AN INTRODUCTION TO THE SCIENTIFIC COMPUTING LANGUAGE
PASCAL-SC (PASCAL FOR SCIENTISTS) WISCONSIN UNIVERSITY-MADISON
MATHEMATICS RESEARCH CENTER L B RALL FEB 84
UNCLASSIFIED MRC-TSR-2644 DAAG29-80-C-0041 F/G 9/2 NL

END
AN INTRODUCTION TO THE SCIENTIFIC COMPUTING LANGUAGE PASCAL-SC

L. B. Rall

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53705

February 1984

Sponsored by
U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

Approved for public release
Distribution unlimited

84 03 21 110
Pascal-SC (Pascal for Scientific Computation) is an extension of the popular computer language Pascal. Pascal-SC greatly facilitates scientific, engineering, and statistical calculations on microcomputers. The most important of the additional capabilities of Pascal-SC are:

- **Accurate floating-point arithmetic** for real, complex, and interval numbers, vectors, and matrices. Expressions involving these types can be written using essentially ordinary mathematical notation, making programming and documentation easier. Numerical results are generally obtained with more accuracy than with conventional floating-point arithmetic; in particular, scalar products of vectors are computed to the closest floating-point number. Standard routines are provided which return guaranteed error bounds as well as answers for the solution of linear systems of equations, matrix inversion, and eigenvalue-vector calculations.

- **User-defined operators** to allow the manipulation of data of various nonstandard types by expressions written in essentially ordinary mathematical notation, instead of the sequences of calls to functions and procedures required in ordinary Pascal. This capability permits simple and straightforward use in programs of various coordinate systems for representation of variables, arithmetic for polynomials and series, automatic differentiation, etc., and thus adds considerable flexibility and power to the language.

Brief descriptions of these useful features of Pascal-SC are given, together with illustrative examples. Some familiarity with ordinary Pascal is assumed.

AMS (MOS) Subject Classifications: 68-02, 65-04

Key Words: Pascal-SC, computer arithmetic, scientific computation, microcomputers

Work Unit Number 3 - Numerical Analysis and Scientific Computing

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
SIGNIFICANCE AND EXPLANATION

The advent of the personal microcomputer has added a new dimension to scientific computation. Numerous engineers, scientists, and statisticians are using such machines at work and at home to solve both routine and research problems which arise in their professions. In addition to providing answers to specific problems, microcomputers can be used to try various methods on scaled-down problems in order to determine which are the most promising for implementation on mainframe systems. A crucial factor for the efficient use of microcomputers is the programming language used. This report describes the language Pascal-SC (Pascal for Scientific Computation), which offers unique advantages to microcomputer users.

First, Pascal-SC employs really accurate floating-point arithmetic for real, complex, and interval numbers, vectors, and matrices. Ordinary operator notation, rather than calls to functions and procedures, makes these arithmetics easy to use. Furthermore, guaranteed error bounds are returned by the library programs for solution of linear systems of equations, matrix inversion, and eigenvalue-eigenvector calculations.

Second, the user can define operators for arbitrary data types used in the program. This convenience of operator notation makes programs easier to write, understand, and document. Furthermore, the resulting programs are generally much shorter than the corresponding programs written in ordinary Pascal.

Finally, Pascal-SC is a simple extension of Pascal, a widely used language for microcomputers. The Pascal-SC compiler will translate programs written in ordinary Pascal, and programmers who already know Pascal can learn the extra features of Pascal-SC programming in a few minutes. Thus, none of the investment in learning Pascal or in programs written in Pascal is lost in going to Pascal-SC.

This report explains the basic features of Pascal-SC, assuming some familiarity with ordinary Pascal, and illustrates them by examples. Although this document does not proport to be a user's manual, it could serve as a guide to a programmer already proficient in Pascal. Several years of experience with Pascal-SC on various microcomputers, including the Zilog MCZ-1 at the Mathematics Research Center, verifies that this language is a flexible and powerful tool for research into numerical methods, as well as for routine calculations.
AN INTRODUCTION TO THE SCIENTIFIC COMPUTING LANGUAGE PASCAL-SC

L. B. Rall

1. Objective. A brief description of the language Pascal-SC (Pascal for Scientific Computation) will be given to explain features of this extension of ordinary Pascal [10] which are particularly useful for scientific, engineering, and statistical calculations, particularly on microcomputers. The reader is assumed to be familiar with Pascal programming on at least an introductory level, and to have had some experience with numerical computation of the kind which arises in scientific and engineering problems. With this background, it should be easy to appreciate the advantages of the additional features of Pascal-SC.

In order to keep the discussion short and to the point, many details will be omitted, and a formal description of the language will not be given. For operational and programming details, the reader should consult [3], [19], [28]; formalities are given in [5]. Here, simple examples will be used to illustrate ideas as they are introduced.

2. Why Pascal-SC? As pointed out by Wirth [10], the introduction of a new computer language requires careful justification. The same applies to an extension or modification of an existing language, particularly a language which is as successful and widely used as Pascal. The most important additional features of Pascal-SC are:

(i) Accurate floating-point arithmetic with controllable rounding;

(ii) User-defined operators to facilitate programming and documentation.

Furthermore, it is of considerable importance to note that:

(iii) Pascal-SC retains the features of ordinary Pascal.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
Thus, none of the investment in learning to program in Pascal or in programs already written in Pascal is lost in going from Pascal to Pascal-SC. The Pascal-SC compiler can translate programs written in ordinary Pascal. Moreover, programming in Pascal-SC will come very naturally to the Pascal programmer, as will be seen from the examples given below.

With regard to (i), the floating-point arithmetic provided by Pascal-SC is implemented not only for real floating-point numbers (type REAL), but also for complex numbers, intervals, and vectors and matrices of these types. This allows convenient and accurate computation with the kinds of numerical data most frequently encountered in scientific and engineering problems. The floating-point arithmetic of Pascal-SC [28] is constructed on the basis of the theory of computer arithmetic given by Rulisch and Miranker [14], which guarantees accuracy, controllability and reliability of the results. In order to keep the compiler small enough to be convenient to use on microcomputers and still provide these additional features, extensive use is made of external libraries of pretranslated code which the compiler can link to the user's program, or source code which can be compiled as part of it.

The second important additional capability of Pascal-SC is that it allows user-defined operators to permit the manipulation of nonstandard data types in ordinary mathematical notation. For example, if \( A \) is a matrix, and \( x, b, c \) are vectors, then the programmer can write the statement

\[
(2.1) \quad c := A \times x + b
\]

in Pascal-SC to perform the indicated calculations. This notation follows ordinary mathematical usage, and thus has the advantages of clarity and simplicity compared to the calling of procedures and functions to obtain the same result in ordinary Pascal. In order for the Pascal-SC compiler to accept (2.1), the heading of the program has to contain a definition of the binary operators \( \times \) to perform matrix by vector multiplication and \( + \) to perform vector addition. (Source code for these operators is included in the Pascal-SC...
package for vector and matrix arithmetic.) In addition to this "overloading" of standard operator symbols, Pascal-SC permits the user to give operators arbitrary names (for example, XOR for "exclusive or"), and assign priorities to such operators. One particular convenience of Pascal-SC is that the operator ** can be defined to perform exponentiation, which makes the writing of polynomials and other functions containing powers simpler than in ordinary Pascal. In allowing user-defined operators, Pascal-SC is similar to Algol 68 and Ada.

These points will be discussed in more detail in the following sections.

3. Floating-point REAL arithmetic. This is the "built-in" arithmetic of Pascal-SC for floating-point numbers (type REAL). Since this arithmetic is based on the general theory of computer arithmetic given in [14], it is accurate, controllable, and reliable. Before going on to details, a precise statement of the meaning of these terms is necessary because the related concepts of "accuracy" (the exactness with which results are calculated) and "precision" (the number of digits used in the representation of floating-point numbers) are often confused. For example, the result 32.0 - 31.0 - 1.00 is calculated with low precision (3 decimal digits), but high accuracy (exactly). By contrast, UNVAC 1100 floating-point hardware gives

\[ 134217728.0 - 134217727.0 - 2.00000000, \]

which is done with higher precision (9 significant digits), but no accuracy, since the correct answer is 1.00000000 [21].

It is possible to discuss the idea of accuracy independently of the particular precision used, since each floating-point system contains only a finite set of numbers. In a given system S, two floating-point numbers u,v with u < v will be said to be adjacent if there is no floating-point number w such that u < w < v. For x,y ∈ S, the exact result xoy of an arithmetic operation o, where o ∈ {+, -, *, /}, will either be a floating-point number, or a real number w such that u < w < v, where u,v are adjacent floating-point numbers. In order to produce a floating-point number in the latter case, w is "rounded" to
an element of S, which should be either u or v. This is the basic requirement for reliability of a floating-point arithmetic operation. The floating-point software supplied for some microcomputers does not meet this simple requirement, and neither does the floating-point hardware of some mainframe computers. This unhealthy situation has lead the IEEE to undertake the promulgation of standards for floating-point arithmetic (see the SIGNUM Newsletter for October, 1979).

An accurate rounding R of the floating-point operation o selects R(xoy) equal to u or v to minimize the roundoff error

$$\varepsilon(xoy) = |R(xoy) - (xoy)|.$$  

This is the best possible answer (BPA) rounding [29]. In case of a tie between u and v, a suitable rule is invoked. In Pascal-SC, this rounding is to the one of u,v which is furthest from zero, in order to satisfy the condition of antisymmetry of R, R(-x) = - R(x), which is required by the general theory [14].

The distance |u - v| between u and v are will depend on the precision of the floating-point numbers being used; this determines the maximum roundoff error of a reliable calculation. Of course, if the arithmetic of the machine being used is not reliable, then roundoff error is not related in a simple way to precision, and the attempt to "buy" more accuracy by using increased precision can be futile, as well as expensive.

There are other ways in which rounding to a reliable result can be carried out, including:

(i) x is rounded upward to v;
(ii) x is rounded downward to u.

The directed roundings (i) and (ii) are necessary to support interval arithmetic [17], [16], [14], among other things. Rounding in a floating-point arithmetic is said to be controlled if the user can choose the method desired for the result of a given floating-point arithmetic operation. Pascal-SC gives the user the choice of BPA and the upward and downward directed roundings, which means that a total of twelve operators are provided for
the four basic arithmetic operations +, −, *, /, and the three roundings listed above:

\[
\begin{align*}
+ & - * / \quad \{ \text{BPA rounding} \} \\
\uparrow & \to \star / \quad \{ \text{Upward rounding} \} \\
\downarrow & \to \star / \quad \{ \text{Downward rounding} \}
\end{align*}
\]

Thus, the Pascal-SC programmer can control the direction of rounding if desired, for example, to obtain guaranteed lower or upper bounds for the values of arithmetic expressions [6]. It also follows from the reliability of Pascal-SC arithmetic that the addition and multiplication operators (3.2) are commutative, which is not true for the kind of floating-point arithmetic ordinarily encountered.

For the microcomputer implementations of Pascal-SC, decimal arithmetic is used, and the precision of floating-point numbers is twelve decimal digits in scientific notation, with an exponent range in powers of 10 from \(-99\) to \(+99\). The smallest and largest positive numbers are thus MINREAL = \(1.00000000000E-99\) (\(= 10^{-99}\)) and MAXREAL = \(9.9999999999E+99\), respectively. Zero is represented by \(0 = 0.00000000000E+00\), as usual [28]. The use of decimal arithmetic avoids the errors introduced by conversion between binary and decimal upon input and output. Decimal values are represented internally by two BCD digits per byte. The precision of the Pascal-SC floating-point number system for microcomputers is thus adequate for the representation of most numerical quantities of interest in scientific and engineering computation. Furthermore, since Pascal-SC floating-point arithmetic is reliable, accurate, and controllable, there is seldom any need for more than 12 decimal digits of precision in a given computation.

To illustrate the features of Pascal-SC arithmetic, consider the product

\[
A = (13.4565432278)(0.000453782392145).
\]

The exact value of \(A\) is not a 12-digit floating-point number, so rounding will take place in the corresponding floating-point multiplication operations. The floating-point
operation * gives

\[(3.4) \quad B = 1.34565432278E+01 \times 4.53782392145E-04 = 6.10634237591E-03,\]

as the BPA for \( A \), which is in error by at most \( \frac{\delta}{2} = 5.0 \times 10^{-15} \), since Pascal-SC arithmetic is reliable and the distance between \( B \) and its two neighboring floating-point numbers is \( \delta = 10^{-14} \). More precisely, (3.4) establishes that \( A \) belongs to the half-open interval \([B - \frac{\delta}{2}, B + \frac{\delta}{2}]\), since ties are rounded away from 0. The operations \(*<\) and \(*>\) with directed rounding give

\[(3.5) \quad C = 1.34565432278E+01 *< 4.53782392145E-04 = 6.10634237591E-03,\]

\[D = 1.34565432278E+01 *> 4.53782392145E-04 = 6.10634237592E-03,\]

respectively. Since \( C = B \), the result (3.5) shows that the exact answer \( A \) belongs to the interval \([C, D] = [B, D] = [B, B + \delta]\); therefore, on the basis of (3.4), \( A \) belongs to the half-open interval \([B - \frac{\delta}{2}, B + \frac{\delta}{2}] \cap [B, B + \delta] = [B, B + \frac{\delta}{2}]\) (see Figure 3.1). Thus, this calculation proves that \( A \geq B \) and \( A - B < 5.0 \times 10^{-15} \). This gives a more accurate location for \( A \) than the BPA answer (3.4).

\[\begin{array}{cccc}
B - \frac{\delta}{2} & B & B + \frac{\delta}{2} & D \\
\end{array}\]

Figure 3.1. A Detail of the REAL Floating-Point Screen.

In addition to the twelve rounded arithmetic operations listed above, Pascal-SC provides the most frequently used standard functions, computed to BPA accuracy [28]. In order to keep the microcomputer version of the Pascal-SC system small, extensive use is made of external libraries, so the compiler will bring in code only for functions,
5. Floating-point COMPLEX arithmetic. In Pascal-SC, manipulation of complex numbers is accomplished by subroutines for operators, functions, and procedures which are stored in external libraries. For this reason, the declaration of complex numbers has the stereotyped form

```
TYPE COMPLEX = RECORD RE, IM: REAL END;
```

Thus, the representation of a complex number \( Z \) in Pascal-SC is in Cartesian coordinates. For input and output of \( Z \), the standard format is \((Z.RE, Z.IM)\).

In ordinary Pascal, addition and other arithmetic operations with complex numbers have to be done by procedures and functions. In Pascal-SC, however, operator overloading simplifies notation in the program considerably. To illustrate this, consider as a simple example the source code to enable the operator \(+\) to add complex numbers:

```
OPERATOR + (A,B: COMPLEX) RES: COMPLEX;
VAR U: COMPLEX;
BEGIN
  U.RE := A.RE + B.RE;
  U.IM := A.IM + B.IM;
  RES := U;
END;
```

The actual coding for this operator is essentially the same as for a function or procedure for the same purpose. However, to add the two complex numbers \( V, W \) and assign the result to the complex number \( Z \), one writes only

\[
Z := V + W;
\]

in the subsequent program. Addition operators have to be defined for all pairs of operands of types INTEGER, REAL, and COMPLEX, since these would occur naturally in expressions being evaluated. If \( K, R, C \) denote generic variables of types INTEGER, REAL, and COMPLEX, respectively, then six addition operators are needed:
Similarly, six subtraction operators

\begin{align*}
\text{(5.3)} & \quad -C, \ X - C, \ C - K, \ R - C, \ C - R, \ C - C,
\end{align*}

are required, as well as five multiplication and five division operators:

\begin{align*}
\text{(5.4)} & \quad \text{K} \ast \text{C}, \ \text{C} \ast \text{K}, \ \text{R} \ast \text{C}, \ \text{C} \ast \text{R}, \ \text{C} \ast \text{C},
\end{align*}

\begin{align*}
\text{K}/\text{C}, \ \text{C}/\text{K}, \ \text{R}/\text{C}, \ \text{C}/\text{R}, \ \text{C}/\text{C}.
\end{align*}

All 22 of the operators (5.2)-(5.4) are provided in an external library in the form of pretranslated code, and the corresponding declarations, for example,

\begin{verbatim}
OPERATOR + (RA: REAL; P: COMPLEX) RES: COMPLEX;
EXTERNAL 155;
\end{verbatim}

are available to the programmer in an external text file. Actual coding is also simplified considerably the fact that the programmer can direct the compiler to refer to external libraries for type declarations and definitions of operators and other needed functions and procedures [19], [28]. The use of this feature makes the source code for a Pascal-SC program more compact and readable. Examples of programs using such directives are given in Appendices A and B.

All complex floating-point operations in Pascal-SC calculate the real and imaginary parts of the result to BPA accuracy. For addition and subtraction, operators similar to the one given above for complex addition are satisfactory; however, multiplication and division require special algorithms to attain this accuracy [14], [28]. For example,
consider the function CDIV which does complex division by the usual formula:

\[(5.5) \quad \text{FUNCTION CDIV}(A,B : \text{COMPLEX}) : \text{COMPLEX}; \]
\[
\text{VAR} \quad \text{DENOM} : \text{REAL}; \quad \text{U} : \text{COMPLEX}; \]
\[
\text{BEGIN} \quad \text{DENOM} := B.\text{RE} \times B.\text{RE} + B.\text{IM} \times B.\text{IM}; \quad \text{U.}\text{RE} := (A.\text{RE} \times B.\text{RE} + A.\text{IM} \times B.\text{IM}) / \text{DENOM}; \quad \text{U.}\text{IM} := (A.\text{IM} \times B.\text{RE} - A.\text{RE} \times B.\text{IM}) / \text{DENOM}; \quad \text{CDIV} := \text{U} \quad \text{END;} \]

The Pascal-SC operator for complex division,

\[(5.6) \quad \text{OPERATOR} / (A,B: \text{COMPLEX}) \text{ RES: COMPLEX)}; \quad \text{EXTERNAL 182;} \]

has a number of advantages over the function CDIV. Among these are:

a. Accuracy. The results of Pascal-SC complex operations are calculated to BPA accuracy in the sense that their real and imaginary parts are given to BPA accuracy. Ordinary Pascal functions and procedures for COMPLEX multiplication or division, such as CDIV given above, cannot attain this accuracy because of the number of roundoff errors which occur. In fact, catastrophic cancellations can happen which render the results almost meaningless when the ordinary formulas in (5.5) are used. For example, for

\[
\text{V} = (1.23456789, 1.23456789), \]

\[(5.9) \quad \text{W} = (1.0000123E-05, 1.0000321E-05), \]

-9-
One gets

\[ \frac{V}{W} = (1.23454048308E+05, -1.22216773503E+00), \]

(5.10)

\[ \text{CDIV}(V,W) = (1.23454048308E+05, -1.22216773503E+00), \]

where the incorrect digits of CDIV(U,V) are indicated in boldface. Even in this fairly harmless-looking case, the algorithm (5.5) has lost five significant digits in the imaginary part of the quotient in a single division, while all the digits of the Pascal-SC result for \( \frac{V}{W} \) are correct. To be sure, roundoff error will also increase with repeated use of the Pascal-SC division operator (5.6), but at a slower and more predictable rate.

b. Deferred overflow. In the Pascal-SC algorithms for complex multiplication and division, overflow does not result unless the real or imaginary part of the result is > MAXREAL in absolute value, whereas overflow can occur in (5.6) in the calculation of the intermediate values \( \text{DENOM}, U.\text{RE}, U.\text{IM} \), even though the actual result has real and imaginary parts which are representable by floating-point numbers. For example, for

\[ V = (3.0E+99, -1.0E+99), \quad W = (1.0E+99, -1.0E+99), \]

Pascal-SC complex division gives the result

\[ \frac{V}{W} = (2.00000000000E+00, 1.00000000000E+00), \]

(5.11)

while the subroutine (5.6) for CDIV overflows when trying to compute \( \text{DENOM} \).

c. Ease of use. For VAR U,V,W: COMPLEX, the use of (5.6) allows one to write

\[ U := V \div W; \]

in the source code for the program instead of
as in ordinary Pascal. In the case of complicated expressions involving complex numbers, the gain in programming ease using ordinary mathematical notation with operators instead of function and procedure calls is significant. The source code is more likely to be correct in the first place, and also will be easier to document and read later.

4. **Compilation time.** The function CDIV has to be compiled from the source code (5.5) for each ordinary Pascal program which uses complex division. The operator (5.6), on the other hand, is given by pretranslated code which is automatically linked to the user's program in the last stage of the compilation. This saves a considerable amount of compilation time.

The accurate complex division in Pascal-SC turns out to be slower than the function CDIV. According to the table given in [4], p. 267, a typical time for the complex division $U/V$ is 100 milliseconds for a 2.5MHz 280 processor. The function CDIV($U,V$) uses six real multiplications, two real divisions, and three real addition/subtractions. The typical times for these operations given in [4] total 60.4 milliseconds. It will be seen later that some Pascal-SC operations are actually faster than their inaccurate real simulations; however, in the case of complex multiplication and division, one pays a little for guaranteed, reliable accuracy.

In addition to the arithmetic operators $+$, $-$, $\times$, $/$ for type COMPLEX, a number of additional operators, functions, and procedures are provided in the Pascal-SC complex library for convenience. For details on these, including the domains and ranges of the standard functions, see [28].

Rounded complex operations $\langle$, $\rangle$, $\langle$, $\rangle$, $\langle$, $\rangle$, $\langle$, $\rangle$ are also included in an external library in the form of pretranslated code [28]. Here, rounding is carried out componentwise. Each complex number $z = (x,y)$ with $|x|,|y| \leq \text{MAXREAL}$ will belong to a rectangle with corners which are the floating-point complex numbers $A = (u,v)$, $B = (u + \delta, v)$, $C = (u + \delta, v + \eta)$, $D = (u, v + \eta)$, and which contains no other floating-point
complex numbers (see Figure 5.1). The result of rounding \( z \) downward will be \( \overline{Vz} = A = (u, v) \), while \( z \) is rounded upward to \( \overline{Az} = C = (u + \delta, v + \eta) \), where \( \delta \) and \( \eta \) are the spacings in the floating-point screen in the horizontal and vertical directions in the complex plane, respectively. The BPA rounding of \( z \) will be \( (\text{BPA}(x), \text{BPA}(y)) \), and thus could be any one of the four points \( A, B, C, D \). For example, suppose

\[
(5.15) \quad z = \frac{(100 - 41)}{(565 + 789i)},
\]

which is not a complex floating-point number. Pascal-SC operations give

\[
(5.15) \quad z = \frac{(100 - 41)}{(565 + 789i)} = (5.66437234668E-02, -8.61803501157E-02),
\]

\[
(5.16) \quad C = \frac{(100 - 41)}{(565 + 789)} = (5.66437234669E-02, -8.61803501156E-02),
\]

while the BPA for (5.15) is

\[
(5.17) \quad D = \frac{(100 - 41)}{(565 + 789)} = (5.66437234668E-02, -8.61803501156E-02).
\]

Figure 5.1. A Detail of the COMPLEX Floating-Point Screen.
In this case, \( \delta = \pi = 1.0 \times 10^{-13} \), and the results (5.16) and (5.17) locate \( z \) in the rectangular complex interval \( A + [0, \ 5.0 \times 10^{-14}] + i(5.0 \times 10^{-14}, \ 1.0 \times 10^{-13}) \), according to the rules for Pascal-8C rounding (see Figure 5.1).

Complex arithmetic with directed rounding can be used as the basis for complex interval arithmetic [14].

6. Floating-point INTERVAL arithmetic. Interval arithmetic [1] [17], [16] is based on the use of closed, finite intervals \([a, b]\) of real numbers as its basic elements. Interval arithmetic has a number of significant applications in scientific, engineering, and statistical computation; however, its use has not been widespread up to now because of the limitations of conventional computer arithmetic units [18] and ordinary programming languages. In Pascal-8C, interval arithmetic has been implemented efficiently, and is just as convenient to use as real or complex arithmetic.

In the general theory of computer arithmetic [14], interval arithmetic is regarded as a special case of arithmetic on subsets of real numbers. Here, if \( X, Y \) are subsets of \( \mathbb{R} \), and \( 0 \in \{+, -, *, /\} \), then

\[
Z = X \circ Y = \{x \circ y \mid x \in X, \ y \in Y\},
\]

by definition. For division, of course, \( 0 \in Y \) is excluded. If \( X = [a, b] \) and \( Y = [c, d] \) are intervals, then \( Z = [r, s] \) is an interval if defined, and the endpoints \( r, s \) of \( Z \) can be calculated from the endpoints of \( X, Y \) [14], [17], [16]. It is assumed, of course, that the intervals \( X = [a, b] \) considered are finite and proper, that is, \( a < b \).

The most basic application of interval arithmetic is the following: If the value of a function, for example,

\[
w = 9x^4 - y^4 + 2y^2,
\]

is calculated in interval arithmetic for intervals \( X, Y \), then the resulting interval \( W \) will contain all values \( w \) of the function (6.2) for all values of \( x \in X, y \in Y \). This property
of interval arithmetic allows one to bound the ranges of functions without detailed analysis of maxima and minima. Since rounding of interval operations is outward to the smallest floating-point interval which contains the exact results [20], automatic bounds for round-off error can be obtained conveniently, by taking the input intervals $X, Y$ to be single points, that is, $X = [x, x], Y = [y, y], [1], [17], [16]$. For a simple application of this principle, consider the evaluation of (6.2) by the expressions

\begin{align*}
(a) & \quad w := 9x^2x^2x - y^4y^4y + 2y^8y; \\
(6.3) & \quad (b) \quad w := 9(x^4) - y^4 + 2(y^4); \\
(c) & \quad w := (3(x^2) - y^2)(3(x^2) + y^2) + 2(y^2); \\
\end{align*}

in REAL arithmetic, and

\begin{align*}
(a) & \quad W := 9x^2x^2x^2 - y^4y^4y + 2y^8y; \\
(6.4) & \quad (b) \quad W := 9(x^4) - y^4 + 2(y^4); \\
(c) & \quad W := (3(x^2) - y^2)(3(x^2) + y^2) + 2(y^2); \\
\end{align*}

in INTERVAL arithmetic, respectively. The power operators ** in (6.3)(b) and (6.4)(b) are given in Appendix A in the source code for the program WEVAL which was used to calculate the following results.

For $x = 10864, y = 18817$, the statements (6.3) give

\begin{align*}
(a) & \quad w = 1.58978 \times 10^5, W = [-1.841022 \times 10^6, 1.158978 \times 10^6], \\
(6.5) & \quad (b) \quad w = -8.41022 \times 10^5, W = [-8.410220 \times 10^5, 1.158978 \times 10^6], \\
(c) & \quad w = 1.00000000000, W = [1.00000000000, 1.00000000000]. \\
\end{align*}

The enormous width of $W$ in (6.5)(a) and (6.5)(b) indicates that the values given for $w$ can be subject to large roundoff error, and hence are untrustworthy. On the other hand, evaluation of (6.2) by the statements (6.3)(c) and (6.4)(c), respectively, shows that this
formulation is highly accurate, and in fact proves that (6.3)(c) yields the exact value
\( w - 1 \) of the function (6.2) for the given values of \( x \) and \( y \). This example also shows that
the way in which arithmetic expressions are written can be crucial for accuracy. The
techniques for evaluation of arithmetic expressions with maximum accuracy [6] can be
automated, and are incorporated in a Pascal-SC demonstration program [26].

In Pascal-SC, floating-point intervals are declared in the stereotyped way:

\[
\text{TYPE INTERVAL} = \text{RECORD INF,SUP: REAL END};
\]

As in the case of complex numbers, the operators, functions, and procedures in an external
library manipulate intervals declared in this form. In order to preserve the inclusion
property of interval arithmetic, all rounding in floating-point INTERVAL arithmetic is
outward: The result given for \( X \_o Y \) is the smallest floating-point interval \( Z \) which contains
the actual result. This can be implemented by the use of directed rounding, for example,
addition can be performed by the operator

\[
(6.7) \quad \text{OPERATOR} + (A,B: \text{INTERVAL}) \text{ Res: INTERVAL;}
\]

\[
\text{VAR C: INTERVAL;}
\]

\[
\text{BEGIN}
\]

\[
\text{C.INF := A.INF +< B.INF;}
\]

\[
\text{C.SUP := A.SUP +> B.SUP;}
\]

\[
\text{RES := C;}
\]

\[
\text{END;}
\]

This operator is available as a pretranslated subroutine, declared by

\[
\text{OPERATOR} + (A,B: \text{INTERVAL}) \text{ Res: INTERVAL}
\]

\[
\text{EXTERNAL 68;}
\]
If $I$ denotes a generic variable of type INTERVAL, and $K$ of type INTEGER, the following 15 arithmetic operations are provided for interval arithmetic:

\[
\begin{align*}
I + I, & \quad I \cdot I, & \quad I + K, & \quad I \cdot K, \\
K + I, & \quad I \cdot K, & \quad I + K, & \quad K / I, & \quad I / K, & \quad I / I.
\end{align*}
\]

Because REAL floating-point expressions do not necessarily yield the exact values of their real results, operators between types REAL and INTERVAL are not included, since the resulting interval might not contain the true outcome of a computation. In addition to interval versions of standard functions and various utility procedures [28], the interval library includes some operators which work with intervals as sets of real numbers. There are the "lattice operators"

\[
\begin{align*}
** & \quad \text{Intersection}, \\
++ & \quad \text{Interval Hull},
\end{align*}
\]

and the relational operators

\[
\begin{align*}
<= & \quad \text{Subinterval}, \\
>= & \quad \text{Superinterval}, \\
<> & \quad \text{Disjointness}, \\
\text{IN} & \quad \text{Point Inclusion},
\end{align*}
\]

[28]. The intersection operator ** will generate an error interrupt if its operands are disjoint intervals, otherwise, their intersection $I \cap J$ will be computed. If $I = [a,b]$ and $J = [c,d]$, then $I ++ J = [\min(a,c), \max(b,d)]$ is the smallest interval which contains both $I$ and $J$. The relation $I <= J$ is TRUE if $I \subseteq J$, otherwise FALSE; similarly, $I >= J$ is TRUE if $I \supseteq J$. The result of $I <> J$ is TRUE if $I$ and $J$ are disjoint intervals. This test can be
used to avoid $I^{**} J$ in this case. If $R$ is a floating-point number (type REAL), $R \in I$ is TRUE if $R \in I$ as a real number.

With regard to the efficiency of the implementation of interval arithmetic in Pascal-SC, Bohlanders and Gruner [4] give the following typical times in milliseconds for a microcomputer with a 2.5MHz 280 processor:

<table>
<thead>
<tr>
<th>Operation</th>
<th>+</th>
<th>-</th>
<th>*</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL</td>
<td>2.2</td>
<td>2.2</td>
<td>6.0</td>
<td>10.0</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>5.4</td>
<td>5.4</td>
<td>23.0</td>
<td>31.0</td>
</tr>
</tbody>
</table>

Considering the fact that each interval operation has to determine two real numbers, and that interval multiplication and division require the calculation of four real products in one case [14], the above indicates an almost optimal implementation in software. By contrast, factors of 100 or 200 between REAL and INTERVAL arithmetic speed have been noted on conventional computers, such as the UNIVAC 1100 series. In addition, while a REAL computation provides only a floating-point number which approximates the result, an INTERVAL computation on the other hand provides an interval which is guaranteed to contain the true result. An important application of this property of interval calculations will be described below in connection with the solution of linear systems of equations with guaranteed error bounds.

7. Real floating-point vector and matrix arithmetic. Calculations with real vectors and matrices are among the most commonly encountered tasks in scientific, engineering, and statistical computation. Pascal-SC offers the user the same reliability, accuracy, controllability, and convenience when calculating with real $n$-dimensional floating-point vectors and matrices as it does for the scalar types REAL, COMPLEX, and INTERVAL. This is accomplished with the aid of an external source code library MSLIB of operators, functions, and procedures for vector and matrix manipulation, and a built-in function SCALP for the
calculation of scalar products of floating-point vectors to BPA accuracy or with directed rounding at the option of the user.

7.1. Convenience. In order to illustrate the convenience of Pascal-SC for vector and matrix calculations, suppose that $A$, $B$ are $n \times n$ matrices, and $x$, $y$, $z$ are $n$-dimensional vectors. To evaluate

\begin{equation}
z = 5.5A_{mx} + 3y,
\end{equation}

the corresponding expression is Pascal-SC is

\begin{equation}
z := 5.5A*B*x + 3*y;
\end{equation}

which uses ordinary operator notation instead of the function and procedure calls which would be required in ordinary Pascal and most other languages. In order to make use of the software provided in the corresponding external library, a stereotyped declaration of floating-point vector and matrix data types is expected:

```pascal
CONST DIM = 0; (The actual dimension replaces 0)
TYPE DINTYPE = 1..DIM;
RVECTOR = ARRAY [DINTYPE] OF REAL;
RMATRIX = ARRAY [DINTYPE] OF RVECTOR;
```

The operators $+$, $-$, $\times$, and the operators $+<$, $+>$, $-<$, $->$, $>*$, $<*\,*>$ with directed rounding are available for various permissible combinations of operands, for example, multiplication of an RVVECTOR by an INTEGER or REAL, and so on [28].

7.2. Reliability, accuracy, and controllability: The scalar product SCALP. The general theory of computer arithmetic [14] requires that each component of the result of a vector or matrix operation be rounded to the BPA for the actual real result, or downward or upward to the closest neighboring floating-point number if desired. Addition and
subtraction of vectors and matrices present no problems from the standpoint of this requirement, since the desired results can be calculated componentwise with the aid of the six REAL arithmetic operators \( t, t\), \( t\) described in §3. Calculation of the scalar products of vectors, which is an inherent component of matrix and matrix by vector multiplication, is a different matter. Ordinarily, this calculation is simulated by a FOR loop of real operations, such as in the following function:

\[
\text{(7.3) FUNCTION SPROD(A,B: RVECTOR): REAL;)
\]

```pascal
VAR I: DIMTYPE; S: REAL;
BEGIN
S := 0;
FOR I := 1 TO DIM DO
S := S + A[I] * B[I];
SPROD := S
END;
```

This is an example of what Rulisch calls the "vertical" definition of computer arithmetic [14], [12]. Of course, there is no hope that the result of SPROD will be accurate in general. For this reason, the internal calculations in a function of this kind are often done in higher precision than the external calculation. While this is often a great help in some cases, it still does not solve the accuracy problem. On the other hand, the Pascal-8C function

\[
\text{(7.4) SCALP(A,B: RVECTOR; ROUND: INTEGER);)
\]

which is a built-in feature of the compiler, will calculate the value of the exact scalar product of A and B to an adjacent floating-point number, with rounding downward, upward, or to the BPA controlled by the value of the parameter ROUND [28]. This reliability, accuracy, and controllability is required by the general theory of computer vector and
matrix arithmetic [14]. It can be achieved by special algorithms [14], or the provision of a sufficiently long accumulator. In the microcomputer version of Pascal-SC, this "long accumulator" is implemented in software [4], but the same thing can be done in hardware [13], and can be expected to be a feature of future advanced mainframe computers.

In order to allow the accumulation of several scalar products, the parameter ROUND can also inhibit the clearing of the long accumulator before the product is calculated [28]. The corresponding values are given in the following table:

<table>
<thead>
<tr>
<th>Rounding</th>
<th>Clear Long Accumulator</th>
<th>Inhibit Clearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPA</td>
<td>ROUND = 0</td>
<td>ROUND = 4</td>
</tr>
<tr>
<td>Downward</td>
<td>ROUND = -1</td>
<td>ROUND = 3</td>
</tr>
<tr>
<td>Upward</td>
<td>ROUND = 1</td>
<td>ROUND = 5</td>
</tr>
</tbody>
</table>

If the long accumulator is not being cleared, other arithmetic operations are not permitted between successive calls of SCALP [28].

The use of SCALP makes it possible to calculate the results of matrix and matrix by vector multiplications to the closest floating-point numbers, or rounded to the closest larger or smaller neighboring values if desired. This reliability, accuracy, and controllability distinguishes Pascal-SC vector and matrix arithmetic from traditional packages.

Some of the important properties of SCALP are illustrated by the following examples.

a. Accuracy. For

\[(7.5) \quad A = (10^{99}, 10^{-99}, -10^{99}), \quad B = (1, 1, 1, \ldots)\]

the value of SPROD(A,B) is 0, of course, while SCALP(A,B,0) gives the correct answer 10^{-99}. Persons who believe that multiple precision will solve all accuracy problems should determine how much precision is required on their machine for SPROD(A,B) to duplicate this result. Once satisfied, they can then try (7.6) below. Although these examples are
extreme, examples can be given for which SPROD is highly inaccurate for vectors of the
types one can expect to encounter in actual problems.

b. Speed. It turns out that the accurate scalar product function SCALP is faster
than the corresponding FOR loop in SPROD if DIM > 1. The typical times given in [4] in
milliseconds for a 2.5MHz 280 processor are:

<table>
<thead>
<tr>
<th>Function</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALP</td>
<td>6 + 5.5(DIM)</td>
</tr>
<tr>
<td>FOR LOOP</td>
<td>1 + 9.6(DIM)</td>
</tr>
</tbody>
</table>

Since all the matrix and matrix by vector multiplication routines are based on SCALP, they
can be expected to execute faster than their inaccurate simulations in REAL arithmetic.
Furthermore, the current implementation of Pascal-SC handles access to elements of arrays
very efficiently by means of an "array descriptor" [11], from which addresses of elements
can be calculated quickly.

c. Deferred overflow. Under ordinary circumstances, SCALP will not indicate an
overflow unless the actual real result is outside the range of representable floating-point
numbers. For example, for

(7.6) \[ A = (10^{99}, 10^{-99}, -10^{99}), \quad B = (10^{99}, 1, 10^{99}), \]

SCALP(A,B,0) will compute the correct result $10^{-99}$, while SPROD(A,B) will overflow for
I = 1.

d. Ease of use. The function SCALP is just as easy to use as SPROD, and requires no
additional source code in the program, since it is part of the Pascal-SC system.
Furthermore, SCALP is more versatile, since its arguments can be arbitrary one-dimensional
arrays of floating-point numbers of the same length, of which RVECTOR is only a special
case. When called, SCALP consults the array descriptors of its arguments [11] to determine
if they are in fact of equal length, and then calculates their scalar product if this is
true. Thus, SCALP can be used to calculate scalar products of vectors of various
dimensions in the same program.

8. Complex and interval floating-point vector and matrix arithmetic. The basic ideas here are generally the same as for real vector and matrix arithmetic: Convenience, based on the use of operator notation for expressions, and accuracy. The subroutines in MCLIB and MILIB, respectively, expect the type declarations

```plaintext
TYPE CVECTOR = ARRAY [DIMTYPE] OF COMPLEX;
CMATRIX = ARRAY [DIMTYPE] OF CVECTOR;
```

and

```plaintext
TYPE IVECTOR = ARRAY [DIMTYPE] OF INTERVAL;
IMATRIX = ARRAY [DIMTYPE] OF IVECTOR;
```

in the corresponding cases.

For accurate scalar products, the respective functions

```plaintext
FUNCTION CSCALP (VAR A,B: CVECTOR; ARDIM: INTEGER): COMPLEX;
EXTERNAL 18;
```

and

```plaintext
FUNCTION ISCALP (VAR A,B: IVECTOR; ARDIM: INTEGER): INTERVAL;
EXTERNAL 88;
```

are provided. The functions form the basis of the subroutines for accurate matrix and matrix by vector multiplication. The products are computed from the first ARDIM components of each vector argument. This permits the flexibility of using vectors of various dimensions ARDIM < DIM in the same program. CSCALP computes the BPA for the scalar product
of complex vectors; directed rounding is not provided for the complex scalar product or complex matrix and matrix by vector multiplications. ISCALP computes the smallest interval which contains the exact result, as in the case of other interval operations [28].

9. Solution of linear systems of equations and matrix inversion. These are problems which arise time after time in scientific, engineering, and statistical computation. The Pascal-SC system subroutines for these purposes, which use the accurate scalar product and interval arithmetic, yield results which are far more exact than can be obtained by ordinary floating-point arithmetic. Furthermore, guaranteed error bounds are given for results, so the reliability of the computation is immediately determinable. These subroutines will accept either real or interval vectors and matrices.

The basic procedure in the system library LGLLIB for the solution of linear systems of equations is LGLP (an acronym for the German words for "linear equations solution program"). This procedure is declared by

PROCEDURE LGLP(DIM,AKDIM: INTEGER; VAR A: RMATRIX, VAR B: RVECTOR;
VAR Y: IVECTOR);
EXTERNAL 524;

[28]. The purpose of this procedure is to solve the linear system

\[ Ax = B \]

with coefficient matrix \( A \) and right-hand side \( B \). Instead of a floating-point approximation to the solution \( x \), LGLP calculates an interval vector \( Y \) which, if proper, contains the exact solution \( x \) of (9.1), and proves that the floating-point matrix \( A \) is a nonsingular real matrix [27]. This allows one to determine not only an approximate value for \( x \), but also guaranteed error bounds for it [23]. The parameter \( AKDIM \) in the formal parameter list allows one to solve systems of size smaller than \( DIM \) if desired; only the first \( AKDIM \) rows and columns of \( A \) and components of \( B \) are involved in the calculation.
Failure of LGLP to return a proper interval vector \(Y\) indicates that \(A\) is singular or extremely ill-conditioned. In this case, the components of \(Y\) will be set equal to the improper interval \([+1,-1]\). A test should be made for this condition immediately on return from LGLP, since all interval subroutines expect proper intervals as data [28].

Thus, LGLP either gives a solution with guaranteed accuracy or an error indication. In practice, LGLP has been observed to succeed for well-known examples of badly conditioned matrices, such as Hilbert matrices [26], [27]. In Appendix B, a simple program to solve linear equations of order up to 20 is given, together with its application to a system of five equations in five unknowns in which the coefficient matrix has a condition number larger than \(4 \times 10^{18}\). Inspection of the resulting interval vector \(Y\) shows that LGLP was able to solve this system to an accuracy of one unit in the twelfth significant digit. The same \(5 \times 5\) system defeated a standard linear equation solver on a VAX 11/780.

When one is solving several systems with the same matrix but different right sides, considerable time can be saved if the approximate LU-decomposition of \(A\) and other preliminary calculations are only done once. The procedure LGLPR is available for this purpose. Its declaration is

\[
\text{PROCEDURE LGLPR (DIM,AKDIM: INTEGER; VAR A: RMATRIX; VAR B: RVECTOR; NRS: BOOLEAN; VAR R: RMATRIX; VAR MB: IMATRIX; VAR Y: RVECTOR);}
\]

[28]. The first call of this procedure is with \(NRS = \text{FALSE}\). Matrices needed to process subsequent right sides will be computed and stored as \(R\) and \(MB\). Subsequently, LGLPR is called with \(NRS = \text{TRUE}\) for each new right side.

Similar procedures LGLI and LGLIR are available for the case that the components of the coefficient matrix \(A\) and right side \(B\) are intervals, that is, \(A\) is of type \(IMATRIX\) and \(B\) is of type \(IVECTOR\). The interval vector \(Y\) in this case bounds all solutions of real systems with coefficient matrices belonging to \(A\) and right sides belonging to \(B\). This can
be helpful in case where the data are subject to uncertainty.

For matrix inversion, the subroutine

```
PROCEDURE INVP (DIM,AKDIM: INTEGER; VAR A: RMATRIX; VAR C: IMATRIX);
    EXTERNAL 526;
```

will, if successful, compute an interval matrix C which contains the inverse of the real (point) matrix A. Singularity or extreme ill-condition of A is reported in the same way as for LGLP, while successful calculation of C proves that A is nonsingular, as before.

Finally,

```
PROCEDURE INVI (DIM,AKDIM: INTEGER; VAR A,C: IMATRIX);
    EXTERNAL 527;
```

is used for inversion of interval-valued matrices. If C is computed successfully as an IMATRIX of proper intervals, then C contains the inverses of all real matrices contained in the interval matrix A. Return of C with all components equal to the improper interval \([+1,-1]\) indicates that A contains at least one singular or very badly conditioned real matrix.

On a microcomputer with 64Kb of storage, LGLP and LGLPR are limited to about DIM = 25 or less, LGLI, LGLIR, and INVP to DIM = 20, and INVI to DIM = 15. For these relatively small systems, the time required for execution seems to be reasonable. As in the case of the rest of the Pascal-SC system, source code for declarations and pretranslated code for the above procedures can be found in an external library.

10. Eigenvalues and eigenvectors. The Pascal-SC system provides the standard subroutine

```
PROCEDURE EIGEN (DIM,AKDIM: INTEGER; VAR A: RMATRIX; LAMBDA: REAL;
    VAR X: RVECTOR; VAR ILAM1BDA: INTERVAL; VAR Y: IVECTOR);
    EXTERNAL 534;
```
for the calculation of guaranteed interval bounds for real eigenvalues and vectors of real
matrices $A$, in particular, symmetric matrices. This is another type of calculation which
occurs often in engineering and other scientific computation. In addition to the actual
dimension $\text{AKDIM}$ and the matrix $A$, EIGEN expects floating-point approximations $\text{LAMBDA}$ and $X$
to the eigenvalue and eigenvector of interest, or at least values with which to start the
calculation. If successful, the interval value $\text{ILAMBDA}$ and interval vector $Y$ returned
include an exact real eigenvalue and eigenvector of the floating-point matrix $A$, and
furthermore guarantee that the included eigenvalue is of multiplicity one. Hence, EIGEN
will not succeed for multiple eigenvalues $[s1], [28]$. In case of failure, EIGEN will
return improper intervals for $\text{ILAMBDA}$ and the components of $Y$.

11. The accurate sum of $n$ floating-point numbers. Statistical calculations, in
particular, often require the computation of the sum of $n$ floating-point numbers and
perhaps also their squares,

$$
S = \sum_{i=1}^{n} a_i, \quad T = \sum_{i=1}^{n} a_i^2.
$$

In Pascal-SC, it is possible to compute the BPA for $S$ and $T$, or round the result upward or
downward to the closest floating point number by taking the $a_i$ as components of an RVECT
$A$ and using SCALP. For $E = (1, 1, 1, \ldots, 1)$, one has

$$
S = \text{SCALP}(A, E, \text{ROUND}); \quad \text{and} \quad T = \text{SCALP}(A, A, \text{ROUND});
$$

with the desired best-possible result. However, in the case of the sum $S$, the standard
Pascal-SC subroutine

FUNCTION SUM (VAR A: RVECTOR; AKDIM, ROUND: INTEGER): REAL;

EXTERNAL 480;
is also provided. This function performs the addition of the first AKDIM elements of A to the BPA or result of directed rounding of the BPA. SUM, like SCALP, uses the long accumulator, and the values of ROUND have the same significance as given in §7 for SCALP. It is thus possible to call SUM again without clearing the long accumulator, to allow independent accumulation of partial sums without loss of accuracy. However, no other arithmetic operations are allowed between successive calls to SUM [28].

When computing sums of interval numbers, one can use

(11.3) \[ IS := \text{ISCALP}(IA,IE,DIM); \]

where IE has components all equal to \([1,1]\). For the interval sum of squares, however, it is preferable to form the interval vector IQA with components equal to ISQR(A[I]) for I = 1..DIM, and then compute

(11.4) \[ IT := \text{ISCALP}(IQA,IE,DIM); \]

rather than ISCALP(IA,IA,DIM), for the reason given in §6 about the preferability of ISQR(X) to X*X for intervals.

12. Programming in Pascal-SC. The only new techniques in Pascal-SC for a Pascal programmer to acquire are the definition and use of operators. Except for these, there is no difference between Pascal and Pascal-SC programming. Therefore, the discussion here will focus on the operator concept [19]. The definition of an operator subroutine is headed by

OPERATOR <name> (<formal parameter list>) <result name>: <result type>;

The code following this heading is the same as for a function having the same purpose. The result must be assigned to <result name> in its entirety before leaving the subroutine. For example, if <result name> = RES is of type INTERVAL, one must calculate an interval U
and make the assignment \( \text{RES} := \text{U} \) before leaving the subroutine, rather than calculating \( \text{RES} \cdot \text{INF} \) and \( \text{RES} \cdot \text{SUP} \) separately. The formal parameter list consists of one or two identifiers and their types. Thus, operators are either unary or binary. Since operators occur in expression strings ("infix" notation), their arguments have to be of expression type. That is, \( \text{VAR} \ A \), etc., is not allowed in the formal parameter list. The examples of operators given in §5 and §6 and below can be used as models.

There are two ways to name an operator in Pascal-SC:

(i) By redefining ("overloading") one of the standard Pascal-SC operator symbols for a new data type or types.

(ii) By use of an arbitrary name selected by the user which conforms to the ordinary rules for identifiers in Pascal [10]. In this case (see below), the priority of the operator also has to be declared.

These two methods will be discussed separately.

12.1. Overloading standard operator symbols. This is the most common method used in scientific and engineering computing to name Pascal-SC operators, since one usually wishes to follow the ordinary mathematical notation encountered in the formulas being used. The standard operator symbols in Pascal-SC are, in order of decreasing priority:

Unary operators:
- \( \text{NOT} \), \( + \) (unary), \( - \) (unary)

Multiplicative (binary) operators:
- \(*\), \(/\), \(\text{DIV}\), \(\text{MOD}\), \(\&\), \(\|\), \(\times\), \(<\), \(>\)

Additive (binary) operators:
- \(+\), \(-\), \(\Rightarrow\), \(\Leftarrow\), \(\langle\), \(\rangle\), \(\Rightarrow\), \(\Leftarrow\), \(\langle\), \(\rangle\), \(\Rightarrow\), \(\Leftarrow\)

Relational (binary) operators:
- \(\Rightarrow\), \(\Leftarrow\), \(\Rightarrow\), \(\Leftarrow\), \(\langle\), \(\rangle\), \(\Rightarrow\), \(\Leftarrow\), \(\langle\), \(\rangle\), \(\Rightarrow\), \(\Leftarrow\), \(\langle\), \(\rangle\)

The fundamental distinction between a unary and a binary OPERATOR is that the formal parameter list for the operator contains exactly one parameter in the first case, and
exactly two in the second, and these are the only possibilities. An overloaded operator
will have the same priority as its symbol in the table above. In the case of + and -, the
parameter list of the operator heading will specify whether they are unary (highest
priority) or binary.

One convenience of Pascal-SC that is immediately apparent is that one can define ** to
perform exponentiation on whatever numerical types are appropriate for the application at
hand. However, this should be done with care. Some good methods are given in [7]. Source
code for a simple, "repeated squaring" [22] implementation of

```
OPERATOR ** (R: REAL; K: INTEGER) RES: REAL;
```
to perform \( R^K \) for integral powers of floating-point numbers is given in Appendix A. This
operator makes it possible to write \( x^3, x^4, \) etc. as \( x**3, x**4, \) etc. in expressions to be
evaluated, which is a more convenient way to represent these simple powers than by a
procedure or function call as in ordinary Pascal. (A function or procedure should be used
to compute the result of raising an interval base to an interval power, since the operator
** is used to compute the intersection of INTERVAL variables (see (6.8)).)

The order of the operands in the formal parameter list determines the order in which
the operator will be applied. The compiler distinguishes various uses of the same operator
symbol by the type(s) of its operand(s), and their order if the operator is binary. Thus,
in the same program, ** can be used to denote addition of complex numbers, intervals,
matrices, quaternions, polynomials, etc., in addition to its standard meaning for
integers and floating-point numbers. All that is required is that the appropriate
definition of OPERATOR + be given in the heading of the program for each meaning of "*" in
the body of the program.

Of course, the compiler recognizes only the rules of arithmetic for user-defined data
types which are provided to it by the programmer. For example, if one wishes to use
expressions in which variables of both type INTEGER and type GRADIENT [22] appear, both
OPERATOR + (K: INTEGER; G: GRADIENT) RES: GRADIENT;

and

OPERATOR + (G: GRADIENT; K: INTEGER) RES: GRADIENT;

must be defined in the heading of the program so that the compiler can produce code for both \( K + G \) and \( G + K \). Type GRADIENT consists of the value of a function together with its gradient vector, and is declared by

\[
\text{TYPE GRADIENT = RECORD F: REAL; DF: RVECTOR END;}
\]

in Pascal-SC [22]. In this case, both operators produce the same result, consisting of the alteration of the function value \( G.F \) of the GRADIENT variable \( G \) to \( K + G.F = G.F + K \), respectively, with no change in the gradient vector \( G.DF \) [22]. However, it could happen that the user is working with quantities for which addition is not necessarily commutative. Pascal-SC allows the possibility of defining the result of "+" or any other binary operator to be dependent on the order of the operands.

12.2. Named operators. In Pascal-SC, the user can name operators according to the ordinary Pascal rules for identifiers [10]. For example, the factorial operator (a unary operator) could be called FAC. In this case, FAC 4 would have the value \( 4! = 24 \). Note that parentheses are not used unless the operation is applied to an expression. Similarly, a named binary operator is written between its operands ("infix" notation) in the same way as \(+\), \(-\), \(*\), \(/\), etc. The operator FAC can be defined in the program heading as follows:

\[
\text{OPERATOR FAC (A: INTEGER) RES: INTEGER;}
\]

\[
\text{BEGIN}
\]

\[
\text{IF A <= 1 THEN RES := 1}
\]

\[
\text{ELSE RES := A * FAC (A - 1);}
\]

\[
\text{END; \{ Recursive definition of OPERATOR FAC \}}
\]

-30-
In terms of \( \text{FAC} \), the binomial coefficient \( C(N,K) \) could be computed by use of the statement

\[
(12.1) \quad \text{BINOM} := \text{FAC} N \div (\text{FAC} K \ast \text{FAC} (N - K));
\]

This example is for only for illustration of the construction of a named operator and the possibility of recursion. On the microcomputer implementation of Pascal-SC, \texttt{INTEGER} arithmetic is implemented only for integers \( I \) such that \(-32768 \leq I \leq 32767 \) \cite{28}, and thus \( \text{FAC} N \) can be computed only for \( N \leq 7 \). Actual computation of factorials should be accomplished by a type conversion to \texttt{REAL}, and controlled by \texttt{WHILE} or \texttt{UNTIL}, in order to avoid stacking recursions too deeply.

Similarly, the binary Boolean operator \texttt{XOR} for "exclusive or" could be defined by

\[
\text{OPERATOR XOR (A,B; BOOLEAN) RES; BOOLEAN;}
\]

\[
\begin{align*}
\text{BEGIN} \\
\text{RES} & := (A \text{ AND NOT } B) \text{ OR (NOT } A \text{ AND } B); \\
\text{END;}
\end{align*}
\]

A typical program statement using \texttt{XOR} would be

\[
(12.2) \quad \text{IF OBS1 XOR OBS2 THEN PROB} := 0.25 \text{ ELSE PROB} := 0.75;
\]

which would assign the value 0.25 to \texttt{PROB} if just one of \texttt{OBS1}, \texttt{OBS2} is \texttt{TRUE}, or 0.75 otherwise.

In order for the Pascal-SC compiler to recognize \texttt{FAC} and \texttt{XOR} as the names of operators, and assign priorities to them, a \texttt{PRIORITY} declaration for each named operator must follow directly after the heading line of the program, which gives the name of the program and the list of files used. From highest to lowest priority, these priority declarations have the forms
PRIORITY <Operator name> = 0; { Unary operators }
PRIORITY <Operator name> = *; { Multiplicative operators }
PRIORITY <Operator name> = +; { Additive operators }
PRIORITY <Operator name> = =; { Relational operators }

Thus, suppose one writes a program called CHANCE which uses the operators FAC and XOR to calculate probabilities of outcomes in some stochastic model, and only the standard files INPUT and OUTPUT are used for communication between the program and the outside world. If XOR is to have the same priority as OR, then the first three lines in the heading of the source code for the program would be

PROGRAM CHANCE (INPUT, OUTPUT);

PRIORITY FAC = 6;
XOR = +;

The standard sequence of definitions and declarations would then follow to complete the heading of the program, and then the body of the program consisting of the actual statements to be executed. The structure of a Pascal-SC program therefore differs only slightly from that of an ordinary Pascal program, as shown in the next section.

12.3. Structure of a Pascal-SC program. In Pascal-SC, the order of declarations in the heading is somewhat freer than in standard Pascal [19]. However, the general principle applies that everything must be declared or defined before use. Since overloading standard operator symbols is more common than using named operators, the headings of most Pascal-SC programs will look identical to Pascal programs except for the OPERATOR definitions. Programming is further simplified because Pascal-SC already provides operators for most of numerical data types commonly encountered in scientific and engineering computation, such as complex numbers, intervals, vectors, and matrices, as explained in the previous sections.

The difference between Pascal and Pascal-SC programs is most striking in the
statements of the actual body of the program. Here, the power of operator notation makes it possible to write expressions clearly and compactly. This elimination of complicated sequences of function and procedure calls shortens programs and makes the source code much easier to read and understand. This facilitates documentation as well as use of the program.

With just two exceptions, noted below in boldface type, the sequence of a Pascal-SC program is identical to an ordinary Pascal program [10]:

```
PROGRAM <Name> ( <List of internal file names> );
PRIORITY
LABEL
CONST
TYPE
VAR <Declarations and definitions of the program heading>
PROCEDURE
FUNCTION
OPERATOR
BEGIN
.. <Statements comprising the body of the program>
END.
```

The order in which procedures, functions, and operators are declared is arbitrary, as in Pascal. The implementation of the operator concept in Pascal-SC is based on the fact that the underlying virtual machine (the so-called KL/P machine) can stack operands of arbitrary data types, so that functions with results of arbitrary type can be computed efficiently [11]. This refinement permits considerable savings in the number of machine instructions actually needed, and hence leads to shorter execution times [11].

13. Conclusions. The accuracy of Pascal-SC arithmetic and the convenience of operator notation for manipulation of numerical and other data types make this language a valuable tool for scientific, engineering, and statistical computation. In addition to its
usefulness for routine problems, such as solution of linear systems of equations, experience has shown that it is possible to use this language to program and carry out some rather sophisticated computations, even on a microcomputer. Examples include numerical solution of a nonlinear integral equation [25], the solution of nonlinear systems of equations by iterative methods [22], [9], and the solution of ordinary differential equations by real and interval Taylor series [8]. In these applications the operator concept of Pascal-SC was used to implement automatic evaluation of derivatives and Taylor series for functions defined by expressions in ordinary mathematical notation [8], [22], [24]. The microcomputer systems used in these investigations can best be described as minimal: Eight-bit machines with 280 processors, 64Kb of main storage, and two disk drives. The Pascal-SC compiler used was developed by Profs. U. Kulisch and H.-W. Wippermann and their associates at the Universities of Karlsruhe and Kaiserslautern in Germany, and is described in [3], [19], and [28]. Even these modest resources appear adequate for many of the day-to-day calculations needed by engineers, scientists, and statisticians, as well as for research on methods in numerical analysis which can be applied to larger problems. As "personal computers" grow in size and speed, the accuracy and convenience of Pascal-SC will provide the user with a more powerful tool, and its features will also be advantageous on forthcoming larger machines.

14. Acknowledgments. The author would like to thank Professor George F. Corliss for reading the manuscript carefully, and a large number of valuable suggestions. Example (6.2) was provided by Prof. Dr. Ulrich Kulisch, and the system of equations solved by the Pascal-SC program in Appendix B was one of several similar systems solved for Dr. S. Takagi of the U. S. Army Cold Regions Research and Engineering Laboratory.
References


11. R. Kirchner. Überblick über die vorliegende implementierung der Pascal-Spracherweiterung [Overview of the Current Implementation of the Pascal Language Extension]. Department of Computer Science, University of Kaiserslautern, 1981.


APPENDIX A

Evaluation of (6.2) \( w = 9x^4 - y^4 + 2y^2 \) in Pascal-SC

1. Source code for the program WEVAL.

PROGRAM WEVAL(INPUT, OUTPUT);

(* This program calculates \( w = 3(x^4) - y^4 + 2y^2 \) in real and
interval arithmetic. *)

USES INTERVAL; (* DIRECTS COMPILER TO USE INTERVAL LIBRARY *)

VAR C: CHAR; w,x,y: REAL; W,X,Y: INTERVAL;

(* POWER OPERATORS *)

OPERATOR ** (R: REAL; K: INTEGER) RES: REAL; (* R ** K *)

VAR L: INTEGER; U: REAL;

BEGIN (* OPERATOR R ** K *)

IF (R = 0) AND (K <= 0) THEN
BEGIN (* ERROR *)
WRITELN('EXPONENTIATION ERROR, 0 ** K, K <= 0');
SVR(0) (* RETURN TO OPERATING SYSTEM *)
END;

IF (K = 0) OR (R = 1) THEN U:=1
ELSE IF K = 1 THEN U:=R
ELSE (* K <> 0,1 *)

BEGIN (* REPEATED SQUARING *)

L:=ABS(K); U:=1;
REPEAT
IF L MOD 2 = 1 THEN U:=R*U;
L:=L DIV 2;
IF L <> 0 THEN R:=R*R
UNTIL L = 0;
IF K < 0 THEN U:=1/U (* NEGATIVE EXPONENT *)

END; (* REPEATED SQUARING *)

RES:=U

END; (* OPERATOR R ** K *)

-37-
OPERATOR ** (I: INTERVAL; K: INTEGER) RES: INTERVAL; (* I ** K *)

VAR L: INTEGER; U: INTERVAL;
BEGIN (* OPERATOR I ** K *)
  IF (0 IN I) AND (K <= 0) THEN
    BEGIN (* ERROR *)
      WRITELN('EXPONENTIATION ERROR, I ** K, 0 IN I');
      SVR(0) (* RETURN TO OPERATING SYSTEM *)
    END; (* ERROR *)
  IF K = 0 THEN
    BEGIN (* K = 0 *)
      U.INF:=1; U.SUP:=1
    END (* K = 0 *)
  ELSE IF K = 1 THEN U:=I
  ELSE (* K <> 0,1 *)
    BEGIN (* REPEATED SQUARING *)
      L:=ABS(K); U.INF:=1; U.SUP:=1;
      REPEAT
        IF L MOD 2 = 1 THEN U:=I*U;
        L:=L DIV 2;
        IF L <> 0 THEN I:=ISQR(I);
      UNTIL L = 0;
      IF K < 0 THEN U:=1/U (* NEGATIVE EXPONENT *)
    END; (* REPEATED SQUARING *)
  RES:=U
END; (* OPERATOR R ** K *)
(* END OF POWER OPERATORS *)

PROCEDURE WWRITE(w: REAL; W: INTERVAL);
BEGIN (* WRITE RESULTS OF REAL AND INTERVAL EXPRESSIONS *)
  WRITELN; WRITELN(' w = ',w);
  WRITELN; WRITELN(' W = [', W.INF, ',', W.SUP, ']');
END; (* WRITE RESULTS *)
BEGIN  (* MAIN PROGRAM *)

C := 'Y'; WHILE C = 'Y' DO
BEGIN  (* ACTUAL CALCULATION *)

WRITELN('ENTER VALUES OF X AND Y');READ(x,y);
X := INTPT(x); Y := INTPT(y);  (* CONVERT REAL VALUES TO INTERVALS *)

w := 9*x*x*x*x - y*y*y*y + 2*y*y;  (* REAL RESULT *)
W := 9*X*X*X*X - Y*Y*Y*Y + 2*Y*Y;  (* INTERVAL RESULT *)

WRITELN;
WRITELN('(a) w := 9*x*x*x*x - y*y*y*y + 2*y*y; gives:');
WRITE(w,w);
(* OUTPUT RESULTS *)
w := 9*(x*x*x) - y+y+y + 2*(y+y);  (* REAL RESULT *)
W := 9*(X*X*X) - Y+Y+Y + 2*(Y+Y);  (* INTERVAL RESULT *)

WRITELN;
WRITELN('(b) w := 9*(x*x*x) - y+y+y + 2*(y+y); gives:');
WRITE(w,w);
(* OUTPUT RESULTS *)
w := (3*(x*x)*2 - y+y+y)*(3*(x*x)*2 + y+y) + 2*(y+y);  (* REAL RESULT *)
W := (3*(X*X)*2 - Y+Y+Y)*(3*(X*X)*2 + Y+Y) + 2*(Y+Y);  (* INTERVAL RESULT *)

WRITELN;
WRITELN('(c) w := (3*(x*x)*2 - y+y+y)*(3*(x*x)*2 + y+y) + 2*(y+y); gives:');
WRITE(w,w);
(* OUTPUT RESULTS *)

WRITELN;'MORE VALUES (Y/N)?');READ(C,C)  (* CONTINUE OR QUIT *)

END  (* ACTUAL CALCULATION *)

END.  (* MAIN PROGRAM *)
2. Sample results using the program WEVAL.

\*XQPC WEVAL
ENTER VALUES OF X AND Y
*10864 18817

(a) \( w := 9*\pi^*x^*x^*x - y*y*y*y + 2*y*y; \) gives:
\[ w = 1.58978000000E+05 \]
\[ W = [-1.84102200000E+06, 1.15897800000E+06] \]

(b) \( w := 9*(x**4) - y**4 + 2*(y**2); \) gives:
\[ w = -8.41022000000E+05 \]
\[ W = [-8.41022000000E+05, 1.15897800000E+06] \]

(c) \( w := (3*(x**2) - y**2)*(3*(x**2) + y**2) + 2*(y**2); \) gives:
\[ w = 1.00000000000E+00 \]
\[ W = [1.00000000000E+00, 1.00000000000E+00] \]

MORE VALUES (Y/N)?
*N
KL/F-STOP
APPENDIX B

1. Source code for the program LINSYS.

PROGRAM LINSYS(INPUT,OUTPUT);

(* This program computes an interval vector Y containing the solution
of linear systems of equations AX = B up to order 20, or returns an
error message if the coefficient matrix A is singular or extremely
badly conditioned. The matrix A is read by rows, followed by B.*)

USES LGL, DIM=20; (* SETS DIMENSION FOR EXTERNAL LIBRARY ROUTINES *)

VAR A: RMATRIX; (* COEFFICIENT MATRIX *)
     B: RVECTOR; (* RIGHT SIDE *)
     Y: IVECTOR; (* INCLUSION OF SOLUTION OF AX = B *)

AKDIM: INTEGER; (* ACTUAL SIZE OF SYSTEM *)
     I, J: DINTYPE; (* INDEX VARIABLES *)
     C: CHAR; (* CONTROL VARIABLE *)

BEGIN (* MAIN PROGRAM *)

C:= 'Y'; WHILE C = 'Y' DO

BEGIN (* SOLUTION OF SYSTEM *)

WRITE('INPUT DIMENSION'); READ(AKDIM); WRITE;
WRITE('INPUT MATRIX BY ROWS');
FOR I:= 1 TO AKDIM DO FOR J:= 1 TO AKDIM DO READ(A[I,J]);
WRITE; WRITE('INPUT RIGHT SIDE');
FOR I:= 1 TO AKDIM DO READ(B[I]);

LGLP(DIM, AKDIM, A, B, Y); (* SOLVE SYSTEM *)

IF Y[1].INF <= Y[1].SUP THEN (* Y IS PROPER *)

BEGIN (* OUTPUT OF SYSTEM AND RESULTS *)

WRITE;
WRITE('SOLVE AX = B WITH INTERVAL INCLUSION OF ANSWER');
WRITE;
FOR J:= 1 TO AKDIM DO (* OUTPUT OF A BY COLUMNS *)

BEGIN
FOR I:= 1 TO AKDIM DO
WRITE('A[',I:12,',',J:12,'] = ',A[I,J]); WRITE;
END; (* OUTPUT OF A *)

WRITE;
FOR I:= 1 TO AKDIM DO
WRITE('B[',I:12,'] = ',B[I]); (* OUTPUT B *)
WRITE; FOR I:= 1 TO AKDIM DO (* OUTPUT Y *)
WRITE('Y[',I:12,'] = ['Y[I].INF,',',Y[I].SUP,']');

END (* OUTPUT OF SYSTEM AND RESULTS *)
ELSE (* Y IS IMPROPER *)
BEGIN (* ERROR MESSAGE *)
    WRITELN;WRITELN('THE MATRIX IS SINGULAR OR BADLY CONDITIONED');
    FOR I:=1 TO ADIM DO Y[I].SUP:=Y[I].INF (* RESET Y *)
END; (* ERROR MESSAGE *)
    WRITELN;WRITELN('ENTER ANOTHER SYSTEM (Y/N)?');
    READ(C,C);
END (* SOLUTION OF SYSTEM *)
END. (* MAIN PROGRAM *)
2. Sample results using LINSYS.

A\( \times \)Q P LINSYS TAK.DAT COM:
INPUT DIMENSION

INPUT MATRIX BY ROWS

SOLVE AY = B WITH INTERVAL INCLUSION OF ANSWER

\[
\begin{align*}
A[1,1] & = -1.9156941212192 \times 10^1 \\
A[2,1] & = 0.00000000000000000000000000E+00 \\
A[3,1] & = 8.5459976783308 \times 10^1 \\
A[4,1] & = 0.00000000000000000000000000E+00 \\
A[5,1] & = 0.00000000000000000000000000E+00 \\
A[1,2] & = 0.00000000000000000000000000E+00 \\
A[2,2] & = 6.1238032871192 \times 10^1 \\
A[3,2] & = 0.00000000000000000000000000E+00 \\
A[4,2] & = 4.6781049393607 \times 10^1 \\
A[5,2] & = 2.732907043688 \times 10^2 \\
A[1,3] & = 1.00000000000000000000000000E+00 \\
A[2,3] & = -1.00000000000000000000000000E+00 \\
A[3,3] & = 1.132802326583 \times 10^2 \\
A[4,3] & = 0.00000000000000000000000000E+00 \\
A[5,3] & = 1.12075040461 \times 10^2 \\
A[1,4] & = 0.00000000000000000000000000E+00 \\
A[2,4] & = 5.11250000000000000000000000E+01 \\
A[3,4] & = 0.00000000000000000000000000E+00 \\
A[4,4] & = 1.00000000000000000000000000E+00 \\
A[5,4] & = 0.00000000000000000000000000E+00 \\
A[1,5] & = -5.03360090692 \times 10^3 \\
A[2,5] & = 1.60975964128 \times 10^2 \\
A[3,5] & = 2.26535604687 \times 10^3 \\
A[4,5] & = 0.00000000000000000000000000E+00 \\
A[5,5] & = 7.18104363616 \times 10^5 \\
B[1] & = 1.85094646224 \times 10^4 \\
B[2] & = -5.9183428873 \times 10^4 \\
B[3] & = -8.25723911920 \times 10^0 \\
B[4] & = 1.92589667381 \times 10^3 \\
B[5] & = 2.15844970037 \times 10^5 \\
Y[1] & = [ 7.93624477937 \times 10^1, 7.93624477938 \times 10^1 ] \\
Y[2] & = [ 7.93739036399 \times 10^1, 7.93739036400 \times 10^1 ] \\
Y[4] & = [ -3.71300190864 \times 37, -3.71300190863 \times 37 ] \\
\end{align*}
\]

ENTER ANOTHER SYSTEM (Y/N)?
KL/P-STOP
3. Contents of the data file TAK.DAT.

A>TYP TAK.DAT
3
-1.91569421219E+11 0 1 0 -5.03360090692E-03
0 6.12580328713E+11 -1 5.2125E-01 1.60975964126E-02
8.54599767833E+08 0 1.12080226545E+02 0 2.24535604687E-05
0 4.67810493936E+07 0 1 0
0 2.73290749688E+09 1.120750404612E+02 0 7.18104363616E-05
1.85084646224E+04 -5.91833428873E-04 -8.23723911920E-01 1.92506687381E+33
2.15844970057E+35
N
### An Introduction to the Scientific Computing Language Pascal-SC

Pascal-SC is a popular computer language that greatly facilitates scientific, engineering, and statistical calculations on microcomputers. Its additional capabilities include:

- **Pascal-SC**
- **Computer Arithmetic**
- **Scientific Computation**
- **Microcomputers**

This report provides an overview of Pascal-SC and its practical applications in scientific computing.
(i) **Accurate floating-point arithmetic** for real, complex, and interval numbers, vectors, and matrices. Expressions involving these types can be written using essentially ordinary mathematical notation, making programming and documentation easier. Numerical results are generally obtained with more accuracy than with conventional floating-point arithmetic; in particular, scalar products of vectors are computed to the closest floating-point number. Standard routines are provided which return guaranteed error bounds as well as answers for the solution of linear systems of equations, matrix inversion, and eigenvalue-vector calculations.

(ii) **User-defined operators** to allow the manipulation of data of various nonstandard types by expressions written in essentially ordinary mathematical notation, instead of the sequences of calls to functions and procedures required in ordinary Pascal. This capability permits simple and straightforward use in programs of various coordinate systems for representation of variables, arithmetic for polynomials and series, automatic differentiation, etc., and thus adds considerable flexibility and power to the language.

Brief descriptions of these useful features of Pascal-SC are given, together with illustrative examples. Some familiarity with ordinary Pascal is assumed.