AN AUTOMATED SYSTEM FOR CHARACTERIZING LASER PULSES

by
Leonard A. Atkinson
and
Jay A. Fox

August 1983

Approved for public release; distribution unlimited.

U.S. ARMY ELECTRONICS R&D COMMAND
NIGHT VISION & ELECTRO-OPTICS LABORATORY
FT. BELVOIR, VIRGINIA 22060
Destroy this report when it is no longer needed.
Do not return it to the originator.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.
Title: An Automated System for Characterizing Laser Pulses

Author(s): Leonard A. Atkinson, Jay A. Fox

Performing Organization: ERADCOM, Night Vision and Electro-Optics Laboratory; ATTN: DELNV-L, Fort Belvoir, VA 22060

Type of Report & Period Covered: Final Report, January-June 1983

Distribution Statement: Approved for public release; distribution unlimited.

Abstract:
An automated data acquisition system consisting of a Photon drag monitor, pyroelectric detector, digitizer, and computer is used to accurately and reproducibly calculate laser pulse peak intensity as well as many other important parameters including energy and pulse lengths. This system, along with a working computer program, is explained in detail.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1. Subject</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2. Background</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>THEORY</td>
<td>2</td>
</tr>
<tr>
<td>III</td>
<td>EXPERIMENTAL SETUP</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>COMPUTER PROGRAM</td>
<td>6</td>
</tr>
<tr>
<td>V</td>
<td>RESULTS</td>
<td>11</td>
</tr>
<tr>
<td>VI</td>
<td>CONCLUSIONS</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>APPENDIX</td>
<td>14</td>
</tr>
</tbody>
</table>

ILLUSTRATIONS

TABLES

iv

v
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Typical TEA Laser Pulse</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Experimental Setup</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Simplified I/O User Flowchart</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>A Typical Presentation of a Laser Pulse as Seen on the CRT</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Pulse Parameter Listing</td>
<td>10</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peak Powers Measured in Four Separate Runs of Ten Shots Each</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>The Halfwidths and Rise Times of Pulses as Measured with a Digitizer and an Oscilloscope</td>
<td>12</td>
</tr>
</tbody>
</table>
AN AUTOMATED SYSTEM FOR CHARACTERIZING LASER PULSES

I. INTRODUCTION

1. Subject. This report describes a scheme to calculate laser pulse power, energy, and other parameters by means of a waveform digitizer interfaced with a computer. More specifically, we shall characterize a system which analyzes a pulse emanating from a CO₂ Transversely Excited Atmospheric (TEA) laser. The pulse is detected by a Rofin Model 7441 photon drag monitor, and the waveform is digitized and processed by a Biomation Model 6500 500 MHz-Digitizer and a Hewlett Packard Model 9836 computer, respectively. Although it is this specific system that is described, it is the authors’ hope that the techniques utilized will prove to be of general value to laser users. In this spirit, we have included also, a sample BASIC program written for the HP 9836 and shall explain it in depth.

2. Background. In order to produce a better TEA laser or to make performance calculations for existing TEA lasers, it is necessary to have an accurate means of determining pulse intensity and energy. There are several types of commercially available detectors for these applications. We shall describe how two of them (a photon drag device and a pyroelectric detector) can be utilized in an automated data recording and processing system.

The photon drag detector utilized in this experiment is a fast (< 1 ns rise time) doped germanium device which produces a voltage proportional to the instantaneous intensity of a laser pulse. This is displayed on an oscilloscope to obtain a record of the temporal history of the pulse. A typical constant of proportionality is given by the manufacturer*, but an exact value depends on beam profile, input intensity, and experimental set-up. It has even been observed that changes in the internal battery supply voltage will affect the constant. Therefore, it is necessary to determine the photon drag constant for each experimental set-up and periodically check this value to update it if necessary.

The pyroelectric detector employed in this set-up is a Laser Precision Model 314 device which is essentially a capacitor formed by depositing metal electrodes on pyroelectric material. When the radiation strikes the coated surface, the heat produced causes a polarization change which gives rise to an output voltage proportional to input energy. The constant of proportionality can be determined by a calorimeter (e.g., Scientech Model 362), and, therefore, this detector can provide a relatively quick means of measuring the laser pulse energy.

Determining the laser pulse energy and intensity with these detectors can be done manually for a single pulse; but for statistically significant numbers of pulses, this method becomes extremely inconvenient at best. We shall describe a practical method of interfacing the photon drag and pyroelectric detectors with a computer to calculate real time pulse energy.

* 714 kW/V for this Model 7441 with a built-in X10 amplifier.
and intensity as well as other parameters concerning the temporal history of the pulse. For example, a typical TEA laser pulse has the intensity profile as shown in Figure 1. A high intensity spike containing 20 to 80 percent of the total energy if followed by a long, low intensity tail. Representative values for the spike half width (FWHM) and the total duration of the pulse are 70 ns and 2 μs respectively. In addition to the intensity and energy, the system described enables the operator to measure the half width, total duration, and amount of energy contained in the spike. If a number of pulses are to be collected, the average and standard deviation of the ensemble energy and intensity can be displayed.

II. THEORY

The following analysis is used in order to find the peak power and energy of the laser pulse. The peak power P incident on the photon drag detector is related to the output voltage V_{pd} by

$$P = K_{pd} V_{pd},$$

(1)

where K_{pd} is the photon drag constant (watts/volt).

The total energy of the pulse E is related to the power by

$$E = \int_0^T P dt,$$

(2)

where T is the total duration of the pulse.

Thus,

$$E = \int_0^T K_{pd} V_{pd} dt.$$

(3)

If we assume that the incident intensities are low enough so that K_{pd} is independent of time, then the photon drag constant may be expressed as

$$K_{pd} = E/A,$$

(4)

where A is the area under the voltage-time curve.

If a pyroelectric detector is used to determine the energy of the pulse, equation (4) becomes

$$K_{pd} = \frac{K_{re} V_{re}}{A},$$

(5)
Figure 1. Typical TEA laser pulse.
where

$$K_p = \text{pyro constant (volts/joule)}.$$

and

$$V_p = \text{maximum voltage produced by laser pulse impacting the pyro detector.}$$

The pyro constant can easily be determined by averaging a suitable number of laser pulses of known energy (e.g., from calorimeter measurements) and by dividing that value by the maximum voltage produced by these pulses. The determination of the area A may be straightforward in principle but in practice may prove to be quite difficult to do accurately. For example, triangular approximations for the pulse are too crude and the presence of a long, low intensity tail that contains a significant portion of the energy makes planimeter measurements, also, inherently inaccurate. It is precisely this consideration that leads one to the choice of digitizing the output of a photon drag detector and using a computer to numerically integrate under the voltage-time curve. At any rate, it is easy to see how the photon drag constant can now be obtained from equation (5) and therefore how the energy and peak power can be measured for any subsequent pulse by the application of equations (3) and (1) respectively.

II. EXPERIMENTAL SET-UP

Figure 2 illustrates the arrangement of the apparatus schematically. The TEA laser is of conventional design and is preionized by means of an array of sparks. The Rogowski-profiled electrodes are separated by a gap of 1 cm and are approximately 11 cm long by 3 cm wide. When this device is fired by means of a spark gap discharging a 10-nF capacitor charged to 20 to 35 kV, it can produce output energies in the 30 to 150 mJ range and peak powers from 100 to 1000 kW. Note that the photon drag monitor is constructed with an internal beam splitting arrangement that allows part of the incident beam to be transmitted directly to the pyroelectric detector. This allows the photon drag detector to be conveniently calibrated without moving the arrangement. As previously mentioned, the digitizer is a Biomation Model 6500 500-MHz device, and the computer is a Model 9836 manufactured by Hewlett Packard. The digitizer is simply a solid state analog-to-digital converter with a memory. It will record at sample rates up to 2 ns/sample and store 1024 samples (a 6-bit resolution/sample). The interface is a Biomation Model 4880 IEEE 488 coupler that converts the digitizer parallel binary format to an IEEE 488 ASCII format. Implementation of our relatively long and slow BASIC program limits pulse repetition rates to 0.7 Hz or less, but for most applications, this is not a severe restriction.

The biggest problem with this set-up is not directly caused by the digitizer/computer apparatus but, instead, by the device which it is measuring, namely the laser. Because of the nature of the discharge in TEA laser, it is inherently electrically noisy. For many commercial lasers this is no big obstacle since ordinary metal enclosures provide sufficient shielding. However, laboratory breadboarded designs are typically unshielded, and obtaining a
Figure 2. Experimental setup.
favorable signal-to-noise ratio may pose a problem. Shielding a research laser itself may not be practical since circuitry may need to be changed often, currents and voltages must be monitored, and electrical discharges often need to be visually observed. But without shielding, noise levels may be high enough to activate the registers in the digitizer even with no cable connections.

In order to deal with this problem, we have found it expedient to utilize several techniques. First, simply moving the digitizer/computer 3 to 4 m away helped greatly. The extra cable length then required the use of double-shielded coaxial cable. As a further precaution, the box was constructed of plexiglass and lined with copper mesh. When the digitizer and interface were placed inside, the combination of these measures provided sufficient shielding for all except the most severe conditions encountered, when extremely high (> 32 kV) voltages were needed to charge capacitors during certain high pressure experiments. In that case, the pulse forming network was enclosed in a shielded box. Workable signal-to-noise ratios were then restored.

IV. COMPUTER PROGRAM

For the purpose of clarity to both computer programmer and user, two block flowcharts are presented. The first (Figure 3) is a simplified input/output (I/O) flowchart for the user. After the program is running, the user should be able to follow this flowchart with very little knowledge of the algorithms used to determine the output. The second flowchart (see Appendix, Figure A-1) is for the programmer and gives a much more detailed explanation of the algorithms used in the determination of pulse parameters as well as input and output algorithms. Although the program was written in BASIC for the HP 9836 computer and Biomation 6500 digitizer, the calculation algorithms are universal, however. I/O algorithms will probably be different for other systems. A sample computer program listing and output examples are included in the Appendix.

When the program is run, the photon drag constant and pyroelectric constant are set to default values. These initial numbers are not important, because they can be updated after the sample of pulses has been recorded. The digitizer input voltage and time base settings must be entered into the program. This is done automatically by manually arming and triggering the digitizer when it is prompted by the program. The program is now ready for pulse waveform input. When a sufficient number of pulses has been recorded, the user hits Key 0 and the program goes into a calculations mode. The initial data normalization takes about 9 s/pulse. After this, the individual pulse parameters are calculated and printed out on the CRT sequentially. Finally, the average and standard deviation of energy and maximum intensity for the entire sample of pulses are calculated and printed out.

The program is now idling in an output mode and can be continued by depressing the appropriate user defined key. After the corresponding key function is performed, the program returns to the idling point and awaits another key command. The pulses are referred to by
Figure 3. Simplified I/O user flowchart.
number in the sequence in which they were recorded (i.e., the first pulse recorded is No. 1, etc.). Thus, when prompted to refer to a pulse, the operator should be entering an integer less than or equal to the number of pulses in the sample.

A plot of peak power vs. time can be produced on the computer CRT by depressing Key 0. The axes are scaled automatically by the sample intensity. An identical plot can be produced on an external paper plotter by depressing Key 1. A typical output is shown in Figure 4.

If a paper printout is desired, Key 2 is depressed and all further type will be sent to the external printer. If the operator later wishes the type to be printed on the CRT again, depressing Key 2 once more will cause all further output to be displayed on the screen.

A permanent record of any individual pulse may be obtained by pressing Key 3. This enables the user to store a file of pulse intensity on disc, where it can be retrieved later for other analysis.

If the operator desires to measure a new series of pulses, he presses Key 4. At this time, the digitizer sensitivity and time base settings may be changed, if desired. An important feature of this key is that the same values for the photon drag and pyroelectric constants will be retained, whereas they would have been reset to the default values, if the program had been simply started again.

In order to obtain a listing of the parameters for any single pulse, the user need only push Key 5. An example of a typical output can be seen in Figure 5. A printout of the pulse rise time, spike duration, total duration, spike half width, spike energy, total energy, and peak intensity will be sent either to the CRT or to an external printer as specified by Key 2.

Key 6 is used to retrieve the averaged and standard deviation of the energy and peak intensity for the entire collection of pulses. It is important to note that pulses with peak intensities of less than 40 percent of the peak intensity of the series are rejected in calculating this average. This feature prevents the biasing of statistics by false triggering or other random events. However, all pulses, "good" or "bad," are recorded and the information about any one of them is still retrievable even though some are excluded in the averaging process. In addition, the program keeps track of the number of "bad" pulses so that, for example, in an otherwise well-behaved system, the number of laser misfirings during a series of shots can be obtained. This feature has definite utility for those performing laser lifetime tests.

The photon drag constant can be changed so that the average energy of the ensemble agrees with that obtained with either the calorimeter or the pyroelectric detector. (This probably will need to be done after the first run with the default constant.) When the operator presses Key 7, he will be asked whether the energy reading will be done with the calorimeter or the pyroelectric detector. If the reading is obtained with calorimeter, the operator is prompted to enter it via the keyboard in millijoules. If the pyroelectric detector is to be used, the operator is
PULSE #1 ANALYSIS
PULSE RISE TIME 45 ns
SPIKE HALF-WIDTH 55 ns
TAIL DURATION 245 ns AFTER START OF PULSE
TOTAL DURATION 3205 ns
SPIKE ENERGY 15.69 mJ
TOTAL ENERGY 54.99 mJ
PEAK INTENSITY 160.7 kW

PULSE #2 ANALYSIS
PULSE RISE TIME 45 ns
SPIKE HALF-WIDTH 50 ns
TAIL BEGINS 170 ns AFTER START OF PULSE
TOTAL DURATION 3235 ns
SPIKE ENERGY 12.84 mJ
TOTAL ENERGY 55.24 mJ
PEAK INTENSITY 175.3 kW

PULSE #3 ANALYSIS
PULSE RISE TIME 50 ns
SPIKE HALF-WIDTH 50 ns
TAIL BEGINS 265 ns AFTER START OF PULSE
TOTAL DURATION 3205 ns
SPIKE ENERGY 16.1 mJ
TOTAL ENERGY 54.16 mJ
PEAK INTENSITY 157.1 kW

PULSE #4 ANALYSIS
PULSE RISE TIME 50 ns
SPIKE HALF-WIDTH 55 ns
TAIL BEGINS 115 ns AFTER START OF PULSE
TOTAL DURATION 3160 ns
SPIKE ENERGY 10.75 mJ
TOTAL ENERGY 55.07 mJ
PEAK INTENSITY 175.3 kW

STATISTICS EXCLUDING BAD PULSES
AVERAGE MAXIMUM INTENSITY = 166.9 kW
STANDARD DEVIATION OF INTENSITY = 7.9 kW
AVERAGE ENERGY = 55.0 mJ
STANDARD DEVIATION OF TOTAL ENERGY = 5 mJ

*****PHOTON CONSTANT =116.88
PYRO CONSTANT =459.13*****
TOTAL OF 0 BAD PULSES OUT OF 10 RECORDED

Figure 5. Pulse parameter listing.
directed to select that detector via a SPDT switch (see Figure 2) and to fire a number of pulses into it. The average value of the peak voltage is automatically calculated and used to determine the energy of the laser, whereupon this information is used to calculate the new photon drag constant. In either case, all future pulse data will automatically use this updated constant.

In order to use the pyroelectric detector, it is necessary to calibrate it. Pressing Key 8 will facilitate this task. The user is directed to let several pulses impinge on the detector, and as previously stated, the output is averaged. Then, a calorimeter is used to find the actual energy and this value is entered via a prompt. The new pyro constant is displayed and used thereafter.

As indicated in the flowchart (Figure 3), Key 9 is used to end the program. The user should be aware that this key must not be used to simply enter a new series of shots (Key 4 should be chosen for that). Rather, this key reloads the internal disc program directory and, thereby, facilitates the easy transfer to another program.

V. RESULTS

As noted earlier, we have used this instrumentation to measure pulse characteristics over a wide range of intensities and energies. Generally speaking, the results have been reasonably self-consistent and useful. As an indication of the former, consider the following results. The output from a Marconi T250 TEA laser was measured with the photon drag/digitizer combination. Usually, great pains are taken to ensure optical alignment and rigidity of all components. For example, an optical table and rail are used together with a clamping arrangement that prevents relative motion between the laser under test and the detector. This time, however, we deliberately chose a potentially more unstable configuration to test the sensitivity of this requirement. The laser was set on a lab jack, and the detector was mounted on a simple holder. Neither device was fixed to the table. Four separate measurements of ten shots each were made. After each measurement the detector was removed and replaced before the next set. The positioning was aided by means of a carbon block that sparked when struck by a pulse. No attempt was made to keep the distance from the laser to the detector constant. The measured intensities are given in Table 1.

Table 1. Peak Powers Measured in Four Separate Runs of Ten Shots Each

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>176.2 ± 5.4</td>
</tr>
<tr>
<td>2</td>
<td>172.9 ± 8.4</td>
</tr>
<tr>
<td>3</td>
<td>168.7 ± 13.2</td>
</tr>
<tr>
<td>4</td>
<td>166.1 ± 11.4</td>
</tr>
</tbody>
</table>
Since the averages are themselves only spread approximately 3 percent about a central of 171 kW, the reproducibility of this method of measurement has been demonstrated.

It should be noted that the first three trials were taken with a digitizer sampling rate of 5 ns channel. This relatively crude measurement was necessary in order to make sure that the entire pulse would be recorded. That is, since the pulse lasted almost 3400 ns, then the fastest setting of 2 ns/channel X 1024 channels would not be sufficient and the next setting (5 ns) had to be used. If one chooses, however, to use the faster setting, no useful information is lost except for the total energy and, of course, the total duration. (Trial No. 4 uses the 2 ns setting.) On the other hand, even using the more coarse setting of 5 ns does not drastically change the time measurements. For example, using the 2-ns setting gave a halfwidth measurement of 50 ± 6 ns while the 5-ns setting yielded 53 ± 6 ns for the same measurements. The results using the digitizer compared favorably with those obtained by analyzing oscilloscope traces; e.g., see Table 2.

Table 2. The Halfwidths and Rise Times of Pulses as Measured With a Digitizer and an Oscilloscope

<table>
<thead>
<tr>
<th>Time</th>
<th>Digitizer</th>
<th>Oscilloscope</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{1/2} (ns)</td>
<td>48 ± 6</td>
<td>45 ± 4</td>
</tr>
<tr>
<td>T_{rise} (ns)</td>
<td>47 ± 3</td>
<td>43 ± 1</td>
</tr>
</tbody>
</table>

The oscilloscope used had a quoted bandwidth of 400 MHz and was a Tektronix 7834 storage device with a 7A19 amplifier and a 7885 time base. The measurements were made using the 10-ns/div sweep. Digitizer measurements were taken of 40 pulses, while six traces were used for the oscilloscope data. These results indicate that the digitizer can consistently produce measurements that agree with those obtained in a more conventional manner to within 10 percent.
VI. CONCLUSIONS

It has been demonstrated that the combination of a digitizer and computer is useful in analyzing the output of laser pulses. More specifically, we have shown that important pulse parameters including energy, power, half width, rise time and total duration can be measured with reasonable accuracy and consistency. The purpose in doing this is not to suggest that this instrumentation be used in place of other simpler and more conventional measuring devices, but instead to show that for some applications this technology offers a fairly straightforward means of automatically obtaining and processing large quantities of data.

Although this report specifically deals with the Biomation 6500/Hewlett Packard 9836 combination of digitizer and computer, it is hoped that it will be at least of some value to those using different apparatus. Even in that case, a more detailed examination of the computer program might yield useful information to the reader. For that purpose, we have included our BASIC program listing and a short discussion appears in the Appendix.
APPENDIX

This Appendix is a more detailed account of the computer program including a complete flowchart (see Figure A-1) and a program listing (Figure A-2). It is hoped that this will be useful to not only those with the same digitizer/computer combination, but to others who might benefit from exposure to the algorithms for event recognition, energy and intensity calculations, etc. The blocks in the flowchart are numbered sequentially, and further descriptions are keyed to these numbers.

Descriptions of the flow chart blocks follow. The numbers refer to the blocks, line numbers refer to the program listing, and variable names appear in parentheses.

1. Set Constants (lines 70 to 80). The program sets the values of the photon drag constant (Constant) in kW/V and the pyroelectric constant (Pyro-const) in mJ/V. These values are typical but have to be changed for each set-up. They can be changed after pulse waveforms are input, so default values are not important.

2. Read and Decode Digitizer Control Settings (lines 140 to 610).

 a. Format. Data input from the 6500 digitizer is in the form of sample elements. There are 1024 time sample elements in a full screen trace, each with a corresponding voltage to create a stepped waveform. The value of each of the 1024 samples can be set from 2 ns to 1 s giving a full screen range of 2048 ns to 1024 s.

 There are 252 vertical steps (253 positions) possible for each time sample (-128 to 124). The value of zero is always center screen, the top is always 124, and the bottom is always -128. Each vertical increment is equivalent to 4 steps. The voltage for each vertical increment is determined by the input range setting (Vrange). Since +Vrange corresponds to a value of 124 steps, each increment is (4 steps/124 steps)*Vrange ≡ .03 Vrange. The value of Vrange can be set from .25V to 5V.

 There is an offset which moves the O V line within the field of -128 to 124. This offset is set in terms of a fraction of the input range (from - .99 to + .99 x Vrange). The offset progresses in increments of 4 steps (i.e., - .99 to .99 x 124 approximated to the nearest multiple of 4). This is the point of the O V line. An example (Figure A-3) is shown for clarity.

 b. Algorithms. The digitizer control settings are encoded in the last three bytes of data read from the digitizer (1024 to 1026). The code definitions are explained in the “Gould Biomation 4880 Interface Operating and Service Manual,” page 32, and are reproduced for reference (Figure A-4).
Figure A-1. Complete block flowchart.
A-2. Program listing.

Laser pulse analysis program

This program calculates the intensity vs time characteristics, energy and other pulse parameters from a V vs t waveform from a photon drag detector and an energy reading from a calorimeter. The program integrates under intensity vs time to determine energy.

-------- 1) Constant definitions and settings from digitizer ----------

70 Constant=999.42 !CONVERSION FACTOR FOR PHOTON DRAG (kW/VOLT)
80 Pyro_const=459.13 !CONVERSION FACTOR FOR PYROELECTRIC (mJ/VOLT)
81 DISP

90 Start: GOSUB Off_keys ! CLEARS KEY FUNCTIONS
100 Printer=1 ! SETS PRINTER INTERNAL
120 PRINT CHR$(12) ! CLEARS SCREEN
130 GCLEAR ! CLEARS GRAPHICS
140 GOSUB Settings
150 GOTO 460

160 Settings: PRINT "MANUALLY ARM AND TRIGGER THE 6500 TO RECORD PANEL SETTINGS."
170 PRINT "(NO SIGNAL AT INPUT) THEN CONTINUE"
180 PRINT "BEPL 80.1"
190 PAUSE
200 PRINT CHR$(12) ! CLEARS SCREEN
210 OUTPUT 704;11 ! PUTS 6500 IN OUTPUT MODE
220 ENTER 704 USING "#B:(B*)" ! LOADS BUFFER ARRAY (UNFORMATTED)
230 OUTPUT 704;0 ! CLEARS 6500 OF OUTPUT MODE
240 SEND 7:UNL ! UNLISTEN COMMAND TO ALL UNITS
250 Irnt=B(1024) ! INPUT RANGE NEGATIVE TRUE
260 Opt=B(1025) ! OFFSET POSITIVE TRUE
270 Sint=B(1026) ! SAMPLE INTERVAL NEGATIVE TRUE
280 Weighing=BINOREX(R1NAND(Sint,15),15) ! MAKES POS TRUE WORD OF NEG 'TRUE' BYTE
290 RESTORE
300 DATA 2.5,10,20,50,100,200,500,1000 ! DATA FOR WEIGHING KEY
310 FOR I=0 TO Weighing
320 ON ERROR GOTO 210
330 READ Interval ! DETERMINES WEIGHING ON SAMPLE INTERVAL
340 OFF ERROR
350 NEXT I
360 Offset=BINAND(Opt,127)-((-1)*(BIT(Opt,7))/100) ! DETERMINES FRACTIONAL OFFSET FROM BINARY
370 FOR I=2 TO 5
380 IF NOT (BIT(Irnt,1)) THEN 400 ! BRANCHES OUT WHEN BIT IS LOW
390 NEXT I
400 Range=.25*2^((I-1)) ! VOLTAGE RANGE GENERATION
410 IF I=2 THEN Range=5 ! EXCEPTION TO RANGE GENERATION
420 PRINT "RANGE=":Range:"VOLTS"
430 PRINT "OFFSET=":Offset:"X INPUT RANGE(":Offset+Range:" VOLTS)"
440 PRINT "INTERVAL=":Interval:"ns"
450 RETURN

460 Printer=1 ! PROGRAM FLAG TO KEEP TRACK OF PRINTING DEVICE
470 Printer=1 ! SETS PRINTER INTERNAL
480 PRINT "THIS PROGRAM WILL ARM THE 6500 DIGITIZER AND READ THE PULSE DATA"
490 PRINT "AFTER A TRIGGER IS RECEIVED MAIN MEMORY HANDLES UP TO 120 PULSES"
500 PRINT "PYROELECTRIC CONSTANT=":Pyro_const:"mJ/VOLT"
510 PRINT "PHOTON DRAG CONSTANT=":Constant:"kW/VOLT""
Figure A-2. Program listing (continued).

700 ON KEY O LABEL "END INPUT" GOTO Calc ; ENDS PULSE INPUT MODE
800 PRINT CHR$(12) ; CLEAR SCREEN
810 PRINT "NOW IN INPUT MODE... READY FOR PULSE INPUT"
820 Main: ! THIS SECTION USED FOR MAIN MEMORY STORAGE ARRAY
830 PRINT USING "%-20s";CHR$(120);"HIT KO TO END PULSE INPUT MODE.",CHR$(128)
840 INTEGER i(120), b(1023), Parameter(6,120), bad_pulse(120)
850 DEF i=120, Aspik(120), Tampy(1024)
860 Pulse=1; ! NUMBER OF PULSES RECORDED
870 OUTPUT 704:8 ; ARMS THE 6500 DIGITIZER
880 OUTPUT 704:14 ; CLEARS ARM COMMAND
890 OUTPUT 704:11 ; PUT 6500 INTO OUTPUT MODE (SINGLE DIGIT FORMAT)
900 DISABLE ! DISABLE USER DEFINED KEY
910 ENTER i=100 USING ":B:"; b(120) ; ENTER ARRAY b(1024) UNFORMATTED (FAST)
920 OUTPUT 704:0 ; CLEARS THE 6500 OUT OF DIGITAL OUTPUT
930 Pulse=Pulse+1; ! TALLY OF PULSES ENTERED
940 DISP Pulse:" PULSES STORED "
950 FOR i=1 TO 1023
960 A(Pulse, i)=B(i) ; MOVE BUFFER ARRAY INTO MAIN ARRAY
970 NEXT i ; ENABLE USER DEFINED KEYS
980 IF Pulse<120 THEN 750 ; MAIN MEMORY CAN ONLY HANDLE 120 PULSES
990 PRINT "NO MORE ROOM IN MEMORY. PRESS CONTINUE FOR CALCULATION"
100 PAUSE ! END OF PULSE INPUT MODE

1010 Calc: ! CALCULATIONS FOR PULSE PARAMETERS !!!!!!!!
1020 OFF KEY 0
1030 PRINT CHR$(12) ; CLEAR SCREEN
1040 PRINT "IN CALCULATION MODE..."
1050 PRINT USING "%-20s"; "NOW PROCESSING ": Pulse; PULSES."
1060 PRINT USING ":K:";CHR$(130); "PLEASE WAIT !!!";CHR$(120)
1070 DISP "calc"; REAL TIME IN SECONDS
1080 SEND 7:UNL ; COMMAND UNLISTEN TO ALL UNITS. RESET GRADE ATTENTION, Etc.
1090 Maxval=1 ; MAXIMUM VALUE OF ALL PULSES RECORDED
1100 FOR i=1 TO Pulse ; LOOP FOR EACH PULSE
1110 i=1023 ; LOOP FOR EACH PIXEL OF EACH PULSES
1120 IF All Pixels=127 THEN 1040 ; CONVERT TO WORD 1's COMPLEMENT
1130 Print(i)=256 ; FROM BYTE 0's COMPLEMENT
1140 Pulse=(1,.D)-Dc_offset ; ACCOUNTS FOR DC OFFSET ON PULSES
1150 IF Maxval THEN 1079 ; AND RECTIFIED PULSE
Figure A-2. Program listing (continued).

```
if Max>2,4 Maxval THEN 1300 
maxval=Max 
badbad=bad 
bad pulse(p)=!array marks bad pulses so won't be included in statistics 
print "pulse =." .pulse is a bad pulse" 
goto 1800 
if outopt=2 THEN 1460 
if outopt=2 THEN 1460 
output option 2 (energy and intensity only) 
tend=0 
initialize tail start time 
for i=#max+20 TO 800 !initialize slope 
for i=#max+20 TO 800 !initialize slope 
if A[p,i]==8 THEN 1370 
if A[p,i]==8 THEN 1370 
tdel=10 
tdel=10 
goto 1380 
goto 1380 
triggers on first occurrence of slope 
next i 
next i 
if start>tail or tail>start THEN 1260 
if start>tail or tail>start THEN 1260 
rejects on timing error 
next i 
next i 
if tend=tend THEN 1260 
if tend=tend THEN 1260 
rejects on timing error 
area(p)=0!calculate spike and pulse areas and half width 
area(p)=area(p)+A[p,i] *interval 
uses rectangle method to determine pulse energy (integrates power) 
if outopt=2 THEN 1560 
if outopt=2 THEN 1560 
speeds up program (energy and intensity only) 
if tend=tend THEN 1520 
if tend=tend THEN 1520 
ends integration at beginning of tail 
if tend=tend THEN 1520 
if tend=tend THEN 1520 
ends integration at beginning of tail 
if tend=tend THEN 1520 
if tend=tend THEN 1520 
ends integration at beginning of tail 
if tend=tend THEN 1520 
if tend=tend THEN 1520 
ends integration at beginning of tail 
next i 
next i 
if start>tail or tail>start THEN 1260 
if start>tail or tail>start THEN 1260 
rejects on timing error 
gosub printout 
goto 1730 
printout: !print results 
print "pulse =." .pulse is a bad pulse" 
end if ioutopt=2 THEN 1670 
end if ioutopt=2 THEN 1670 
print "pulse rise time." .pulse rise time in milliseconds 
print "spike half-width." .spike half-width in milliseconds
```
Figure A-2. Program listing (continued).

```
180 Avarea=0.  ! INITIALIZE AVERAGE AREA
182 Avmax=0.  ! INITIALIZE AVERAGE MAXIMUM
183 FOR I=1 TO Pulse; DETERMINE STATISTICS OF ALL PULSES
184 IF Bad_pulse(I)=1 THEN 1900  ! DON'T INCLUDE BAD PULSES IN STATISTICS
185 Avmax=Avmax+Parameter(2,I)/(Pulse-Bad)  ! AVERAGE MAX INTENSITY
186 Avarea=Avarea+Parameter(1,I)/(Pulse-Bad)  ! AVERAGE TOTAL ENERGY
188 NEXT I
190 S2=0  ! INITIALIZE SD2 OF INTENSITY
192 FOR I=1 TO Pulse
193 S2=S2+(Parameter(2,I)-Avmax)^2/(Pulse-Bad)+S2  ! STANDARD DEVIATION OF INTENSITY
194 S2area=S2area+(Parameter(1,I)-Avarea)^2/(Pulse-Bad)+S2area  ! STANDARD DEVIATION OF TOTAL ENERGY
196 NEXT I
198 Statistics: PRINT CHR$(132);"STATISTICS EXCLUDING BAD PULSES",CHR$(128)
199  GOSUB 0fkeys
200 PRINT "AVERAGE MAXIMUM INTENSITY=",AVROUND(Avmax*Constant/Range):"KW"
201 PRINT "AVERAGE DEVIATION OF INTENSITY=","AVROUND(S2area*Constant/Range/12):"KW"
202 PRINT "AVERAGE DEVIATION OF TOTAL ENERGY=","AVROUND(S2area*Constant/Range/12):"KW"
203 PRINT "TOTAL OF坏脉: BAD PULSES OUT OF ";Pulse:"RECORDED"
204 IF Printer=70: THEN Keys
205 PRINT CHR$(133);"PROGRAM NOW IN GRAPH MODE. USE KEYS TO CONTINUE",CHR$(128)
207 PRINT
```

The code listing continues with instructions for handling pulses, calculating average and maximum values, and printing statistics.
Figure A.2. Program listing (continued).

2250 Screen: PLOTS PULSE IN KW vs nS ON CURRENT PLOTTING DEVICE ————

2260 GOSUB 2220 ! SHUTS OFF USER DEFINED KEYS.
2270 GRAPHICS OFF ! SHUTS OFF GRAPHICS
2280 INPUT "USE NUMBER?".Pigraph
2290 GINT 0 ! INITIALIZE GRAPHICS
2300 GRAPHICS ON ! TURN ON GRAPHICS
2310 Plot: ALPHA OFF ! SHUT OFF PRINTOUT (NOT GRAPHICS)
2320 VIEWPORT 0.,.10.100 ! SET LIMITS OF GRAPHING AREA (DISPLAY UNITS)
2330 Xmin=-.15+Interval*.1024 ! ALLOW ROOM FOR LABELING OF Y AXIS
2340 Axis_top=constant*1280+1*10 ! ALTER AXES TO SAMPLE
2350 WINDOW Xmin,Interval*.1024+25*Interval,-.1=Axis_top,Axis_top ! SETS RANGE
2360 CLIP 0.,0.035+Interval*.1024 ! DISABLES GRAPHICS OUTSIDE RANGES
2370 AXES 0.005,0.05,1.2,4 ! DRAWS AXES
2380 CLIP 0. ! ALLOWS GRAPHICS THROUGHOUT VIEWPORT
2390 CSIZE 3.5 ! SETS SIZE OF GRAPHICS CHARACTERS
2400 ! NUMBERING OF THE X-AXIS

2440 FOR I=0 TO 5000 STEP 1000
2450 LABEL I
2460 NEXT I

2470 ! NUMBERING OF Y-AXIS

2490 FOR I=0 TO Axis_top STEP 50
2500 MOVE 0.1 ! LABELS INTENSITY AXIS EVERY 50 KW
2510 NEXT I

2550 LABEL "TIME (nS)"

2590 MOVE Xmin,Axis_top/2 ! Y AXIS LABEL LOCATION
2600 DEG
2640 LDIR 90 ! ROTATE GRAPHICS CHARACTERS 90 DEGREES
2650 LDIR 0 ! RETURN GRAPHICS CHARACTERS TO HORIZONTAL
2660 MOVE 0.0
2670 FOR I=-.1 TO .125
2680 MOVE Interval*A(Pigraph.I)*Range*Constant/128 ! DRAW PULSE(KW vs nS)
2690 NEXT I

2740 IF OUT OF BOUNDS THEN DON'T MARK
Figure A-2. Program listing (continued).

2700 \(Y = (P_{\text{graph}} \times X) \times \text{Range} \times \text{Constant} / 128 \) ! CONVERTS TO KILOWATTS
2710 IF \(Y < 0 \) OR \(Y > \text{Axis top} \) THEN 2740 ! REJECT IF OFF GRAPH
2720 MOVE \(X \times \text{Interval,Y} \)
2730 LABEL "$"!
2740 NEXT \(J \)
2750 MOVE 0,0
2760 PLOTTER IS 3,"INTERNAL" ! SETS PLOTTER TO CRT IN CASE EXTERNAL
2770 GOTO keys! END OF GRAPH SECTION -------------------------------
2780 Hard: PLOTTER IS 705,"HPGL" ! ENABLES EXTERNAL PLOTTER
2790 GOSUB off keys
2800 DISP "PREPARE PLOTTER AND CONTINUE"
2810 PAUSE
2820 GOTO Plot! TOGGLES PRINT DEVICE (INTERNAL/EXTERNAL)
2840 Params: PRINTS OUT SAMPLE STATS WITH CURRENT CONSTANTS----
2845 GOSUB Off_keys
2850 INPUT "INPUT THE PULSE YOU WANT TO SEE STATS ON",P
2860 IF P>Pulse AND P<2970 THEN 2990
2870 GOTO 3050
2880 Disp "SORRY...ILLEGAL PULSE NUMBER. MUST BE BETWEEN 0 AND ";Pulse
2890 Tstart=Parameter(1,P)
2900 Tmax=Parameter(2,P)
2910 Tedge=Parameter(3,P)
2920 Tend=Parameter(4,P)
2930 T1=Parameter(5,P)
2940 T2=Parameter(6,P)
2950 Max=A(P,Tmax)
2960 GOSUB Printout
2970 GOTO Keys
2980 Disc: STORES GRAPH ON DISC ----
2990 GOSUB Off_keys
3000 INPUT "ENTER THE FILE TO STORE PULSE ON",DS
3010 CREATE BDAT D$,205i,8 MASS STORAGE DEVICE LEFT DISC DRIVE
3020 CREATE DATA FILE OP APROPRIATE LENGTH
3030 ASSIGN @Path TO DS ASSIGN OUTPUT PATH
3040 FOR I=1 TO N
3050 Tempy(I)=A(Store_pulse.I)*Constant*Range/128 ! DEFINE TEMPORARY ARRAY (KW)
3060 NEXT I
3070 ASSIGN @Path TO DS ! ASSIGN OUTPUT PATH TO DATA FILE
3080 DISK: ! STORE NUMBER OF POINTS FOR GRAPHICS PROGRAM
3090 OUTPUT @Path:1020 ! STORE ARRAY (KW) UNFORMATTED
3100 DISK: ! STORE ARRAY (KW) UNFORMATTED
3110 PRINT "PULSE STORED (KW vs. nS) ON FILE NAMED ";DS
3120 GOTO Keys
3130 Const: CHANGES PHOTON DRAG CONSTANT!
3140 GOSUB Off_keys
3150 DISP "USE KEYS TO CHOOSE METHOD OF ENERGY DETERMINATION"
3160 ON KEY 1 LABEL "CALORIMETER" GOTO 3280
3170 ON KEY 2 LABEL "CHARGED PARTICLE" GOTO 3290
3180 ON KEY 3 LABEL "KILOWATT" GOTO 3300
3190 ON KEY 4 LABEL "UNFORMATTED" GOTO 3310
3200 GOTO 3280
3210 GOTO 3280
3220
ON KEY 2 LABEL "PYRO ELECT." GOTO 3330
GOTO 3270
GOSUB Off_keys
INPUT "ENTER AVERAGE CALORIMETER READING IN mJ":Millijoules
Constant=Constant*Millijoules/(Avarea*Constant*Range/124000)
PRINT "NEW PHOTON DRAG CONSTANT=":DROUND(Constant,5)
GOTO Keys
GOSUB Off_keys
INPUT "HOW MANY ENERGIES DO YOU WANT TO TAKE":Pyro_rep
DISP "CHANGE INPUT TO PYRO AND CHANGE TIMEBASE TO FIND MAXIMUM THEN <CONTINUE>"
PAUSE
DISP "READY FOR PULSE FROM PYRO"
Ave_pyro=0 ! INITIALIZE AVERAGE PYRO READING
FOR J=1 TO Pyro_rep
OUTPUT 704:8 ! ARMS THE 6500 DIGITIZER
OUTPUT 704:11 ! PUTS THE 6500 INTO OUTPUT MODE
ENTER 704 USING ",B":B(*) ! ENTER BUFFER ARRAY UNFORMATTED
OUTPUT 704:0 ! CLEARS THE 6500 OF DIGITAL OUTPUT
DISP J:" OF ":Pyro_rep:" SHOTS"
Max_pyro=0
FOR I=1 TO 500
IF B(I)<127 THEN 3490 !CONVERT TO WORD 2'S COMPLEMENT
B(I)=B(I)-256 ! FROM BYTE 2'S COMPLEMENT
B(I)=B(I)-Dc_offset ! ACCOUNT FOR DC OFFSET
IF Max_pyro>B(I) THEN 3520 ! FINDS THE MAXIMUM VOLTAGE
Max_pyro=B(I)
NEXT I
Ave_pyro=Max_pyro/Pyro_rep+Ave_pyro ! FINDS THE AVERAGE MAXIMUM VOLTAGE
NEXT J
Energy=Ave_pyro*Range*Pyro_const/128 ! FINDS THE ENERGY FROM PYRO CONST
Constant=DROUND(Energy/(Avarea*Range/128000),6) !NEW PHOTON DRAG CONSTANT
PRINT "NEW CONSTANT=":Constant
GOTO Keys !***
OFF_keys: ! SHUTS OFF USER DEFINED KEYS**
OTHERWISE PROGRAM MAY BRANCH IN MIDDLE OF SUBROUTINE
OFF KEY 0
OFF KEY 1
OFF KEY 2
OFF KEY 3
OFF KEY 4
OFF KEY 5
OFF KEY 6
OFF KEY 7
OFF KEY 8
OFF KEY 9
RETURN !***
Pyro: ! DETERMINES NEW PYROELECTRIC CONSTANT
GOSUB Off_keys
PRINT "OLD PYRO CONSTANT=":Pyro_const
PRINT "ENTER PYROELECTRIC PULSE THRU DIGITIZER"
INPUT "HOW MANY SHOTS DO YOU WANT TO TAKE":Shots
Avmaxvolt=0
FOR J=1 TO Shots
OUTPUT 704:8 ! ARMS THE 6500 DIGITIZER
OUTPUT 704:11 ! PUTS THE 6500 INTO OUTPUT MODE
ENTER 704 USING ",B":B(*) ! ENTERS BUFFER ARRAY FROM 6500
OUTPUT 704:0 ! CLEARS THE 6500 OF OUTPUT MODE
PAUSE
Figure A-2. Program listing (continued).

3840 Maxvolt=0
3850 FOR I=1 TO 500
3860 IF B(I)<127 THEN 3880 ‘CONVERT TO WORD 2’S COMPLEMENT
3870 B(I)+B(I)=256 ‘FROM BYTE 2’S COMPLEMENT
3880 B(I)+B(I)=dc_offset ‘ACCOUNT FOR DC OFFSET
3890 IF B(I)<Maxvolt THEN 3910 ‘FINDS MAXIMUM PYRO VOLTAGE
3900 Maxvolt=B(I)
3910 NEXT I
3920 DISP J;"OF":Shots:"SHOTS TO BE TAKEN"
3930 Avmaxvolt=Maxvolt/Shots+Avmaxvolt ‘FINDS AVERAGE MAX PYRO VOLTAGE
3940 NEXT J
3950 INPUT "ENTER ENERGY READING FROM CALORIMETER IN MILIJOULES ":MiliJoules
3960 Pyro_const=ROUND(MiliJoules/(Avmaxvolt*Range/128),5)
3970 PRINT "NEW PYRO CONSTANT":Pyro_const ‘NEW PYRO CONST. CALIBRATED TO CALORIMETER
3980 ON ERROR GOTO 4010
3990 Constant=ROUND(MiliJoules/(Avmax volt*Range/128000),6)‘NEW PHOTON DRAG CONST
4000 GOTO 4020
4010 PRINT "NO ENERGY READINGS AVAILABLE TO CHANGE PHOTON DRAG CONSTANT"
4020 OFF ERROR
4030 GOTO Keys!---
4040 Finish: PRINTER IS 1
4041 PRINT CHR$(12)
4050 GRAPHICS OFF
4060 DISP "HIT <CONTINUE> TO LOAD PROGRAM DIRECTORY"
4070 PAUSE
4080 LOAD "AUTOST"
4090 END
Figure A-3. Point of the OV line.
Y OUTPUTS

<table>
<thead>
<tr>
<th>Address</th>
<th>0-1023</th>
<th>1024</th>
<th>1025</th>
<th>1026</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y7</th>
<th>MSB</th>
<th>Low:DC</th>
<th>High:AC</th>
<th>Low:+</th>
<th>High:-</th>
<th>Low:INT</th>
<th>High:EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y6</td>
<td>0.25</td>
<td>64</td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y5</td>
<td>0.50</td>
<td>32</td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y4</td>
<td>1.0</td>
<td>16</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y3</td>
<td>2.0</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2</td>
<td>5.0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>LOW</td>
<td>LOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>LOW</td>
<td>LOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logic

<table>
<thead>
<tr>
<th>Code</th>
<th>2's Comp</th>
<th>1 of 5</th>
<th>% Full Scale</th>
<th>Weighing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defin.</td>
<td>AC/DC</td>
<td>Signed Binary</td>
<td></td>
<td>0=2</td>
</tr>
<tr>
<td>1=5</td>
<td>5=100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2=10</td>
<td>6=200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3=20</td>
<td>7=500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure A-4. Readings from digitizer.
c. Input Range (lines 360 to 400). In this case, only bits 2 to 6 are of interest. Since these bits are negative true logic, the low bit corresponds to the input range. Line 320 calculates the input range for Y_3 to Y_6. The exception to the equation (Y_2) is trapped in line 400.

d. Offset. The offset is calculated in line 360. The binary AND of the offset byte with 127 masks out the sign bit to give the absolute offset in percent. Divide by 100 to get the fraction of input range. Multiply by $-1 \ A (Y_7)$ to account for sign.

e. Interval (lines 290 to 350). Bits Y_0 to Y_3 are of interest here. For this application, internal time base in nanoseconds is assumed. Line 270 determines the weighing number. The binary AND of 15 and the interval byte gives only Y_0 to Y_3. The EX-OR of 15 and Y_0 to Y_3 gives the desired positive true weighing factor. Since there is no simple equation to generate the interval weight, a loop is used to read the proper weighing factor. An array could be used, but would require more memory.

f. Offset Check (lines 540 to 610). There is no simple way to calculate the step offset from the percent offset to better than an interval of 4 (percent). To eliminate this possible 3-percent error in voltage, the program prompts the user to arm and trigger the digitizer with 0 V input to check the calculated step offset with the true screen offset. If they differ by more than 4 (percent), the program re-prompts the user. If they are within 4 (percent), the true screen offset is used in the program.

3. Array Definitions and Pulse Data Entry (lines 700 to 890).

a. Integer Arrays A(120, 1023). Holds pulses in interval step units.

- Room for 120 pulses with 1024 samples each.
- B(1026). Buffer array for fast data entry by unformatted ENTER statement.
- Parameter (6, 120). Holds the times of the six important events of each of 120 pulses.
- Bad pulse (120). Marks the bad pulses to be excluded from statistical analysis.

b. Real Arrays Area (120). Area under pulse in interval step units.

- Aspike (120). Area under spike in interval step units.
• Tempy (1023). Temporary storage for pulse intensity in kW used for pulse disc storage.

NOTE: Most calculations and storage are left in interval step units to reduce run time and memory use. Conversion to proper units occurs only for I/O.

c. Pulse Data Entry. The HP 9836 computer uses an HPIB to interface with the 6500 digitizer. The digitizer address in this program is 704. There are four digitizer I/O commands necessary for this program.

• OUTPUT 704;8. Arms the 6500 Digitizer (single sweep mode).

• OUTPUT 704;11. Puts the 6500 in output mode.

The 6500 now waits for a trigger pulse and then records waveform data.

• ENTER 704 USING "#,B:B(*). Enters the data from the 6500 into a buffer array (unformatted). This buffer is necessary because an unformatted read into a two-dimensional array is not allowed, and single element entry into a two-dimensional array takes much longer.

• OUTPUT 704;0. Clears the 6500 of digital output.

The buffer array is now transferred into the two-dimensional A(120, 1023) array.

NOTE: Data stored in the A(120,1023) array is in 2's complement bytes. No further processing is done at this time, because pulse rate is already limited to 0.7 Hz.

4. Convert to Word 2's Complement and Subtract DC Offset (lines 1000 to 1080). This program segment converts the byte 2's complement data from the digitizer to the word 2's complement used by the computer. The DC offset is subtracted from each pixel (see Block 2). The pulse is also rectified by taking the absolute value, so that either inverting or non-inverting amplifiers can be used after the detector.

5. Find Maximum of all Pulses (lines 1050 to 1060). The maximum intensity of the sample of pulses is found, so that any pulses below 40 percent of this value can be rejected. This maximum is also used to determine the intensity range for graphing the sample pulses.

6. Find Pulse Start Time and Maximum Value (lines 1160 to 1240). Ideally, the start of the pulse should be recognized by a change in slope. However, noise frequency limits this option. The method used in the program triggers from zero. The program keeps track of
where the waveform last hit zero (line 1200). If the waveform does not return to zero after 200 sample units, the last zero is considered the pulse start (see Figure A-5). This step of 200 units may have to be decreased for short pulses or long time bases. The program, then, records the maximum intensity (Max) and the corresponding time T_{max}.

7. Forty Percent Reject Level (lines 1250 to 1290.) If a pulse maximum (Max) is less than 40 percent of the sample maximum (Maxval), then the pulse is called “bad” and is not included in statistical pulse analysis. This rejection eliminates false triggers caused by external corona discharge or turning detectors on or off.

8. Locate Spike End From Slope Change (lines 1320 to 1370). The spike and (Tedge) is defined at the point where the slope of the waveform suddenly becomes less negative and rises above a certain value. This equation is in line 1360 and may have to be tailored for different time bases. A pulse can be rejected at this point, if the timing sequence is incorrect (line 1400).

9. Locate Pulse End (lines 1400 to 1440). The pulse end is defined as the first point after the spike end where the waveform drops to zero T_{end}. If the waveform does not drop to zero, the pulse is rejected.

10. Find Spike Energies and Half Widths (lines 1470 to 1560).

$$E = \frac{Kpd \cdot V_{\text{range}}}{124000} \int_{T_{\text{start}}}^{T_{\text{end}}} V_{pd} \, dt$$

Since the intensity is a stepped function, rectangular integration is used to determine pulse energy. This segment, also, finds T_1 and T_2 to determine the pulse half width (Figure A-5).

11. Significant Parameters Stored (lines 1720 to 1790). The times at which the six significant events occur for each pulse are stored in the Parameter (6,120) array. These times are used later to find corresponding intensities and temporal characteristics.

13. Calculate Sample Statistics (lines 1810 to 1970). This program section looks at all pulses entered. If the pulse is bad because of low intensity or a timing error, it is not included in the analysis. Energy and maximum intensity averages, and standard deviations are calculated for the group of pulses.
Figure A-5. Pulse event time markers.
14. **Key X (lines 2120 to 2240).** At this point all major calculations are completed. The photon drag or pyroelectric constants can be changed, or data can be sent to external output devices. By hitting a user-defined key, the program executes a subprogram, returns to this spot, and waits for another key to be depressed. Keys are disabled during subprograms so output can be completed.

15. **Key 0 “VIEW GRAPH” (lines 2250 to 2770).** This key produces a graph of power vs. time of the desired pulse number on the computer CRT. The top of the power axis is determined by the maximum sample intensity. The significant points of the laser pulse are marked with a “*” for reference. The program then returns to Key X.

16. **Key 1 “PLOT GRAPH” (lines 2780 to 2820, 2310 to 2770).** This key transfers control to an external plotter and, then, branches into Key 0 to produce a plot of power vs. time on paper.

17. **Key 2 “TOGGLE PRINTER” (lines 2830 to 2930).** This key is a fast, one step way of changing the printer from internal to external or vice versa (i.e., CRT display or hard copy). Otherwise, the program would have to be stopped, a command executed and, then, the program continued.

18. **Key 3 “STORE GRAPH” (lines 3060 to 3210).** This key stores on disc the pulse intensity in kW. The number of points and the number of nanoseconds per array index is also stored. The format of the data file is compatible with a graphics program to make presentation quality graphs.

19. **Key 4 “NEW SAMPLE” (line 2190).** This key prepares for a new pulse sample but does not reinitialize the photon drag and pyroelectric constants. The digitizer control settings can be changed for the new sample. Program continues on line 80.

20. **Key 5 “PARAMETERS” (lines 2940 to 3050).** This key initializes the time markers to those of the desired pulse from the parameter (6,120) array. The program then prints out the pulse rise time, half width, spike duration, total duration, spike energy, total energy, and peak intensity using the current photon drag constant. This printout is sent to the current printing device as specified by Key 2.

21. **Key 6 “SAMPLE STATS” (lines 1980 to 2070).** This key prints out the pulse sample averages, and standard deviations of pulse energy and maximum intensity on the current printing device. The energies and intensities are computed using the current photon drag and pyroelectric constants which are, also, printed out.
22. Key 7 "CHANGE PHOTON" (lines 3220 to 3580). This key is used to change the photon drag constant. If the average energy computed by the program does not match a calorimeter reading, the photon drag detector constant can be changed by entering a calorimeter reading or by using the pyroelectric detector as a calorimeter. The photon drag constant is in units of kW/V.

23. Key 8 "CHANGE PYRO" (lines 3710 to 4030). This key calculates a new pyroelectric constant in mJ/V. The average maximum voltage from the pyroelectric detector through the 6500 digitizer is determined. This average voltage is proportional to the average energy which is entered in mJ to determine the constant in mJ/V of the pyroelectric detector. The pyroelectric detector can now be used as a standard to calibrate the photon drag detector.

24. Key 9 "END PROGRAM" (lines 4040 to 4090). This key reloads the disc program directory.

General Comments. Some of the algorithms used in this program sacrifice speed in order to reduce memory requirements. In the current program, pulse analysis is limited to 120 pulses. This limit could be considerably increased if comments or unneeded segments are eliminated. LOAD SUB and PURGE SUB commands could, also, be used to load and purge program segments as they are needed on the run.

For lifetime tests, a loop could be put in Section 3 (Pulse Data Entry) to record every 10th or 100th pulse to increase sample range.

All pulse arrays in this program are kept in step units until the time of output. This is done for several reasons. The array as integer step units takes up less room than the real array converted to kW. The processing of integer numbers, also, takes less time than floating point operations. Another advantage is that when the photon drag constant is changed, none of the pulse storage arrays have to be accessed since conversion is done at output.

In some cases, program efficiency is given up for clarity. After the program is understood, efficiency can be improved by removing comments or I/O prompts and combining lines.
DISTRIBUTION FOR NV&EOL REPORT DELNV-TR-0037

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Addressee</th>
<th>No. Copies</th>
<th>Addressee</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Commander ERADCOM ATTN: DRDEL-CP-C 2800 Powder Mill Rd. Adelphi, MD 20783</td>
<td>1</td>
<td>Commander OURADCOM ATTN: DRDCO-PPA-CA Fort Monmouth, NJ 07703</td>
</tr>
<tr>
<td>1</td>
<td>Director Atmospheric Sciences Lab ATTN: DELAS-D White Sands Missile Range, NM 88002</td>
<td>1</td>
<td>Commander Belvoir Research & Development Center</td>
</tr>
<tr>
<td>1</td>
<td>Director CS&TA Laboratory ATTN: DELCS-D Fort Monmouth, NJ 07703</td>
<td>1</td>
<td>Commander MIGA ATTN: DRSMI-D Redstone Arsenal, AL 35898</td>
</tr>
<tr>
<td>1</td>
<td>Director Electronic Warfare Lab ATTN: DELEW-D Fort Monmouth, NJ 07703</td>
<td>1</td>
<td>Commander AVARADCOM St Louis, MO 63166</td>
</tr>
<tr>
<td>1</td>
<td>Director Electronics Technology & Devices Lab ATTN: DELET-D Fort Monmouth, NJ 07703</td>
<td>1</td>
<td>Commander AMMRC Watertown, MA 02172</td>
</tr>
<tr>
<td>1</td>
<td>Commander Harry Diamond Lab ATTN: DELHD-AC Adelphi, MD 20783</td>
<td>1</td>
<td>Commander US Naval Research Lab Washington, DC 20375</td>
</tr>
<tr>
<td>1</td>
<td>Director Signal Warfare Lab ATTN: DELSW-D Vint Hill Station, VA 22186</td>
<td>1</td>
<td>Commander HQ DARCOM ATTN: DBCCP-E Alexandria, VA 22333</td>
</tr>
<tr>
<td>1</td>
<td>Commander ARRADCOM ATTN: DRDAR-SEC Dover, NJ 07801</td>
<td>1</td>
<td>Commandant US Army Engr School Fort Belvoir, VA 22060</td>
</tr>
<tr>
<td>No. Copies</td>
<td>Addressee</td>
<td>No. Copies</td>
<td>Addressee</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commandant</td>
</tr>
<tr>
<td></td>
<td>USACSC</td>
<td></td>
<td>US Army Armor School</td>
</tr>
<tr>
<td></td>
<td>Fort Belvoir, VA 22060</td>
<td></td>
<td>Fort Knox, KY 40121</td>
</tr>
<tr>
<td>1</td>
<td>HQDA</td>
<td>1</td>
<td>Commandant</td>
</tr>
<tr>
<td></td>
<td>ATTN: DACA-CA</td>
<td></td>
<td>US Army Field Artillery School</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20310</td>
<td></td>
<td>Fort Sill, OK 73503</td>
</tr>
<tr>
<td>12</td>
<td>Defense Technical Info Ctr</td>
<td>1</td>
<td>Commandant</td>
</tr>
<tr>
<td></td>
<td>ATTN: DDC-TCA</td>
<td></td>
<td>US Army Air Defense School</td>
</tr>
<tr>
<td></td>
<td>Cameron Station (Bldg 5)</td>
<td></td>
<td>Fort Bliss, TX 79916</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>US Army Training & Doctrine Command</td>
<td></td>
<td>US Army Mobility R&D Ctr</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATCD-AN</td>
<td></td>
<td>Ames Research Ctr</td>
</tr>
<tr>
<td></td>
<td>Fort Monroe, VA 23651</td>
<td></td>
<td>Moffett Field, CA 94035</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Logistics Ctr</td>
<td></td>
<td>US Naval Ordnance Lab/White Oak</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATCD-AN</td>
<td></td>
<td>ATTN: Technical Library</td>
</tr>
<tr>
<td></td>
<td>Fort Lee, VA 23801</td>
<td></td>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Systems Analysis Agency</td>
<td></td>
<td>Naval Electronics Lab Ctr</td>
</tr>
<tr>
<td></td>
<td>Aberdeen Proving Ground, MD 21005</td>
<td></td>
<td>ATTN: Library</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>NASA Scientific & Tech Info Facility</td>
<td>1</td>
<td>Armament Development and Test Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Acquisitions Branch (S-AK/DL)</td>
<td></td>
<td>ATTN: DLOS, Tech Library</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 33</td>
<td></td>
<td>Eglin Air Force Base, FL 32542</td>
</tr>
<tr>
<td></td>
<td>College Park, MD 20740</td>
<td>30</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NV&EOL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: DELNV-D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fort Belvoir, VA 22060</td>
</tr>
<tr>
<td>1</td>
<td>Study Center</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>National Maritime Research Ctr</td>
<td></td>
<td>Sacramento Army Depot</td>
</tr>
<tr>
<td></td>
<td>King's Point, NY 11024</td>
<td></td>
<td>Sacramento, CA 95813</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>USAAVNC</td>
<td></td>
<td>New Cumberland Army Depot</td>
</tr>
<tr>
<td></td>
<td>Fort Rucker, AL 36362</td>
<td></td>
<td>New Cumberland, PA 17070</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>NV&EOL</td>
<td></td>
<td>Anniston Army Depot</td>
</tr>
<tr>
<td></td>
<td>ATTN: DELNU-TMS/SEMCO</td>
<td></td>
<td>Anniston, AL 36201</td>
</tr>
<tr>
<td></td>
<td>Fort Belvoir, VA 22060</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>