Channel Cooling by Turbulent Convective Mixing

J. R. Greig, R. E. Pechacek, and M. Raleigh

Experimental Plasma Physics Branch
Plasma Physics Division

March 12, 1984

This research was sponsored by the Office of Naval Research and by the Defense Advanced Research Projects Agency (DoD), ARPA Order No. 4395 Amendment No. 11, monitored by the Naval Surface Weapons Center under Contract N60921-83-WR-W0114.

Approved for public release; distribution unlimited.
Results from a series of experiments are described which show that hot, reduced-density channels in the atmosphere usually cool by a process of turbulent convective mixing. Five different types of channels were created (a) by the interaction of a pulsed CO₂ laser with aerosols in the atmosphere, (b) by electric discharges in the atmosphere, (c) by laser-guided, electric discharges in the atmosphere, and (d) and (e) by the absorption of CO₂ laser radiation in nitrogen doped with sulfur hexafluoride. For channels in which the energy deposition was almost cylindrically symmetric and axially uniform, (e), the rate of cooling, after reaching pressure equilibrium, was within an order of magnitude of thermal conduction. But for channels in which the energy deposition was asymmetric and/or non-uniform, the rate of cooling was typically one thousand times faster than thermal conduction (for channels whose radius at pressure equilibrium was ~ 1 cm). These channels were seen to be turbulent and to cool by mixing cold, surrounding air into the hot channel. Such turbulence has been explained by Picone and Boris (Ref. 5) in terms of a residual vorticity that is caused by the non-cylindrical energy deposition. (Continues)
19. ABSTRACT (Continued)

A simple empirical formula is deduced relating the rate of cooling (growth of channel envelope) to the radius of the channel at pressure equilibrium and to the ambient sound speed, which indicates that the effect of vorticity/turbulence saturates for variations in the energy deposition of greater than about 2 to 1.
CONTENTS

I. INTRODUCTION .. 1
II. EXPERIMENTAL PROCEDURE ... 1
III. RESULTS AND DISCUSSION ... 5
IV. CONCLUSION ... 8
V. ACKNOWLEDGMENT .. 9
REFERENCES ... 15
CHANNEL COOLING BY TURBULENT CONVective MIXING

I. INTRODUCTION

The propagation of intense particle beams, laser beams, or electric discharges through a gaseous atmosphere can result in the deposition of significant energy along the path through the atmosphere, producing a hot, reduced-density channel. The properties of the channel, in turn, affect the propagation of subsequent portions of the beam which would travel along the same path and the propagation of subsequent discharge strikes.\(^1\),\(^2\) As the channel develops, these properties are determined not only by the deposition of energy that creates the channel but also by the rate of cooling. For lightning discharges in the atmosphere the rate of cooling of the hot channel also determines the chemical composition of the products.\(^3\),\(^4\) In this paper we describe the results of a series of experiments which show that over a wide range of channel conditions the primary mechanism for channel cooling is turbulent convective mixing. Such turbulence has been explained by Picone and Boris\(^5\),\(^6\) in terms of a residual vorticity that is caused by non-cylindrical features in the deposition of energy during the formation of the channel. For channels whose radius after reaching pressure equilibrium with the surrounding atmosphere is ~ 1 cm, cooling by turbulent convective mixing is typically one thousand times faster than thermal conduction which means that channels cool on a time scale of milliseconds rather than seconds.

II. EXPERIMENTAL PROCEDURE

We have studied five different types of channels with very different energy deposition (from 0.4 J/cm\(^3\) to 40 J/cm\(^3\)), with radii at pressure equilibrium varying from 0.4 cm to 2.3 cm, and with a wide range of asymmetry in the energy deposition: they are listed in Table 1. None of these channels was created by an intense particle beam but channels were created by the deposition of laser energy in gaseous atmospheres and by ohmic heating in electric discharges.

Type A). Channels of type A were produced in the laboratory atmosphere by CO\(_2\) laser-driven, aerosol-initiated, air-breakdown. The output pulse from a UV preionized, gain-switched TEA laser,\(^7\) consisting of an oscillator and three

Manuscript approved December 21, 1983.
<table>
<thead>
<tr>
<th>Method</th>
<th>Energy Deposition</th>
<th>Radius**</th>
<th>Initial Perturbation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. CO₂ Laser/Aerosols/Atmosphere</td>
<td>2</td>
<td>2.3</td>
<td>very large</td>
</tr>
<tr>
<td>B. Unguided Electric Discharge</td>
<td>40</td>
<td>1.4</td>
<td>small</td>
</tr>
<tr>
<td>C. Laser-guided Electric Discharge</td>
<td>20</td>
<td>1.0</td>
<td>large</td>
</tr>
<tr>
<td>D. CO₂ Laser-Off-axis Modes N₂ + SF₆</td>
<td>0.4</td>
<td>0.5</td>
<td>very small</td>
</tr>
<tr>
<td>E. CO₂ Laser-Axial Modes/ N₂ + SF₆</td>
<td>0.4</td>
<td>0.4</td>
<td>negligible</td>
</tr>
</tbody>
</table>

*Energy Deposition is measured before expansion.
**Radius is radius after expansion to pressure equilibrium \([r(\tau)]\).
amplifiers, was focused by a 3 m focal length salt (NaCl) lens. The radius of the laser beam at focus was ~1 cm and over an axial length of ~30 cm the radius remained < 1.5 cm. Breakdown occurred in this focal region during the 100 ns spike of the laser pulse and spread towards the lens during the tail of the pulse. Within the focal region breakdown occurred on many individual aerosols (Figure 1). Nearly spherical plasmas were created that grew during the tail of the laser pulse and finally coalesced to form a pseudo-cylindrical channel. The total energy in the CO$_2$ laser pulse was ~1 kJ, the energy absorbed in the focal region was ~2 J/cm3 and absorption occurred before the channel had expanded appreciably. The hot channel produced by the deposition of this laser energy expanded to reach pressure equilibrium at ~100 µs when the channel radius was ~2.3 cm. Thereafter the channel became very turbulent and the channel envelope expanded as cold air was mixed into the channel (Figure 1).

Type B). Type B channels were produced by normal (unguided) electric discharges in the atmosphere. A small Marx generator with an output voltage of <300 kV, risetime <100 ns, and stored energy of <1000 J was the source for these discharges. The discharge channel length was only ~20 cm, the energy deposited was ~40 J/cm3 again calculated on the volume before any expansion had occurred, and the initial asymmetry of these channels was relatively small (Figure 2). Because all the capacitance, most of the inductance, and an appreciable fraction of the resistance (~50%) was within the Marx generator itself, these discharges were very reproducible electrically; period ~3 µs and peak current ~15 kA decaying to <1 kA in ~7 µs.

Type C). Channels of Type C were produced by laser-guided, electric discharges in the atmosphere. The path of these discharges was designated by laser-induced, aerosol-initiated air breakdown using the pulse from a Q-switched Nd:glass laser (~100 J in ~40 ns). To enhance the laser/atmosphere interaction the aerosol content of the laboratory atmosphere was increased to ~10^{-7} gm/cm3 by burning a small charge of black powder. The small Marx generator, used for Type B channels, was also used as the
source for these discharges. Discharges of length up to 2 m could be produced by these techniques with a laser energy deposition of only ~ 15 J/m within an initial channel of radius ~ 0.5 cm. For a discharge length of 1 m, the energy deposited by the discharge channel was ~ 20 J/cm³ (~ 350 J/m of channel length): the current in the discharge was a damped sinewave with peak amplitude ~ 10 kA and period ~ 3 μs that decayed to < 1 kA in ~ 7 μs. The use of aerosols to initiate the laser/atmosphere interaction caused these channels to have relatively large initial asymmetries (Figure 3), but not as large as those in Type A channels. These channels reached pressure equilibrium with the surrounding atmosphere ~ 30 μs after initiation of the Marx discharge; the channel radius was ~ 1 cm and the channel temperature was ~ 5000 K. Turbulent cooling became obvious for these channels after ~ 200 μs.

Type D and E). Both Type D channels and Type E channels were produced by the absorption of CO₂ laser radiation in nitrogen doped with ~ 1% sulfur hexafluoride.¹¹ At low laser intensities absorption of 10.6 μm radiation excites the sulfur hexafluoride molecules but there is only slow vibrational-translational coupling to the nitrogen molecules.¹² However at higher laser intensities¹³ (> 10⁶ watt/cm²) multiply excited molecules are produced and much more rapid heating of the nitrogen occurs (pT < 20 μs Torr). In our experiment a 50 J pulse from the CO₂ laser⁷ was focused, using the 3 m focal length salt lens, into a long cylindrical chamber, 30 cm in diameter. The first 2.5 m of the chamber were filled with dry nitrogen, and the next 1.0 m, the interaction zone, was filled with the nitrogen/sulfur hexafluoride mixture. The fill pressure was ~ 900 Torr and the separation of doped from undoped nitrogen was maintained by flowing the gases in at both ends of the chamber and out at a double aperture, two plates about 10 cm apart, that divided the chamber except for the 7.5 cm diameter holes at their centers. Before each laser shot the chamber was evacuated. It was filled with dry nitrogen and the flow pattern was established. Then the sulfur hexafluoride was introduced into the appropriate flow line and after the mixture had filled the interaction zone of the chamber (~ 10 minutes) the experiment could proceed.
The difference between these two types of channels was in the structure of the CO$_2$ laser beam. For Type D channels the oscillator of the CO$_2$ laser used a simple "plane-plane" cavity. Thus the laser beam contained off-axis modes that came to focus at different off-axis positions. The intensity distribution in the focal region (in the interaction zone) therefore consisted of a number of "hotspots", in filaments running roughly parallel to the optic axis of the lens, with regions of lower intensity between the hotspots.

For Type E channels the oscillator of the CO$_2$ laser was reconfigured to use an off-axis confocal resonator. In such a geometry only axial modes are produced. Further, the "crescent" shaped output beam produced by the oscillator was masked with a 7.5 cm diameter aperture to select a nearly uniform, circular laser beam. In the focal region of the lens, the energy distribution from this beam was nearly azimuthally symmetric.

Channels produced by these two laser beams are shown in Figure 4. At early times (~ 100 µs) when the channels have reached pressure equilibrium but turbulence has not had time to grow, the "hot spots" in the laser beam cause the fringes in the interferogram of the Type D channels to contain sharp discontinuities. Fringes in the interferogram of the Type E channels are smooth and continuous. Type E channels did not exhibit turbulence! Apart from the mode structure in the laser beam Type D and Type E channels were very similar. The energy deposited was ~ 0.4 J/cm3 for both channels for Type D channels the radius of the CO$_2$ laser beam was ~ 2.5 mm and for Type E channels it was ~ 2.0 mm. At pressure equilibrium the radii of the channels were 5 mm and 4 mm respectively.

III. RESULTS AND DISCUSSION

For each of the five channels used in these experiments the energy was always deposited within a time, t_1, which was short compared to hydrodynamic times and within a radius $r(1)$ which was ~ 1.0 cm. Thus at time t_1 there existed a hot channel whose density was still the ambient density but whose pressure was significantly above ambient. In the next few tens of microseconds, τ ~ 30 µs, the channel expanded almost adiabatically to reach pressure equilibrium with the surrounding atmosphere. A shock wave was created during this expansion and, in some cases, some energy was lost to
radiation, but these were relatively small corrections (≤ 20 %). If the channel had been cylindrically symmetric, as it expanded to pressure equilibrium, it would have cooled thereafter only by thermal conduction. Then the envelope of the channel would have grown as

\[r^2(t) - r^2(\tau) + 4 \alpha_0 (t - \tau) , \]

where \(\alpha_0 \) is the thermal diffusivity which is \(\sim 0.2 \text{ cm}^2/\text{s} \) and \(t = \tau \) is the time at which the channel achieved pressure equilibrium. For a channel whose temperature, \(T(\tau) \) is \(\sim 3000 \text{ K} \), the time required for the channel to cool to \(\sim 600 \text{ K} \), i.e., for the channel radius to increase by a factor of \(\sim \sqrt{2} \), is almost one second.

The measured growths of the five channels used in the study are shown in Figure 5. At early times the curve for each channel is linear so that unique values of a maximum anomalous diffusivity, \(\alpha \), can be determined. This initial rate of growth increases with the initial radius of the channel, \(r(\tau) \). At later times, channels A through D grow at increasingly slower rates (for B this flattening of the curve occurs between 20 and 30 ms).

Channels of Type E show very little growth compared to other channels, though it is still \(\sim 10 \) times thermal conduction. For these channels the slope increased at later times to \(\sim 5 \text{ cm}^2/\text{s} \).

Turbulence transports fluid properties by small scale convection. However in very simple terms, this effect may be modeled as an anomalous diffusion in which fluid cells move a distance \(\ell \) (Prandtl eddy length) before breaking up and losing their identity. The product of this "mean free path" and the relative velocity of the fluid cell is the eddy diffusivity and becomes the effective mass diffusivity, kinematic viscosity, or thermal diffusivity. Thus we expect the thermal diffusivity to be of the form

\[\alpha \sim \ell v \]

where \(\ell \) is a characteristic length and \(v \) is a characteristic velocity. For our channels, which are to a first approximation cylindrical, the diffusion is radial. The maximum value of \(\ell \) is therefore some fraction of the radius of the channel, \(r(\cdot) \). The maximum cell velocity is limited to some fraction of
the sound speed, \(c_s \), of the ambient atmosphere around the channel for that is the maximum speed with which the cold fluid cells can move. With this in mind we have fitted the data for channels A through D to the relation

\[
\alpha = c_s r(\tau)/k,
\]

and find that

\[
k = 66 \pm 6.
\]

It is perhaps coincidental that the initial growth (cooling) of these four very different channels should be related in such a simple way. Certainly Picone and Pisiris\(^5,6\) have shown that the residual vorticity, \(K \), developed in different models for the asymmetric energy deposition is always of the form

\[
K \sim u_m^2 \frac{r(\tau) - r(1)}{c_s} \ln \left(\frac{\rho_{\infty}}{\rho_0} \right) \cdot f
\]

where \(u_m \) is a characteristic velocity of the expanding channel boundary, \(\rho_{\infty} \) is the ambient density, \(\rho_0 \) is the minimum density in the channel, and \(f \) is a geometric form factor which is \(<1\). And this vorticity leads to a predicted maximum anomalous diffusivity of

\[
\alpha \sim c_s \{r(\tau) - r(1)\} \ln \left(\frac{\rho_{\infty}}{\rho_0} \right) \cdot \left| f \right|/4\pi.
\]

While values of the maximum anomalous diffusivity calculated from this equation\(^4,5,6\) fall within a small factor \((\leq 3)\) of the measured values they do not indicate the near constant value of \(k \). Also whereas in the experiments we see a fully developed isotropic turbulence, both theory and the numerical simulations actually deal with a residual, large scale vorticity and do not attempt to reproduce the cascade to fine scale turbulence. On the other hand the near constant value of \(k \) in the experiments suggests that the turbulence developed in the channels saturates at relatively modest levels of asymmetry in the energy deposition. However the drastic reduction in the turbulence seen in the Type E channels, and predicted from the theory in that \(f \to 0 \) for these channels, is a clear indication that development of residual vorticity because of asymmetry in the energy deposition, is the mechanism that causes turbulent convective mixing.
IV. CONCLUSION

In a series of experiments we have found that hot, reduced-density channels in the atmosphere or in nitrogen at near normal temperature and pressure always cool by turbulent convective mixing provided there is more than some minimal level of asymmetry in the channel. The channels were produced by aerosol initiated, CO$_2$ laser driven air breakdown, by normal electric discharges in the atmosphere, by laser-guided, electric discharges in the atmosphere, and by the absorption of CO$_2$ laser radiation in nitrogen doped with sulfur hexafluoride. Unfortunately quantitative measurement of the azimuthal asymmetry in the channel was not possible, but it was clearly shown that elimination of the asymmetry prevented the development of turbulent convective mixing. Thus as noted by Picone and Boris4,5,6 their theory for the development of vorticity and turbulent convective mixing and these experimental findings are in good agreement both in terms of identification of the mechanism for generating turbulence and in the calculation of the magnitude of the effect.

However in the experiments we have found that the anomalous diffusivity, by which the effects of turbulent convective mixing can be represented, saturates at very modest levels of asymmetry in the channel at a value dependent only on the sound speed in the ambient atmosphere and the size of the channel at pressure equilibrium. This phenomenon may well be associated with the fact that the fastest convection is always associated with the largest cells but it is not as yet predictable from the theory. It is certainly convenient that the effect of turbulent convective mixing can be represented so simply for it permits ready inclusion of this effect in channel cooling problems. For channels in the atmosphere with radius at pressure equilibrium of ~1 cm, the saturated anomalous diffusivity caused by turbulent convective mixing is ~500 cm2/s and that is ~2000 times larger than the effect of thermal conduction.
V. ACKNOWLEDGMENT

These experiments would not have been possible without the technical assistance provided by Messrs E. Laikin and the late James W. Cheadle. The interpretation and understanding of the results has benefitted considerably from many discussions with our colleagues at NRL particularly Drs. J.M. Picone, J.P. Boris, R.F. Fernsler, G. Joyce, and M. Lampe.

This work was supported by the Office of Naval Research and by the Defense Advanced Research Projects Agency.
Figure 1. Schlieren photographs of hot channels in the atmosphere produced by aerosol-initiated, laser-driven air breakdown using a pulsed CO$_2$ laser. Each photograph is from a different laser pulse and the time in microseconds between firing the CO$_2$ laser and taking the photograph is shown under each photograph. The scale size for each pair of photographs is also indicated. The exposure time for each photograph is ~ 25 ns. The CO$_2$ laser enters from the left.
Figure 2. Schlieren photographs of channels produced by normal (unguided) electric discharges in the atmosphere. Each photograph is from a different discharge and the time in microseconds between firing the discharge and taking the photograph is shown under each photograph. The scale size for all photographs is shown on the right. The exposure time is ~25 ns. (This sequence was published previously in Reference 4.)
Figure 3. Schlieren photographs of channels produced by laser-guided electric discharges in the atmosphere. Each photograph is from a different discharge and shows the center section of a 1 m long discharge channel. The time in microseconds between firing the discharge and taking the photograph is shown under each photograph. The scale size for all photographs is shown and the exposure time was ~25 ns.
Figure 4. Interferograms of channels produced by the absorption of radiation from a pulsed CO$_2$ laser in nitrogen doped with ~1% sulfur hexafluoride. The two upper photographs show the first and the tenth frames from a "movie" of a Type D channel. The two lower photographs show the same frames from a "movie" of the Type E channel. These movies were taken with a high speed framing camera using a Mach-Zehnder interferometer and a He:Ne laser. The exposure time is ~40 μs and the time between frames was ~60 μs (i.e., 104 frames/sec). The size scale for these photographs is indicated.
Figure 5. Variation of the measured radius of various channels with time. The channel designations A, B, C, D, and E follow from Table 1. Values of α consistent with the equation

$$r^2(t) = r^2(\tau) + 4\alpha(t-\tau)$$

where $\tau \leq 100$ μs are given for the linear portion of each curve.

- Channel A
- Channel B
- Channel C
- Channel D
- Channel E

Experimental data points.
REFERENCES

10. FFFg Superfine Black Rifle Powder, manufactured by GOEX Inc., Moosic, PA 18507.

DISTRIBUTION LIST

1. Dept. of the Navy
 Chief of Naval Operations
 Washington, D.C. 20350
 ATTN: Dr. C. F. Sharn (op 987)

2. Commander
 Naval Sea Systems Command
 Department of the Navy
 Washington, DC 20363
 ATTN: NAVSEA/PMS 405 (Dr. Finkleman)

3. Air Force Weapons Laboratory (NTYP)
 Kirtland Air Force Base
 Albuquerque, New Mexico 87117
 ATTN: Maj. James Head
 Dr. David Straw

4. U.S. Army Ballistics Research Laboratory
 Aberdeen Proving Ground, Maryland 21005
 ATTN: Dr. D. Eccleshall (DRDAR-MLB)

5. Ballistic Missile Defense Advanced Technology Center
 P. O. Box 1500
 Huntsville, Alabama 35807
 ATTN: Dr. L. Harvard (BMDSATC-1)

 15825 Shady Grove Road
 Rockville, Maryland 20850
 ATTN: Dr. R. Linz

7. Lawrence Livermore Laboratory
 University of California
 Livermore, California 94550
 ATTN: Dr. R. J. Briggs
 Dr. T. Fessenden
 Dr. W. Barletta
 Dr. D. Prono

8. Mission Research Corporation
 735 State Street
 Santa Barbara, California 93102
 ATTN: Dr. C. Longmire
 Dr. N. Carron
9. Pulse Sciences Inc.
 Suite 610
 1615 Broadway
 Oakland, California 94612
 ATTN: Dr. S. Putnam

 Security Office
 5 Palo Alto Square, Suite 200
 Palo Alto, California 94304
 ATTN: Dr. R. R. Johnston
 Dr. Leon Feinstein

11. Naval Surface Weapons Center
 White Oak Laboratory
 Silver Spring, Maryland 20910
 ATTN: Mr. R. J. Biegalski
 Dr. R. Cawley
 Dr. J. W. Forbes
 Dr. C. M. Huddleston
 Dr. H. S. Uhm
 Dr. R. B. Fiorito

12. C. S. Draper Laboratories
 555 Technology Square
 Cambridge, Massachusetts 02139
 ATTN: Mr. E. Olsson

13. Physical Dynamics, Inc.
 P. O. Box 1883
 La Jolla, California 92038
 ATTN: Dr. K. Brueckner

14. Office of Naval Research
 Department of the Navy
 Arlington, Virginia 22217
 ATTN: Dr. W. J. Condell (Code 421)

15. Avco Everett Research Laboratory
 2385 Revere Beach Pkwy.
 Everett, Massachusetts 02149
 ATTN: Dr. R. Patrick
 Dr. Dennis Reilly

16. Defense Technical Information Center
 Cameron Station
 5010 Duke Street
 Alexandria, Virginia 22314 (2 copies)
17. Naval Research Laboratory
 Washington, D.C. 20375
 ATTN: T. Coffey - Code 1001
 M. Lampe - Code 4792
 M. Friedman - Code 4700.1
 J. R. Greig - Code 4763 (50 copies)
 I. M. Vitkovitsky - Code 4701
 W. R. Ellis - Code 4000
 S. Ossakow, Supt. - 4700 (26 copies)
 Library - Code 2628 (20 copies)
 A. Ali - Code 4700.1T
 D. Book - Code 4040
 J. Boris - Code 4040
 S. Kainer - Code 4790
 A. Robson - Code 4760
 M. Picone - Code 4040
 M. Raleigh - Code 4763
 R. Pechacek - Code 4763
 J. D. Sethian - Code 4762
 K. A. Gerber - Code 4762
 G. Joyce - Code 4790
 D. Colombant - Code 4790
 B. Hui - Code 4790

18. Defense Advanced Research Projects Agency
 1400 Wilson Blvd.
 Arlington, Virginia 22209
 ATTN: Dr. J. Mangano
 Lt. Col. R.L. Gullickson

19. JAYCOR
 205 S. Whiting St.
 Alexandria, Virginia 22304
 ATTN: Dr. R. Hubbard
 Dr. R. Fernsler

20. Mission Research Corp.
 1720 Randolph Road, S. E.
 Albuquerque, New Mexico 87106
 ATTN: Dr. Brendan Godfrey

21. Princeton University
 Plasma Physics Laboratory
 Princeton, New Jersey 08540
 ATTN: Dr. F. Perkins, Jr.

22. McDonnell Douglas Research Laboratories
 Dept. 223, Bldg. 33, Level 45
 Box 516
 St. Louis, Missouri 63166
 ATTN: Dr. Michael Greenspan
 Dr. J. C. Leader
23. Cornell University
 Ithaca, New York 14853
 ATTN: Prof. David Hammer

24. Sandia Laboratories
 Albuquerque, New Mexico 87185
 ATTN: Dr. Bruce Miller, 4255
 Dr. Carl Ekdahl
 Dr. M. Mazarakis

25. Naval Air Systems Command
 Washington, D.C. 20361
 ATTN: Dr. J. Reif, Code AIR-350F

 P.O. Box 2549
 Reston, Virginia 22090
 ATTN: Dr. Douglas Strickland

27. U.S. Department of Energy
 Washington, D.C. 20545
 Office of Fusion Energy, ATTN: Dr. W. F. Dove
 Office of Inertial Fusion, ATTN: Dr. Richard L. Schriever

Director
U.S. Department of Energy
ER20:GTN, High Energy and Nuclear Physics
Attn: Dr. T. Godlove
Washington, DC 20545

28. AFOSR/NP
 Bolling Air Force Base, Bldg. 410
 Washington, D.C. 20331
 ATTN: Capt. H. Pugh

29. Foreign Technology Division
 Wright Patterson AFB, OH 45433
 ATTN: Mr. C. J. Butler/TQTD

30. Aerospace Corp.
 P.O. Box 92957
 Los Angeles, CA 90009
 ATTN: Dr. A. Christiansen A6/2407
 Dr. E. Frazier

31. SRI International
 333 Ravenswood Avenue
 Menlo Park, CA 94025
 ATTN: Dr. D. Eckstrom

32. Los Alamos National Laboratory
 Los Alamos, NM 87545
 ATTN: Dr. T. P. Starke, M-2
33. G T Devices
5705 General Washington Drive
Alexandria, VA 22312
ATTN: Dr. D. A. Tidman
 Dr. S. A. Goldstein