The Role of Phonons in the Excitation and Relaxation of Adspecies

by

A. C. Beri, Ki-Tung Lee and Thomas F. George

Prepared for Publication

in

Proceedings of the International Conference on Lasers '83, ed. by R. C. Powell (STS, McLean, Virginia, 1984)

Department of Chemistry
University of Rochester
Rochester, New York 14627

January 1984
The Role of Phonons in the Excitation and Relaxation of Adspecies

A. C. Berl, Ki-Tung Lee and Thomas F. George

The role of phonons in the energy flow between the adbond and the surface is considered. The latter approach looks further at local heating via direct excitation of surface atoms. It is seen that the Markovian approximation is in general inadequate, and that local heating is an important mechanism for desorption.

THE ROLE OF PHONONS IN THE EXCITATION AND RELAXATION OF ADSPECIES

A. C. Berl, Ki-Tung Lee and Thomas P. George
Department of Chemistry
University of Rochester, Rochester, New York 14627

Abstract

The IR laser excitation of an adbond is studied by both a quantum mechanical generalized master equation approach and a classical generalized Langevin approach. The role of phonons in the energy flow between the adbond and the surface is considered. The latter approach looks further at local heating via direct excitation of surface atoms. It is seen that the Markovian approximation is in general inadequate, and that local heating is an important mechanism for desorption.

Introduction

The coherence, monochromaticity and high energy density of lasers have recently been exploited to influence dynamical processes occurring at a solid surface. The many diverse applications include catalysis, localized melting, chemical vapor deposition and charged particle generation. While some of the macroscopic aspects of the phenomena occurring during the laser-stimulated surface processes have been studied theoretically, a fundamental microscopic understanding is lacking. In this paper we shall address the role of phonons in the excitation and relaxation of adspecies. In Section II we present a quantum mechanical approach utilizing the generalized master equation to obtain the probability distribution of a laser-excited adbond. In Section III we present a classical generalized Langevin approach, with application to flash desorption. Here, laser excitation of surface atoms in addition to the adbond is also considered. Conclusions are presented in Section IV.

Quantum Generalized Master Equation

In a recent paper we formulated a general theory of vibrational excitation of an adatom-surface bond (adbond) by an IR laser, accompanied by relaxation via vibrational energy exchange between the adbond and lattice vibrations. That formalism is based on a first-principles Hamiltonian approach utilizing first-order perturbation theory, and the effective potential appearing in the zero-order Hamiltonian for the adbond is assumed to be a sum of pair potentials between the adatom and the lattice atoms at their equilibrium positions. For the sake of simplicity, we modeled a process in which a short pulse of radiation excites the vibrational states of the adbond which subsequently decays via energy transfer to the phonons. Here we extend that earlier work to include more general types of laser excitation and introduce an alternative type of effective potential.

Time Evolution of the Laser-Adbond-Solid System

We are primarily interested in the time evolution of the vibrational states of the adbond, which is excited by IR laser radiation and is coupled to the phonon modes of the solid. We choose a laser whose frequency is close to a normal mode frequency of the adbond but not to any of those of the solid. The total Hamiltonian of the system can be written as

$$\hat{H} = \hat{T}_A + \sum_{a} \left[\frac{1}{2} \hat{V}_{aa} + \hat{P}_{a} \hat{P}_{a} + \frac{1}{2} \hat{V}_{aa'} \right] \hat{v}_{aa'} + \hat{H}_F + \hat{H}_R \quad (1)$$

Here \hat{T}_A is the kinetic energy operator for the adparticle, \hat{V}_a is the interaction between the adparticle and the a-th lattice atom, \hat{P}_a is the kinetic energy of the latter, $\hat{V}_{aa'}$ is the interaction energy between the a-th and a'-th lattice atoms, \hat{H}_F is the Hamiltonian for the free radiation field and \hat{H}_R is the interaction between the adbond and the laser radiation. The study of the time evolution of the vibrational states of the adbond then involves extracting the relevant information from the equations of motion of operators \hat{O} for the whole system

$$\dot{\hat{O}} = -i [\hat{H}, \hat{O}] = -i \hat{H} \hat{O} - \hat{O} \hat{H} \qquad (2)$$

In addition, we also need to specify a set of initial conditions compatible with the history of the system prior to the time the experiment is initiated.
We rewrite our Hamiltonian in the form

$$H = H_a + H_p + H_r + H_{sp} + H_{ar},$$

where

$$H_a = T_a + \frac{1}{2} \tilde{V}_a,$$

$$H_p = \frac{1}{2} \int \left(\langle \hat{a}^+ \rangle + \langle \hat{a} \rangle \langle \hat{a}^+ \rangle \right) \hat{V}_a d\tau,$$

$$H_{sp} = \frac{1}{2} \int (\hat{a}_1^+ \tilde{\hat{V}}_a^+ - \hat{a}_1 \tilde{\hat{V}}_a),$$

$$\tilde{V}_a$$ is the thermodynamic average of $$V_{ai}$$ over the initial equilibrium configuration of the phonon field:

$$\tilde{V}_{ai} = \langle V_{ai} \rangle_p = Tr_p \rho_p(0) V_{ai},$$

$$\rho_p(0)$$ being the initial equilibrium density operator for the phonon field. The adatom is now described by the Hamiltonian $$H_a$$. The radiation field is assumed to be that due to a single-mode laser of frequency $$\omega_l$$ and polarization vector $$\hat{f}$$. Accordingly,

$$H_r = \hbar \omega_l \hat{a}^+ \hat{a},$$

and, in the dipole approximation, $$\hat{f} \hat{\hat{a}} \hat{f} = 1$$, with effective adatom charge $$e_0$$,

$$H_{ar} = -ie_0 \sqrt{\frac{\hbar \omega_l}{\hbar^2 \phi}} \hat{f} \hat{\hat{a}} (\hat{a}^+ \hat{a} - 1),$$

where $$\hat{a}^+$$, $$\hat{a}$$ are creation-annihilation operators for photons, $$\tau$$ is a quantization volume and $$\hat{f}$$ is the wave vector of the radiation field.

Using the projection operator technique, we arrive at a set of coupled integro-differential equations for the matrix elements of a projected density operator $$\rho$$ for the system:

$$\rho_{yy}(t) = -2\hbar^{-2} \int dt' Re \left[\langle \Delta_{yy}(t') \Delta_{yy}^* \rangle e^{i \omega_0 \Delta t} \right] \rho_{yy}(t)$$

$$- Re \left[\langle \Delta_{yy}(t') \Delta_{yy}^* \rangle e^{-i \omega_0 \Delta t} \right] \rho_{yy}(t)$$

where

$$\rho_{yy}(t) = \langle A(t)|\rho(t)|A \rangle$$

$$\rho(t) = Tr_p Tr_r W(t)$$

with $$Tr_p$$ and $$Tr_r$$ representing traces over the phonon and radiation spaces. $$|A\rangle$$ is an eigenstate of $$H_a$$ with energy $$\omega_0$$, $$\Delta^{\omega_0}$$ is given as

$$\Delta^{\omega_0} = \left(\omega_0 - E_g \right) / \hbar,$$

and $$W(t)$$ is the density operator of the whole system.

Application of a Linear-Chain Model

In most cases of chemical interest, some charge transfer takes place between an atom and a surface during adsorption. We shall assume the atom to have an effective charge $$e_0$$ and the charge transferred to the solid to be distributed throughout the latter so that it is still essentially neutral. Image-charge effects will be important for the case of metals, but we shall think in terms of semiconductors here to keep the treatment simple.

The vibrational levels of the adatom-surface bond are dictated by the effective potential seen by the adatom. This potential is quite complex, being a result of electrostatic and exchange forces due to the nuclei and electrons of the solid, and is not known for any real system. A simple representation of the effective potential, however, can be obtained by assuming independent pairwise interactions between the adatom and each lattice atom and summing over all lattice atoms. The advantage of such a procedure is that the influence of lattice atoms more than a few lattice constants away from the adatom is negligible (ten lattice atoms should be sufficient for most solids). If the sum of pair potentials can further
be fitted to a single analytic potential, the vibrational levels of the adatom-surface bond reduce to those of a diatomic molecule.

We define a one-dimensional coordinate system with origin at the mean position of the outermost lattice atom. Let \(z \) be the position of the adatom and \(z_i \) the position of the \(i \)-th lattice atom measured in units of \(\beta(0)^{-1} \) to be defined later,

\[
x_i = z_i(0) + u_i = -(i-1)a + u_i, \quad i=1,2,...
\]

where \(u_i \) is the displacement of the \(i \)-th lattice atom from its equilibrium position \(z_i(0) = -(i-1)a \); all in units of \(\beta(0)^{-1} \), assuming a monatomic lattice with uniform spacing \(a \). The interaction potential at the position of the adatom is then a sum of pairwise Morse potentials between it and all the atoms of the chain,

\[
V(z, z_i) = \sum_i v(z_i) \equiv \sum_i V_{al} ,
\]

where \(z_i(0) \) is the position of the minimum of \(v(z) \), \(\beta(0) \) is now identified as the Morse exponent parameter and \(D(0) \) is the well depth of the Morse potential. The zero-order adsorb Hamiltonian becomes

\[
H_z = -\frac{(\beta(0)^2)\frac{\hbar}{2a} + D(0)}{2a} \left[-2(z-z_0) - (z-z_0) \right] ,
\]

where \(D_0 \) and \(z_0 \) are effective parameters which involve the pair-potential parameters \(D(0) \) and \(z_0(0) \) and the lattice parameters \(a \) and \(\langle\langle u^2\rangle\rangle \), where the last quantity is the mean square displacement of a lattice atom.

Within this model, the generalized master equation, Eq. (10), becomes

\[
\dot{\rho}_{ss}(t) = 2\hbar^{-2} \sum_{\mu,\mu'} \sum_{l,k} \int_0^t dt' \left[\rho_{ss}(t') \left\{ \left(\mu_{\mu'} \right) L_{l,k}^{(s-s')} \right\} e^{-i\omega_{ss'} t'} + \rho_{ss'}(t') \left\{ \left(\mu_{\mu'} \right) L_{l,k}^{(s-s')} \right\} e^{i\omega_{ss'} t'} \right] \rho_{ss'}(t-t') + A_{ss}(t-t') ,
\]

where the \(A \)'s are time-independent coefficients:

\[
A_{l,k}^{ss'}(s-s') = (-1)^{\mu_1 + \mu_2} \frac{4[D(0)]^2}{\hbar^2} \left[-\mu(s-z_0(0)) \right]_{ss'} \left[-\mu'(s-z_0(0)) \right]_{ss'} \times \exp \left[-\mu'(l-1)a + \mu^2 \frac{z_0(0)^2}{2} \langle u^2 \rangle \right]
\]

and the \(Y \)'s are phonon displacement correlation functions,

\[
Y_{l,k}^{ss'}(t) = \mu \langle u_l(t)u_k(t) \rangle
\]

The term \(\dot{\rho}_{ss'}(t) \) is the contribution to \(\rho_{ss'}(t) \) due to the radiation field. Replacing \(\dot{\rho}_{ss'}(t) \) by \(F_{ss'} \), we can write Eq. (18) as

\[
\dot{F}_{ss'}(t) = \int_0^t \left[\sum_{l,k} \left[\left\{ \frac{4[D(0)]^2}{\hbar^2} \left[-\mu(s-z_0(0)) \right]_{ss'} \left[-\mu'(s-z_0(0)) \right]_{ss'} \times \exp \left[-\mu'(l-1)a + \mu^2 \frac{z_0(0)^2}{2} \langle u^2 \rangle \right] \right] \right] \right] \rho_{ss'}(t-t')
\]

where \(K \) consists of contributions due to the phonons and the radiation field,

\[
K_{ss'}(t') = \rho_{ss'}^{(P)}(t') + \rho_{ss'}^{(R)}(t')
\]

For a system such as oxygen on germanium, the amplitude of \(E_{ss'} \) is seen in Fig. 1 to be many orders of magnitude larger than that of \(E_{ss'}^{(p)} \) due to a 1 W/cm² laser. However, the
Fig. 1. Kernel functions $K^{(p)}$ and $K^{(q)}$ for O/Ge. One-, two- and three-phonon processes are included. The laser-adbonds mismatch is 3 cm$^{-1}$.

"frequency" of $K^{(p)}$ is dictated by the Debye frequency of the solid, whereas that of $K^{(q)}$ depends on the degree of resonance between the laser and the levels of the adbond and can be made arbitrarily small within the rotating-wave approximation. For probability functions P_γ that change slowly during the vibrational period of typical phonons, the contribution due to $K^{(q)}$ will be subject to cancellations, whereas that due to $K^{(p)}$ will not. Whether this dynamical effect can bridge the gap due to the difference in magnitude of the amplitudes of $K^{(q)}$ and $K^{(p)}$ depends on the sharpness of the laser-adbonds resonance, the details of $K^{(q)}$ and the total irradiation time.

An important consequence of the nature of $K^{(p)}$ is that the dynamics is seen to be non-Markovian since there is no indication that $K^{(p)}$ is localised in time. In general, one expects very complicated nonlocal effects due to the combined laser phonon fields, and great caution must be used when applying a Markovian approximation to such processes. Numerical investigation of the detailed time evolution of a number of laser-adbonds-solid systems is in progress and should provide some more definitive answers.

Classical Generalised Langevin Equation

In this section, we shall formulate the problem of flash desorption via a Langevin approach. We model the problem as an incoherent process. Thus, the motions of the phonons serve as a heat bath for the adspecies.

We start with the equation of motion for the i-th atom in a three-dimensional solid

$$m_i \ddot{r}_i = -\frac{1}{\hbar} \sum_{j=1}^{N} \left(|\mathbf{r}_i - \mathbf{r}_j| \right)^2 \left[\alpha_{ij} r_{ij}^2 + \beta_{ij} r_{ij}^4 + \gamma_{ij} r_{ij}^6 + \delta_{ij} r_{ij}^8 + \epsilon_{ij} r_{ij}^{10} \right] + \frac{1}{\hbar} \sum_{j=1}^{N} \left(|\mathbf{r}_i - \mathbf{r}_j| \right)^2 \left[\alpha_{ij} r_{ij}^2 + \beta_{ij} r_{ij}^4 + \gamma_{ij} r_{ij}^6 + \delta_{ij} r_{ij}^8 + \epsilon_{ij} r_{ij}^{10} \right] \cdots \quad (33)$$

where m_i and r_i are the mass and position of the i-th solid atom, and β_{ij}, γ_{ij}, δ_{ij}, etc. are the elastic and higher-order nonlinear force constants. For simplicity, let us consider the atoms to have unit masses and also assume the nonlocal, nonlinear effects to be unimportant. Hence, Eq. (33) reduces to

$$\ddot{r}_i = -\frac{1}{\hbar} \sum_{j=1}^{N} \left(|\mathbf{r}_i - \mathbf{r}_j| \right)^2 \left[\alpha_{ij} r_{ij}^2 + \beta_{ij} r_{ij}^4 + \gamma_{ij} r_{ij}^6 + \delta_{ij} r_{ij}^8 + \epsilon_{ij} r_{ij}^{10} \right] + \frac{1}{\hbar} \sum_{j=1}^{N} \left(|\mathbf{r}_i - \mathbf{r}_j| \right)^2 \left[\alpha_{ij} r_{ij}^2 + \beta_{ij} r_{ij}^4 + \gamma_{ij} r_{ij}^6 + \delta_{ij} r_{ij}^8 + \epsilon_{ij} r_{ij}^{10} \right] \cdots \quad (34)$$

We rewrite Eq. (34) in matrix notation as
\[
\mathbf{f} = -\mathbf{H} + \mathbf{\Gamma}' \mathbf{H} + \mathbf{\Gamma}' \mathbf{H} + \mathbf{\Gamma}' \mathbf{H} + \cdots
\]
(28)

with \(\mathbf{\Gamma}'\) and \(\mathbf{\Gamma}\) diagonal matrices, \(r_{i1} = r_1\) and \(v_{i1} = v_1 = r_2^2\).

We now define projection operators \(\mathbf{P}\) and \(\mathbf{Q}\) such that:

\[
\mathbf{f}(t) = \mathbf{P} \mathbf{f}(t), \quad \mathbf{g}(t) = (1-\mathbf{P}) \mathbf{f}(t) = \mathbf{Q} \mathbf{f}(t), \quad \mathbf{PQ} = \mathbf{Q}, \quad \mathbf{PP} = \mathbf{P}
\]
(26)

\(\mathbf{g}(t)\) are coordinates of those solid atoms interacting with the adspecies, and \(\mathbf{m}(t)\) are coordinates of the remaining solid atoms. Applying these projection operators to Eq. (25), we obtain

\[
\mathbf{f}(t) = [-\mathbf{\Gamma} \mathbf{PP} + \mathbf{\Gamma}' \mathbf{PP} + \mathbf{\Gamma}' \mathbf{PP} \mathbf{\Gamma}' + \cdots] \mathbf{g}(t)
\]
(27)

and

\[
\mathbf{g}(t) = [-\mathbf{\Gamma} \mathbf{QQ} + \mathbf{\Gamma}' \mathbf{QQ} + \mathbf{\Gamma}' \mathbf{QQ} \mathbf{\Gamma}' + \cdots] \mathbf{g}(t)
\]
(28)

\(\mathbf{\Gamma}'\) and \(\mathbf{\Gamma}\) are diagonal matrices with \(s_{i1}(t) = s_1(t)\) and \(v_{i1}(t) = v_1(t)\), and \(\mathbf{\Gamma} \mathbf{PP} = \mathbf{\Gamma} \mathbf{PP}, \mathbf{\Gamma} \mathbf{QQ} = \mathbf{\Gamma} \mathbf{QQ}, \text{etc.}\)

In general, Eq. (28) cannot be solved analytically, so that we seek an approximate solution. First, we obtain the homogeneous solution by applying the equivalent linearization procedure. Thus, we have

\[
\mathbf{\bar{g}}(t) = \mathbf{\Gamma} \mathbf{\bar{g}}(a) \mathbf{g} + \mathbf{\Gamma} \mathbf{\bar{g}}(a) \mathbf{g} + \mathbf{\Gamma} \mathbf{\bar{g}}(a) t + \mathbf{\Gamma} \mathbf{\bar{g}}(a) t + \mathbf{\Gamma} \mathbf{\bar{g}}(a) t + \cdots
\]
(29)

where \(\mathbf{\Gamma} \mathbf{g} \) is the amplitude vector of the bath oscillators, and \(\mathbf{\Gamma} \mathbf{g} \) the frequency matrix and \(\mathbf{\Gamma} \) the phase matrix. Hence, we can write down a first-order formal solution for \(\mathbf{m}(t)\) as

\[
\mathbf{g}(t) = \mathbf{\bar{g}}_1(t) + \mathbf{\bar{g}}_2(t)
\]
(30)

where

\[
\mathbf{\bar{g}}_1(t) = \mathbf{\Gamma} \mathbf{\bar{g}}(a) \mathbf{g} + \int_0^t dt' \mathbf{\Gamma} \mathbf{\bar{g}}(a) \mathbf{g} \sin(\mathbf{\Gamma} t-t') \mathbf{\Gamma} \mathbf{\bar{g}}(t')
\]
(31)

and

\[
\mathbf{\bar{g}}_2(t) = \int_0^t dt' \mathbf{\Gamma} \mathbf{\bar{g}}(a) \mathbf{g} \sin(\mathbf{\Gamma} t-t') \mathbf{\Gamma} \mathbf{\bar{g}}(a) \mathbf{g} \mathbf{\Gamma} \mathbf{\bar{g}}(a) \mathbf{g} \mathbf{\bar{g}}(t' \cdots) \mathbf{g}(t'),
\]
(32)

and again \(\mathbf{\Gamma} \mathbf{g} \) is the amplitude vector of the bath oscillators, and \(\mathbf{\Gamma} \mathbf{g} \) the frequency matrix and \(\mathbf{\Gamma} \) the phase matrix. Hence, we can write down a first-order formal solution for \(\mathbf{m}(t)\) as

\[
\mathbf{g}(t) = \mathbf{\bar{g}}_1(t) + \mathbf{\bar{g}}_2(t)
\]
(33)

The first two terms on the RHS, which represent the harmonic approximation, are equivalent to the formalism and Adelman and Doll. The third term describes the anharmonic coupling among the y-oscillators. The rest are higher-order response terms which in general can be neglected if the set of y oscillators is sufficiently big. Thus, Eq. (33) becomes

\[
\mathbf{f}(t) = [-\mathbf{\Gamma} \mathbf{PP} + \mathbf{\Gamma}' \mathbf{PP} + \mathbf{\Gamma}' \mathbf{PP} \mathbf{\Gamma}' + \cdots \mathbf{g}(t) - \mathbf{\Gamma} \mathbf{PP} \mathbf{g}_1(t)
\]
(34)

Now, we include the motion of the adspecies to form a complete set of equations of motion. Let \(\mathbf{m}(t)\) be the coordinates of the adspecies. We then have

\[
\mathbf{g}(t) = \mathbf{\Gamma} \mathbf{g}(x(t), y(t), \mathbf{\bar{g}})
\]
(35)

\[
\mathbf{f}(t) = [-\mathbf{\Gamma} \mathbf{PP} + \mathbf{\Gamma}' \mathbf{PP} + \mathbf{\Gamma}' \mathbf{PP} \mathbf{\Gamma} + \cdots \mathbf{g}(t) + \mathbf{\Gamma} \mathbf{g}(x(t), y(t), \mathbf{\bar{g}}) + \mathbf{\Gamma} \mathbf{g}(x(t), y(t), \mathbf{\bar{g}}) - \int_0^t dt' \mathbf{\Gamma} \mathbf{g}(x(t-t'), y(t-t'), \mathbf{\bar{g}})
\]
(36)

with \(\mathbf{\Gamma} \mathbf{g}(x(t), y(t), \mathbf{\bar{g}}) = -\mathbf{\Gamma} \mathbf{g}(x(t), y(t), \mathbf{\bar{g}})\) and \(\mathbf{\Gamma} \mathbf{g}(x(t), y(t), \mathbf{\bar{g}}) = -\mathbf{\Gamma} \mathbf{g}(x(t), y(t), \mathbf{\bar{g}})\).
\[\langle B(t) E^+(O) \rangle = \hbar p \cos(\theta t) \langle g(0) g^+(0) \rangle \hbar q p = \hbar^2 T g(t) \]
where we have used
\[g(0) = \cos(\theta q) \]
and
\[\langle g(0) g^+(0) \rangle = \theta^{-2} \hbar q \]
for the canonical ensemble average. The above formalism is ideal for the study of the dynamics of flash desorption by UV radiation, provided the excited electronic potential \(V(x(t), y(t), z) \) is known. The initial vibrational temperature of the \(y \)-oscillators, which is in general higher than the bath temperature, can be chosen by means of the Franck-Condon approximation. Hence, one can study how these \(y \)-oscillators relax and transfer energy to the bath and as well as to the adspecies, which leads to (thermal) desorption. However, excited states associated with the adspecies-solid interaction are rarely known, which is the worst obstacle to solving the overall problem.

The above formalism can also be used to study IR laser-induced desorption by simply including the oscillating force (representing the driving force via the IR laser) in both Eqs. (35) and (36). We would like to point out that previous studies\(^5\) only the adbond or the internal motion of adspecies are IR active. In another words, the oscillating force is included only in Eq. (36). Here, we assume some of the surface modes \((y \)-oscillators) are also IR active, having frequency compatible with the IR frequency. Actually, this is a reasonable assumption, since these surface atoms which surround the adspecies behave quite differently than the bulk atoms. Thus, the desorption mechanism considered here is not just a resonance process as considered previously,\(^7\) but also an incoherent process which is induced by the local heating of the \(y \)-oscillators. Let \(T_y \) be the steady-state temperature of the \(y \)-oscillators and \(D_0 \) be the dissociation energy of the adbond. If \(k_B T_y > D_0 \), the desorption mechanism is an incoherent process. If \(k_B T_y < D_0 < k_B T_y + \Delta \omega \), where \(\Delta \omega \) is the frequency of the laser, the desorption mechanism is then a partially coherent process, as shown in Fig. 2. The steady-state temperature of the \(y \)-oscillators, which is in general higher than the bath temperature, is due to two complicated competing processes: multiphoton excitation and multiphonon relaxation of the surface modes. The steady-state temperature must satisfy one of the two above conditions; otherwise, an unrealistic high-power laser is required to desorb the adspecies.\(^7\) One must search for an optimum laser frequency for the system of interest in order to achieve the desired steady-state heating of the \(y \)-oscillators.\(^8\)
temperature with a laser of reasonable power density. The steady-state temperature is given by:

\[
\frac{dT_y(t_0)}{dt_0} = 0
\] \hspace{1cm} (40)

with

\[
T_y(t_0) = \frac{1}{T_B} \int_{t_0-T}^{t_0+T} dt \langle y(t)g(t)\rangle .
\] \hspace{1cm} (41)

Here, \(T \) is the period of the IR laser.

The usual shortcomings arise in this classical approach. For example, spontaneous emission and tunneling effects are not treated. Fortunately, the deterministic mechanisms of the above desorption process are the incoherent heating and single-photon absorption. Therefore, the neglect of quantum effects will only lead to a small error in the calculation.

Conclusions

Both quantum mechanical and classical treatments of the dynamical role of phonons in the excitation and relaxation of adspecies have been presented. Using a linear-chain model, the former treatment in Section II points out the inadequacy of the Markovian approximation. Furthermore, the laser pumping can be comparable to multiphonon relaxation for conditions such as a shallow potential well for the adspecies and/or very close resonance between the laser and adspecies frequencies. The latter classical treatment in Section III is better suited to a three-dimensional analysis. For example, here the response function, which is the classical analog of the kernel function used in Section II, is more easily obtained. It is seen that local heating of the surface atom by an IR laser is an important mechanism for desorption.

Acknowledgments

This research was supported in part by the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Grant AFOSR-82-0046. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon. TFG acknowledges the Camille and Henry Dreyfus Foundation for a Teacher-Scholar Award (1975-84) and the John Simon Guggenheim Memorial Foundation for a Fellowship (1983-84).

References

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Naval Ocean Systems Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>San Diego, California 92152</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OMR Pasadena Detachment	1	Naval Weapons Center
Attn: Dr. R. J. Marcus		Attn: Dr. A. B. Amster
1030 East Green Street		Chemistry Division
Pasadena, California 91106		China Lake, California 93555

Commander, Naval Air Systems Command	1	Scientific Advisor
Attn: Code 310C (H. Rosenwasser)		Commandant of the Marine Corps
Washington, D.C. 20360		Code RD-1
		Washington, D.C. 20380

Naval Civil Engineering Laboratory	1	Dean William Tolles
Attn: Dr. R. W. Drisko		Naval Postgraduate School
Port Hueneme, California 93401		Monterey, California 93940

Superintendent	1	U.S. Army Research Office
Chemistry Division, Code 6100		Attn: CRD-AA-IP
Naval Research Laboratory		P.O. Box 12211
Washington, D.C. 20375		Research Triangle Park, NC 27709

Defense Technical Information Center	12	Mr. Vincent Schaper
Building 5, Cameron Station		DTNSRDC Code 2830
Alexandria, Virginia 22314		Annapolis, Maryland 21402

DTNSRDC	1	Mr. John Boyle
Attn: Dr. G. Bosmajian		Materials Branch
Applied Chemistry Division		Naval Ship Engineering Center
Annapolis, Maryland 21401		Philadelphia, Pennsylvania 19112

Naval Ocean Systems Center	1	Mr. A. M. Anzalone
Attn: Dr. S. Yamamoto		Administrative Librarian
Marine Sciences Division		PLASTEC/ARRADCOM
San Diego, California 91232		Bldg 3401
Dr. David L. Nelson		Dover, New Jersey 07801
Chemistry Program		
Office of Naval Research		
800 North Quincy Street		
Arlington, Virginia 22217		
TECHNICAL REPORT DISTRIBUTION LIST, 056

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. J. Murday
Naval Research Laboratory
Surface Chemistry Division (6170)
455 Overlook Avenue, S.W.
Washington, D.C. 20375

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. T. Perla
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Chia-wel Woo
Department of Physics
Northwestern University
Evanston, Illinois 60201

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Robert M. Hexter
Department of Chemistry
University of Minnesota
Minneapolis, Minnesota

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60201

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. A. Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. Adolph B. Amster
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Dr. S. L. Bernasek
Princeton University
Department of Chemistry
Princeton, New Jersey 08544
TECHNICAL REPORT DISTRIBUTION LIST, 056

Dr. F. Carter
Code 6132
Naval Research Laboratory
Washington, D.C. 20375

Dr. Richard Colton
Code 6112
Naval Research Laboratory
Washington, D.C. 20375

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Professor R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 12301

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 5570
Naval Research Laboratory
Washington, D.C. 20375

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
California Institute of Technology
Division of Chemistry and Chemical Engineering
Pasadena, California 91125

Professor E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
Southampton University
Southampton S09 5NH
Hampshire, England

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853

Dr. Richard Smardzewski
Code 6130
Naval Research Laboratory
Washington, D.C. 20375
TECHNICAL REPORT DISTRIBUTION LIST, 056

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. P. Hansma
Physics Department
University of California
Santa Barbara, California 93106

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Professor T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Professor Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Captain Lee Myers
AFOSR/HC
Bolling AFB
Washington, D.C. 20332

Professor Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Professor O. Hercules
University Pittsburgh
Chemistry Department
Pittsburgh, Pennsylvania 15260

Professor N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. D. Stein
Mechanical Engineering Department
Northwestern University
Evanston, Illinois 60201

Professor A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Professor G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. David Squire
Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709