Magnetic Bubble Formation Produced by an Expanding Laser Plasma

S. T. Kacenjar, B. H. Ripin, J. A. Stamper, J. Grun, and E. A. Mclean

Laser Plasma Branch
Plasma Physics Division

February 28, 1984

This research was sponsored by the Defense Nuclear Agency under Subtask 125BMXIO, work unit 00024 and work unit title "Early Time Plasma."
A magnetic depleted bubble resulting from the expansion of a laser-generated debris plasma into a low density magnetized background plasma is observed. A compressed magnetic field propagates slightly ahead of the debris plasma and has a thickness on the order of 1 cm.
11. TITLE

MAGNETIC BUBBLE FORMATION PRODUCED BY AN EXPANDING LASER PLASMA
CONTENTS

I. INTRODUCTION .. 1
II. EXPERIMENTAL ARRANGEMENT AND CHECKOUT 2
III. MAGNETIC FIELD MEASUREMENTS 3
IV. MAGNETIC FIELD VELOCITY AND SHELL THICKNESS MEASUREMENTS 4
V. CONCLUSIONS .. 5
VI. ACKNOWLEDGMENT .. 5
REFERENCES .. 15
I. Introduction

We observe the compression of an externally applied magnetic field and the creation of a magnetic bubble when a laser-generated plasma expands into a low density magnetized background gas. Compression is possible when the plasma conductivity is large enough that convection of the field dominates over the magnetic diffusion process.

A target is placed into a background magnetized low density gas as shown in Figure 1(a). When the target is irradiated with a short high intensity laser pulse two plasmas are formed: the laser target interaction generates radiation which ionizes the background gas to form a stationary ambient plasma, and the target debris creates a rapidly expanding plasma. As the debris plasma expands, it may interact with the ambient either through collisional or collisionless processes. Under low density and high velocity conditions, collisional coupling becomes less important and collective effects may dominate.\(^1\),\(^2\) Many of these collective processes are sensitive to the structure and magnitude of the local magnetic field.

The evolution of the structure and magnitude of the magnetic field due to a rapidly expanding plasma in an external field such as illustrated in Fig. 1b was described by Longmire\(^3\) using magnetic conservation of flux. The magnetic field is swept away inside the bubble and confined within a small shell near the expanding debris material. This model was further developed by Wright (1971) who defined the valid parameter space.\(^4\) Keskinen\(^5\) extended the analysis of including a piecewise spatially constant collisional term into a one dimensional model. Although, one-dimensional models predict unrealistically high field compressions compared to two or three dimensional models, the diffusion term (i.e., the presence of collisions) is more easily treated in one dimension. The model is further simplified by ignoring the various processes which may alter the effective collision frequency, thus reducing the magnetic Reynold's number; an example of such a process is the magnetized ion-ion instability.\(^1\),\(^2\) Therefore, we experimentally measure the

Manuscript approved November 7, 1983.
field compression to better understand the physics associated with this
dynamically changing situation.

This paper addresses our initial experimental findings of the structure
and evolution of the magnetic field. Only slight field compressions have been
observed with shell thicknesses on the order of 1 cm. Data is also presented
which show that the magnetic shell expands with, or slightly ahead of the
target debris plasma.

II. Experimental Arrangement and Checkout

Various diagnostics were used in this study, including charge collectors,
an optical framing camera, spectrometer, and magnetic induction probes.

The NRL Pharos II Nd-glass laser ($\lambda = 1.05 \mu$m) was used to generate the
debris plasma by irradiating 1.1 mg/cm2 planar carbon targets. Incident laser
energy on target ranged between 5 and 30 joules with a FWHM pulselength of \sim 4
nsec and irradiances up to 10^{14} W/cm2. The focusing lens was of an aspheric
f/6 lens with a focal length of 1.2 meters. Gas was introduced into the
experimental chamber with a controlled orifice which was programmed to
maintain a given ambient pressure. In this study the pressure was varied
between 10^{-4} torr and 100 mtorr.

Shots were taken both with and without an 800 gauss magnet in place. The
field orientation was parallel to the target surface and largely perpendicular
to the expanding debris plasma. The targets were mounted to allow a magnetic
expansion length of about 4 cm.

Two induction probes were used to measure the field compression. Both
probes were 1.0 \pm .1 cm from the laser axis and situated 1.5 \pm .1 and 3.0 \pm .1
cm from the target. The probes consisted of a single 500 \mu m diameter loop encapsulated in a quartz envelope as shown in Figure 2.

The magnetic probes work by using Lenz's Law in which a changing magnetic
flux across the probe induces a current in the loop. The proper operation of
the probes was checked by rotating the loop by 180\degree and noting the reversal
of the signal (electrostatic pickup by the loop would not change polarity by
such a rotation.)
Examples of the observed dB/dt signals are shown in Figure 3; the two probes were oriented antiparallel to each other. A clear signal reversal was seen indicating that the probes were operating properly. Moreover, an additional check was made by rotating the probes by 180° and observing the signals change sign.

The induced voltage resulting from the changing magnetic field across the probe is given by

\[V(t) = A_\perp \frac{dB}{dt} \tag{1} \]

where \(A_\perp \) is the projected area of the loop perpendicular to the applied field. If the initial field is \(B_0 \) then the change in magnetic field, \(\Delta B \), can be determined by integrating Equation (1), namely,

\[\Delta B(t) = B(t) - B_0 = \frac{1}{A_\perp} \int_{t_0}^{t} V(t') dt' \tag{2} \]

III. Magnetic Field Measurements

A typical example of \(\Delta B(t) \) is shown in Figure 4 for a probe situated 3 cm from the target. The loop area was \((2.0 \pm 0.4) \times 10^{-3} \text{ cm}^2\) and its surface normal was oriented to within ± 10° of the applied field direction. Here an external 800 gauss field and an ambient hydrogen gas were present. A sudden drop in the magnetic field occurs at about 100 nsec after the laser pulse. The fall time in the field of about 20 nsec, corresponding to a spatial width of about 7 mm, is not limited by the probe or scop response time (.2 and 4 nsec, respectively). The accuracy of the probe measurements are limited to ± 20% due to the uncertainty in the projected area of the loop and data digitizing process.

Figure 5 shows a plot of \(\Delta B_{\text{max}} \) versus laser energy taken with various background pressures and laser energy conditions. \(\Delta B_{\text{max}} \) is the peak compressed field at the location of the probe. The ambient pressure for a shot is indicated by the number at each data point. There appears to be a weak scaling of \(\Delta B_{\text{max}} \) with laser energy when the probe is 1.5 cm from the target which is not observed 3 cm from the target. The larger compressed fields measured at 3 cm relative to those measured at 1.5 cm are consistent
with an expanding plasma having a magnetic Reynold's number greater than one.

The analysis should also take into account the presence of an azimuthal self-generated magnetic field such as illustrated in Figure 6. This field can result from the \(\nabla \times B \) thermoelectric source term. To get an estimate the magnitude of the self-generated field alone, the external magnetic field was removed and the probes were repositioned to observe the azimuthal fields. The measured field was between 100 and 200 gauss at 1.5 cm; no self-generated fields were seen by the probe 3 cm away above 20 gauss. Therefore, the self-generated fields are smaller than the external field in our measurements. Also the probes were oriented to minimize the contribution of the self-generated fields in the compression measurements.

IV. Magnetic Field Velocity and Shell Thickness Measurements

Measurements of the arrival time of the magnetic shell were compared with data gathered from time-of-flight charge collectors and time-of-flight spectroscopy of CVI debris ions. An average shell velocity can be defined as the distance to the probe divided by the elapsed time between the x-ray pulse and the peak of the dB/dt signal peak as indicated in Figure 7. Similarly, velocity measurements were taken with charge time-of-flight detectors situated 22 cm from the target and 45° from the laser axis. The CVI time-of-flight spectroscopy was accomplished by means of a spectrometer tuned to 3434 Å which views the expansion region 1 cm in front of the target surface, as illustrated in Figure 8; a time-resolving photomultiplier detector responds to the arrival of CVI ions.

Table 1 compares the velocities obtained from these three diagnostics. They are all in general agreement; but the magnetic measurements tend to give slightly higher velocities. Also, the velocity measured with induction probes appears to slow down with distance from target. Thus, we infer that the compressed magnetic field appears to travel slightly ahead of the debris.

Another interesting feature present in the data is that the magnetic shell width increases as one moves away from the target. This thickness is defined as the FWHM points on the \(\Delta B \) curve in Figure 4. One explanation for this difference may be that the plasmas temperature drops with distance,
causing the plasma to be more resistive; this would enhance the degree of magnetic diffusion and, therefore, increase the width of the magnetic shell.

V. Conclusions

Magnetic field compression and a magnetic depleted bubble have been observed when a laser-generated plasma expands into a magnetized ionized background gas. The compression increases with distance away from the target. In addition, the thickness of the compressed field is approximately 1 cm at incident energies above 20 joules. However, 3 cm from the target this thickness tends to increase with reduced laser energy on target. The compressed magnetic field travels with velocities equal to or slightly greater than the debris velocity.

VI. Acknowledgment

This work was sponsored by the Defense Nuclear Agency.
Table 1 — Magnetic and ion velocity measurements

<table>
<thead>
<tr>
<th>SHOT NUMBER</th>
<th>LASER ENERGY (Joules)</th>
<th>AMBIENT PRESSURE (m Torr)</th>
<th>CVI</th>
<th>CHARGE COLLECTOR (3 cm)</th>
<th>MAGNETIC PROBE (1.5 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12833</td>
<td>10.3</td>
<td>15, H₂</td>
<td>3.1</td>
<td>3.2 OR 2.2</td>
<td>3.2</td>
</tr>
<tr>
<td>12853</td>
<td>5.5</td>
<td>100, AIR</td>
<td>2.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12854</td>
<td>7.8</td>
<td>VACUUM</td>
<td>2.9</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>12855</td>
<td>7.7</td>
<td>5, H₂</td>
<td>2.7</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>12856</td>
<td>8.0</td>
<td>VACUUM</td>
<td>—</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>12857</td>
<td>7.4</td>
<td>VACUUM</td>
<td>2.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12859</td>
<td>4.5</td>
<td>25, H₂</td>
<td>2.7</td>
<td>2.7</td>
<td>3.5</td>
</tr>
<tr>
<td>12860</td>
<td>2.3</td>
<td>15, H₂</td>
<td>2.2</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Fig. 1 — Magnetic field compression simulation experiment using laser irradiated targets in an external magnetic field
Fig. 2 — Magnetic induction probe construction
BY LENZ'S LAW THE INDUCED MAGNETIC FIELD BY THE LOOP CURRENT OPPOSES THE CHANGE OF MAGNETIC FLUX. THEREFORE A POSITIVE SIGNAL IS SEEN FOR CASE (A) INITIALLY AS THE MAGNETIC FIELD ENTERS THE LOOP, WHILE A NEGATIVE SIGNAL IS OBSERVED WHEN THE PROBE IS ROTATED BY 180° (B).

SHOT #12854

Fig. 3 — Verification on the presence of a magnetic field
Fig. 4 - Measured temporal dependence of the magnetic field
Fig. 5 - Compressed magnetic field measurement as a function of probe position and laser incident energy
\[
\frac{\partial B}{\partial t} = \nabla \times (V_e \times B) + \frac{C^2}{4\pi\sigma} \nabla^2 B + \frac{Ck}{n_e e} \nabla T_e \times \nabla n_e
\]

Fig. 6 — Self generated magnetic fields from laser irradiated targets
Fig. 7 — Magnetic bubble velocity determination
Fig. 8 — CVI Time-of-flight spectrometer examining the plasma 1 cm in front of the target
References

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, OMD, COM 7 INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM 82 663
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WHEELS AVE
RESTON, VA. 22093
01CY ATTN CODE R410
01CY ATTN CODE S812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
02CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20303
01CY ATTN SWL
04CY ATTN STIL
01CY ATTN DSDT
03CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND AFB, NM 87115
01CY ATTN FCPR

DEFENSE NUCLEAR AGENCY
SAQ/DA
BUILDING 20676
KIRTLAND AFB, NM 87115
01CY D.C. THORNBURG

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TOT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113
01CY ATTN JL7W-2
01CY ATTN JPSGT G. GOETZ

CHIEF
LIVERMORE DIVISION FLG COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSC & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

WMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20303
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO F. NILES

PRECEEDING PAGE BLANK-NOT FILLED

17
OTHER GOVERNMENT

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, D.C. 20234

OICY (ALL CORRESP.: ATTN SEC OFFICER FOR)

INSTITUTE FOR TELECOMMUNICATIONS & INFO ADMIN
BOULDER, CO 80303
OICY ATTN A. JEAN (UNCCLASS ONLY)
OICY ATTN W. UTLAUT
OICY ATTN D. CROMBIE
OICY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
OICY ATTN R. GRUBE
OICY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 32131
LOS ANGELES, CA 90009
OICY ATTN L. GARFUNKEL
OICY ATTN T. SALIT
OICY ATTN J. JOSEPHSON
OICY ATTN S. BOER
OICY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP
3 OLD CONCORD ROAD
BURLINGTON, MA 01803
OICY ATTN RADIO SCIENCES

AUSTIN RESEARCH ASSOC., INC.
1901 RUTLAND DRIVE
AUSTIN, TX 78758
OICY ATTN L. SLOAN
OICY ATTN R. THOMPSON

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701
OICY ATTN J. WORMAN
OICY ATTN C. PRETTI
OICY ATTN S. BREIT

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124
OICY ATTN G. KEISTER
OICY ATTN D. MURRAY
OICY ATTN G. HALL
OICY ATTN J. KENNEY

CHARLES STARK DRAFTER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
OICY ATTN D.B. COX
OICY ATTN J.P. GILMORE

COMSAT LABORATORIES
1100 LINNACOM ROAD
CLARKSBURG, MD 20734
OICY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
OICY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1559
RICHARDSON, TX 75080
OICY ATTN R. LOGSTON
OICY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
506 WILSHIRE BLVD.
SANTA MONICA, CALIF. 90401
OICY ATTN C.B. GABBARD

ESTL, INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
OICY ATTN J. ROBERTS
OICY ATTN JAMES MARSHALL

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
OICY ATTN M.H. BORTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P.O. BOX 1122
SYRACUSE, NY 13201
OICY ATTN F. REIBERT

21