HUMAN PLATELET SENESCENCE STUDY

Final Summary Report

Simon Karpatkin, M.D.

March 1980

Supported by

US ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701

Contract No. DADA17-68-C-8163

New York University Medical Center
550 First Avenue
New York, New York 10016

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
1. REPORT NUMBER

2. **GOVT ACCESSION NO.**

3. **RECIPIENT'S CATALOG NUMBER**

4. **TITLE (and Subtitle)**

 HUMAN PLATELET SENESCENCE STUDY

5. **TYPE OF REPORT & PERIOD COVERED**

 Final Summary Report
 (July 1978 - September 1979)

6. **PERFORMING ORG. REPORT NUMBER**

7. **AUTHOR(s)**

 Simon Karpatkin, M.D.

8. **CONTRACT OR GRANT NUMBER(s)**

 DADA 17-68-C-8163

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**

 New York University Medical Center
 550 First Avenue
 New York, NY 10016

10. **PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS**

 62 72A.3S162 772A815.00.026

11. **CONTROLLING OFFICE NAME AND ADDRESS**

 U.S Army Medical Research and Development Command
 Fort Detrick, Frederick, Maryland 21701

12. **REPORT DATE**

 March 1980

13. **NUMBER OF PAGES**

 22

14. **MONITORING AGENCY NAME AND ADDRESS (if different from Controlling Office)**

15. **SECURITY CLASS. (of this report)**

 Unclassified Report

16. **DISTRIBUTION STATEMENT (of this Report)**

 Approved for Public Release
 Distribution Unlimited

17. **DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)**

18. **SUPPLEMENTARY NOTES**

19. **KEY WORDS (Continue on reverse side if necessary and identify by block number)**

 crossed immunoelectrophoresis of platelet membranes
 platelet membrane antigens
 colchicine
 cAMP phosphodiesterase
 platelet aggregation

 platelet microtubules
 platelet

 (Continue on reverse side if necessary and identify by block number)

 A technique was developed for the identification of platelet membrane antigens.
 This involves agar electrophoresis in one direction, followed by rotation of the
 slide 90° and electrophoresis into agar containing anti-platelet membrane anti-
 body. Nineteen different platelet membrane antigens (immunoprecipitates) can be
 detected. These include: Albumin, fibrinogen and an antigen absent in platelets
 from patients with Glanzmann's thrombasthenia. The relative cell surface an-
 tigens can be detected by adsorption studies with intact platelets. The presence
 of carbohydrate can be detected with suitable lectins, such as concanavalin A.
ABSTRACT (continued)

used in an intermediate spacer gel.

Colchicine, an antimicrotubule agent stimulates dephosphorylation of phosphorylated platelet cell sap. This effect is inhibited by D$_2$O, a microtubule stabilizing agent. Similar results are obtained with cyclic AMP. It is suggested that colchicine operates via activating an adenylate cyclase, which is inhibited by microtubules.
ABSTRACT

A technique was developed for the identification of platelet membrane antigens. This involves agar electrophoresis in one direction, followed by rotation of the slide 90° and electrophoresis into agar containing anti-platelet membrane antibody. Nineteen different platelet membrane antigens (immunoprecipitates) can be detected. These include: albumin, fibrinogen and an antigen absent in platelets from patients with Glanzmann's thrombasthenia. The relative cell surface antigens can be detected by absorption studies with intact platelets. The presence of carbohydrate can be detected with suitable lectins, such as concanavalin A used in an intermediate spacer gel.

Colchicine, an antimicrotubule agent stimulates dephosphorylation of phosphorylated platelet cell sap. This effect is inhibited by D₂O, a microtubule stabilizing agent. Similar results are obtained with cyclic AMP. It is suggested that colchicine operates via activating an adenylate cyclase, which is inhibited by microtubules.
In conducting the research described in this report, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (DHEW Publication No. (NIH) 78-23, Revised 1978).

For the protection of human subjects the investigator(s) have adhered to policies of applicable Federal Law 45CFR46.
For the past year our laboratory has been engaged in two areas of platelet (and megathrombocyte) research with regard to: heterogeneity and senescence as related to microtubules, protein phosphorylation, platelet aggregation and secretion, and platelet membrane topography.

1. Crossed Immunoelectrophoresis of Platelet Membranes.

2. Requirement of Microtubules for Platelet Aggregation and Secretion; Association of Phosphodiesterase Activity with Platelet Tubulin.
SUMMARY OF PROJECTS

1. Crossed Immunoelectrophoresis of Platelet Membranes.
 Early studies on platelet membranes, employing SDS-PAGE, revealed the presence of three major glycoproteins, GPI, GPII, and GPIII, with apparent molecular weights of 155,000, 135,000 and 103,000 (1-3). In 1974 Nurden and Caen, employing SDS-PAGE and PAS carbohydrate staining, demonstrated the absence of GPII and the diminished presence of GPIII in 3 patients with Glanzmann's thrombasthenia (3). This was confirmed by Phillips et al (4) who noted a diminished content of GPII rather than its absence. In 1975 Nurden and Caen also demonstrated absent-to-trace amounts of GPI in patients with Bernard-Soulier disease (5) and suggested that GPI was the receptor for Von Willebrand factor. Nurden and Caen also demonstrated that GPI was rich in sialic acid (5) and probably responsible for the platelets' surface charge. More refined techniques for demonstrating platelet membrane glycopeptides have subsequently demonstrated the presence of at least 6 to 7 surface glycopeptides (6): GPIs, GPIb, GPIc (non-PAS positive), GPIla, GPIlb, GPIII and GPIV (87,000 m.w., also called GPIllb). The defect in Glanzmann's thrombasthenia has now been designated as diminished GPIlb and GPIIla; the defect in Bernard-Soulier as diminished GPIls and GPIlb. In 1978 Kunicki and Aster (7) presented evidence for the association of the platelet antigen PLAl with GPIlb or GPIlla, since platelets from patients with Glanzmann's thrombasthenia do not release prelabelled Cr51 following addition of potent anti-PLAl antibody. These workers have recently presented evidence that PLAl resides on GPIlla (8). Aster and co-workers later demonstrated that platelets from patients with Bernard-Soulier disease do not release prelabelled Cr51 following the addition of Ag-Ab complexes, suggesting the presence of the platelet Fc receptor on GPI (9). Similar conclusions were drawn by Nachman and co-workers (10) who noted competition between Fc binding of non-specific IgG and Von Willebrand factor. Jamieson and co-workers have purified soluble GPIs, which they have termed 'glycocalicin' (11), because of its origin in the platelet glycocalyx. They have suggested that GPIs is associated with the thrombin receptor since purified GPIs binds thrombin and inhibits thrombin-induced platelet aggregation; and platelets from patients with Bernard-Soulier disease aggregate poorly with low concentrations of thrombin (11-14).

Preliminary data from our laboratory suggest that specific platelet membrane proteins of lighter-older platelets are diminished-to-absent when examined by electrophoresis on 5% polyacrylamide gels in SDS (15). However, this technology requires large quantities of platelets from each subpopulation (approximately 4 to 5 units of original platelet-rich plasma) which must then be fractionated for platelet membranes by the techniques of Barber and Jamieson (16). The polyacrylamide gel SDS-electrophoresis technique is limited by its ability to measure denatured proteins at the 10-20 microgram level; as well as carbohydrate at a much higher level.

We have recently acquired a very sensitive technique for the measurement of platelet membrane constituents, which does not completely denature the membrane constituents, and which is 10-100 times more sensitive than SDS-PAGE. This is the technique of crossed-immunoelectrophoresis of plasma membranes, recently developed for the study of bacterial membranes by Dr. Salton (17), which gives a two-dimensional display of rockets or peaks of immunoprecipitates. The technology involves solubilization of platelet membranes in 1% Triton X-100 and electrophoresis in one direction on a 1% agarose slide in tris-barbital buffer, pH 8.6 at room temperature at 150 volts for 2 to 3 hours. Most of the agarose is then removed and a strip of the remaining electrophoresed constituents retained. Fresh agar, containing purified rabbit antibody against human platelet membranes, is then poured onto the slide and allowed to harden. The slide is rotated 90° and the antigens then electrophoresed into the agar containing the antibody at 55 volts for 16 hours. The agar is then pressed free
of excess fluid and washed in 0.1M NaCl to remove excess antibody; dried and stained with 0.25% Coomassie blue; and destained with 5% HAc-45% ethanol (Figure 1a-d). The advantages of this technique are: 1) the technique is essentially quantitative, the peak areas of individual immunoprecipitates being proportional to the antigen/antibody ratios; 2) high sensitivity of detection (e.g., on immunoelectrophoresis we can detect over 10 antigens); 3) ability to measure platelet membrane enzyme activity - by coupling certain enzymes to their oxidation-reduction reactions and nitro-blue tetrazolium dyes; other enzymes which can be measured by other techniques (catalase, lipase, alkaline phosphatase, acid phosphatase, chymotrypsin, trypsin, esterases (17)); 4) use of carbohydrate lectins such as concanavalin A or wheat germ agglutinin in the second dimension (instead of the antibody) to detect specific carbohydrate constituents.

We have developed this procedure with human platelet membrane antigens and can detect at least 19 different platelet membrane immunoprecipitates (Figure 1). One has been identified as fibrinogen, by crossed immunoelectrophoresis of fibrinogen alone, as well as fibrinogen mixed with the solubilized platelet membrane. Another has been identified as albumin, by similar methods. A third antigen has been identified as a 'Glanzmann's antigen(s) since it is missing on platelets from a patient' with Glanzmann's thrombasthenia. A fourth antigen is sensitive to neuraminidase and chymotrypsin treatment, and is probably glycopeptide 1.

The rabbit anti-human platelet membrane antibody can be completely adsorbed with 1 x 10^9 platelets (Figure 2a-k). Note the increase in the height of the immunoprecipitins with increasing adsorption of antibody following exposure to increasing numbers of platelets. The antibody cannot be adsorbed with a comparable volume of red blood cells, granulocytes or lymphocytes, demonstrating platelet specificity. We have identified at least 4 of these 19 antigens. Fibrinogen has been identified by electrophoresis of fibrinogen alone, membrane constituents alone, and fibrinogen plus membrane constituents (Figure 3a-c). Note the increased height of the fibrinogen peak. Similar results were obtained with albumin (Figure 4a-c). A third antigen has been identified as a 'Glanzmann's antigen(s) since it appears to be missing on platelets from a patient with this disease (Figure 5a-c). Note the retention of the IF fibrinogen peak, suggesting its relative absence on the patient's platelets. A fourth antigen is sensitive to neuraminidase and chymotrypsin treatment, and is probably glycopeptide 1 (Figure 6a,b). Note shift of 10 toward the anode with development of the right side of its peak; disappearance of 13 and 18; and apparent increase in height of 10 and 1F. Figure 7a,b demonstrates the effect of concanavalin A ligand. Those immunoprecipitates reacting with the ligand are pulled down into the spacer containing the ligand. Antigens 10, 13, 18, and 1F have been pulled down into the con A lectin, whereas 2G5, 3, 5 (barely visible) and 16 are not affected.

2. Requirement of Microtubules for Platelet Aggregation and Secretion: Association of Phosphodiesterase Activity with Platelet Tubulin. In our previous Army Contract Report (19) we presented data on the effect of colchicine, DQ, and cyclic AMP on platelet aggregation and protein phosphorylation: Platelets were incubated in the presence and absence of colchicine (10-8M), DQ (60-100%), 10mM dibutyryl cyclic AMP (db cAMP), 1mM PGE1 or 10mM NaF; prior to platelet aggregation induced by Ca ionophore A23187 (1ug/ml). Protein phosphorylation was measured by incubation with 1mCi 32P04/ml. Cells were washed, sonicated, and the reduced cell sap applied to 10% SDS PAGE; gels were monitored for radioactivity and m.w. Colchicine completely inhibited the 2° wave of platelet aggregation (release) as well as phosphorylation of proteins 10-100,000 m.w. 3H-colchicine (10-8M) was shown to specifically bind to tubulin by sephacryl gel filtration of cell sap (single peak, 110,000 m.w.) and 10% PAGE of isolated peak which coelectrophoresed with purified brain tubulin. DQ completely overcame the colchicine inhibition of aggregation and
phosphorylation. Db cAMP also completely inhibited platelet aggregation; and db
cAMP as well as PGE_1 and NaCl markedly inhibited protein phosphorylation; however,
D_2O did not reverse cAMP-inhibition of phosphorylation. These data indicate that
unperturbed microtubules are necessary for protein phosphorylation and the 2^nd wave of
platelet aggregation (release).

These data have been extended: colchicine and cyclic AMP both have now
been shown to stimulate dephosphorylation of phosphorylated cell sap. Colchicine was
shown to operate via elevation of cyclic AMP levels. Both colchicine and cyclic
AMP have also been shown to inhibit the platelet release reaction. D_2O overcomes
the inhibitory effect of colchicine.

Effect of Cyclic AMP on Phosphorylated Platelet Cell Sap. Because inhibitory
agents were added 15 minutes prior to the addition of 32PPO_4 to the incubation medium
and were therefore inhibiting incorporation of 32PPO_4 into platelet cell sap, we elected
to determine what effect elevated cyclic AMP levels would have on platelet proteins
which had already been phosphorylated. Accordingly, washed platelets were preloaded
with 32PPO_4 for 30 minutes and then exposed to agents which would elevate intracellular
cyclic AMP levels. These agents served to dephosphorylate the incorporated 32PPO_4 of
platelet cell sap. Such was the case with 10 mM NaCl, Figure 8a (representative of 3
experiments); 0.1 mM dibutyryl cyclic AMP, Figure 8b; or 10 pM prostaglandin E_1,
Figure 2c (representative of 4 experiments).

Effect of Colchicine and 2',5'-dideoxyadenosine (ODA) on Phosphorylated
Platelet Cell Sap. Because colchicine appeared to have the same effect as cyclic AMP
with respect to inhibition of platelet aggregation and inhibition of incorporation of
32PPO_4 into platelet cell sap, experiments were designed to determine whether colchicine
was acting via cyclic AMP. Washed platelets were preloaded with 32PPO_4 for 30 minutes
and then exposed to colchicine with or without 0.1 mM 2',5'-dideoxyadenosine_1 (ODA), a
potent inhibitor of adenosyl cyclase (19). Figure 9a demonstrates that 10^-7M colchi-
cine also served to dephosphorylate the incorporated 32PPO_4 of platelet cell sap pro-
teins (representative of 9 experiments), like cyclic AMP (see Figure 8). ODA had no
effect by itself on phosphorylated platelet cell sap (Figure 9b) but completely pre-
vented the dephosphorylation effect of colchicine (Figure 9c, representative of 5
experiments). Similar effects of 0.1 mM ODA were obtained when platelets were incubated
with 10 mM NaCl (data not shown).

Effect of Colchicine on Intracellular Cyclic AMP Levels. The next experiment
was designed to determine directly whether 10^-7M colchicine had any effect on platelet
intracellular cyclic AMP levels. Washed platelets (7.5 volumes %) were incubated at
37°C with and without 10^-7M colchicine and 0.2M for 15 minutes in the presence of 5 mM
aminophylline and then treated with 6% TCA to extract cyclic AMP which was assayed by
a competitive protein binding technique (20). Cyclic AMP levels in the absence of
colchicine, 640 picomoles/ml platelet extract, increased to 875 picomoles/ml (2 ex-
periments). 0.2M (100%) prevented the rise in cyclic AMP levels which were 515 picomoles/
ml in the absence of colchicine and 545 picomoles/ml in its presence (2 experiments).

Effect of D_2O and Colchicine on Platelet Aggregation and Release of
Serotonin Induced by Ca++ ionophore A23187. D_2O, an agent known to stabilize micro-
tubules in other tissues, shortened the Ca++ ionophore-induced lag period by 43% and
increased the velocity of platelet aggregation by 52% ± 14% (SEM) at a D_2O concen-
tration of 60% (average of 7 experiments). The combination of 40% D_2O and colchicine,
or D_2O and vinblastine resulted in partial correction of the alkaloid-induced inhibi-
tion of platelet aggregation velocity and prolongation of the lag period. For example,
at 40% D2O, colchicine inhibited the HOH control by 33%, whereas colchicine and D2O inhibited the D2O control by 18%; vinblastine inhibited the HOH control by 45% whereas vinblastine and D2O inhibited the D2O control by 23%.

Table I demonstrates the effect of colchicine and D2O on the platelet release reaction. Thus, ³C-serotonin release was inhibited by colchicine at 0.2-500 μM, following aggregation by Ca++ ionophore at 5-10 μM. D2O (44%) partially prevented the colchicine-induced inhibition of ³C-serotonin release.

These data therefore indicate that unperturbed microtubules are necessary for protein phosphorylation, the secondary wave of platelet aggregation and the platelet release reaction. The data strongly suggest that intact microtubules serve to inhibit adenylate cyclase activity.

Evidence for the Association of cAMP Phosphodiesterase Activity with Platelet Microtubules. Our studies with intact platelets strongly suggest inhibition of adenylate cyclase activity by unperturbed platelet microtubules, since colchicine binds to platelet microtubules; colchicine operates like cyclic AMP; colchicine raises intracellular cyclic AMP levels; the effects of colchicine on platelet aggregation, secretion and phosphorylation can be reversed with D2O, a stabilizer of microtubules; and colchicine's effect on phosphorylation can be reversed by 2',5'-dideoxyadenosine, an inhibitor of adenylate cyclase activity. We therefore propose that platelet tubulin may act as a phosphodiesterase or be closely associated with a protein with phosphodiesterase activity.

Preliminary studies suggest that this may be the case. We have partially purified platelet tubulin by modifications of the methods of Shelanski (21) and Steiner (22). This preparation contains phosphodiesterase activity.

We have assayed cAMP phosphodiesterase by measuring the release of Pi employing the phosphomolybdate reaction. A 350-fold purification preparation requires Mg++ and gives a Km of 77 μM for cyclic AMP. It does not react with 2 mM cyclic GMP and is strongly inhibited by 5 μM NaF (50% inhibition at 0.1 mM cAMP); as well as heavy metals in the mM range: Zn++ > Cu++ > Fe++ > Mn++. This cAMP phosphodiesterase appears to be unique in that it is not inhibited by 10 mM caffeine, theobromine, theophylline, methyl isobutyl xanthine, or xanthine, whereas it is inhibited (50% inhibition) by 35 μM hypoxanthine, 150 μM papavarine and 250 μM aminophylline.
REFERENCES

RECENT WORK SUPPORTED BY ARMY CONTRACT

Figure 1a. Crossed immunoelectrophoresis of a human platelet membrane preparation. Platelet membranes were prepared by the methods of Barber and Jamieson (16) or Nurden and Caen (3), solubilized in 1% triton and (5ugm) electrophoresed on a 1% agarose slide in tris-barbital buffer, pH 8.6 for 3-4 hours at 150 volts. The slide was then rotated 90° and the platelet membrane antigens electrophoresed into freshly poured agar containing rabbit anti-human platelet membrane antibody (1:16 dilution of Ab) for 16 hr at 55 volts. The height of the peak is proportional to the Ag/Ab ratio. a) A representative diagram of all the peaks observed. Nineteen different antigens (immuno-precipitate peaks) have been observed. Peak 1F is fibrinogen; 12A is albumin; 13 and 18 are missing in a patient with Glanzmann's thrombasthenia; 10 is the major antigen which is rich in sialic acid, ?GPl; and 2CS and 11CS are cell sap antigens.

Figure 1b. CIE of a membrane preparation, employing the first batch of rabbit anti-human platelet antibody (RAb 1).
Figure 1c. ld. c) A batch of antibody obtained following further immunization of the same rabbit (RAb2).
d) A batch of antibody obtained following further immunization of the same rabbit (RAb4).

Figure 2. Crossed immunoelectrophoresis of a human platelet membrane preparation following adsorption of rabbit anti-platelet membrane antibody with increasing concentration of washed human platelets. a) 0 platelets b) 6.7 x 10⁷ platelets
c) 1.25 x 10⁸ platelets d) 2.5 x 10⁸ platelets e) 5.0 x 10⁸ platelets f) 6.0 x 10⁸ platelets
g) 7.0 x 10⁸ platelets h) 8.0 x 10⁸ platelets i) 1.0 x 10⁹ platelets j) 1.2 x 10⁹ platelets.
Figure 3. Crossed immunoelectrophoresis of a) human fibrinogen (0.12 μgm); b) platelet membrane preparation; c) fibrinogen plus platelet membrane preparation. This CIE was run for a shorter time interval in the first dimension.

Figure 4. Crossed immunoelectrophoresis of a) human albumin (0.1 μgm); b) platelet membrane preparation; c) albumin plus platelet membrane preparation.

Figure 5. Crossed immunoelectrophoresis of a human platelet membrane with rabbit anti-platelet membrane antibody adsorbed with washed platelets from a patient with Glanzmann's thrombasthenia. a) unabsorbed antibody; b) antibody adsorbed with 1×10^9 platelets from a patient with Glanzmann's thrombasthenia; c) antibody adsorbed with 1×10^9 platelets from a normal subject.
Figure 6. Crossed immunoelectrophoresis of a human platelet membrane preparation before and after treatment of the original washed platelets with neuraminidase. a) Washed platelets \(8 \times 10^8\) treated with buffer; b) Washed platelets treated with neuraminidase, 2 units/ml. for one hour at 37°C. CIE of a human platelet membrane preparation before and after treatment of original washed platelets with α-chymotrypsin: c) \(8 \times 10^9\) washed platelets treated with buffer; d) Washed platelets treated with 1 mg/ml chymotrypsin for 20 min at 22°C. (Hazy peaks in background are artifacts due to fast running proteins in first dimension which enter buffer and cross-react with antibody in second dimension.

Figure 7. Crossed immunoelectrophoresis of a human platelet membrane preparation in the presence of a spacer gel (inserted with the second dimension: a) containing agarose alone; b) containing concanavalin A (250 µg/ml) in agarose. Note antigens pulled down into the lectin. (Similar artifacts noted, as in Figure 6).
Figure 8A. Effect of NaF, dibutyryl cyclic AMP, and prostaglandin E\textsubscript{1} on platelets preloaded with 32P\textsubscript{4}. Washed platelets were preincubated with 1 mc/ml 32P\textsubscript{4} for 30 minutes and then washed twice in tris-buffered saline, pH 7.4 (see Methods). The platelets were then resuspended in buffer containing either buffer (---) or 10 mM NaF (o--o), and incubated for 30 min (all 4 incubations were performed with the same batch of platelets). The cell sap was prepared and electrophoresed on a 10% SDS polyacrylamide gel.
Figure 8B. Effect of NaF, dibutyryl cyclic AMP, and prostaglandin E₁ on platelets preloaded with 32P₀₄. Washed platelets were preincubated with 1 mc/ml 32P₀₄ for 30 minutes and then washed twice in tris-buffered saline, pH 7.4 (see Methods). The platelets were then resuspended in buffer containing 0.1 mM dibutyryl cyclic AMP (●●●●●), and incubated for 30 min (all 4 incubations were performed with the same batch of platelets). The cell sap was prepared and electrophoresed on a 10% SDS polyacrylamide gel.
Figure 8C. Effect of NaF, dibutyrl cyclic AMP, and prosdlandin E₁ on platelets preloaded with ³²P₀₄. Washed platelets were preincubated with 1 mc/ml ³²P₀₄ for 30 minutes and then washed twice in tris-buffered saline, pH 7.4 (see Methods). The platelets were then resuspended in buffer containing 10 µm prostaglandin E₁ (––) and incubated for 30 min (all 4 incubations were performed with the same batch of platelets). The cell sap was prepared and electrophoresed on a 10% SDS polyacrylamide gel.
Figure 9A. Effect of colchicine and 2',5'-dideoxyadenosine (DDA) on platelets pre-loaded with $^{32}\text{PO}_4$. Washed platelets were preincubated with 1 mc/ml $^{32}\text{PO}_4$ for 30 min and then washed twice in tris-buffered saline, pH 7.4 (see Methods). The platelets were then resuspended in buffer containing either buffer (---) or colchicine at 10^{-7}M (-----) and incubated for 30 min (all 4 incubations were performed with the same batch of platelets). The cell sap was prepared and electrophoresed on a 10% SDS polyacrylamide gel.
Figure 9B. Effect of colchicine and 2',5'-dideoxyadenosine (DDA) on platelets pre-loaded with 32PO$_4^-$.

Washed platelets were preincubated with 1 mc/ml 32PO$_4^-$ for 30 min and then washed twice in tris-buffered saline, pH 7.4 (see Methods). The platelets were then resuspended in buffer containing 0.1 mM dideoxyadenosine and incubated for 30 min (all 4 incubations were performed with the same batch of platelets). The cell sap was prepared and electrophoresed on a 10% SDS polyacrylamide gel.
Figure 9C. Effect of colchicine and 2',5'-dideoxyadenosine (DDA) on platelets pre-loaded with 32P04. Washed platelets were preincubated with 1 mc/ml 32P04 for 30 min and then washed twice in tris-buffered saline, pH 7.4 (see Methods). The platelets were then resuspended in buffer containing colchicine at 10^{-7}M plus dideoxyadenosine, and incubated for 30 min (all 4 incubations were performed with the same batch of platelets). The cell sap was prepared and electrophoresed on a 10% SDS polyacrylamide gel.
DATE
ILME