ELECTROCHEMICAL REDUCTION REACTIONS INVOLVING FORMIC ACID

by

M. H. Miles, A. N. Fletcher, and G. E. McManis

Accepted for Publication

in

Journal of Electroanalytical Chemistry
and Interfacial Electrochemistry

Chemistry Division, Research Department
Naval Weapons Center, China Lake, CA 93555

March 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution in unlimited
Various investigators have shown that the electrode reduction of \(\text{CO}_2 \) in water using metal electrodes yields acid as the main product. Recent publications have generated conflicting claims regarding the further reduction of formic acid to methanol. Our studies using platinum electrodes at a fixed pH in mildly acidic \(\text{NaClO}_3 \) solutions show an increase in the cathodic current when \(\text{NaCOOH} \) is added. Closer examinations show that the \(\text{HCOOH/H}_2 \text{COO}^- \) equilibrium is involved and that \(\text{H}_3\text{O}^+ \) rather than \(\text{HCOOH} \) is reduced. The results of these...
Investigations can be represented by the reaction sequence:

\[\text{HCOOH} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{HCOO}^- \]
\[\text{H}_3\text{O}^+ + \text{e}^- \rightarrow \frac{1}{2} \text{H}_2 + \text{H}_2\text{O} \]

where the net result is the reduction of protons present as either undisassociated HCOOH or \(\text{H}_3\text{O}^+ \) to form hydrogen gas. The positively charged protons complexed with one or more water molecules are electrochemically reduced at a more positive potential than neutral water molecules.
ELECTROCHEMICAL REDUCTION REACTIONS INVOLVING FORMIC ACID

M. H. Miles, A. N. Fletcher, and G. E. McManis
Research Department, Naval Weapons Center,
China Lake, California 93555

INTRODUCTION

Electrochemical reduction provides a means of activating carbon dioxide for the production of fuels and organic chemicals. The electrode reduction of \(\text{CO}_2 \) in water using metal electrodes yields formic acid and formate ions as the main products [1-7], i.e., \(\text{CO}_2 + \text{H}_2\text{O} + 2 \, \text{e}^- \rightarrow \text{HCO}_2^- + \text{OH}^- \). Previous studies have shown that the further reduction of formic acid to methanol at metal electrodes occurs only in a narrow potential range and at impractically small current densities [2,7]. Cyclic voltammograms reported for \(\text{TiO}_2 \) electrodes in \(\text{N}_2 \)-saturated \(\text{KCl} \) solutions show increasing cathodic currents with increasing concentrations of formic acid [8]. Furthermore, the direct reduction of \(\text{CO}_2 \) to methanol is reported for \(\text{TiO}_2\)-Ru cathodes [9]. Augustynski and co-workers [8] claim that the reduction of formic acid takes place at potentials positive to hydrogen evolution on \(\text{TiO}_2 \) electrodes. This conflicts with conclusions by Tinnemans et al. [10] who claim that neither formic acid nor formate ion is the electroactive species being reduced.
These authors propose instead that the cathodic currents observed result from local pH changes at the TiO$_2$/solution interface and involve the buffering action of the formic acid/formate system [10]. This explanation has been rejected by Augustynski [11].

Our potential scan experiments in NaClO$_4$ solutions at a constant pH have revealed that the addition of sodium formate under mildly acidic conditions increases the cathodic current on a variety of metal electrodes. Detailed studies are reported here for experiments conducted using platinum electrodes.

EXPERIMENTAL SECTION

Solutions (1.0 M) were prepared by dissolving 7.02 g NaClO$_4$·H$_2$O in 50 ml of deionized water. The desired formic acid/formate concentrations were produced by additions of NaCOOH and HClO$_4$. The platinum wire working electrode ($d = 0.1$ cm, $l = 0.7$ cm, $A = 0.22$ cm2) was constructed by using heat shrink Teflon to seal the wire in glass tubing. Exhaustive electrolysis experiments used a large platinum sheet electrode ($A = 50$ cm2). The platinum counter electrode was isolated from the main compartment of the beaker-type cell by a section of glass tubing with an ultra-fine glass frit at the bottom. All potentials were measured against a saturated calomel electrode (SCE). Electrochemical measurements were always made in helium-saturated solutions.
The solution pH was monitored using the palladium-hydrogen (Pd-H) electrode prepared as described by Gileadi [12]. This electrode was calibrated by measuring its potential versus SCE in standard buffer solutions (Van-Lab, pH 4, 7 and 10). The experimental relationship of pH and potential (E) of the Pd-H electrode versus SCE at 23°C was determined to be

\[
pH = -(E + 0.2031)/0.0575
\]

(1)

Adjustments of the pH were generally made by adding measured amounts of 0.50 M HClO₄ to the solutions. Occasionally, the pH was adjusted upward by the use of NaOH solutions.

Cyclic voltammetric studies involved the use of a potentiostat/galvanostat, current-to-voltage converter, and programmer (PAR Models 173, 176, and 175) in conjunction with an X-Y recorder (Hewlett-Packard 7047 A). A strip chart recorder (HP 7100 B) was also used in exhaustive electrolysis studies. The Pd-H versus SCE potentials were measured with both the PAR potentiostat and a digital multimeter (Fluke 8040 A). The continuous recording of the Pd-H versus SCE potential required a high impedance millivoltmeter (Lazar Digital pH) connected in series with the strip chart recorder.
RESULTS AND DISCUSSION

Potential scan experiments at a fixed pH using various metal electrodes in mildly acidic NaClO₄ solutions revealed that there is an increase in the cathodic current when NaCOOH is added. A detailed study of this effect on a platinum electrode at pH = 3.4 is shown in Fig. 1. This increase in cathodic current clearly occurs at potentials positive to the hydrogen evolution wave that begins near -0.9 V versus SCE at this pH. The excellent correlation between the peak current and the concentration of added NaCOOH could easily lead to the erroneous conclusion that formic acid is being reduced. It is important to note that Fig. 1 shows a small reduction wave at pH = 3.4 that begins at about -0.5 V even in the absence of any added formate.

The cyclic voltammograms in Fig. 2 show that a new reduction peak can be produced simply by the addition of a small amount of HClO₄ to the NaClO₄ solution (solid line, pH = 2.21). In the near neutral solution (dotted line, pH = 6.7), no evidence of any reduction peak can be detected; the only wave is reduction of the solvent (H₂O) at the negative limit of the potential scan. The addition of NaCOOH to the acidified solution involves the HCOOH/HCOO⁻ equilibrium and always yields an increase in pH and a decrease in the reduction peak. It is the addition of further HClO₄ required to restore the original pH value that is responsible for the increase in the peak current in NaCOOH solutions.
(dashed line, pH = 2.22). This suggests that the electrode reaction is the reduction of the added hydrogen ions that occurs at a less negative potential than the usual hydrogen evolution reaction involving the solvent.

The voltammograms at pH = 2.2 for HClO$_4$ and for HClO$_4$ + NaCOOH are very similar (Fig. 2), and both show an anodic peak near -0.3 V that could be explained by the oxidation of adsorbed hydrogen produced by the cathodic reaction. The beginning of formic acid oxidation can be seen in Fig. 2 near the end of the anodic sweep for the solution containing NaCOOH. Potential scan experiments in NaClO$_4$ solutions without any formate present (Fig. 3) show an excellent correlation between the peak current and either the concentration or the activity of hydrogen ions in the solution. This supports the concept that the reduction peaks observed in HClO$_4$ + NaCOOH solutions (Figs. 1 and 2) result from the reduction of hydrogen ions rather than formic acid molecules.

Exhaustive electrolysis experiments using constant current and large electrodes in rapidly stirred solutions yield characteristic inflections in potential as shown in Fig. 4. The time period required for these inflections is mainly dependent on the amount of HClO$_4$ added to the solution. With equal amounts of added HClO$_4$ (0.10 ml of 0.50 M HClO$_4$), the addition of NaCOOH actually decreased the inflection time (broken line, Fig. 4) due to the HCOOH/HCOO$^-$ equilibrium that decreased the bulk concentration of hydrogen ions. If experiments are run at the
same initial pH, the presence of NaCOOH yields much longer inflection times than those shown in Fig. 4; these longer inflection times correspond to the additional HClO$_4^-$ required to adjust the solution back to the initial pH. The inflections shown in Fig. 4 correspond to 0.89 e$^-$/HClO$_4^-$ for NaClO$_4$ + HClO$_4^-$ (solid line) and 0.63 e$^-$/HClO$_4^-$ for NaClO$_4$ + HClO$_4^-$ + NaCOOH. These values are not very reproducible since they depend on the solution stirring rate.

The simultaneous measurement of the solution pH using the Pd-H electrode during constant current exhaustive electrolysis gave pH inflections near pH = 7 as illustrated in Fig. 5. The potential and pH measurements shown in Figs. 4 and 5 involve the same experiments. The shape of the pH curves are typical of those found in textbooks for the titrations of strong and weak acids with a strong base. The pH inflection always came later than the inflection in potential of the working electrode and yielded nearly 1.0 e$^-$/HClO$_4^-$ (1.04 and 1.01 e$^-$/HClO$_4^-$ for the two curves shown in Fig. 5). The rate of transport of H$_3$O$^+$ to the working electrode becomes the limiting factor before pH = 7 is reached; hence, the inflection comes earlier for this electrode (Fig. 4). This is particularly true for the HClO$_4^-$ + NaCOOH solution due to both the smaller H$_3$O$^+$ concentration and the slower diffusion rate of HCOOH compared to H$_3$O$^+$.

6
The ultra-fine frit minimizes errors due to the diffusion of hydrogen ions generated at the counter electrode into the main cell compartment. However, after several experimental runs, the counter electrode compartment becomes very acidic (pH ~ 0) and lengthened inflection times (1.2 e⁻/HClO₄⁻) suggest that extraneous hydrogen ions enter the main cell compartment in measurable amounts. This error becomes negligible if the counter electrode solution is replaced after each run.

The results of these investigations are in accord with the reaction sequence

\[\text{HCOOH} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{HCOO}^- \] \hspace{1cm} (2)

\[\text{H}_3\text{O}^+ + e^- \rightarrow \frac{1}{2} \text{H}_2\text{O} + \text{H}_2\text{O} \] \hspace{1cm} (3)

where \(\text{H}_3\text{O}^+ \) represents the hydrated proton in aqueous solutions. The net result is that the acidic protons present as either undissociated HCOOH or \(\text{H}_3\text{O}^+ \) are electrochemically reduced to form hydrogen gas. The reactive species that is reduced is \(\text{H}_3\text{O}^+ \) rather than HCOOH. Despite being electrochemically inactive towards reduction, the formic acid molecules, nevertheless, serve as a conveyor of protons to the electrode surface. The positively charged proton complexed with one or more water molecules is electrochemically reduced at a more positive potential than neutral water molecules. Preliminary studies on indium electrodes show results similar to those obtained with platinum electrodes; however, the potentials for the cathodic reactions are considerably more negative due to the higher overvoltages for the \(\text{H}_2\text{O} \) and \(\text{H}_3\text{O}^+ \) reductions on indium electrodes [13,14].
The increasing cathodic currents with increasing concentrations of formic acid (0.2 x 10^{-3} to 8.0 x 10^{-3} M) reported by Augustynski, et al., [8,11] for TiO_{2} electrodes in N_{2}-saturated KCl solutions are readily explained by Eqs. (2) and (3). The increase in current reported is due to the reduction of H_{3}O^{+} introduced into the solution by the formic acid additions.

Our studies support the conclusions of Tinnemans, et al., [10] that neither formic acid nor formate ion is the electroactive species being reduced. The experimental data presented by Tinnemans [10] is also in harmony with Eqs. (2) and (3). Obviously, surface pH and buffer capacity are important factors in an electrode reaction that involves the reduction of H_{3}O^{+}.

These results indicate that formic acid molecules cannot effectively compete with H_{3}O^{+} for reduction in acidified solutions. This is especially true at potentials negative to the zero-charge potential where the surface concentration of positively charged species is enhanced [5]. The electrode reduction of formic acid or formate ions to methanol at practical current densities will probably require alkaline solutions to suppress the H_{3}O^{+} reduction.

ACKNOWLEDGMENT

This work was supported by the Office of Naval Research.
REFERENCES

FIGURE CAPTIONS

Fig. 1. Potential scan experiments at 20 mV/s in 1.0 M NaClO₄ solutions at pH = 3.4 and 22°C. Concentrations of added NaCOOH were 0, 1.5, 6.0, 13, and 19.5 mM. Geometrical area of the Pt wire electrode was 0.22 cm².

Fig. 2. Cyclic voltammograms at 20 mV/s in 1.0 M NaClO₄ solutions at 22°C. The dotted line is for the solution before HClO₄ or NaCOOH were added, pH = 6.7. The solid line is for the solution containing added HClO₄ (0.10 ml of 0.50 M), pH = 2.21. The dashed line is for the solution containing both NaCOOH (0.0084 g, 2.5 mM) and HClO₄ (0.25 ml of 0.50 M), pH = 2.22. Geometrical area of the Pt wire electrode was 0.22 cm².

Fig. 3. Potential scan experiments at 20 mV/s in 1.0 M NaClO₄ solutions at 22°C containing HClO₄ additions that yield pH = 3.13, pH = 2.22 and pH = 1.95. The volumes of 0.50 M HClO₄ added were 0.01 ml, 0.10 ml, and 0.20 ml, respectively. Geometrical area of the Pt wire electrode was 0.22 cm².

Fig. 4. Potential-time traces for exhaustive electrolysis experiments in stirred 1.0 M NaClO₄ solutions at 22°C using a large platinum sheet electrode (A = 50 cm²) and a constant cathodic
current of 5.00 mA. The solid line is for the solution containing added HClO₄ (0.10 ml of 0.50 M), pH = 2.55. The dashed line is for the solution containing NaCOOH (0.0089 g, 2.6 mM) and HClO₄ (0.10 ml of 0.50 M), pH = 3.34. A prior blank experiment (without any added HClO₄) reached a potential of -0.88 V within 5 seconds and contributed to higher initial pH readings.

Fig. 5. Solution pH versus time traces for the exhaustive electrolysis experiments shown in Fig. 4. The Pd-H electrode potential was measured against the SCE reference (left axis) and then converted to pH (right axis) using Eq. (1). The solid line is for the 1.0 M NaClO₄ solution containing added HClO₄ (initial pH = 2.55). The dashed line is for the NaClO₄ solution containing NaCOOH (0.0089 g) and HClO₄ (initial pH = 3.34).
Fig. 3

PLATINUM ELECTRODE
20 mV/s

pH = 3.13
pH = 2.22
pH = 1.95
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Naval Ocean Systems Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>San Diego, California 92152</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONR Pasadena Detachment</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Attn: Dr. R. J. Marcus</td>
<td></td>
<td>Attn: Dr. A. P. Amster</td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Pasadena, California 91106</td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Monterey, California 93940</td>
</tr>
<tr>
<td>Superintendent</td>
<td>1</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Mr. Vincent Schaper</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>DTNSRDC Code 2830</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Annapolis, Maryland 21402</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
<td>Mr. A. M. Anzalone</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
<td>Administrative Librarian</td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
<td>PLASTEC/ARRADC.COM</td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
<td>Bldg 3401</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dover, New Jersey 07801</td>
</tr>
</tbody>
</table>
Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton S09 SNH
United Kingdom

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. T. Katan
Lockheed Missiles and
Space Co., Inc.
P.O. Box 504
Sunnyvale, California 94088

Dr. Sam Perone
Chemistry & Materials
Science Department
Lawrence Livermore National Lab.
Livermore, California 94550

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. G. Goodman
Johnson Controls
5757 North Green Bay Avenue
Milwaukee, Wisconsin 53201

Mr. Joseph McCartney
Code 7121
Naval Ocean Systems Center
San Diego, California 92152

Dr. B. Brummer
EIC Incorporated
111 Chapel Street
Newton, Massachusetts 02158

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Electrochimica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, California 94040

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Dr. H. Richtol
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12180

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

Dr. R. David Rauh
EIC Corporation
111 Chapel Street
Newton, Massachusetts 02158

S. Ruby
DOE (STOR)
M.S. 6B025 Forrestal Bldg.
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH ENGLAND

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Denton Elliott
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. R. Nowak
Naval Research Laboratory
Code 6130
Washington, D.C. 20375

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. William Ayers
EDS Inc.
P.O. Box 5357
North Branch, New Jersey 08876

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555
Dr. David Aikens
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. A. P. B. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Code 6343, Bayside
San Diego, California 95152

Dr. Gregory Farrington
Department of Materials Science and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

M. L. Robertson
Manager, Electrochemical and Power Sources Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II
IBM Corporation
K33/281
5600 Cottle Road
San Jose, California 95193

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, SO9 5NH ENGLAND

Dr. E. Anderson
NAVSEA-56233 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Bruce Dunn
Department of Engineering & Applied Science
University of California
Los Angeles, California 90024

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. D. Cipris
Allied Corporation
P.O. Box 3000R
Morristown, New Jersey 07960

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Donald Sandstrom
Department of Physics
Washington State University
Pullman, Washington 99164

Dr. Carl Kannewurf
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060

Dr. Judith H. Ambrus
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 68025 Forestal Building
Washington, D.C. 20595

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. Farrell Lytle
Boeing Engineering and Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-225
Washington, D.C. 20545

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. John Wasson
Syntheco, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Anthony Sammells
Eltron Research Inc.
710 E. Ogden Avenue #108
Naperville, Illinois 60540

Dr. W. M. Risen
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Thomas Davis
Polymer Science and Standards Division
National Bureau of Standards
Washington, D.C. 20234