa})$, we define the quantity $v^a_{\hat{\nu} \hat{\kappa}}(\hat{\zeta}, \hat{\kappa})$ by

$$w^c_{\hat{\nu} \hat{\kappa}}(\hat{\zeta}, \hat{\kappa}) = v^a_{\hat{\nu} \hat{\kappa}}(\hat{\zeta}, \hat{\kappa}) \delta(\omega^\gamma - \hat{\zeta} + \hat{\nu} \hat{\kappa} + (\hat{\zeta} - \hat{\kappa}) + \hat{\nu} \hat{\zeta}) \quad (28)$$
Substituting equation (28) in equation (22) gives

$$\vec{F}_\alpha^g = -\int \frac{d^3\vec{p}_B}{(2\pi)^9} \frac{d^3\vec{k}}{d^3\vec{k}} \delta^{(4)}(\vec{k} - \vec{k}_c) (\frac{\vec{v}}{\vec{p}_B \cdot \vec{p}_B}) v_{P', P'}^g (\vec{k}_c, \vec{k})$$

$$\times N_k^g (w_k^g - \vec{k} \cdot \vec{v}_\alpha + (\vec{k} - \vec{k}_c) \cdot \vec{v}_B) .$$ \hspace{1cm} (29)

Equation (29) expresses the recoil force on a particle of species $\alpha$ due to induced bremsstrahlung as an integral over particle momentum $\vec{p}_B$, photon wave vector $\vec{k}$, and momentum transfer $\vec{k}_c$. The integrand involves the particle distribution $f_{P'}^g$ of the scattering particle, the bremsstrahlung transition rate $\nu_{P', P'}^g (\vec{k}, \vec{k}_c)$, and the photon distribution $N_k^g$.

The delta function in equation (29) expresses energy conservation in the bremsstrahlung process in the soft photon and small momentum transfer approximation for relativistic particles. Equation (29) agrees with Tsytovich's (4.1)\textsuperscript{1} exactly. It differs in sign from equation (3) of Akopyan and Tsytovich,\textsuperscript{2} which apparently has a typographical error.

The photon density $N_k^g$ in equation (29) can be expressed in terms of the associated field as follows. The power density delivered to the electromagnetic field is given by

$$\frac{du}{dt} = -\frac{j \cdot E}{c} .$$ \hspace{1cm} (30)


Using Maxwell's equation

\[ \mathbf{\nabla} \times \mathbf{A} = - \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t} \quad (31) \]

in equation (30) produces

\[ \frac{du}{dt} = - \left( \mathbf{\nabla} \times \mathbf{A} - \frac{\partial \mathbf{E}}{\partial t} \right) \cdot \mathbf{E} \quad (32) \]

Equivalently,

\[ \frac{du}{dt} = \mathbf{\nabla} \cdot (\mathbf{E} \times \mathbf{A}) - \mathbf{E} \times \mathbf{E} + \mathbf{E} \times \frac{\partial \mathbf{E}}{\partial t} \quad (33) \]

Substituting Maxwell's equation

\[ \mathbf{\nabla} \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t} \quad (34) \]

in equation (33) produces

\[ \frac{du}{dt} = \mathbf{\nabla} \cdot (\mathbf{E} \times \mathbf{A}) + \left( \mathbf{E} \times \frac{\partial \mathbf{B}}{\partial t} - \mathbf{B} \times \frac{\partial \mathbf{E}}{\partial t} \right) \quad (35) \]

Equation (35) is the energy conservation theorem

\[ \frac{du}{dt} = \mathbf{\nabla} \cdot \mathbf{S} + \frac{\partial u}{\partial t} \quad (36) \]
where $\mathbf{S}$ is the Poynting vector

$$\mathbf{S} = \mathbf{E} \times \mathbf{H},$$

(37)

$u$ is the energy density in the electromagnetic field, and

$$\frac{\partial u}{\partial t} = \mathbf{H} \cdot \frac{\partial \mathbf{E}}{\partial t} + \mathbf{E} \cdot \frac{\partial \mathbf{H}}{\partial t}.$$  

(38)

The Fourier representation of the electric field is

$$\tilde{\mathbf{E}} = \int d^3\mathbf{r} \, dw \, \mathbf{E}_k e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$

(39)

and

$$\tilde{\mathbf{B}} = \int d^3\mathbf{r} \, dw \, \mathbf{B}_k e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}.$$  

(40)

Also, by the plasma constitutive relations

$$D_{ki} = \varepsilon_{ij}(k, \omega) E_{kj}.$$  

(41)

Furthermore, taking the Fourier transform of equation (34) produces

$$\tilde{\mathbf{B}}_k = \frac{\mathbf{k} \times \tilde{\mathbf{E}}_k}{\omega}.$$  

(42)

Also,

$$\mathbf{H} = \frac{\tilde{\mathbf{B}}}{\mu_0} = \varepsilon_0 c^2 \tilde{\mathbf{E}}.$$  

(43)
Next, using equations (39) to (43) and the appropriate Fourier representations in equation (38) gives

$$\frac{\partial u}{\partial t} = \int \, d^3k \, d\omega \, d^3k' \, d\omega' \, \epsilon_{kij} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} (-i\omega') e_{ij}(\mathbf{k}', \omega', \mathbf{E}_{k'}) \, \mathbf{E}_{k'} \, j e^{i(\mathbf{k}' \cdot \mathbf{r} - \omega' t)} \, (44)$$

$$+ \varepsilon_0 c^2 \int \, d^3k \, d\omega \, d^3k' \, d\omega' \, \frac{(\mathbf{k} \times \mathbf{E}_k)_i}{\omega} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} (-i\omega') \frac{(\mathbf{k}' \times \mathbf{E}_{k'})_i}{\omega'} e^{i(\mathbf{k}' \cdot \mathbf{r} - \omega' t)} \, (45),$$

By an ordinary vector identity,

$$(\mathbf{k} \times \mathbf{E}_k)_i (\mathbf{k}' \times \mathbf{E}_{k'})_i = (\mathbf{k} \times \mathbf{E}_k) \times (\mathbf{k}' \times \mathbf{E}_{k'})$$

$$= \mathbf{k} \cdot \mathbf{E}_{k'} \times \mathbf{E}_k - \mathbf{k}' \cdot \mathbf{E}_k \times \mathbf{E}_{k'} \, (45).$$

Substituting equation (45) in equation (44) gives

$$\frac{\partial u}{\partial t} = -i \int \, d\mathbf{k} \, d\mathbf{k}' \left[ \omega' \mathbf{E}_{k'1} \epsilon_{ij}(\mathbf{k}', \omega') \mathbf{E}_{k', j} \right.

$$+ \frac{\varepsilon_0 c^2}{\omega} (\mathbf{k} \times \mathbf{E}_k \times \mathbf{E}_k' - \mathbf{k}' \times \mathbf{E}_k \times \mathbf{E}_{k'}) \right] \times e^{i[\mathbf{k} \times \mathbf{r} - (\omega + \omega') t]} \, (46),$$

where $d\mathbf{k} \equiv d^3k \, d\omega$. Symmetrizing equation (46) in $k$ and $k'$ produces
\[
\frac{\partial \mathbf{u}}{\partial t} = -\frac{1}{2} \int \frac{dk}{k} \frac{dk'}{k'} \left\{ E_{k,j} \varepsilon_{ij} (k, \omega) \omega E_{k,j} + E_{k,1} \omega' \varepsilon_{ij} (k', \omega') E_{k',j} + \varepsilon_0 c^2 (\omega + \omega') \left[ \frac{\dot{E}_{k,j}}{\omega} \frac{\frac{\varepsilon_k^*}{\omega}}{E_{k,j}} - \frac{(k \times E_{k,j}) (k' \times E_{k'})}{\omega \omega'} \right] \right\} x e^{i [(k + k') \cdot \mathbf{r} - (\omega + \omega') t]} \tag{47}
\]

The total field involved in the bremsstrahlung process, \( \dot{\mathbf{E}}_k \), is given elsewhere,\(^5\) namely,

\[
\dot{\mathbf{E}}_k = \dot{\mathbf{E}}_k^{(0)} + \dot{\mathbf{E}}_k^R \tag{48}
\]

where \( \dot{\mathbf{E}}_k^{(0)} \) is the lowest order stochastic bremsstrahlung radiation field and \( \dot{\mathbf{E}}_k^R \) is the regular nonradiative component. The bremsstrahlung field written in terms of its polarization vector \( \dot{\mathbf{E}}_k^0 \) is given by

\[
\dot{\mathbf{E}}_k^0 = \dot{\mathbf{E}}_k \mathbf{g}_k^{(0)} \tag{49}
\]

where

\[
\dot{\mathbf{E}}_k \mathbf{g}_k^{(0)} \mathbf{g}_k^{(0)*} = 1 \tag{50}
\]

---

The stochastic properties of the bremsstrahlung field are approximated to the needed order by

\[ \langle \mathbf{E}^{(0)}_{\mathbf{k}_i} \rangle = 0 \]  

(51)

and

\[ \langle \mathbf{E}^{(0)}_{\mathbf{k}_i} \mathbf{E}^{(0)}_{\mathbf{k}_j} \rangle = \mathbf{e}^{*}_{\mathbf{k}_i} \mathbf{e}_{\mathbf{k}_j} |\mathbf{E}^{(0)}_{\mathbf{k}}|^2 \delta(\mathbf{k} + \mathbf{k}_i) \]  

(52)

(these are eq (49) and (50) of a previous work\(^5\)). Therefore, substituting equation (48) in equation (47), keeping only the lowest order bremsstrahlung field, integrating equation (47) over time, and using equation (51), we find that the ensemble average energy density in the field is given by

\[ \langle u \rangle = \langle u \rangle^\sigma + \langle u \rangle^R, \]  

(53)

where

\[ \langle u \rangle^\sigma = \int \frac{d^3k}{(2\pi)^3} \frac{d\omega}{\omega} \left\{ \frac{1}{\omega + \omega'} \left[ \epsilon_{ij}(\mathbf{k},\omega)\omega\langle \mathbf{E}^{(0)}_{\mathbf{k}_i} \mathbf{E}^{(0)}_{\mathbf{k}_j} \rangle \right. 

\left. + \omega'\epsilon_{ij}(\mathbf{k}',\omega')\langle \mathbf{E}^{(0)}_{\mathbf{k}_i} \mathbf{E}^{(0)}_{\mathbf{k}_j} \rangle \right] + \epsilon_0 c^2 \frac{\mathbf{k} \cdot \mathbf{k}'}{\omega \omega'} \langle \mathbf{E}^{(0)}_{\mathbf{k}_i} \mathbf{E}^{(0)}_{\mathbf{k}_j} \rangle 

\right. 

\left. - \epsilon_0 c^2 \frac{\mathbf{k} \cdot \mathbf{k}'}{\omega \omega'} \langle \mathbf{E}^{(0)}_{\mathbf{k}_i} \mathbf{E}^{(0)}_{\mathbf{k}_j} \rangle \right\} e^{i[(\mathbf{k} + \mathbf{k}') \cdot \mathbf{r} - (\omega + \omega')t]} \]  

(54)

is the bremsstrahlung part, and \( \langle u \rangle^R \) is the regular nonradiative part. Only \( \langle u \rangle^\sigma \) is needed for the present work.

Substituting equation (52) in equation (54) and using the definition of the four-dimensional delta function,

\[
\delta(k) = \delta^3(\mathbf{k}) \delta(\omega) = (2\pi)^{-4} \int d^3 \mathbf{\hat{r}} \ dt \ e^{-i(\mathbf{\hat{r}} \cdot \mathbf{\hat{r}} - \omega t)} \ ,
\]

produces

\[
\langle \sigma \rangle = \frac{1}{2} \int \frac{dk \ dk'}{\omega + \omega'} \left\{ \frac{1}{\omega + \omega'} \left[ \epsilon^a_{\mathbf{k} i \epsilon_{ij}(\mathbf{k}, \omega) \omega \epsilon^a_{\mathbf{k} j} + \epsilon^a_{\mathbf{k} i \epsilon_{ij}(\mathbf{k'}, \omega') \epsilon^a_{\mathbf{k} j} \right] \delta(\omega + \omega') \right.
\]

\[
+ \epsilon_0 e^2 \left[ \frac{\mathbf{k} \cdot \mathbf{k'} \omega \epsilon^a_{\mathbf{k} i \epsilon_{ij}(\mathbf{k}, \omega) \omega \epsilon^a_{\mathbf{k} j} + \epsilon^a_{\mathbf{k} i \epsilon_{ij}(\mathbf{k'}, \omega') \epsilon^a_{\mathbf{k} j} \right]}{\omega \omega'} \delta(\omega + \omega') \right\} |E_0(0)|^2 \delta^3(\mathbf{k} + \mathbf{k'}). \]

In equation (56) we define

\[
I(k) = \int \frac{dk}{\omega + \omega'} \delta(\omega + \omega') \delta^3(\mathbf{k} + \mathbf{k'}) \left[ \epsilon^a_{\mathbf{k} i \epsilon_{ij}(\mathbf{k}, \omega) \omega \epsilon^a_{\mathbf{k} j} + \epsilon^a_{\mathbf{k} i \epsilon_{ij}(\mathbf{k'}, \omega') \epsilon^a_{\mathbf{k} j} \right] .
\]

Changing the variable \( \omega' \) to \( \omega'' = \omega + \omega' \) and integrating over \( \mathbf{k'} \), equation (57) becomes

\[
I(k) = \int \frac{d\omega''}{\omega''} \delta(\omega'') \left[ \epsilon^a_{\mathbf{k} i \epsilon_{ij}(\mathbf{k}, \omega) \omega \epsilon^a_{\mathbf{k} j} + (\omega'' - \omega) \epsilon^a_{\mathbf{k} i \epsilon_{ij}(\mathbf{k}, \omega) \omega \epsilon^a_{\mathbf{k} j} \right] .
\]

Expanding the second term in the integrand of equation (58) in a Taylor series about \( \omega'' = 0 \), then

\[
I(k) = \int \frac{d\omega''}{\omega''} \delta(\omega'') \left\{ \epsilon^a_{\mathbf{k} i \epsilon_{ij}(\mathbf{k}, \omega) \omega \epsilon^a_{\mathbf{k} j} - \epsilon^a_{\mathbf{k} i \epsilon_{ij}(\mathbf{k}, -\omega) \epsilon^a_{\mathbf{k} j} \right.
\]

\[
+ \omega'' \frac{\partial}{\partial \omega''} \left[ (\omega'' - \omega) \epsilon^a_{\mathbf{k} i \epsilon_{ij}(\mathbf{k}, -\omega) \epsilon^a_{\mathbf{k} j} \right] \}
\]

By the reality of the fields, it follows from equation (41) that

\[
\epsilon_{ij}(\mathbf{k}, -\omega) = \epsilon^a_{ij}(\mathbf{k}, \omega) .
\]
Substituting equation (60) in equation (59) and simplifying the second term causes equation (59) to become

\[ I(k) = 2i \int \frac{d\omega'}{\omega'} \delta(\omega') \omega \Im \epsilon_{ki}^{\sigma} \epsilon_{ij}(\hat{k}, \omega) \epsilon_{kj}^{\sigma} + \frac{3}{\partial \omega} \left[ \omega \epsilon_{ki}^{\sigma} \epsilon_{ij}(\hat{\omega}, \omega) \epsilon_{kj}^{\sigma} \right] . \]  

(61)

The dielectric constant \( \epsilon_{i}(\hat{k}, \omega) \) for mode \( \sigma \) is defined in terms of the dielectric permittivity tensor \( \epsilon_{ij}(\hat{k}, \omega) \) and the unit electric polarization vectors \( \epsilon_{k}^{\sigma} \) by

\[ \epsilon_{i}(\hat{k}, \omega) = \epsilon_{ki}^{\sigma} \epsilon_{ij}(\hat{k}, \omega) \epsilon_{kj}^{\sigma} + \epsilon_{0} \frac{c^2}{\omega^2} (\hat{k} \cdot \epsilon_{k}^{\sigma})(\hat{k} \cdot \epsilon_{k}^{\sigma}) \]  

(62)

(see Other Works by Tsytovich, Selected Bibliography).

Noting that the second term of equation (62) is real, and substituting equation (62) in equation (61), we obtain

\[ I(k) = 2i \omega \Im \epsilon(\hat{k}, \omega) \int \frac{d\omega'}{\omega'} \delta(\omega') \]  

\[ + \frac{3}{\partial \omega} \left[ \omega \epsilon_{ki}^{\sigma} \epsilon_{ij}(\hat{\omega}, \omega) \epsilon_{kj}^{\sigma} \right] . \]  

(63)

If mode decay or growth are ignorable, then the mode dielectric constant \( \epsilon_{i}(\hat{k}, \omega) \) is real and the first term of equation (63) may be dropped. In that case equation (63) becomes

\[ I(k) = \frac{3}{\partial \omega} \left[ \omega \epsilon_{ki}^{\sigma} \epsilon_{ij}(\hat{\omega}, \omega) \epsilon_{kj}^{\sigma} \right] . \]  

(64)

If we next integrate the second term in equation (56) and substitute equations (50), (57), and (64), equation (56) becomes

\[ \langle \omega \rangle_{\sigma} = \frac{1}{2} \int d\omega \left[ \frac{3}{\partial \omega} \left( \epsilon_{ki}^{\sigma} \omega \epsilon_{ij}(\hat{\omega}, \omega) \epsilon_{kj}^{\sigma} \right) \right] \]  

\[ + \frac{\epsilon_{0} c^2}{\omega^2} \left( k^2 - \hat{k} \epsilon_{k}^{\sigma *} \epsilon_{k}^{\sigma} \right) \left| \epsilon_{k}^{\sigma} \right|^2 . \]  

(65)
Changing the variable of integration from $k$ to $-k$ in the first term only, using the reality property of the fields to replace $e^{-k}E^{0}_G$ by $e^{k}E^{0*}_G$, substituting equation (62), and simplifying, causes equation (65) to become

$$\langle u \rangle = \frac{1}{2} \int dk \left[ \frac{3}{2\omega} \left( \omega \epsilon^{0}(k, \omega) - \epsilon_0 \frac{c^2}{k} e^{-k} e^{+k*} \right) \right.$$  

$$+ \frac{\epsilon_0 c^2}{\omega^2} \left( k^2 - k \cdot e^{0}_k \epsilon^{0*}_k \right) |E^{0}_k|^2 .$$  

(66)

Simplifying equation (66) results in

$$\langle u \rangle = \frac{1}{2} \int dk \left[ \epsilon^{0}(k, \omega) + \omega \frac{\partial \epsilon^{0}(k, \omega)}{\partial \omega} + \epsilon_0 \frac{k^2}{\omega^2} c^2 \right] |E^{0}_k|^2 .$$  

(67)

The zeroth-order dispersion relation for the bremsstrahlung wave is given by the poles of the photonic Green's function $G_{ij}$ in equation (22) of a previous paper or, equivalently, the zeros of the determinant of $G_{ij}^{-1}$ in equation (18) of that paper. Thus the bremsstrahlung field $E^{0}_{k_j}$ must satisfy

$$\left[ \frac{1}{\mu_0(\omega + i\delta)^2} \left( k_i k_j - k^2 \delta_{ij} \right) + \epsilon_{ij} \right] E^{0}_{k_j} = 0.$$  

(68)

Taking the inner product of equation (68) with $e^{0*}_{k_i}$ and using equations (49), (50), and (62) and $\mu_0^{-1} = \epsilon_0 c^2$ produces

$$\frac{\epsilon_0 c^2}{\omega^2} (e^{0*}_{k_i} e^{-k} e^{+k*} - k^2) + \epsilon^{0} - \epsilon_0 \frac{c^2}{\omega^2} (k \cdot e^{0*}_{k_i})(k \cdot e^{0*}_{k_i}) = 0$$  

(69)

or

$$\frac{k^2 c^2}{\omega^2} = \frac{\epsilon^{0}}{\epsilon_0} .$$  

(70)

---

Substituting equation (70) in equation (67) results in

\[ \langle u \rangle^\sigma = \frac{1}{2} \int dk \left( 2 \varepsilon^\sigma(k, \omega) + \omega \frac{\partial \varepsilon^\sigma}{\partial \omega}(k, \omega) \right) |E_k^\sigma(0)|^2 . \]  

(71)

Equivalently, equation (71) becomes

\[ \langle u \rangle^\sigma = \frac{1}{2} \int d^3k \frac{1}{\omega} \left( \varepsilon^\sigma(k, \omega) \omega^2 \right) |E_k^\sigma(0)|^2 . \]  

(72)

One can also express the energy density in the field in terms of the photon number density \( N_k^\sigma \) as follows:

\[ \langle u \rangle^\sigma = \frac{d^3k}{(2\pi)^3} \frac{\omega^\sigma N_k^\sigma}{\omega_k^\sigma} , \]  

(73)

where \( \omega_k^\sigma \) is the frequency of the mode \( \sigma \) as determined by the dispersion relation. Equivalently, equation (73) may be written

\[ \langle u \rangle^\sigma = \int \frac{d^3k}{(2\pi)^3} \omega N_k^\sigma \delta(\omega - \omega_k^\sigma) . \]  

(74)

Comparing equations (72) and (74), we find

\[ N_k^\sigma \delta(\omega - \omega_k^\sigma) = \frac{d^3k}{\omega^2} \frac{\partial}{\partial \omega} \left( \varepsilon^\sigma(k, \omega) \omega^2 \right) |E_k^\sigma(0)|^2 . \]  

(75)

Equation (29) may be equivalently written
\[ \hat{F}_\alpha = -\int \frac{d^3 \mathbf{k} \, d\omega \, d^3 \mathbf{k} \, d^3 \mathbf{P}_\beta}{(2\pi)^9} \frac{\mathbf{k}(\mathbf{k} - \mathbf{K}) \cdot (\hat{\mathbf{p}}_{P_\beta} P_\beta) \psi_{\mathbf{P}_\alpha P_\beta}^{\mathbf{P}_\alpha P_\beta} + (\mathbf{k}, \mathbf{k}) \nu_{\mathbf{k}}^{\mathbf{k}}}{(\omega - \omega_{\mathbf{k}})} \]

\[
\times \delta(\omega - \mathbf{k} \cdot \mathbf{v}_\alpha + (\mathbf{k} - \mathbf{K}) \cdot \mathbf{v}_\beta) \delta(\omega - \omega_{\mathbf{k}}) ,
\]

where the integral of a delta function over \( \omega \) has been inserted. Therefore, after substituting equation (75) in equation (76), we finally obtain

\[ \hat{F}_\alpha = -4\pi^2 \int \frac{d^3 \mathbf{k} \, d\omega \, d^3 \mathbf{k} \, d^3 \mathbf{P}_\beta}{(2\pi)^9} \frac{1}{\omega^2} \frac{\partial}{\partial \omega} \left( \omega^2 \sigma(\mathbf{k}, \omega) \right) \mathbf{k}(\mathbf{k} - \mathbf{K}) \cdot (\hat{\mathbf{p}}_{P_\beta} P_\beta) \]

\[
\times \nu_{\mathbf{P}_\alpha P_\beta}^{\mathbf{P}_\alpha P_\beta}(\mathbf{k}, \mathbf{k}) \left| E_{\mathbf{k}}^{(0)} \right|^2 \delta(\omega - \mathbf{k} \cdot \mathbf{v}_\alpha + (\mathbf{k} - \mathbf{K}) \cdot \mathbf{v}_\beta) .
\]

Equation (77) expresses the general form for the force on a particle due to induced bremsstrahlung. The dispersive properties of the beam-plasma system enter explicitly in equation (77) through the dielectric constant \( \varepsilon(\mathbf{k}, \omega) \) and implicitly through the transition probability.

5. CONCLUSION

The general form has been derived for the collective bremsstrahlung recoil force in a nonequilibrium relativistic beam-plasma system, namely,

\[ \hat{F}_\alpha = -\int \frac{d^3 \mathbf{P}_\beta d^3 \mathbf{k} d^3 \mathbf{K}}{(2\pi)^9} \mathbf{k}(\mathbf{k} - \mathbf{K}) \cdot (\hat{\mathbf{p}}_{P_\beta} P_\beta) \nu_{\mathbf{P}_\alpha P_\beta}^{\mathbf{P}_\alpha P_\beta} + (\mathbf{k}, \mathbf{k}) \]

\[
\times \mathbf{H}_{\mathbf{k}}^{\mathbf{k}}(\omega_{\mathbf{k}} - \mathbf{k} \cdot \mathbf{v}_\alpha + (\mathbf{k} - \mathbf{K}) \cdot \mathbf{v}_\beta) .
\]
Here $\vec{F}_a$ is the force on a particle of species $a$ and velocity $\vec{v}_a$ due to its participation in a bremsstrahlung process in which it interacts with a particle of species $\beta$ and velocity $\vec{v}_\beta$, resulting in a momentum transfer $\vec{k} - \vec{k}'$ to that particle. A bremsstrahlung photon of wave vector $\vec{k}$ and frequency $\omega_k$ in mode $\sigma$ is emitted. The functions $f_{P\beta}$ and $N_k^a$ are the particle and photon distributions, respectively, and $V_k^a$ is the bremsstrahlung transition rate with energy conservation already factored out. The photon distribution function $N_k^a$ can be expressed in terms of the bremsstrahlung field by equation (75) to obtain an equivalent form given by equation (77). Equation (78) was used by Akopyan and Tsytovich\textsuperscript{1,2} to obtain an expression for the collective bremsstrahlung transition rate by means of direct comparison with another expression for the collective bremsstrahlung recoil force, which was determined from the equation of motion for a dynamically polarized test particle undergoing bremsstrahlung.

The present calculation, together with previous work by the author (see Selected Bibliography), is important for ongoing work in calculating collective radiation processes and conditions for the occurrence of radiative instability in relativistic beam-plasma systems.


SELECTED BIBLIOGRAPHY

Work of Akopyan and Tsytovich


Other Work by Tsytovich


Work of Brandt


H. E. Brandt, Second-Order Nonlinear Conductivity Tensor for an Unmagnetized Relativistic Turbulent Plasma, in Plasma Astrophysics, Course and Workshop Organized by the International School of Plasma Physics, 27 August to 7 September 1981, Varenna (Como), Italy (European Space Agency ESA SP-161, November 1981), 361 (also to be published by Pergamon Press).


DISTRIBUTION (Cont'd)

COMMANDER
AP WEAPONS LAB, AFSC
ATTN J. GENEROSA
ATTN A. H. GUENThER
ATTN W. E. PAGE
ATTN LR, LASER DEV DIV
KIRTLAND AFB, NM 87117

WRIGHT-PATTERSON AFB
FOREIGN TECHNOLOGY DIVISION/ETD
ATTN J. BUTLER
WRIGHT-PATTERSON AFB, OH 45433

CENTRAL INTELLIGENCE AGENCY
ATTN R. FETTIS
ATTN D. B. NEWMAN
PO BOX 1925
WASHINGTON, DC 20013

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
ATTN LIBRARY
ATTN CENTER FOR RADIATION RESEARCH
ATTN C. TEAGUE
ATTN E. MARX
WASHINGTON, DC 20234

DEPARTMENT OF ENERGY
ATTN O. P. MANLEY
WASHINGTON, DC 20585

NATIONAL AERONAUTICS & SPACE ADMINISTRATION
ATTN R. RAMATY
GOODARD SPACE FLIGHT CENTER
GREENBELT, MD 20771

ADMINISTRATOR
NASA HEADQUARTERS
WASHINGTON, DC 20546

DIRECTOR
NASA
GOODARD SPACE FLIGHT CENTER
ATTN 250, TECH INFO DIV
GREENBELT, MD 20771

AMES LABORATORY (ERDA)
IOWA STATE UNIVERSITY
ATTN NUCLEAR SCIENCE CATEGORY
AMES, IA 50011

ASTRONOMICAL INSTITUTE—ZONNENBURG 2
ATTN M. KUPERUS
3512 NL UTERCHT, THE NETHERLANDS

THE AUSTRALIAN NATIONAL UNIVERSITY
DEPT OF THEORETICAL PHYSICS
ATTN D. B. MELROSE
PO BOX 4
CANBERRA A.C.T. 2600
AUSTRALIA

B. K. DYNAMICS
ATTN R. J. LINZ
15825 SHADY GROVE RD
ROCKVILLE, MD 20850

BOEING AEROSPACE
ATTN H. T. BUSHER
PO BOX 3999 MS SR-10
SEATTLE, WA 98124

BROOKHAVEN NATIONAL LABORATORY
ASSOCIATED UNIVERSITIES, INC
ATTN PHYSICS DEPT
UPTON, LONG ISLAND, NY 11973

CALIFORNIA INSTITUTE OF TECHNOLOGY
THEORETICAL ASTROPHYSICS
ATTN K. THORNE
130-33
PASADENA, CA 91125

UNIVERSITY OF CALIFORNIA
DEPT OF APPL PHYS & INFORMATION SCIENCE
ATTN H. ALFVEN
LA JOLLA, CA 92093

CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY
ATTN J. C. HUBBARD
IRVINE, CA 92717

UNIVERSITY OF CALIFORNIA
ELECTRICAL ENGINEERING DEPARTMENT
ATTN C. K. BIRDSALL
BERKELEY, CA 94720

UNIVERSITY OF CALIFORNIA
PHYSICS DEPT
ATTN A. N. KAUFMAN
BERKELEY, CA 94720

UNIVERSITY OF CALIFORNIA, DAVIS
APPLIED SCIENCES
ATTN J. DEGROOT
DAVIS, CA 95616

UNIVERSITY OF CALIFORNIA, IRVINE
DEPT OF PHYSICS
ATTN G. BENFORD
ATTN N. ROSTOKER
ATTN M. MAYER
IRVINE, CA 92717

UNIVERSITY OF CALIFORNIA, LOS ANGELES
DEPT OF PHYSICS
ATTN K. NOZAKI
LOS ANGELES, CA 90025

CAMBRIDGE UNIVERSITY
INSTITUTE OF ASTRONOMY
MADINGLEY ROAD
ATTN M. REES
CAMBRIDGE CB 3 0 HA, ENGLAND

35
DISTRIBUTION (Cont'd)

LOS ALAMOS SCI LAB (Cont’d)
ATTN J. LANDT
ATTN R. HOEBERLING
ATTN T. R. KING
ATTN A. KADISH
ATTN K. LEE
ATTN R. W. FREYMAN
ATTN A. W. CHURMAZ
ATTN L. M. DUNCAN
ATTN D. B. HENDERSON
ATTN L. E. THODE
ATTN H. A. DAVIS
ATTN T. KHAN
PO BOX 1663
LOS ALAMOS, NM 87545

UNIVERSITY OF MARYLAND
DEPT OF ELECTRICAL ENGINEERING
ATTN M. REISER
ATTN W. DESTLER
ATTN C. D. STRIFFLER
ATTN M. T. RHEE
COLLEGE PARK, MD 20742

UNIVERSITY OF MARYLAND
DEPT OF PHYSICS & ASTRONOMY
ATTN H. R. GRIEM
ATTN E. OHT
ATTN C. GREBOGI
ATTN K. PAPADOPOULOS
ATTN J. WEBER
COLLEGE PARK, MD 20742

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
PLASMA FUSION CENTER
ATTN G. BEKEFI
ATTN J. BELCHER
ATTN T. CHANG
ATTN B. COPPI
ATTN R. DAVIDSON
ATTN C. LIN
ATTN S. OLBERT
ATTN B. ROSSI
CAMBRIDGE, MA 02139

MAX PLANCK INST, FUR AERONOMIE
3411 KATLENBURG
ATTN J. AXFORD
ATTN E. MARSH
LINDAU 3, WEST GERMANY

MAX PLANCK INSTITUTE OF PHYSICS
& ASTROPHYSICS
ATTN M. HORNAN
ATTN J. TRUMPER
GARCHING BEI MUNICH, WEST GERMANY

MAXWELL LABORATORIES
ATTN J. S. PEARLMAN
8835 BALBOA AVE
SAN DIEGO, CA 92123

MISSION RESEARCH CORP
ATTN B. GODFREY
ATTN D. J. SULLIVAN
ATTN M. BOLLEN
ATTN C. LONGMIRE
ATTN D. VOSS
1720 RANDOLPH RD, SE
ALBUQUERQUE, NM 87106

UNIVERSITY OF NAGOYA
DEPT OF PHYSICS
ATTN S. HAYAKAWA
NAGOYA, JAPAN

NATIONAL RESEARCH COUNCIL
DIVISION OF PHYSICS
ATTN P. JAANIMAGI
OTTOWA, ONTARIO
CANADA

NATIONAL SCIENCE FOUNDATION
DIVISION OF ASTRONOMICAL SCIENCES
ATTN M. AIZENMAN
1800 G STREET, NW
WASHINGTON, DC 20550

OAK RIDGE NATIONAL LABORATORY
PO BOX Y
ATTN A. C. ENGLAND
OAK RIDGE, TN 37830

OCCIDENTAL RESEARCH CORP
ATTN D. B. CHANG
2100 SE MAIN
IRVINE, CA 92713

OXFORD UNIVERSITY
DEPARTMENT THEORETICAL PHYSICS
1 KEBLE RD
ATTN D. TER HAAR
OXFORD OX1 3NP, ENGLAND

OXFORD UNIVERSITY
ASTROPHYSICS DEPARTMENT
SOUTH PARK ROAD
ATTN A. HALL
OXFORD--OX1 3 RQ, ENGLAND

OXFORD UNIVERSITY
DEPT OF ENGINEERING SCIENCE
PARKS ROAD
ATTN L. M. WICKENS
ATTN J. E. ALLEN
OXFORD, UNITED KINGDOM

PHYSICS INTERNATIONAL
ATTN B. A. LIPPMANN
ATTN R. D. GENUARIO
2700 MERCER ST
SAN LEANDRO, CA 94577
DISTRIBUTION (Cont'd)

PRINCETON UNIVERSITY
ASTROPHYSICAL SCIENCES
PETON HALL
ATTN R. KULSRUD
PRINCETON, NJ 08540

PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
ATTN R. WHITE
PRINCETON, NJ 08540

QUEEN MARY COLLEGE
DEPT OF APPLIED MATH
MILE END ROAD
ATTN D. BURGESS
LONDON E1 4NS, ENGLAND

RUHR UNIVERSITY
ATTN W. SEBOLD
ATTN W. ZWINGMANN
4630 BOCHUM 1, WEST GERMANY

INSTITUTE OF EXPERIMENTAL PHYSICS
RUHR-UNIVERSITY
POSTFACH 2148
ATTN H. KINZE
436 BOCHUM, WEST GERMANY

SACHS/FREEMAN ASSOC
ATTN R. A. MAHAFFEY
19300 GALLANT FOX
SUITE 214
BOWIE, MD 20715

SANDIA LABORATORIES
ATTN R. B. MILLER
ATTN J. POWELL
ATTN W. BALLARD
ATTN C. EKDAHL
ATTN W. D. BROWN
ATTN S. HUMPHRIES, JR.
ATTN G. ROHMEIN
ATTN K. PRESTWICH
4244 SANDIA LABS
ALBUQUERQUE, NM 87115

SCIENCE APPLICATIONS, INC
ATTN E. P. CORNET
ATTN A. DROBOT
ATTN E. KANE
1710 GOODRIDGE DR
PO BOX 1303
MCLEAN, VA 22012

SCIENCE APPLICATIONS, INC
ATTN F. CHILTON
1200 PROSPECT ST
PO BOX 2351
LA JOLLA, CA 92038

SERVICE DE CHEMIE PHYSIQUELL
ATTN R. BALESCU
CAMPUS PLAINE U.L.B.
CODE POSTAL n° 231
BOULEVARD DU TRIOMPHE
10 50 BRUXELLES, BELGIUM

SPECOLA VATICANA
ATTN W. STOEGGER, S. J.
I-00120 CITTA DEL VATICANO
ITALY

SRI INTERNATIONAL
ATTN G. AUGUST
ATTN C. L. RINO
333 RAVENSWOOD AVE
MENLO PARK, CA 94025

STANFORD UNIVERSITY
INST PLASMA RES
ATTN P. A. STURROCK
STANFORD, CA 94305

STERREINERSWACHT-LEIDEN
ATTN C. A. NORMAN
ATTN P. ALLAN
2300 RA LEIDEN, THE NETHERLANDS

TEL-AVIV UNIVERSITY
DEPT OF PHYSICS & ASTRONOMY
ATTN G. TAUBER
TEL AVIV, ISRAEL

TELEDYNE BROWN ENGINEERING
CUMMINGS RESEARCH PARK
ATTN MELVIN L. PRICE, MS-44
HUNTSVILLE, AL 35807

INSTITUTE FOR THEORETICAL MECHANICS-RUG
KRIJGSLAAN 271-S9
ATTN F. VERHEEST
B-9000 GENT, BELGIUM

UNIVERSITY OF TENNESSEE
DEPT OF ELECTRICAL ENGINEERING
ATTN I. ALEXEFF
ATTN J. R. ROTH
KNOXVILLE, TN 37916

UMEA UNIVERSITY
DEPT OF PLASMA PHYSICS
ATTN J. LARSSON
ATTN L. STENFLO
S-90187 UMEA
SWEDEN

UNIVERSITY OF WASHINGTON
DEPT OF PHYSICS
ATTN M. BAKER
SEATTLE, WA 98195
DISTRIBUTION (Cont'd)

WEIZMANN INSTITUTE
DEPT OF NUCLEAR PHYSICS
ATTN AMRI WANDEL
REHOVOT, ISRAEL

WESTERN RESEARCH CORP
ATTN R. O. HUNTER
225 BROADWAY, SUITE 1600
SAN DIEGO, CA 92101

US ARMY ELECTRONICS RESEARCH
& DEVELOPMENT COMMAND
ATTN COMMANDER, DREDL-CG
ATTN TECHNICAL DIRECTOR, DREDL-CT
ATTN PUBLIC AFFAIRS OFFICE, DREDL-IN

HARRY DIAMOND LABORATORIES
ATTN CO/TD/TSO/DIVISION DIRECTORS
ATTN RECORD COPY, 81200
ATTN HDL LIBRARY, 81100 (3 COPIES)
ATTN HDL LIBRARY (WOODBRIDGE), 81100
ATTN TECHNICAL REPORTS BRANCH, 81300
ATTN LEGAL OFFICE, 97000
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN MORRISON, R. E., 13500
ATTN CHIEF, 21000
ATTN CHIEF, 21100
ATTN CHIEF, 21200
ATTN CHIEF, 21300
ATTN CHIEF, 21400
ATTN CHIEF, 21500
ATTN CHIEF, 22000
ATTN CHIEF, 22100
ATTN CHIEF, 22300
ATTN CHIEF, 22800
ATTN CHIEF, 22900
ATTN CHIEF, 20240
ATTN CHIEF, 11000
ATTN CHIEF, 13000
ATTN CHIEF, 13200
ATTN CHIEF, 13300
ATTN CHIEF, 15200

HARRY DIAMOND LABORATORIES (Cont'd)
ATTN BROWN, E., 00211
ATTN SINDORIS, A., 00211
ATTN GERLACH, H., 11100
ATTN LIBELO, L., 11200
ATTN LOKERSON, D., 11400
ATTN CROWN, E., 11200
ATTN DOPKIN, H., 11320
ATTN LEAVITT, R., 11320
ATTN MORRISON, C., 11320
ATTN SATTLER, J., 11320
ATTN KULPA, S., 11330
ATTN SILVERSTEIN, J., 11330
ATTN FAZI C., 113500
ATTN LOMONACO, S., 115200
ATTN CORRIGAN, J., 20240
ATTN FARRAR, P., 21100
ATTN GARVER, R., 21100
ATTN TATUM, J., 21100
ATTN MERKEL, G., 21300
ATTN MCLEAN, B., 22300
ATTN OLDHAM, T., 22300
ATTN BLACKBURN, J., 22800
ATTN GILBERT, R., 22800
ATTN KLEBERS, J., 22800
ATTN VANDERWALL, J., 22800
ATTN BROMBORSKY, A., 22900
ATTN DAVIS, D., 22900
ATTN GRAYBILL, S., 22900
ATTN HUTTLIN, G. A., 22900
ATTN KEHS, A., 22900
ATTN KERRIS, K., 22900
ATTN LAMB, R., 22900
ATTN LINDSAY, D., 22900
ATTN LITZ, M., 22900
ATTN RUTH, B., 22900
ATTN STEWART, A., 22900
ATTN SOLN, J., 22900
ATTN WHITTAKER, D., 22900
ATTN ELBAUM, S., 97100
ATTN BRANDT, H. E., 22300
(60 COPIES)

39