Title: Global PNS Solutions for Laminar and Turbulent Flow

Author(s): S G Rubin, D R Reddy

Performing Organization: University of Cincinnati

Report Date: July 1983

Abstract:

A multi-sweep relaxation procedure is applied for inviscid and parabolized (pressure-elliptic) Navier-Stokes (PNS) equations. Boattail, finite flat plate and NASA 0012 airfoil geometries are considered for incompressible and subsonic inviscid, laminar and turbulent flow. The equations are written in a conformal body-fitted coordinate frame and differenced on a staggered grid in order to give second-order accuracy for the inviscid flow and somewhere between first and second-order accuracy for the PNS solutions. A full second-order scheme is also discussed. Separation, trailing edge...
and stagnation point flow are evaluated. The effects of normal pressure gradients for laminar and turbulent flows are compared. A multi-grid procedure is applied in order to speed convergence rates for fine meshes and/or large computational domains.
Globl PNS Solutions for Laminar and Turbulent Flow
S.G. RUBIN and D.R. REDDY

AIAA 6th COMPUTATIONAL FLUID DYNAMICS CONFERENCE
July 13-15, 1983 / Danvers, Massachusetts

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1633 Broadway, New York, NY 10019

Approved for public release; distribution unlimited.
Abstract

A multi-sweep relaxation procedure is applied for inviscid and parabolized (pressure-elliptic) Navier-Stokes (PNS) equations. Boattail, finite flat plate and NACA 0012 airfoil geometries are considered for incompressible and subsonic inviscid, laminar and turbulent flow, The equations are written in a conformal body fitted coordinate frame and differenced on a staggered grid in order to give second-order accuracy for the inviscid flow and somewhere between first and second-order accuracy for the PNS solutions. A full second-order scheme is also discussed. Separation, trailing edge and stagnation point flow are evaluated. The effects of normal pressure gradients for laminar and turbulent flows are compared. A multi-grid procedure is applied in order to speed convergence rates for fine meshes and/or large computational domains.

1. Introduction

The reduced form of the Navier-Stokes equations originally termed parabolized Navier-Stokes (PNS) and more recently semi-elliptic, partially parabolic or thin layer are considered herein by relaxation methods for the evaluation of incompressible and subsonic flows with strong pressure interaction and/or separation. Previous analysis by the authors and solutions for laminar incompressible flow for trough and boattail configurations are given in references 1, 4, for subsonic and transonic flow over a cone-cylinder-boattail geometry in references 8, 7 and for supersonic flow over a cone in reference 9. The present procedure is applicable to incompressible as well as viscous interacting flow and can be classified as intermediary between interacting boundary layer theory and conventional Navier-Stokes or PNS technique.

The PNS equations were first applied for hypersonic problems9,12 where the contribution of the pressure gradient p_x in the longitudinal (x) momentum equation is negligible and can be neglected. The system is then mathematically parabolic and can be solved as an initial value problem by marching techniques. For lower Mach numbers, where p_x must be retained, an elliptic influence associated with the pressure interaction through the subsonic portion of boundary layer appears in the PNS system.10,11 Single sweep marching then leads to an ill-posed initial value problem9,12 and exponentially growing departure solutions appear for step sizes $\Delta x = (\Delta x)_{\text{min}}$, where $(\Delta x)_{\text{min}}$ is proportional to the extent of the subsonic portion of the flow.13

Alternatively, an eigenvalue analysis13 has shown that the p_x term can be structured so that $p_x = (p_x) + (1 - \lambda) (p_x)_{\text{ell}}$ where (p_x) is a function of a local Mach number M and $0 < \lambda < 1$, $(0) = 0$, $(1) = 1$. The term $(p_x)_{\text{ell}}$ represents the parabolic (marching) contribution to p_x and $(1 - \lambda) (p_x)_{\text{ell}}$ represents the elliptic contribution to p_x. This latter term contains the upstream influence. If included in a marching calculation where the $M > 1$, the ill-posedness of the initial value problem is once again in apparent with the appearance of the departure solutions that reflect different downstream boundary conditions for the pressure. The $(\Delta x)_{\text{min}}$ and (p_x) descriptions can be reconciled by defining Δx as $\Delta x = \Delta x_{\text{ell}}$ in the general marching analysis. For given Δx, (Δx) and therefore Δx vary across the subsonic layer in order to obtain departure free marching solutions. This procedure is inconsistent for flows where p_x is important.

In recent papers by the authors1-5 it has been shown that for incompressible flow, $(\Delta x)_{\text{min}}$ is proportional to the total extent of the computational boundary layer δ_b in the surface normal direction. This implies that for $\Delta x \cdot \lambda$, $(\Delta x)_{\text{min}}$, or with $(0) = 0$ the entire p_x contribution is elliptic and therefore must be neglected for departure free single sweep marching procedures. For subsonic flows, $\lambda \approx 1$ over a range of y values so that $(\Delta x)_{\text{min}} \approx 1$. However, from the p_x split of reference 13, shown previously, it is seen that (Δx) for subsonic flow is reduced by the factor $(1 - \lambda)$ over the value obtained in references 2-5 for incompressible flow, i.e., $(\Delta x)_{\text{min}} = \lambda (1 - \lambda) (\Delta x)_{\text{ell}} = 0$.

In order to circumvent the ill-posedness of single sweep PNS methods, a global pressure relaxation or multiple marching procedure has been proposed by the authors1-8 for the entire Mach number range, i.e., incompressible to supersonic flow. This requires an appropriate and exact "forward" or mid-point difference treatment of the p_x contribution since this term alone (for attached flow) contains the upstream or elliptic influence. Significantly, only the pressure (and velocities in regions of reversed flow) must be stored during the relaxation process. This leads to a significant reduction over conventional Navier-Stokes and PNS methods.

Consistent $(\Delta x \approx \text{arbitrary})$, departure free $(\Delta x = 0)$ and rapidly convergent solutions have previously been obtained for laminar incompressible1-3, subsonic6,12 transonic2 and weakly interacting supersonic8 flows. Strong pressure interactions and separation have been captured with the global PNS procedure. Several differencing procedures, the stability of single pass and global relaxation and an analysis of the effective poison pressure and vorticity equations have been presented in earlier studies.1-5
In the present paper, the difference equations describing the PNS equations are defined on a partially staggered grid. This leads to a modified interpretation of the discrete p_{x} approximation.

A multi-grid line relaxation procedure that reduces computer effort and storage is outlined. The convergence properties and the accuracy of the discrete system is discussed for inviscid, laminar and turbulent modeling. The applicability of the relaxation procedure is demonstrated for inviscid flow. Convergence studies are presented for an axisymmetric bow-tail configuration. Incompressible and low-speed compressible flow results are then discussed for laminar and turbulent flow over a finite flat plate and a NACA 0012 airfoil at zero incidence. Of particular interest is the behavior near the trailing edge, the stagnation point and in regions of separation. In addition, the importance of the normal pressure gradients in these regions will be compared for laminar and turbulent flow conditions.

2. Governing Equations

The governing PNS system considered here is written in a conformal coordinate frame (ξ, η) for the primitive variables, pressure p, density ρ, temperature T, viscosity coefficient μ, and velocities u, v. The transformed cartesian coordinates $x = f(\xi, \eta)$ along the surface and $\eta = g(\xi, \eta)$ normal to the surface are related to the (ξ, η) physical coordinates through the transformation $r = f(\xi)$, where $z = x + iy$. The metric $h = |f'(\xi)|^2$ and $h_{\eta} - \partial = h(\eta')$. The metric $h_{\eta} = \eta^2$, where $\eta = 1$ for axisymmetry.

Continuity

\[(h \nu u)_\xi + (\eta y v)_\eta = 0 \]

\[-\text{momentum} \]

\[\frac{1}{h} \frac{\nu}{h} (h \nu u^2)_\xi + \frac{1}{h} \frac{\nu}{h} (\nu y v^2)_\eta + (\nu y v^2)_{\xi} + \mu \rho \left(\frac{\nu}{h^2} (\nu y v^2)_{\xi} + \frac{1}{h^2} (\nu y v^2)_{\eta} \right) \]

\[-\text{momentum} \]

\[p = \rho (\nu y v^2)_{\xi} + (\nu y v^2)_{\eta} + \frac{1}{h} \frac{\nu}{h} (h \nu u^2)_{\eta} \]

Energy

\[H = \frac{\nu}{2} + \frac{\nu^2}{2} = H_{\xi} = \text{constant} \]

State; Viscoity

\[p = \rho H; \quad \eta = \phi(T) \]

For the present study only adiabatic conditions are considered.

As explained in greater detail in earlier studies\cite{1,2,3}, the version of the PNS equations defined here neglects longitudinal diffusion effects in the $-\text{momentum}$ equation (2), as well as all diffusion terms in the normal $-\text{momentum}$ equation (3); these terms, in the appropriate streamline coordinate frame, are no more important than those already neglected in (2). The continuity (1) and normal momentum equations are then first-order in $(\nu, \nu y v, \nu y v)$, and second-order in $(\nu y v, \nu y v)$. The density is obtained through an iterative process at each location, see references 6-8. This allows for a simplification in the treatment of the p_{x} term and works quite well up to transonic speeds.\n
3. Difference Equations and Solution Technique

The equations (1-5) are differenced on the staggered grid of figure 1 as shown for incompressible flow.

\[\text{Fig. 1. Staggered Grid - Incompressible Flow.} \]

Both first- and second-order accurate systems of discrete equations have been developed.\cite{3,5} Significantly, the first-order system given below, as equations (6-8), is, in fact, second-order accurate for incompressible inviscid flow. This is particularly important as the PNS system is used to evaluate both viscous and inviscid regions. Therefore, we would expect that overall accuracy will fall somewhere between first and second order. This will be demonstrated in the following sections. The full second-order system is given in references 3-5, and will not be repeated here. This system is more complex, requires many more operations, and is very sensitive to coordinate transformation, regions of large curvature, or large longitudinal gradients as in the trailing edge flow. The accuracy of this system has been tested for a semi-infinite flat plate where these effects are negligible. The second-order character of the error has been confirmed.\cite{5} However, for the reasons already cited, the "discretized or "half-and-one-half"-order system\cite{6-8} is considered more suitable for the present applications. The equations are shown here for simplicity in non-conservation cartesian coordinates for the flat plate geometry and a uniform mesh in x and v. In fact, non-uniform meshes, conservation equations and conformal
coordinates are used throughout.

Continuity: centered at \(i,j \) on figure 1

\[
[(u)_{i,j} - (u)_{i-1,j} + (v)_{i,j-1} - (u)_{i-1,j-1}]/2 + \frac{\Delta x}{\Delta y} [(v)_{i,j} - (v)_{i,j-1}] = 0
\]

\(e\): this equation should apply if the density is coupled with the velocities as well as the pressures in subsonic flow. For subsonic flow, the structure discussed changes in maximum pressure and description is exact only for incompressible flow. The total momentum becomes centered at \(i,j \), although, this superscript has been dropped from the \((u,v,p) \) calculation. However, if the density is treated iteratively, as in the artificial compressibility procedure for transonic flow, it is possible to consider the fully elliptic (-0) form for \(p \). This has been applied for subsonic \(n \) and transonic \(m \) and supersonic \(n \) cases. For supersonic flows with \(v_{/\sqrt{M}} > 1 \), convergence will however be slower than with the exact treatment of (9).

In this procedure \(p_{i+1,j} \) and \(p_{i+1,j} \) are always located at the positions shown on figure 1. For supersonic regions the exact differencing would be \(p \) = \((p_{i+1,j} - p_{i,j})/\Delta x \), so that the error is of the form \((p_{i+1,j} - p_{i,j})/\Delta x \), i.e. an iterative time term that vanishes when convergence is achieved.

If the exact treatment (9) is used with density iteration, then it is appropriate to rewrite (9)

\[p_i = \frac{p_{i+1,j} - p_{i+1,j} - 2\Delta x I_{i,j}^n + p_{i+1,j}}{\Delta x} \]

where the (*) denotes the latest local iterative value during the \(n \)th global iteration. For \(\Delta x \) at local convergence

\[p_i = \frac{p_{i+1,j} - p_{i+1,j}}{\Delta x} \]

In this procedure, the pressure at the \(u_{i,j} \) location of figure 1 becomes \(p_{i,j} \) \((1-\Delta x) p_{i+1,j} \) and global convergence is accelerated for supersonic points. Both methods have been applied successfully here and in references 6-8. Equation (10) is directly obtainable from (9), if \(p_{i+1,j} \) is approximated by \(2p_{i,j} - p_{i,j-1} \) so that the two approaches differ only in truncation error.

The temperature, density and viscosity coefficient are obtained from (4) and (5). A linear dependence relationship has been assumed herein. When these quantities have been updated, the vector

\[
\begin{pmatrix}
u \\
p_{i,j}
\end{pmatrix}
\]

is re-evaluated until some specific degree of convergence, usually \(10^{-4} \) in sequential steps, is achieved. The nonlinear system is quasi-linearized in a standard manner \(3 \) and nonlinear terms are updated at the same time as the density, viscosity, etc. After final convergence at location \(i,j \), the procedure continues to \(i+1,j \), etc.

The tridiagonal linearized system (6-8) is solved for \(\begin{pmatrix}
u \\
p_{i,j}
\end{pmatrix} \) by the standard LU decomposition. The total line relaxation procedure continues to the right hand boundary. The \(\Delta \) terms are then updated and the marching process is repeated. The solution procedure is terminated when the changes in maximum pressure and skin friction between global iterations is less than \(10^{-4} \). Line relaxation is considered most efficient for the present analysis as it minimizes storage requirements. More efficient procedures, such as AAD or CSIP would require increased storage for the velocities as well as the pressure. Since our aim is to reduce storage requirements for future three-
dimensional applications, simple line relaxation with a multi-grid corrector, to be discussed shortly, was chosen.

4. Boundary Conditions

For the primitive variable system (6-8) on the staggered grid of figure 1, the following boundary conditions apply:

At the inflow \(\xi = 0 \): \(u'(0^+) = U(\xi) \) and \(v'(0^+) = v(\xi) \), \(U(\xi) = +U(\xi) \), where \(\xi \) is the inflow vorticity; for uniform conditions \(U = 1 \) and \(V = 0 \) (zero vorticity). A condition for the pressure is not required for incompressible flow. As seen from figure 1, the inflow pressure is calculated during the first marching step.

At the upper surface \(\xi = n \): \(u = 1 \), \(p = 0 \);

i.e., free-stream conditions are applied. This requires that \(\xi \) be sufficiently large, e.g., outside of the domain of the triple deck interaction. The upper boundary could be moved closer to the surface by applying conditions similar to those of interacting boundary layer theory; however, for the present calculations, the fully inviscid evaluation was included. A boundary condition on \(v \) is not required.

At the outflow \(\xi = 1 \): Only the pressure \(p'(1^-) \) or derivative \(p'(1^-) \) are prescribed. For the present calculations, both \(p = 0 \) and \(p = 0 \) were applicable. There are only slight differences in the solutions.

At the wall \(\xi = 0 \): For viscous flow \(u'(0^-) = 0 \) is specified. For inviscid flow only \(v'(0^-) = 0 \) is required. A boundary condition on the pressure is not required.

Significantly pressure boundary conditions are often specified at the upper and outflow boundaries. As shown in references 6, 7, the equations (6-8) can be manipulated to provide an effective Poisson pressure solver: the remaining pressure boundary conditions \(u = 0 \) and \(\xi = 0 \) (Neuman type), are implicitly imposed and are determined directly from the original difference equations. There is no need to apply additional terms to the Poisson equation and the solution is obtained only indirectly, as is commonly believed for most incompressible flow procedures.

A Converging Multi-Grid Procedure

A sparsity analysis of references 1-5 for a two-dimensional incompressible flow reveals that the linear matrix equation of the relaxation procedure is of

\[
\frac{1}{\Delta \xi} \frac{p'(0^-)}{p'(1^-)} = 1 - \frac{1}{\Delta \xi} \frac{v'(0^-)}{v'(1^-)}
\]

the rate of convergence increases markedly. It is interesting to note that \(\xi = 1 \), which leads to a convergence factor for single sweep methods,

\[
\frac{1}{1 - \frac{1}{\Delta \xi} \frac{v'(0^-)}{v'(1^-)}}
\]

implies more rapid convergence with large regions of high subsonic or supersonic Mach numbers and fixed \(v'(1^-) \) as \(\xi = 1 \). In order to improve the convergence rate, a one-dimensional (in \(\xi \)) multi-grid procedure following the full approximation scheme of reference (14) has been applied. This approach is less efficient, in terms of storage requirements, than a full two-dimensional multi-grid application; however, relaxation for \(p = 0 \) is more effective in the \(\xi \)-direction and the calculation is fully implicit in \(\xi \). Also, a highly non-uniform mesh is required to accurately describe the boundary layer, triple deck and inviscid regions. This is not ideally suited for interpolation required by the multi-grid procedure. Of particular note, error transfer from coarse to fine grids is applied only for the pressure, even in regions of reversed flow where the velocities \(v'(0^-) \) and \(v'(1^-) \) are also relaxed. These values are fixed on each grid from the previous global (\(n+1 \)) iteration. Since the separation zones are of considerably different extent on each grid, the transfer process for the velocities was considered to be a source of possible difficulty. The present procedure works quite well for most of the problems considered here and is discussed in greater detail in references 4, 5.

The effects of the multi-grid procedure on the convergence properties are shown in figure 2 for a trough geometry discussed previously in references 4, 5. Similar results have been found for the flat plate configuration. When large regions of separated flow occur, the coarse grid corrections are less effective and the multi-grid procedure appears to enter a limit cycle. For this reason, the coarse grid solutions were simply applied as
fine grid initializations. This uni-directional process was still a considerable improvement over direct calculations on the finest grid. Figure 2 depicts the significant reduction in iteration count with the multi-grid procedure. Figure 3 depicts the sensitivity of the pressure solution to mesh width for the trailing edge triple-deck interaction. The skin friction is much less grid dependent. This behavior was found for other geometries as well.

Finally, the convergence rate, for a fixed ζ mesh, as a function of the outer boundary location y_M is shown in figure 4. The results are consistent with the prediction that convergence will deteriorate as (x/y_M) decreases. With the multi-grid correction however (figure 2), this sensitivity is greatly reduced and the parameter (x/y_M) is less critical.

Fig. 4. Convergence Rate for Different (x/y_M) (Semi-Infinite Flat Plate).

6. Solutions

(i) Inviscid Flow - Boattail

Since the PNS equations are applied here for the evaluation of the complete viscous/inviscid interaction, the effectiveness of the relaxation procedure, for the discrete system (1-5), for inviscid flow is important. For supersonic flow with a fitted shock boundary, the inviscid region is relatively small; however, for subsonic or transonic flows, these regions can be quite extensive and the overall convergence rate of the PNS procedure will be dependent on the "inviscid" convergence properties. In order to test the present method, solutions were obtained for the inviscid flow (slip boundary conditions) over an axisymmetric boattail configuration. The results are shown in figure 5, without a multi-grid correction, and compared with potential flow solutions obtained with the CSIP procedure. The initial conditions are somewhat
different and therefore the potential solutions start with a slightly larger error. The figure clearly shows that the convergence rate of the line relaxation procedure for the pressure described herein is not significantly different than that for the potential equation and the CSIP. This is an important and somewhat surprising result. Moreover, as seen in figure 6a, the solution is essentially second-order accurate. This was discussed previously; further analysis is given in references 4, 5 where it was shown that on the staggered grid of figure 1, the inviscid discrete equations for the pressure and velocities are in error by $O(h^2, n^2)$, when the vorticity is defined by

\[
\omega_{i,j} = \frac{u_{i+1,j} - u_{i,j} + u_{i,j-1} - u_{i-1,j-1}}{2\Delta y}.
\]

These results confirm the validity and accuracy of the relaxation procedure for inviscid regions. An accuracy plot for the viscous boattail discussed previously is given in figure 6b. Note that the exponent 1.8 is obtained. Similar results were found for the trough configuration. This indicates that the overall accuracy of the system (6-8) is, as predicted, somewhere between first and second order.

(ii) Finite Flat Plate - PNS

Solutions for the full PNS system are given in references 3-5 for the laminar incompressible flow over a finite flat plate. The pressure coefficient given in figure 3 for two grids is shown in figure 7. These results are repeated here in order to demonstrate the excellent agreement obtained with interacting boundary layer solutions for this geometry. The trailing edge pressure and skin friction are predicted very accurately and for the staggered grid the minimum pressure is obtained at the trailing edge of the plate. Due to the discontinuity in pressure

![Fig. 6a. Accuracy Plot for Inviscid Flow on Boattail (Juncture Angle 15.8°).](image)

![Fig. 6b. Accuracy Plot for Boattail (Juncture Angle 10°) Laminar Flow Re = 1000.](image)

![Fig. 7a. Flat Plate Trailing Edge Pressure (Laminar Flow).](image)

![Fig. 7b. Flat Plate Trailing Edge Skin Friction and Wake Centerline Velocity (Laminar).](image)
gradient at the trailing edge, the accuracy factor was 1.35, a value somewhat less than that found for the boattail and trough.

For the present study we are particularly concerned with the trailing edge behavior for turbulent flow conditions. The two-layer Cebeci-Smith eddy viscosity model has been assumed for the Reynolds stress term in the diffusion equation on the plate, and a modified version given in reference 16 has been applied in the wake. Reynolds stresses have been neglected in the \(\tau \)-momentum equation. The two-layer model should be adequate for this unseparated flow problem.

Limited interacting boundary layer results have been presented in reference 17. A definitive triple deck theory has not been completed for this flow. One of the open questions concerns the influence of normal pressure gradients.

Solutions for the pressure coefficient, skin friction and wake centerline velocity are shown in figures 8a and 8b. The centerline velocity and pressure results are in reasonable agreement with interacting boundary layer and experimental values. The normal pressure gradients at the trailing edge (figures 9a and 9b), however, are quite different than those found for laminar flow, (figure 9a). In the latter case virtually all of the pressure change occurs outside of the boundary layer, i.e., in the inviscid region or outer deck of the triple deck structure. For the turbulent flow, approximately 60% of the pressure change occurs inside the boundary layer (figure 9b). Therefore, the longitudinal pressure distribution (figure 8a) at the surface (centerline) is considerably different than that at the boundary layer edge. This clearly has some implication with regard to the applicability of conventional interacting boundary layer methods that neglect these gradients. Similar effects have been found for the boattail geometry.

It is surprising that the values of the centerline velocity (figure 2b) are in such good agreement. Further study on the effect of normal pressure gradients for turbulent flow is certainly suggested.
Laminar and turbulent flow over a NACA 0012 at zero incidence is considered for incompressible and subsonic ($M = 0.3$) flow. The two-layer eddy viscosity model is applied once again. This should be suitable for non-separated flow; however, for the separated flow solutions, the adequacy of this model could be questioned. For the mild separation regions occurring with the airfoil geometry, the errors incurred with this closure model should be relatively small. This is not true for regions with massive separation zones. The metric h in the governing equations (1-3) is obtained from a conformal mapping procedure described in previous studies.

Laminar flow solutions have been obtained for Reynolds numbers, $Re = 5000, 10000, 12500$. For the larger value of Re a small separation region appears near the trailing edge, figures 11a, 11b. A detailed study of the front stagnation point for a series of successively finer grids has provided evidence that the PNS approximation, in an appropriate body fitted coordinate system, can accurately evaluate the flow in this region. Recall, that the exact Navier-Stokes equations for stagnation point flow do not include diffusion effects along the surface or diffusion terms in the normal momentum equation. Comparisons of the present PNS stagnation point shear stress with the exact Navier-Stokes value of 1.25 are given for several grids in figure 12. For the finest two grids, the agreement is quite good.

Turbulent flow solutions are shown in figures 11a and 11c for $Re = 5.35 \times 10^5$. Based on experimental data, transition has been prescribed at a distance along the airfoil $x/c = 0.4$, where c is the chord length. Separation does not occur. The agreement with the data is reasonable (figure 11a) considering the fact that the grid resolution is clearly inadequate for the region $x/c < 0.4$, where the flow is laminar at the very large Reynolds number. Finally, the normal pressure gradient for the laminar and turbulent flows is shown in figure 11b, c. Behavior similar to that found for the trailing edge is obtained for the airfoil configuration.
(iv) Other Geometries

Solutions with large separation regions have been presented for the boattail geometry. Both laminar and turbulent flows have been considered. Finally, for subsonic and transonic flow, laminar solutions over a cone-cylinder-boattail configuration, for which separation occurs, have been presented in references 6, 7. Initial results for supersonic flow over a cone have been given in reference 8. Additional supersonic studies will be presented in future papers.

7. Summary

Laminar and turbulent solutions for finite flat plate and NACA 0012 airfoil geometries have been obtained with a multi-sweep PNS relaxation procedure. The method is unconditionally stable, departure free, separation singularity free and describes separation, stagnation point and trailing edge behavior. With the difference equation given on a partially staggered grid, the inviscid equations are second-order accurate and the full PNS system is somewhere between first and second-order. The convergence rate for inviscid flow is comparable to that obtained for the full potential equation. For fine meshes or large values of the upper boundary y_M, the convergence rate slows considerably. A one-dimensional multi-grid procedure for the pressure has been applied in order to alleviate this difficulty. The solutions are in good agreement with previous results or data and the effects of normal pressure gradients for turbulent flows are shown to be significant even within the boundary layer. The method is applicable for flows with strong pressure interaction and large separation
regions when the difference equations are written in an appropriate streamline coordinate system. Other studies for cone, trough, boattail, cone-cylinder-boattail and base flows have established the procedure as applicable for subsonic, transonic and supersonic flow.

Acknowledgement

This research was supported by the Air Force Office of Scientific Research under Grant No. AFOSR-80-0047.

References

