DECENTRALIZED CONTROL OF A LARGE SPACE STRUCTURE USING DIRECT OUTPUT FEEDBACK

THESIS
David V. Thyfault
Captain, USAF
AFIT/GA/AA/830-8

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

This document has been approved for public release and sale; its distribution is unlimited.
DECENTRALIZED CONTROL OF A LARGE SPACE STRUCTURE USING DIRECT OUTPUT FEEDBACK

THESIS

David V. Thyfault
Captain, USAF

AFIT/GA/AA/83D-8

Approved for public release; distribution unlimited
DECENTRALIZED CONTROL OF A LARGE SPACE STRUCTURE USING DIRECT OUTPUT FEEDBACK

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Astronautical Engineering

David V. Thyfault
Captain, USAF

December 1983
Acknowledgments

This study was conducted under the sponsorship of the Air Force Flight Dynamics Laboratory, AFFDL/FIGCA.

I have many to thank for guiding me through this thesis effort. To my thesis advisor, Dr. Robert Calico, thank you for keeping me pointed in the right direction and for your contagious enthusiasm for this control method. To Jeff Hess, my ever present mentor, thanks for drilling me in the basics. I am ever grateful to Ed Aldridge, Beth Copenhaver, and Vickie Tischler for their generous help with creating and continued pest control of the computer programs. Many thanks to Mike Wallace and Sparky Olsen for their help with the finite element data files. To Debbie, my express lane typist, thanks for always being there. But above all, I thank and praise the Lord (I Timothy 1:17).

David V. Thyfault
Table of Contents

Acknowledgments .. ii
List of Figures .. iv
List of Tables .. v
Notation ... vi
Abstract .. viii
I. Introduction ... 1
II. LSS Model Configuration 6
III. System Model ... 15
 Equations of Motion 15
 Control Model 17
 Modal Control 22
 Three Controllers 24
 Design Feedback Gain 26
 Transformed DOFB 28
 Sensor/Actuator Requirements 30
IV. Transformation Technique 33
V. Computer Model 41
VI. Investigation ... 46
VII. Results .. 53
VIII. Conclusions 67
IX. Recommendations 69
Appendix A: Main Program and Subroutine Listing 70
Appendix B: NASTRAN Analysis - 12 Modes 116
Appendix C: NASTRAN Analysis - 33 Modes 119
Bibliography ... 125
Vita ... 127
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Decentralized Output Feedback Structure</td>
<td>4</td>
</tr>
<tr>
<td>2. CSDL 2 Conceptual View</td>
<td>7</td>
</tr>
<tr>
<td>3. Finite Element Representation</td>
<td>8</td>
</tr>
<tr>
<td>4. CSDL 2 Optical System</td>
<td>9</td>
</tr>
<tr>
<td>5. Structural Dimensions</td>
<td>10</td>
</tr>
<tr>
<td>6. CSDL 2 Node Placement</td>
<td>11</td>
</tr>
<tr>
<td>7. Computer Program Flow Chart</td>
<td>42</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>CSDL 2 Node Coordinates</td>
<td>12</td>
</tr>
<tr>
<td>II.</td>
<td>CSDL 2 Lumped Mass Distribution</td>
<td>13</td>
</tr>
<tr>
<td>III.</td>
<td>CSDL 2 Sensor/Actuator Locations and Orientations</td>
<td>13</td>
</tr>
<tr>
<td>IV.</td>
<td>Key Results of NASTRAN Eigenvalue Analysis on Nominal CSDL 2 Model</td>
<td>14</td>
</tr>
<tr>
<td>V.</td>
<td>Relative Angles (in Degrees) Between Modes (12)</td>
<td>49</td>
</tr>
<tr>
<td>VI.</td>
<td>Relative Angles (in Degrees) Between Modes (36)</td>
<td>50</td>
</tr>
<tr>
<td>VII.</td>
<td>Eigenvalue Analysis - Single Controller</td>
<td>59</td>
</tr>
<tr>
<td>VIII.</td>
<td>Eigenvalue Analysis - Single Controller</td>
<td>60</td>
</tr>
<tr>
<td>IX.</td>
<td>Eigenvalue Analysis - 3 Controllers</td>
<td>61</td>
</tr>
<tr>
<td>X.</td>
<td>Eigenvalue Analysis - 3 Controllers (Optimal)</td>
<td>62</td>
</tr>
<tr>
<td>XI.</td>
<td>Eigenvalue Analysis - 4 Controllers</td>
<td>63</td>
</tr>
<tr>
<td>XII.</td>
<td>Eigenvalue Analysis - 4 Controllers</td>
<td>64</td>
</tr>
<tr>
<td>XIII.</td>
<td>Eigenvalue Analysis - 3 Controllers</td>
<td>65</td>
</tr>
<tr>
<td>XIV.</td>
<td>Eigenvalue Analysis - 3 Controllers</td>
<td>66</td>
</tr>
</tbody>
</table>
Notation

A - Plant matrix
B - Control matrix
C - Output matrix
D - Modal attitude-evaluated actuator location matrix
E - Damping matrix
G - Optimal steady full-state feedback gain matrix
g - Generalized coordinate
I - Identity matrix
J - Quadratic performance index
K - Suboptimal feedback gain matrix; stiffness matrix
\(\hat{K} \) - Untransformed feedback gain matrix
\(\tilde{K} \) - Design feedback gain matrix
M - Mass matrix
na - Number of actuators
nm - Number of modes
Q - State weighting matrix
R - Control weighting matrix
S - Singular value matrix; solution to steady state matrix Riccati equation
T - Transformation matrix
u - Control vector
V - Matrix of right singular vectors
W - Matrix of left singular vectors
\(w \) - Transformed output vector
x - State vector
y - Output vector
v - Transformed control vector
\(\Gamma \) - Transformation matrix
K - Sum of \(\hat{K}_i \)'s
\(\Lambda \) - Sum of \(\hat{K}_i \)'s
\(\Phi \) - Modal matrix
\(\Psi \) - Structural mode amplitude matrix
\(\psi \) - Element of \(\Psi \) matrix
\(\sigma \) - Singular value
\(\Sigma \) - Summation when used with indices; singular value matrix
\(\xi \) - Damping ratio
\(\omega \) - Natural frequency
\(\Omega \) - \(\omega^2 \)
Notation (Continued)

Subscripts

c - Critical or controlled modes
i - Index for variable
j - Index for variable
m - Index for variable
p - Partition of V matrix associated with zero singular values; position elements
r - Partition of W matrix associated with zero singular values; residual modes
s - Partition of V or W matrices associated with non-zero singular values; suppressed modes
um - Unmodeled modes
v - Velocity elements
2N - N-1 Control matrices

Superscripts

* - Transformed matrix
+ - Inverse of the singular value decomposition of a matrix
Abstract

Direct output feedback control methods are used to develop a multiple-input multiple-output controller. The controller is then applied to the Charles Stark Draper Laboratory 2 (CSDL 2) model. The CSDL 2 model is a sophisticated optical space structure representative of large flexible space structures. This model consists of 59 nodes and 23 lumped masses. The beam elements are fully connected and may support axial, transverse, and torsional deformations. NASTRAN is employed to generate modal approximations of the model as well as the mode shapes and frequencies of the resulting modes. Of the numerous modes available for the model, only the first 36 modes are utilized and implemented in the controller.

The control problem is formulated in state space form and direct output feedback is implemented. The state is represented as modal amplitudes and rates. System outputs are obtained by rate sensors and control is applied by point force actuators. Since the observation matrices are not of full rank, their generalized (Penrose) inverses are obtained. These and the steady full-state feedback optimal control gains are used to determine suboptimal feedback gains. In the multiple controller, individual controllers actively control the modes assigned to it, but the modes assigned to the other controllers interact with all controllers causing control and observation spillover. The spillover that appears in coupled decentralized systems is eliminated using transformation matrices obtained via modal suppression techniques. The transformation matrices are applied to the feedback gains to drive the spillover terms to zero and decouple the controllers.
Control was accomplished using four controllers without residual modes and three controllers with residual modes. Conditions for which the stability of the model is assured are developed. Arrangement of modal assignment to controllers was varied to examine modal selection and grouping. Sensitivity to uncontrolled residual modes was examined. Direct output feedback response was compared to that obtained using optimal full-state feedback. Full controller decoupling was achieved and stability of the non-rigid body modes maintained. The investigation demonstrated the feasibility of using decentralized direct output feedback in maintaining system stability.
I. Introduction

The study of Large Space Structure (LSS) Control is a growing field of interest primarily due to the involvement by the Department of Defense (DoD) and the National Aeronautics and Space Administration (15,16). Technology and politics are leading us into space to perform scientific, exploratory, and eventually operational missions that use large structures. The future of space is going to see deployment of large space structures for a wide spectrum of missions including communications, space defense, power generation, manufacturing, and research. Future DoD large space system concepts such as High Altitude Large Optics (HALO), High Energy Laser Optics (HELO), and Millimeter (MM) may be among those deployed. These systems combine large size with stringent line-of-sight (LOS) pointing and jitter requirements. Coupled with these performance requirements are the needs to minimize spacecraft mass. In general, the constraints on large space structures result in highly flexible spacecraft for which passive methods of material selection and construction techniques do not provide adequate control. This observation has led to the idea of building control-configured spacecraft using active stability-augmentation systems integrated with the space structure.

To achieve this control-configured spacecraft, the control designer must understand the LSS control problem. Some characteristics of the LSS control problem are: (1) infinite dimensional in theory, i.e. distributed
parameter system, and very large dimensional in practice, (2) they have many low resonant frequencies and often these appear in closely-spaced "clumps", (3) their natural damping is very light, (4) prediction of their behavior in space by ground testing is quite limited, and (5) requirements for shape, orientation, alignment, vibration suppression, and pointing accuracy are extremely rigorous (6,18). The first characteristic is considered fundamental and many control engineers are developing and using rational methods to reduce theoretical models to finite dimensional ones that are representative of the actual system and enable control systems to deliver adequate performance (4,6,9,15,19,21). The LSS is modeled as a reduced order discrete system via finite element modeling that results in a finite-dimensional modal representation. The number of modeled modes in the physical model is referred to as the order of the system. When a distributed system is "discretized", the resulting physical model suffers errors that can result in overall system instability when not accounted for (1,10). From this physical model a reduced order evaluation model is selected to maintain model fidelity. Since the evaluation model may contain more modes than can be controlled, a design model is determined to include modes which if ignored would degrade system performance beyond mission requirements (18). Critical modes, denoted x_c, are those modes of the design model which are chosen to be explicitly controlled in order to assure stability and achieve performance requirements for the system. Residual modes, denoted x_r, are those modes which exist in the infinite dimensional system that are not critical in the sense defined above. Observation spillover is the contamination of the sensor outputs by modes not contained in a controller. Control spillover is the excitation of mode dynamics due to a controller that does not contain those modes. Residual modes may be subdivided
into design, evaluation, physical, and unmodeled modes. Design residual modes are those which are included in the controller design model, but not explicitly controlled. Evaluation residual modes are those modes included in the evaluation model but not in the design model. Physical residual modes are those modes which are included in the physical model, but not in the evaluation model. Unmodeled residual modes, denoted x_{um}, are those modes which exist, but are not included in any finite-dimensional model of the system under study (18).

The specific mission of the LSS forces the performance requirements which can only be met through active control. There are many appropriate control strategies for large flexible space structures (1,2,10,18,20). The choices center on the theme of constant-gain linear full state feedback control. Of the choices available, decentralized control offers several advantages. In decentralized control each controller is designed to control some of the critical modes allowing the use of low-order computer algorithms. The feedback system structure used, shown in Figure 1, provides each control channel with the same information structure. This method of decentralized control using modern (cost optimal) control for finite element models of LSS has been demonstrated by several researchers (1,2,13). They found transformation matrices applied to feedback gains proved an effective method for eliminating spillover and enhancing system performance. Optimal control methods which require estimators to reconstruct the states, however, require four states for each critical mode (mode amplitude and rate and estimated amplitude and rate). With four states per mode the computation burden rises rapidly with the number of critical modes, especially computation of the algebraic Riccati equations (8,11,20). This has motivated the use of suboptimal techniques that do not require an observer
and consequently either greatly reduces the computational burden for controlling the same number of modes or allows control of twice as many critical modes. This concept of a decentralized direct output feedback (DOFB) controller was first proposed by Calico (6) and will be discussed in detail in Section III.

Even with an expanded number of controllers made available by decentralized control, the number of modes that may be controlled is small compared to the number of modes that exist for a given structure. Consequently the selection of modes to be controlled must be made carefully. Only those modes affecting performance need be controlled. The terms "controlled" and "critical" will be used interchangeably for these modes. The remaining uncontrolled modes fall into three categories: suppressed, residual and
unmodeled. Natural damping in the structure will normally prevent instabilities arising from the higher frequency modes, so, for model simplicity, those are truncated and left as unmodeled modes. The remaining uncontrolled modes are modeled modes. Of these, some may have destabilizing effects due to spillover and therefore have to be made transparent to the controller. These are referred to as suppressed modes. The last mode group is modeled, uncontrolled and unsuppressed. These are the residual modes and may move freely when control is applied. They may become more stable, less stable or unstable due to control and observation spillover from the critical modes.

The intent of this thesis is to apply direct output feedback in developing a decentralized control system of three or four controllers. This control system will be applied to the Charles Stark Draper Laboratory, Inc. model #2 (CSDL 2). The CSDL 2 is a representative LSS for a precision optical space system. Eigenvalue analysis of the closed loop system will be used to evaluate system performance. In applying the control method, the output (observation) matrix is configured to supply position sensor, rate sensor, and position/rate sensor information. Point force actuators provide the state variable feedback control.

The following sections will detail the CSDL 2 model and its finite element representation. The control and matrix transformation methods are discussed. Finally, the computer program and results are presented.
II. LSS Model Configuration

A central issue in the active control of large space structures is the development of realistic and mathematically correct models for open and closed loop dynamic plants. NASTRAN and SPAR are currently the primary tools for generating models of sophisticated conceptual spacecraft. In order to assess the control technique of decentralized direct output feedback, as well as other control methods, a generic model is required. The Charles Stark Draper Laboratory (CSDL) developed just such a model as part of the Active Control of Space Structures (ACOSS) program sponsored by DoD's Advanced Research Projects Agency (4,5,14). The model was originally titled ACOSS Model #2, but is commonly referred to as the CSDL 2 model. CSDL 2 is a finite element representation of an optical space structure. It has incorporated the desired features of structural design based on realistic sizes and weights, a simple unclassified optical system with associated performance measures and tolerances, and a set of disturbances typical of equipment vibration and attitude control. Figure 2 shows a conceptual view of the structure and Figure 3 is a finite element representation of the model.

CSDL 2 represents a three mirror optical space telescope system. The two major components of the system are the optical support structure and the equipment section. The optical support structure consists of the upper mirror support truss, the lower mirror support truss, and metering truss. The upper mirror support truss contains the primary mirror (convex surface) and the tertiary mirror (concave surface). The lower mirror support truss contains the secondary mirror (flat surface) and the focal plane (image receiving device). The metering truss maintains the mirror separation
Figure 2. CSDL 2 Conceptual View
Figure 3. Finite Element Representation
and is the key section when examining defocus. The optical support structure and mirror placement are shown in Figure 4. Attached to the lower side of the lower mirror support truss is the equipment section which consists of the control package, modeled as a rigid body, with two cantilevered flexible solar panels. The full structure is approximately twenty-eight meters high and has a mass of 9300 kilograms. The structural dimensions are shown in Figure 5.

The finite element model of the structure contains fifty-nine node points, but the actual structure has only fifty-one nodes. The extra nodes were added to provide more detail in the modeling of the mirrors and equipment section (5). The coordinates of the nodes are given in Table I, and the placement of the nodes in the support structure are shown in Figure 6. The truss members are fully joined so that bending and torsion are
allowed. The truss elements are made of graphite-epoxy and assumed to be massless. The system mass is lumped at twenty-three nodes and distributed as shown in Table II. The largest mass is located in the equipment package, as would be expected.

This model makes use of twenty-one pairs of collocated force actuators and position sensors. A list of sensor/actuator locations and orientations is provided in Table III.

The key results of an eigenvalue analysis performed on this model are listed in Table IV. The generalized mass and stiffness, as well as the natural frequency of the first thirty-six structural modes is given. Of the modes listed, those with an asterisk are considered critical for
Eigenvalue analyses will provide control performance information. Line-of-sight performance, as well as defocus along the z-axis, are important analysis factors, but will not be directly addressed in the results of this investigation. Instead, the eigenvalue analysis will provide information on controller maintenance of modal stability and on controller independence (decoupling).

The controller development on which this study is based will now be presented.
<table>
<thead>
<tr>
<th>Node</th>
<th>X(m)</th>
<th>Y(m)</th>
<th>Z(m)</th>
<th>Node</th>
<th>X(m)</th>
<th>Y(m)</th>
<th>Z(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>37</td>
<td>-4.0</td>
<td>-3.0</td>
<td>24.0</td>
</tr>
<tr>
<td>2</td>
<td>-4.0</td>
<td>5.0</td>
<td>0.0</td>
<td>38</td>
<td>4.0</td>
<td>3.0</td>
<td>24.0</td>
</tr>
<tr>
<td>3</td>
<td>-4.0</td>
<td>-5.0</td>
<td>0.0</td>
<td>39</td>
<td>4.0</td>
<td>-3.0</td>
<td>24.0</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>40</td>
<td>0.0</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>4.0</td>
<td>5.0</td>
<td>0.0</td>
<td>42</td>
<td>0.0</td>
<td>5.0</td>
<td>-0.3</td>
</tr>
<tr>
<td>6</td>
<td>4.0</td>
<td>-5.0</td>
<td>0.0</td>
<td>43</td>
<td>-2.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>7</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>44</td>
<td>0.0</td>
<td>-1.7</td>
<td>-1.3</td>
</tr>
<tr>
<td>8</td>
<td>-7.0</td>
<td>0.0</td>
<td>2.0</td>
<td>45</td>
<td>2.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>9</td>
<td>-4.0</td>
<td>5.0</td>
<td>2.0</td>
<td>46</td>
<td>-4.0</td>
<td>-5.0</td>
<td>-0.3</td>
</tr>
<tr>
<td>10</td>
<td>-4.0</td>
<td>-5.0</td>
<td>2.0</td>
<td>47</td>
<td>4.0</td>
<td>-5.0</td>
<td>-0.3</td>
</tr>
<tr>
<td>11</td>
<td>4.0</td>
<td>5.0</td>
<td>2.0</td>
<td>48</td>
<td>-26.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>12</td>
<td>4.0</td>
<td>-5.0</td>
<td>2.0</td>
<td>49</td>
<td>-21.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>13</td>
<td>7.0</td>
<td>0.0</td>
<td>2.0</td>
<td>50</td>
<td>-16.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>14</td>
<td>-6.0</td>
<td>0.0</td>
<td>12.0</td>
<td>51</td>
<td>-11.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>15</td>
<td>-4.0</td>
<td>4.0</td>
<td>12.0</td>
<td>52</td>
<td>-6.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>16</td>
<td>-4.0</td>
<td>-4.0</td>
<td>12.0</td>
<td>53</td>
<td>6.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>17</td>
<td>4.0</td>
<td>4.0</td>
<td>12.0</td>
<td>54</td>
<td>11.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>18</td>
<td>4.0</td>
<td>-4.0</td>
<td>12.0</td>
<td>55</td>
<td>16.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>19</td>
<td>6.0</td>
<td>0.0</td>
<td>12.0</td>
<td>56</td>
<td>21.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>26</td>
<td>-5.0</td>
<td>0.0</td>
<td>22.0</td>
<td>57</td>
<td>26.0</td>
<td>0.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>27</td>
<td>-4.0</td>
<td>3.0</td>
<td>22.0</td>
<td>100</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>28</td>
<td>-4.0</td>
<td>-3.0</td>
<td>22.0</td>
<td>910</td>
<td>-4.0</td>
<td>-2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>29</td>
<td>4.0</td>
<td>3.0</td>
<td>22.0</td>
<td>1001</td>
<td>0.0</td>
<td>-6.5</td>
<td>22.0</td>
</tr>
<tr>
<td>30</td>
<td>4.0</td>
<td>-3.0</td>
<td>22.0</td>
<td>1002</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>31</td>
<td>5.0</td>
<td>0.0</td>
<td>22.0</td>
<td>1003</td>
<td>0.0</td>
<td>6.5</td>
<td>22.0</td>
</tr>
<tr>
<td>32</td>
<td>-4.0</td>
<td>10.0</td>
<td>22.0</td>
<td>1004</td>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>33</td>
<td>4.0</td>
<td>10.0</td>
<td>22.0</td>
<td>1112</td>
<td>4.0</td>
<td>-2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>34</td>
<td>-4.0</td>
<td>-10.0</td>
<td>22.0</td>
<td>2830</td>
<td>0.0</td>
<td>-3.0</td>
<td>22.0</td>
</tr>
<tr>
<td>35</td>
<td>4.0</td>
<td>-10.0</td>
<td>22.0</td>
<td>3233</td>
<td>0.0</td>
<td>10.0</td>
<td>22.0</td>
</tr>
<tr>
<td>36</td>
<td>-4.0</td>
<td>3.0</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE II
CSDL 2 Lumped Mass Distribution

<table>
<thead>
<tr>
<th>Node</th>
<th>Mass (kg)</th>
<th>Node</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>67.4</td>
<td>44</td>
<td>3500</td>
</tr>
<tr>
<td>10</td>
<td>67.4</td>
<td>48</td>
<td>81.9</td>
</tr>
<tr>
<td>11</td>
<td>67.4</td>
<td>50</td>
<td>1.638</td>
</tr>
<tr>
<td>12</td>
<td>67.4</td>
<td>52</td>
<td>73.8</td>
</tr>
<tr>
<td>27</td>
<td>69.5</td>
<td>53</td>
<td>73.8</td>
</tr>
<tr>
<td>28</td>
<td>6.74</td>
<td>55</td>
<td>163.8</td>
</tr>
<tr>
<td>29</td>
<td>69.5</td>
<td>57</td>
<td>81.9</td>
</tr>
<tr>
<td>30</td>
<td>6.74</td>
<td>1001</td>
<td>1000</td>
</tr>
<tr>
<td>32</td>
<td>6.74</td>
<td>1002</td>
<td>800</td>
</tr>
<tr>
<td>33</td>
<td>6.74</td>
<td>1003</td>
<td>1200</td>
</tr>
<tr>
<td>34</td>
<td>69.5</td>
<td>1004</td>
<td>600</td>
</tr>
<tr>
<td>35</td>
<td>69.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE III
CSDL 2 Sensor/Actuator Locations and Orientations
(x, y, z in direction cosines)

<table>
<thead>
<tr>
<th>Pair</th>
<th>Node</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>29</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>34</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>34</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>35</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
TABLE IV

Key Results of NASTRAN Eigenvalue Analysis on Nominal CSDL 2 Model

<table>
<thead>
<tr>
<th>Mode</th>
<th>Generalized Mass</th>
<th>Generalized Stiffness</th>
<th>ω rad/sec</th>
<th>Ω rad²/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6*</td>
<td>1.00E+00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7*</td>
<td>1.00E+00</td>
<td>5.128E-01</td>
<td>7.161E-01</td>
<td>5.128E-01</td>
</tr>
<tr>
<td>8</td>
<td>1.00E+00</td>
<td>8.521E-01</td>
<td>9.231E-01</td>
<td>8.521E-01</td>
</tr>
<tr>
<td>9</td>
<td>1.00E+00</td>
<td>8.835E-01</td>
<td>9.399E-01</td>
<td>8.835E-01</td>
</tr>
<tr>
<td>10</td>
<td>1.00E+00</td>
<td>1.212E+00</td>
<td>1.101E+00</td>
<td>1.212E+00</td>
</tr>
<tr>
<td>11</td>
<td>1.00E+00</td>
<td>8.819E+00</td>
<td>2.862E+00</td>
<td>8.189E+00</td>
</tr>
<tr>
<td>12*</td>
<td>1.00E+00</td>
<td>1.266E+01</td>
<td>3.502E+00</td>
<td>1.226E+01</td>
</tr>
<tr>
<td>13*</td>
<td>1.00E+00</td>
<td>1.403E+01</td>
<td>3.746E+00</td>
<td>1.403E+01</td>
</tr>
<tr>
<td>14</td>
<td>1.00E+00</td>
<td>1.492E+01</td>
<td>3.863E+00</td>
<td>1.492E+01</td>
</tr>
<tr>
<td>15</td>
<td>1.00E+00</td>
<td>1.599E+01</td>
<td>3.998E+00</td>
<td>1.599E+01</td>
</tr>
<tr>
<td>16</td>
<td>1.00E+00</td>
<td>1.625E+01</td>
<td>4.032E+00</td>
<td>1.625E+01</td>
</tr>
<tr>
<td>17*</td>
<td>1.00E+00</td>
<td>2.623E+01</td>
<td>5.122E+00</td>
<td>2.623E+01</td>
</tr>
<tr>
<td>18</td>
<td>1.00E+00</td>
<td>2.630E+01</td>
<td>5.128E+00</td>
<td>2.630E+01</td>
</tr>
<tr>
<td>19</td>
<td>1.00E+00</td>
<td>2.677E+01</td>
<td>5.174E+00</td>
<td>2.677E+01</td>
</tr>
<tr>
<td>20</td>
<td>1.00E+00</td>
<td>3.310E+01</td>
<td>5.753E+00</td>
<td>3.310E+01</td>
</tr>
<tr>
<td>21*</td>
<td>1.00E+00</td>
<td>3.730E+01</td>
<td>6.197E+00</td>
<td>3.730E+01</td>
</tr>
<tr>
<td>22*</td>
<td>1.00E+00</td>
<td>5.301E+01</td>
<td>7.281E+00</td>
<td>5.301E+01</td>
</tr>
<tr>
<td>23</td>
<td>1.00E+00</td>
<td>9.498E+01</td>
<td>9.746E+00</td>
<td>9.498E+01</td>
</tr>
<tr>
<td>24*</td>
<td>1.00E+00</td>
<td>1.241E+02</td>
<td>1.114E+01</td>
<td>1.241E+02</td>
</tr>
<tr>
<td>25</td>
<td>1.00E+00</td>
<td>1.999E+02</td>
<td>1.414E+01</td>
<td>1.999E+02</td>
</tr>
<tr>
<td>26</td>
<td>1.00E+00</td>
<td>2.001E+02</td>
<td>1.416E+01</td>
<td>2.001E+02</td>
</tr>
<tr>
<td>27</td>
<td>1.00E+00</td>
<td>4.654E+02</td>
<td>2.157E+01</td>
<td>4.654E+02</td>
</tr>
<tr>
<td>28*</td>
<td>1.00E+00</td>
<td>4.705E+02</td>
<td>2.169E+01</td>
<td>4.705E+02</td>
</tr>
<tr>
<td>29</td>
<td>1.00E+00</td>
<td>6.182E+02</td>
<td>2.468E+01</td>
<td>6.182E+02</td>
</tr>
<tr>
<td>30*</td>
<td>1.00E+00</td>
<td>6.275E+02</td>
<td>2.505E+01</td>
<td>6.275E+02</td>
</tr>
<tr>
<td>31</td>
<td>1.00E+00</td>
<td>6.481E+02</td>
<td>2.546E+01</td>
<td>6.481E+02</td>
</tr>
<tr>
<td>32</td>
<td>1.00E+00</td>
<td>7.428E+02</td>
<td>2.725E+01</td>
<td>7.428E+02</td>
</tr>
<tr>
<td>33</td>
<td>1.00E+00</td>
<td>1.700E+03</td>
<td>4.123E+01</td>
<td>1.700E+03</td>
</tr>
<tr>
<td>34</td>
<td>1.00E+00</td>
<td>2.568E+03</td>
<td>5.067E+01</td>
<td>2.568E+03</td>
</tr>
<tr>
<td>35</td>
<td>1.00E+00</td>
<td>2.821E+03</td>
<td>5.311E+01</td>
<td>2.821E+03</td>
</tr>
<tr>
<td>36</td>
<td>1.00E+00</td>
<td>3.095E+03</td>
<td>5.563E+01</td>
<td>3.095E+03</td>
</tr>
</tbody>
</table>
III. System Model

Equations of Motion

As presented by Calico and Miller (2,13), the system model may be developed from the vibrational equations of motion for a large space structure given generally as

\[M \ddot{\mathbf{g}} + E \dot{\mathbf{g}} + K \mathbf{g} = D \ddot{\mathbf{u}} \]

(1)

where \(M \) is a nxn symmetric mass matrix, \(E \) is a nxn symmetric damping matrix, \(K \) is a nxn symmetric stiffness matrix, \(D \) is a nxm matrix of nodal, attitude-evaluated actuator locations, \(\mathbf{g} \) is a nxl generalized coordinate vector, and \(\ddot{\mathbf{u}} \) is a mxl control input vector. Introducing the nxn modal matrix \(\phi \) for Eq (1), such that

\[\mathbf{g} = \phi \tilde{\mathbf{n}} \]

(2)

where \(\tilde{\mathbf{n}} \) is the n-vector of modal coordinates, Eq (1) may be written as

\[\begin{bmatrix} \mathbf{I} & \mathbf{2} \zeta \omega \end{bmatrix} \tilde{\mathbf{n}} + \begin{bmatrix} \omega^2 \end{bmatrix} \tilde{\mathbf{n}} = \phi^T D \ddot{\mathbf{u}} \]

(3)

the \(\omega_i \) and \(\zeta_i \) terms being natural frequencies and damping coefficients, respectively, of the specific modes. The properties of the modal matrix \(\phi \) are such that the coefficients of Eq (3) are given be

\[\begin{bmatrix} \mathbf{I} \end{bmatrix} = \phi^T M \phi \]

\[\begin{bmatrix} \mathbf{2} \zeta \omega \end{bmatrix} = \phi^T E \phi \]

(4)

\[\begin{bmatrix} \omega^2 \end{bmatrix} = \phi^T K \phi \]
where
\[
I = \text{n x n identity matrix} \\
2\zeta\omega = \text{n x n diagonal damping matrix} \\
\omega^2 = \text{n x n diagonal matrix of eigenvalues of Eq (1)}
\]

Equation (3) may now be converted into a state space representation of the system, given by
\[
\dot{x} = Ax + Bu
\]
(5)
in which \(A\) is the n x n plant matrix, \(B\) is the n x m input matrix, \(x\) is the n x 1 state vector, and \(u\) is the m x 1 control input vector. These system parameters in state space are
\[
A = \begin{bmatrix}
0 & & & \\
& \ddots & & \\
& & 0 & 1 \\
-\omega^2 & & -2\zeta\omega & \\
\end{bmatrix}
\]
\[
B = \begin{bmatrix}
0 \\
\ddots \\
\phi^T_D \\
\end{bmatrix}
\]
(6)
\[
x = \begin{bmatrix}
\tilde{n} \\
\tilde{n}
\end{bmatrix}
\]

The complete state, however, is normally not available, so Eq (5) must be supplemented by an output equation. State space form gives the sensor output as
\[
\ddot{y} = C_p \ddot{g} + C_v \dot{\dot{g}}
\]
(7)
when both position (p subscript) and velocity (v subscript) sensors are used. Expressing Eq (7) with the state vector \tilde{x}

$$\tilde{y} = C\tilde{x}$$

where

$$C = \begin{bmatrix} C_p \phi & \cdots & C_v \phi \end{bmatrix}$$

Equations (5) and (8) form the large space structure model available to the control designer. These equations will be further explained so they will hold more significance when being applied to modal control of flexible structures.

Control Model

The full structural model is represented by the $2n$-dimensional state vector \tilde{x}. As noted earlier, it is impossible to model all of the possible $4D$ modes for a complex structure, and of those modeled, even fewer will be actively controlled. Assuming that multiple controllers are available, each controlling a small subset n_i of nodes, as in this investigation, the state vector may be simply represented by

$$\tilde{x} = \begin{bmatrix} \tilde{x}_1^T, \tilde{x}_2^T, \ldots, \tilde{x}_N^T, \tilde{x}_r^T, \tilde{x}_{um}^T \end{bmatrix}^T$$

The x_i terms represent $2n_i$-vectors of modal amplitudes and velocities as defined by the last of Eq (6) controlled by the ith controller of N controllers present. The \tilde{x}_r represents a $2n_r$-vector of modeled residual modes and the \tilde{x}_{um} represents a $2n_{um}$-vector of unmodeled modes.

As defined earlier, the unmodeled modes are those which exist but are beyond the number of modes in the structural model. These will no
longer appear in the derivations. The residual modes are those which are modeled but not controlled. The controlled modes are those which require active control in order to obtain satisfactory system response. The selection of the modes to be controlled and their assignment to one of the N controllers is left to the control designer.

It should be noted that so far suppressed modes have not directly been referred to even though they were defined earlier in the text. They have not been ignored, in fact they are included within the controlled modes, in the following manner: In a multiple controller design, the individual controller actively controls those modes assigned to it. But the modes assigned to the other controllers interact with this individual controller, causing control and/or observation spillover. In the process of controlling the system, each controller may contribute to the elimination of observation and control spillover in the system. Thus each controller, in effect "suppresses" the modes contained in the other controllers. In other words, the controlled modes of one controller are the suppressed modes of another controller. Therefore, the suppressed modes are contained implicitly within the controlled modes. So, like the unmodeled modes, the suppressed modes exist in the system, but will not be mentioned in the derivations since they are included implicitly in the controlled modes.

Continuing with the derivation, the notation of Eq (10) may be used to express the state equations as follows

$$\dot{x}_i = A_i \ddot{x}_i + B_i \ddot{u}, \quad i = 1, 2, \ldots, N$$

(11)

$$\dot{x}_r = A_r \ddot{x}_r + B_r \ddot{u}$$

(12)
\[\ddot{y} = \sum_{i=1}^{N} C_i \ddot{x}_i + C_r \ddot{x}_r \quad (13) \]

where the A, B, and C matrices are

\[
A_j = \begin{bmatrix}
0 & & & I \\
& \ddots & & \\
& & -\omega_j^2 & -2\zeta \omega_j \\
& & & \\
\end{bmatrix} \quad j = 1, 2, \ldots, N, r \quad (14)
\]

\[
B_j = \begin{bmatrix}
0 \\
\vdots \\
\phi^T D_j \\
\end{bmatrix} \quad j = 1, 2, \ldots, N, r \quad (15)
\]

\[
C_j = \begin{bmatrix}
C_{p_j}^\phi & \cdots & C_{v_j}^\phi \\
\end{bmatrix} \quad j = 1, 2, \ldots, N, r \quad (16)
\]

Moreover, the lower partition of Eq (15), the \(\phi^T D_i \) and \(\phi^T D_r \) matrices, are of the form

\[
\phi^T D_i = \psi_i \quad (17)
\]

\[
\phi^T D_r = \psi_r \quad (18)
\]

where

\[
(\psi_i)_{jk} = \ddot{\phi}_j \cdot \ddot{d}_{ik} \quad (19)
\]

\[
(\psi_r)_{jk} = \ddot{\phi}_j \cdot \ddot{d}_{rk} \quad (20)
\]

The \(\phi_j \) are the column vectors of the matrix \(\phi \) and the \(d_{ik} \) and \(d_{rk} \) are the column vectors of the \(D_i \) and \(D_r \) matrices, respectively. Using the forms given in Eqs (17) to (20), the \(\phi^T D_i \) and \(\phi^T D_r \) matrices may be represented as
where \(n_i \) is the number of modes in the \(i \) th controller, \(n_r \) is the number of residual modes, and \(n_a \) is the number of actuators employed. This allows Eq (15) to be rewritten as

\[
B_j = \begin{bmatrix}
0 \\
\vdots \\
\psi_j
\end{bmatrix} \quad j = 1, 2, \ldots, N, r
\]

In simpler terms, the rows of the \(\psi_j \) matrices represent the amplitude of each structural mode along the line of action of each actuator location.

The dimension of the \(\psi_j \) matrices is \(n_j \times n_a \) making the dimension of the \(B_j \) matrices \(2n_j \times n_a \) when the upper null partition is included. Likewise it can be seen that the \(C_{pj} \) and \(C_{vj} \) partitions of Eq (16) are of dimension \(n_s \times n_j \) where \(n_s \) is the number of sensors employed. This makes the dimension of the \(C_j \) matrices \(n_s \times 2n_j \).
Examining the C_j matrix more closely, the C_{pj} and C_{vj} terms are the position and velocity coefficient matrices, respectively, of the sensors employed, assuming that both position and velocity sensors are used. However, if only rate sensors are used, this makes the C_{pj} into zero matrices so that Eq (16) now becomes

$$C_j = \begin{bmatrix} 0 & : & C_{vj} & \end{bmatrix} \quad j = 1, 2, \ldots, N, r$$ (24)

Furthermore, when collocated sensor/actuators are employed with the same alignment, this simplifies even more. In this special case

$$C_{vj} \phi = \begin{bmatrix} \phi^T D_j \end{bmatrix}^T$$ (25)

$$C_{vj} \dot{\phi} = \begin{bmatrix} \psi_j^T \end{bmatrix}$$ (26)

so that

$$C_j = \begin{bmatrix} 0 & : & \psi_j^T \end{bmatrix} \quad j = 1, 2, \ldots, N, r$$ (27)

This simplicity is the prime advantage of using either rate or position sensors only. As pointed out in the B_j matrix, the columns of the ψ_j^T matrix in C_j represent the rates of each structural mode at each sensor location along the line of the sensor.

The equations thus derived are very general in form and are independent of structural complexity. Only the matrix dimensions will vary depending on the number of sensors, actuators, and modes studied. This general development can lead one to understand the wide variety of structures to which the following analysis may be applied.
Modal Control

The controller design for \(N \) controllers will be based upon the model given by Eqs (11), (12), and (13) which, restated, are

\[
\dot{x}_i = A_i \ddot{x}_i + B_i \ddot{u} \tag{11}
\]

\[
\dot{x}_r = A_r \ddot{x}_r + B_r \ddot{u} \tag{12}
\]

\[
\ddot{y} = \sum_{i=1}^{N} C_i \ddot{x}_i + C_r \ddot{x}_r \tag{13}
\]

The term \(B_r \ddot{u} \) in Eq (12) represents control spillover from the residual control matrix. Similarly, the term \(C_r \ddot{x}_r \) is called observation spillover. These spillovers can destabilize the residual modes. In decentralized control systems another set of spillovers appears. If the states are available to the control designer, the feedback controller may be designed such that

\[
\ddot{u} = \sum_{i=1}^{N} K_i \ddot{x}_i \tag{28}
\]

where \(K_i \) are the control gain matrices. The development of the \(K_i \) matrices will be presented shortly. Now the residual state equation becomes

\[
\dot{x}_r = A_r \ddot{x}_r + B_r \sum_{i=1}^{N} K_i \ddot{x}_i \tag{29}
\]

which is spillover from the controlled modes to the residuals. The controlled state equation is

\[
\dot{x}_i = A_i \ddot{x}_i + B_i \sum_{j=1}^{N} K_j \ddot{x}_j \tag{30}
\]

and shows the control spillover from controller to controller.
Now for direct output feedback the control vector is

$$\bar{u} = \sum_{i=1}^{N} \hat{K}_i \bar{y}$$ \hspace{1cm} (31)$$

$$\bar{u} = \sum_{i=1}^{N} \hat{K}_i(\sum_{j=1}^{N} C_j x_j + C_r x_r)$$ \hspace{1cm} (32)$$

The closed loop state equation becomes

$$\dot{x}_i = A_i x_i + B_i \sum_{k=1}^{N} \hat{K}_k(\sum_{k=1}^{N} C_k x_k + C_r x_r)$$ \hspace{1cm} (33)$$

and in matrix form for the N controller with residuals

$$\dot{\bar{x}} = \begin{bmatrix}
A_1+B_1K_1 & B_1K_2 & \cdots & B_1K_N & B_1K_r \\
B_2K_1 & A_2+B_2K_2 & \cdots & B_2K_N & B_2K_r \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
B_NK_1 & B_NK_2 & \cdots & A_N+B_NK_N & B_NK_r \\
B_rK_1 & B_rK_2 & \cdots & B_rK_N & A_r+B_rK_r
\end{bmatrix} \bar{x}$$ \hspace{1cm} (34)$$

where $\kappa = \sum_{i=1}^{N} \hat{K}_i$. The last column in this plant matrix represents observation spillover; the last row, control spillover. The upper off-diagonal terms are the controller to controller observation spillover. The lower off-diagonal terms the controller to controller control spillover terms.

To assure stability of the system based on the stability in each controller, the system matrix must be within a similarity transformation of either upper or lower block triangular. Lower block triangular form requires

$$B_j \hat{K}_j = 0 \text{ and } \hat{K}_j C_j = 0 \quad i = 1, 2, \ldots, N-1; \quad j = i + 1, \ldots, N$$ \hspace{1cm} (35)$$
and upper block triangular form requires

\[B_i \hat{K}_j = 0 \quad \text{and} \quad \hat{K}_i C_j = 0 \quad i = j + 1, \ldots, N; j = 1, 2, \ldots, N-1 \]

(36)

These conditions are identical to those required by the decentralized optimal controller as found by Calico and Miller (2).

The block structure of Eq (34) can be more easily seen in a specific example. The three controller case will now be examined.

Three Controllers

Setting \(N \) equal to 3 and following the form given in the previous development for \(N \) controllers, the state equations for a three controller system are given as

\[
\begin{align*}
\dot{x}_1 &= A_1 \bar{x}_1 + B_1 \bar{u} \\
\dot{x}_2 &= A_2 \bar{x}_2 + B_2 \bar{u} \\
\dot{x}_3 &= A_3 \bar{x}_3 + B_3 \bar{u} \\
\dot{x}_r &= A_r \bar{\bar{x}}_r + B_r \bar{u} \\
\end{align*}
\]

(37)

(38)

(39)

(40)

The control applied is

\[
\bar{u} = \sum_{i=1}^{3} \hat{K}_i \bar{y} = \sum_{i=1}^{3} \hat{K}_i \left(\sum_{m=1}^{3} C_m \bar{x}_m + C_r \bar{\bar{x}}_r \right)
\]

(41)

\[
\bar{u} = (\hat{K}_1 + \hat{K}_2 + \hat{K}_3)(C_1 \bar{x}_1 + C_2 \bar{x}_2 + C_3 \bar{x}_3 + C_r \bar{\bar{x}}_r)
\]

(42)

Substituting Eq (42) into (37) through (40), the system equations are

\[
\begin{align*}
\dot{x}_1 &= A_1 \bar{x}_1 + B_1(\hat{K}_1 + \hat{K}_2 + \hat{K}_3)(C_1 \bar{x}_1 + C_2 \bar{x}_2 + C_3 \bar{x}_3 + C_r \bar{\bar{x}}_r) \\
&= (A_1 + B_1 C_1) \bar{x}_1 + B_1 C_2 \bar{x}_2 + B_1 C_3 \bar{x}_3 + B_1 C_r \bar{\bar{x}}_r \\
\end{align*}
\]

(43)
\[\dot{\bar{x}}_2 = A_2\bar{x}_2 + B_2(\hat{K}_1 + \hat{K}_2 + \hat{K}_3)(C_1\bar{x}_1 + C_2\bar{x}_2 + C_3\bar{x}_3 + C_r\bar{x}_r) \]
\[= B_2\kappa C_1\bar{x}_1 + (A_2 + B_2\kappa C_2)\bar{x}_2 + B_2\kappa C_3\bar{x}_3 + B_2\kappa C_r\bar{x}_r \] \hfill (44)
\[\dot{\bar{x}}_3 = A_3\bar{x}_3 + B(\hat{K}_1 + \hat{K}_2 + \hat{K}_3)(C_1\bar{x}_1 + C_2\bar{x}_2 + C_3\bar{x}_3 + C_r\bar{x}_r) \]
\[= B_3\kappa C_1\bar{x}_1 + B_3\kappa C_2\bar{x}_2 + (A_3 + B_3\kappa C_3)\bar{x}_3 + B_3\kappa C_r\bar{x}_r \] \hfill (45)
\[\dot{\bar{x}}_r = A_r\bar{x}_r + B_r(\hat{K}_1 + \hat{K}_2 + \hat{K}_3)(C_1\bar{x}_1 + C_2\bar{x}_2 + C_3\bar{x}_3 + C_r\bar{x}_r) \]
\[= B_r\kappa C_1\bar{x}_1 + B_r\kappa C_2\bar{x}_2 + B_r\kappa C_3\bar{x}_3 + (A_r + B_r\kappa C_r)\bar{x}_r \] \hfill (46)

Now combining these system equations with an augmented state vector \(\bar{x} \)

\[\bar{x} = \{ \bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_r \}^T \] \hfill (47)

the closed loop system equation may be given as

\[\dot{\bar{x}} = \begin{bmatrix} A_1 + B_1\kappa C_1 & B_1\kappa C_2 & B_1\kappa C_3 & B_1\kappa C_r \\ B_2\kappa C_1 & A_2 + B_2\kappa C_2 & B_2\kappa C_3 & B_2\kappa C_r \\ B_3\kappa C_1 & B_3\kappa C_2 & A_3 + B_3\kappa C_3 & B_3\kappa C_r \\ B_r\kappa C_1 & B_r\kappa C_2 & B_r\kappa C_3 & A_r + B_r\kappa C_r \end{bmatrix} \bar{x} \] \hfill (48)

Inspection of Eq (48) shows that individual controller stability cannot guarantee overall system stability. Block triangularization may be used to remove controller to controller spillover, but the spillover from the residuals will remain. Triangularization requires the satisfaction of Eq (35) conditions. These conditions may partially be met by using selective sensor and actuator placements, but in general their satisfaction requires careful consideration.
The approach, used in this study, proposes that transformation matrices T_j and T_i be found such that $B_j T_j = 0$ and $T_i C_j = 0$, $j > i$ for lower block triangular form, $j < i$ for upper block triangular form. It will be shown shortly how the T_j and T_i may be used in eliminating destabilizing spillovers.

Design Feedback Gain

The suboptimal output feedback gains for this study are obtained using an extension of the Kosut approximation (18). The state, output, and control equations are

$$\dot{x} = A\bar{x} + Bu$$

$$\ddot{y} = C\bar{x}$$

$$\ddot{u} = \hat{k}\ddot{y} = \hat{k}C\bar{x}$$

The direct output feedback allows us to rewrite Eq (49) as

$$\dot{x} = (A + BK\ddot{C})\bar{x}$$

(52)

It is desirable for the closed loop system matrix, $A + BK\ddot{C}$, to equal the closed loop system matrix whose control gain matrix is the optimal steady full-state gain, denoted as G. This gain, G, is determined using optimal control (3). The control gain matrix G is derived by defining a quadratic performance index J such that

$$J = \frac{1}{2} \int_0^\infty (\dot{x}^TQ\ddot{x} + \ddot{u}^TR\ddot{u})dt$$

(53)

where Q is an nxn positive semidefinite weighting matrix and R is an mxm positive semidefinite weighting matrix. It is desired to minimize this index subject to Eq (11). Then the optimal solution to the minimization
problem is

\[G = -R^{-1}B^TS \] \hspace{1cm} (54)

where \(S \) is the solution to the steady state matrix Riccati equation

\[SA + A^TS - SBR^{-1}B^TS + Q = 0 \] \hspace{1cm} (55)

The control applied with optimal feedback gains becomes

\[\ddot{u} = G\ddot{x} \] \hspace{1cm} (56)

for which the closed loop system is

\[\dot{x} = (A + BG)\ddot{x} \] \hspace{1cm} (57)

The two systems are equated and the suboptimal gain matrix \(\hat{K} \) is solved for

\[(A + B\hat{K})\ddot{x} = (A + BG)\ddot{x} \] \hspace{1cm} (58)

\[A + B\hat{K} = A + BG \] \hspace{1cm} (59)

\[\hat{K}C = BG \] \hspace{1cm} (60)

\[\hat{K}C = G \] \hspace{1cm} (61)

In general, the output matrix is not square and at this point the Kosut approximation solves for \(\hat{K} \) using a pseudo-inverse method

\[\hat{K}C^T = GC^T \] \hspace{1cm} (62)

\[\hat{K}(CC^T)(CC^T)^{-1} = GC^T(CC^T)^{-1} \] \hspace{1cm} (63)

\[\hat{K} = GC^T(CC^T)^{-1} \] \hspace{1cm} (64)

This solution is valid if the output matrix is of full rank making \(CC^T \) non-singular and invertible. For the case where \(C \) is not of full rank, \(\hat{K} \) can...
still be found by using the inverse of the singular value decomposition of
C, denoted as C^+ (22). This inverse is also known as the generalized or
Penrose inverse. The method of singular value decomposition is discussed
in the next chapter. Armed with this generalized inverse and solving for
\hat{K} from Eq (61):

$$
\hat{K}C = GC^+
$$

(65)

$$
\hat{K} = GC^+
$$

(66)

This relatively simple procedure allows us to determine the suboptimal gains
for an output matrix of any rank.

These equations can be generalized for decentralized controllers and
allow us to complete the development of the transformed DOFB.

Transformed DOFB

Consider an output transformed by Γ_i

$$
\tilde{w}_i = \Gamma_i \tilde{y}_i
$$

(67)

and a control law

$$
\tilde{u} = \sum_{i=1}^{N} T_i \tilde{v}_i
$$

(68)

where $\tilde{v}_i = K_i \tilde{w}_i$. When Γ_i and T_i are such that the conditions $B_i T_j = 0$
and $\Gamma_i C_j = 0$ for $j > i$ or $i < j$ are met, destabilizing controller spillover
is eliminated. Either of these conditions will lead to a closed loop state
system where the controller matrices on the diagonal are decoupled and are
the result of solving the following open control problems (6):

$$
\dot{x}_i = A x_i + B_i \tilde{v}_i
$$

(69)
\[\tilde{w}_i = \Gamma_1 \tilde{y} \]
(70)

\[B_i^* = B_i T_i \]
(71)

\[C_i^* = \Gamma_i C_i \]
(72)

\[\tilde{v}_i = K_i^* \tilde{w}_i \]
(73)

The gain \(K_i^* \) is obtained by solving for a transformed optimal gain \(G_i^* \). \(G_i^* \) is found by substituting \(B_i^* \) into Eqs (54) and (55) and finding the generalized inverse of \(C_i^* \). Hence, the transformed output gain is

\[K^* = G^* C_i^* \]
(74)

the design feedback control gain matrix \(\tilde{K} \) is given by

\[\tilde{K}_i = T_i K_i^* \Gamma_i \]
(75)

and the closed loop equation becomes

\[\dot{x}_i = A_i + B_i (\sum_{i=1}^{N} K_i) C_i \]
(76)

In matrix form Eq (76) is

\[
\begin{bmatrix}
A_1 B_1 \tilde{K}_1 C_1 & 0 & 0 & \cdots & 0 & B_1 \Lambda C_r \\
B_2 \tilde{K}_1 C_1 & A_2 + B_2 \tilde{K}_2 C_2 & 0 & \cdots & 0 & B_2 \Lambda C_r \\
B_3 (\tilde{K}_1 + \tilde{K}_2) C_1 & B_3 \tilde{K}_2 C_2 & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
B_N (\sum_{i=1}^{N-1} \tilde{K}_i) C_1 & B_N (\sum_{i=1}^{N-2} \tilde{K}_i) C_2 & \cdots & A_N + B_N \tilde{K}_N C_N & B_N \Lambda C_r \\
B_r \Lambda C_1 & B_r \Lambda C_2 & \cdots & B_r \Lambda C_N & A_r + B_r \Lambda C_r
\end{bmatrix}
\begin{bmatrix}
\tilde{x}_1 \\
\vdots \\
\tilde{x}_r \\
\end{bmatrix} = \begin{bmatrix}
\tilde{x}_1 \\
\vdots \\
\tilde{x}_r \\
\end{bmatrix} \]
(77)

29
where $\Lambda = \sum_{i=1}^{N} \tilde{K}_i$. For a three controller system with residuals, which this study implements, Eq (77) becomes

$$\dot{x} = \begin{bmatrix} A_1 + B_1 \tilde{K}_1 C_1 & 0 & 0 & B_1 \Lambda C_r \\ B_2 \tilde{K}_1 C_1 & A_2 + B_2 \tilde{K}_2 C_2 & 0 & B_2 \Lambda C_r \\ B_3 (\tilde{K}_1 + \tilde{K}_2) C_1 & B_3 \tilde{K}_2 C_2 & A_3 + B_3 \tilde{K}_3 C_3 & B_3 \Lambda C_r \\ B_r \Lambda C_1 & B_r \Lambda C_2 & B_r \Lambda C_3 & A_r + B_r \Lambda C_r \end{bmatrix} x$$ (78)

A four controller system without residuals is also examined and its closed loop system equation with design gains should look like

$$\dot{x} = \begin{bmatrix} A_1 + B_1 \tilde{K}_1 C_1 & 0 & 0 & 0 \\ B_2 \tilde{K}_1 C_1 & A_2 + B_2 \tilde{K}_2 C_2 & 0 & 0 \\ B_3 (\tilde{K}_1 + \tilde{K}_2) C_1 & B_3 \tilde{K}_2 C_2 & A_3 + B_3 \tilde{K}_3 C_3 & 0 \\ B_4 (\tilde{K}_1 + \tilde{K}_2 + \tilde{K}_3) C_1 & B_4 (\tilde{K}_2 + \tilde{K}_3) C_2 & B_4 \tilde{K}_3 C_3 & A_4 + B_4 \tilde{K}_4 C_4 \end{bmatrix} x$$ (79)

It is quite obvious from comparing Eqs (78) and (79) that the residual terms can have a significant effect on system eigenvalues and hence system stability, while the system eigenvalues of Eq (79) will always be those of the individual controllers along the diagonal. With the control developed, we need to establish how many modes may be controlled in a given controller, i.e. define the sensor/actuator requirements.

Sensor/Actuator Requirements

As mentioned for three controllers, in order to perform spillover suppression, one or more gain matrices must be made orthogonal to $N-1$ B or C matrices. For example, from Eq (35), to satisfy the expression for $B_i \tilde{K}_j$
the columns of \hat{K}_1 must be simultaneously orthogonal to the rows of B_2 through B_N. In other words, the columns of \hat{K}_1 must be in the null space of the matrix B_{2N}, where B_{2N} is defined as

$$B_{2N} = \begin{bmatrix} B_2 \\ \vdots \\ B_3 \\ \vdots \\ \vdots \\ B_N \end{bmatrix} \quad (80)$$

The null space of B_{2N} has dimension P_{2N} given as

$$P_{2N} = (n_a - r_{2N}) \quad (81)$$

where

$$n_a = \text{number of actuators}$$

$$r_{2N} = \text{rank of } B_{2N} \leq \min(n_2 + n_3 + \ldots + n_N, n_a)$$

Therefore, \hat{K}_1 has P_{2N} columns.

The number of actuators must exceed the rank of B_{2N} in order for $B_{2N}\hat{K}_1 = 0$. Otherwise the system is overspecified and no transformation matrix exists which will drive the $B_{2N}\hat{K}_1$ to zero. If rows of B_{2N} are linearly independent, then the number of actuators needed is given as

$$n_a > \sum_{i=2}^{N-1} n_i \quad (82)$$

and if the rows are not linearly independent, $n_a > r_{2N}$. It can be seen that the other control gain matrices will have a sufficient number of actuators if the inequality in Eq (82) is met. A similar study shows that the number
of sensors needed is, for C_{2N} with linearly independent columns

$$n_s > \sum_{i=1}^{N-1} n_i$$ \hspace{1cm} (83)

and for columns that are not linearly independent, $n_s > r_{2N}$, here is the rank of C_{2N}.

Likewise, for the lower block triangular conditions given in Eq (51), and actuator and sensor requirements can be shown to be

$$n_a > \sum_{i=1}^{N-1} n_i$$ \hspace{1cm} (84)

$$n_s > \sum_{i=2}^{N} n_i$$ \hspace{1cm} (85)

for linearly independent rows and columns of the B_{2N} and C_{2N} matrices, respectively.

It should be pointed out that satisfying the inequalities given in Eqs (82) through (85) may actually require more actuators and sensors than indicated. As an example, consider a thirty mode model. Using three controllers, each with ten modes, the above inequalities require at least twenty sensors and twenty actuators to assure decoupled system stability. However, to control and observe the system, at least one more sensor and actuator would be required. These conditions must be met in order to generate the transformation matrices and to implement the controllers. With these requirements and control model developed, the technique to obtain the transformation matrices T_i and Γ_i are presented.
IV. Transformation Technique

The transformation technique used in this study is the same one applied by Aldridge and Miller (1,13). It has been mentioned several times that the closed loop state equations, Eqs (11) and (33), will be put into block triangular form by the selective elimination of control and observation spillover terms. However, the exact details of this spillover elimination have been neglected until now. The following will describe the generation of the transformation matrices, which were referred to specifically as T and Γ in the previous section. The T matrix is a transformation matrix for the control spillover and the Γ matrix is a transformation matrix for the observation spillover.

In a single controller case, it can be seen that the spillover terms which, when eliminated, will assure system stability are $B_s K$ or $K C_s$, where the s subscript designates modes to be suppressed. An immediately obvious solution to this is $K = 0$. But this solution will make the respective terms $B_c K$ and $K C_c$ equal to zero also. Therefore, this solution is unsatisfactory. The transformation method generates a solution which for a single controller, is subject to the conditions

$$B_s K = 0$$ \hspace{1cm} (86)

$$K C_s = 0$$ \hspace{1cm} (87)

while maintaining

$$B_c K \neq 0$$ \hspace{1cm} (88)

$$K C_c \neq 0$$ \hspace{1cm} (89)
It would also be desirable to apply the additional constraint to the residual modes:

\[B_r K = 0 \quad (90) \]
\[KC_r = 0 \quad (91) \]

However, due to the large number of structural modes present in the model, this constraint is not realistic and will be ignored in this development. The effects of the residual spillovers may be minimized by the careful selection of modes designated as residual or suppressed, so as to create a frequency separation between the residuals and the bandwidth of the controller.

For a multiple controller, the conditions given in Eqs (86) and (87) apply, but now the \(B_s \) and \(C_s \) matrices may take on the form illustrated by Eq (80) and will be referred to as the \(B_{iN} \) and \(C_{iN} \) matrices. Instead of discussing all of the possible combinations of \(B_{iN} \) and \(C_{iN} \) for \(N \) controllers, take as an example the first condition given in Eq (35), that is

\[B_i K_j = 0 \quad j = 1, 2, \ldots, N-1; \quad i = j+1, \ldots, N \quad (92) \]

Given \(N \) controllers, \(K_i \) will have to be made orthogonal to \(N-1 \) \(B_i \) matrices. The \(N-1 \) \(B_i \) matrices may be combined into a single matrix such that

\[B_{iN} = \begin{bmatrix}
B_2 \\
\ldots \\
B_3 \\
\ldots \\
\vdots \\
B_N
\end{bmatrix} \quad (93) \]
Therefore, one of the conditions to be met is $B_{2N}K_1 = 0$. In other words, the K_1 matrix must be transformed such that its columns are orthogonal to the rows of B_{2N}, or as seen in the previous section, K_1 must be in the null space of B_{2N}. This is the most difficult case for N controllers and is presented only to describe how the multiple matrix is set up. The remainder of the derivation will be in terms of a generic B_s matrix which represents B_{2N} and B_2 alike.

The transformation matrix sought will be referred to as T and will be such that

$$B_sT = 0 \quad (94)$$

B_s has the row dimension of n_m (the number of modes to be suppressed) and the column dimension of n_a (the number of actuators). T, therefore, has dimensions of n_a by $n_a - n_m$. If there are fewer actuators than linearly independent modes, then no solution matrix T exists. The system is over-specified in this case, meaning there are more equations than unknowns. If the number of modes and actuators are equivalent, then the system is stable but uncontrollable (or in the case of the KC matrices, the system is stable but unobservable assuming an equal number of sensors and actuators). The actuators (sensors) are saturated with maintaining stability alone. Simply stated, the conditions given in Eq (82) and (83) must be met in order to generate a transformation matrix.

To illustrate the result of applying the transformation matrix described above, consider the following system of controlled and suppressed modes:

$$\dot{x}_c = A_c\dot{x}_c + B_c\tilde{u} \quad (95)$$
\[\dot{x}_s = A_s \ddot{x}_s + B_s \ddot{u} \quad (96) \]
where
\[\ddot{u} = G_c \dddot{x}_c \quad (97) \]

The \(B_s \ddot{u} \) term of Eq (91) is a control spillover term which may be adversely affected by the control applied to Eq (96). The elimination of this term requires the use of a transformation matrix \(T \) such that
\[B_s T = 0 \quad (98) \]
while maintaining
\[B_c T \neq 0 \quad (99) \]

This transformation matrix may be used to define a new control \(\ddot{u} \) as
\[\ddot{u} = T \ddot{v} \quad (100) \]

Inserting this expression into the state equations given in Eqs (91) and (92) yields
\[\ddot{x}_c = A_c \dddot{x}_c + B_c T \ddot{v} \quad (101) \]
\[\ddot{x}_s = A_s \dddot{x}_s + B_s T \ddot{v} \quad (102) \]

Letting \(B_c T = B^* \) and knowing that \(B_s T = 0 \) the new system is described by
\[\ddot{x}_c = A_c \dddot{x}_c + B^* \ddot{v} \quad (103) \]
\[\ddot{x}_s = A_s \dddot{x}_s \quad (104) \]

in which no controller spillover exists. The new control vector will be shown to be
\[\tilde{\nu} = G^* \tilde{x} \quad (105) \]

With this general overview of the transformation process and its results, the development of the matrix \(T \) will now be discussed.

The major tool used obtaining this result is called the Singular Value Decomposition (22). The matrix to be decomposed is \(B_s \) which has dimensions \(n_m \times n_a \) and can be described by

\[B_s = W \Sigma V^T \quad (106) \]

where \(W \) is an \((n_m \times n_m)\) orthogonal matrix of left singular vectors, \(V \) is an \((n_a \times n_a)\) orthogonal matrix of right singular vectors, and \(\Sigma \) is an \((n_m \times n_a)\) matrix with the \(s \) singular values of \(B_s \) in the first \(s \) entries along the main diagonal and zeroes in all other positions:

\[\Sigma = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \end{bmatrix} \quad (107) \]

such that

\[S = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \sigma_s \end{bmatrix} \quad (108) \]

The total number of singular values present is equal to the rank of the \(B_s \) matrix, and they are all non-negative. Assuming \(B_s \) is of full rank, the dimension of \(S = \min(n_a, n_m) \).
By partitioning, the W matrix can be defined by

$$W = \begin{bmatrix} W_s & W_r \end{bmatrix}$$ \hfill (109)$$

where W_s is an $n_m \times s$ matrix of left singular vectors associated with the non-zero singular values, W_r is an $n_m \times r$ matrix of left singular vectors associated with the zero singular values, and

$$s + r = n_m$$ \hfill (110)$$

Similarly, by partitioning, the V matrix can be defined by

$$V = \begin{bmatrix} V_s & V_p \end{bmatrix}$$ \hfill (111)$$

where V_s is an $s \times n_a$ matrix of right singular vectors associated with the non-zero singular values, V_p is a $p \times n_a$ matrix of right singular vectors associated with the zero singular values, and

$$s + p = n_a$$ \hfill (112)$$

Remembering the V matrix is orthogonal and noting then that

$$V_s^T V_p = 0$$ \hfill (113)$$

the decomposed matrix may be written as

$$B_s^T = W_s S V_s^T V_p = B_s V_p = 0$$ \hfill (114)$$

which leads to the conclusion that the transformation matrix desired is given in the matrix of right singular values associated with the zero singular values:
\[T = V_p \] \hspace{1cm} (115)

where \(T \neq 0 \).

Once the transformation matrix is found, implementation is relatively simple. Equation (100) defined a \(\tilde{v}_i \) as the new control input vector. This is now given as

\[\tilde{v}_i = G_i x_i \] \hspace{1cm} (116)

The \(G_i^* \) matrix is found in the same manner as in the Modal Control subsection of Section III in which

\[G_i^* = -R_i^{-1}B_i^T S_i \] \hspace{1cm} (117)

where

\[R_i^* = T_i^T R_i T_i \] \hspace{1cm} (118)

\(R_i \) is the positive definite weighting matrix in Eq (53)

\[B_i^* = B_i T_i \] \hspace{1cm} (119)

and \(S_i \) is the solution to the matrix Riccati equation

\[S_i A_i + A_i^T S_i - S_i B_i^* R_i^{-1} B_i^* S_i + Q_i = 0 \] \hspace{1cm} (120)

Simple manipulation of Eq (117) will show that the transformed gain matrix is finally given by

\[G_i^* = T_i G_i \] \hspace{1cm} (121)

Substitution of this back into the state equations yields a closed loop system which is block triangular with no control spillover.
This technique may be paralleled to obtain a \(\Gamma \) transformation matrix for the observation gain to eliminate observation spillover. Substituting \(C_s^T \) for \(B_s \), and \(\Gamma \) for \(\Gamma \) will give the same results with \(\Gamma \) equal to \(V_p \).

Otherwise, a new derivation using \(C_s \) will give the result that the observation transformation matrix \(\Gamma \) is equal to the transpose of the matrix \(W_r \) of left singular vectors associated with the zero singular values of \(C_s \).

Here, as alluded to earlier, the number of sensors must be greater than the number of modes to be suppressed.
V. Computer Model

Simplicity and flexibility were considered in the development of the computer program. The general format given by Aldridge (1) was followed as it provided a simple progression of logic. The program was modified to calculate the suboptimal gains and accommodate a design model of 33 modes (66 states). A program flow chart is shown in Figure 7.

The program provides decoupled control by reducing the closed loop state equation matrix, given in form by Eq (34), to the lower block triangular form. It is unnecessary to form the upper block system since the eigenvalue results for both systems are identical. In fact, by renumbering the controllers in the spillover elimination portion of this program, the opposite transformation is achieved. For this reason, only a main program for the lower block triangular controlled system is presented. This is listed in Appendix A. The subroutines which support this program are also in Appendix A. Several other subroutines are called, but not listed. These are provided by the International Mathematical and Statistical Library (IMSL).

Since program flexibility is desired, once the modal data is read, the program is designed to make any number of runs with different parameters for each run. The parameters that may be varied by the operator include: using a three or a four controller system, which modes are assigned to each controller, what control and observer weighting values to assign to each mode, and what initial system damping ratio is applied.

The program may read the input data from initialization assignments within the program or from a permanent data file. In either case, the
Figure 7. Computer Program Flow Chart
program operates as if it were interactive by prompting for input and then echoing the data read in. This makes the output very easy to interpret by allowing the user to trace the computer's progress through the execution of the program.

The program is initialized by inputting the number of controllers desired and then the number of modes in each controller. If three controllers are used, the number of residual modes will be requested, otherwise the fourth controller system is run without residuals. Next, the number of actuators and sensors are input, along with the damping ratio \(\zeta \). CSDL 2 was tested with twenty-one actuators, twenty-one sensors, and a damping ratio of 0.01 for each mode (15). The program will then read from a permanent file the matrix \((\phi^T D)\) of modal data at each actuator location, followed by the transpose of the matrix of modal data at each sensor location. In this study, these two matrices are identical since colocated pairs of actuators and sensors are employed. The sensor modal matrix is input in transposed form so that the matrix for a colocated system may be copied directly from the actuator modal data matrix. However, these are left as separate entries in the event the actuators and sensors are not colocated. Finally, the modal frequencies are read in from the data file. After this preload of data, the desired run is made by specifying which modes are to be controlled by each controller and which modes are to be left as residuals, along with the desired control and observer weighting values for each mode. Different configuration runs may be made changing mode assignments, weighting values or controller configurations.

Program execution actually begins with the formation of the \(A, B, C\), and weighting \(Q\) matrices for each controller. This is conveniently done by subroutines which read the required data for the modes specified. These
subroutines allow the operator to change the size of the controllers as needed simply by specifying the number of modes to be placed in each controller.

Once the initial matrices are formed, the optimal control gain matrices, \(G_i \), are determined using a series of subroutines which generate a numerical solution to the matrix Riccati equation. These sophisticated routines were created by Kleinman (7) and so are known as the Kleinman routines. The \(G_i \) matrices, along with the parameter matrices, \(A, B, \) and \(C \), are then combined to form the optimal closed loop system matrix. This particular program develops the three controller system with residuals, but does not include residual terms in the four controller systems.

Eigenvalue analysis of the individual optimal controllers is performed next, making use of the ISML routine EIGRF which determines the eigenvalues of real non-symmetric matrices. These eigenvalues are the desired values of the individual controllers and are used to compare the suboptimal controllers eigenvalues against. The optimal gains and generalized inverses of the output matrices are used to calculate the single controller DOFB gains, \(\hat{K} \). These suboptimal gains are then used to form closed loop single controller systems whose eigenvalues are compared with the desired optimal values. The multiple controller system is formed with the summed gains, \(\hat{K} \), and the system eigenvalues are calculated to evaluate coupling and use for comparison to the transformed system. Next the decoupling transformation matrices, \(T \) and \(\Gamma \), are obtained and used to find \(B^*, C^*, G^*, K^* \), and to form the control design gains, \(\tilde{K} \).

Spillover elimination is the next step in the control algorithm. This varies with controller configuration. The 3 or 4 controller variation is accommodated by the program. The spillover elimination is a rather
lengthy portion of the program. The modes to be suppressed are formed into non-zero B_s and C_s^T matrices of the form given in Eq (80). The IMSL routine LSVDF is used to perform a singular value decomposition on these matrices. By using the left singular vectors associated with the zero singular values of B_s and C_s^T, the transformation matrices T_i and r_i are formed. The program then applies the transformation matrices and as discussed in Section IV to create new matrices, B_i^r, C_i^r, G_i^r, K_i^r, and K_i. The new closed loop systems are generated and the eigenvalue analysis is repeated.

This program demonstrates the flexibility of the control method applied. The only change that needs to be made to adapt the method for another structure is the basic matrix dimensioning in the program. Nothing else has to be altered, as long as the system model can be defined by

$$\dot{x} = Ax + Bu \quad (5)$$

and

$$\bar{y} = C\bar{x} \quad (8)$$

as discussed in Section III. Thus, the ease of application of the control method described can be seen. Now, the performance of control method will be examined using the programs' eigenvalue analysis results.
VI. Investigation

Applying the decentralized control method to a large design model is a complicated task, so a systematic, building block approach was used to conduct the study. It was necessary to establish the method of feedback gain calculation, examine sensor information configurations (rate vs. position), and verify the results on a "perfect" (no residuals) model. The results are compared against those for steady full-state feedback optimal control. Once this foundation was laid, the model could be expanded to the multiple controller case with and without residual modes.

In the initial phase, a single controller was developed to establish the method of feedback gain calculation. The controller was assigned four flexible modes for this analysis. The four modes were arbitrarily selected from the twelve modes considered critical in the ACOSs Five report (15), which are identified in Table IV. The control weighting matrix, Q, was fixed at 1000 I. This program was modified to allow four configurations of the output matrix: position sensors only, \(C = [C_{pj} \phi : 0] \), rate sensors only, \(C = [0 : C_{vj} \phi] \), a mix of position and rate sensors, \(C = [C_{p1} \phi C_{p2} \phi 0 0 : 0 0 C_{v3} \phi C_{v4} \phi] \), and both position and rate sensors. These single controller responses were compared with those for the desired optimal controllers and to each other.

Next, the system was expanded to the multiple controller case to actively control twelve modes. No residuals were included in this phase of the study. The twelve modes selected are the same twelve identified in Table IV. Three and four controller cases were examined using low control weighting for the rigid body modes and higher (5,000 to 50,000) weighting
for the flexible modes as suggested by Aldridge (1). These controllers were operated using either position sensors only or rate sensors only. Mode assignments were rearranged to study mode grouping, and control weighting was varied to see the effect this had on mode controllability.

Finally the model was run using 33 modes (4-36) in three controllers with residuals and four controllers without residuals. For this phase, only rate sensor data was used. In this expanded model, modal selection and grouping were examined as well as the effects of biased weighting of lower frequency modes. The results of this outline will be presented shortly.

One of the more difficult tasks in controlling a large space structure is the determination of which structural modes are to be actively controlled and which are left as residuals. Factors which affect this selection process include sensor/actuator placement and alignment, controller bandwidths, and control constraints such as line-of-sight tolerances.

For multiple controllers, an additional step has to be taken. This is the assignment of the modes to be controlled to minimize the control effort. Organizing modes into compatible groups can be done by a simple examination of the angles between the vectors of modal amplitudes (the angles between the rows of the $\phi^T D$ matrix). Defining these vectors as ψ_i, the angles may be found from the equation for the dot product of two vectors, given by

$$\bar{\psi}_i \cdot \bar{\psi}_j = |\bar{\psi}_i| |\bar{\psi}_j| \cos \theta_{ij}$$

and

$$\theta_{ij} = \cos^{-1} \left(\frac{\bar{\psi}_i \cdot \bar{\psi}_j}{|\bar{\psi}_i| |\bar{\psi}_j|} \right)$$

(123, 124)
The modes are then grouped so no two orthogonal modes are in the same controller. In some cases the grouping of orthogonal modes in the same controller may be unavoidable.

The selection of modes based on angles will vary with the number of modes in the design model, since the modal vectors, ψ, are calculated based upon the evaluation model's (all modeled modes) modal matrix. Applying the relationship given in Eq (124), the twelve mode model relative angles are given in Table V and for the 36 mode model the relative angles are given in Table VI.

Another consideration in modal grouping is unpredictable ill conditioning of matrices. Aldridge found that when rigid and flexible body modes were assigned to the same controller, loss of symmetry could result and the feedback gains tended to infinity. All of his twelve mode controllers required a separate controller for the rigid body modes. The actual groupings selected for this study will be presented in the following section.
<table>
<thead>
<tr>
<th>Mode</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>12</th>
<th>13</th>
<th>17</th>
<th>21</th>
<th>22</th>
<th>24</th>
<th>28</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.00</td>
<td>89.09</td>
<td>90.00</td>
<td>90.01</td>
<td>90.09</td>
<td>123.20</td>
<td>104.48</td>
<td>90.05</td>
<td>90.01</td>
<td>90.01</td>
<td>39.16</td>
<td>81.12</td>
</tr>
<tr>
<td>5</td>
<td>89.09</td>
<td>0.00</td>
<td>67.47</td>
<td>175.39</td>
<td>116.85</td>
<td>90.05</td>
<td>89.97</td>
<td>106.57</td>
<td>116.23</td>
<td>90.16</td>
<td>87.89</td>
<td>87.84</td>
</tr>
<tr>
<td>6</td>
<td>90.00</td>
<td>67.47</td>
<td>0.00</td>
<td>115.31</td>
<td>0.00</td>
<td>89.99</td>
<td>90.04</td>
<td>116.99</td>
<td>91.57</td>
<td>80.13</td>
<td>89.41</td>
<td>89.27</td>
</tr>
<tr>
<td>7</td>
<td>90.01</td>
<td>175.39</td>
<td>115.31</td>
<td>0.00</td>
<td>60.67</td>
<td>89.69</td>
<td>90.02</td>
<td>73.19</td>
<td>66.49</td>
<td>90.68</td>
<td>92.45</td>
<td>92.35</td>
</tr>
<tr>
<td>12</td>
<td>90.09</td>
<td>116.85</td>
<td>104.01</td>
<td>60.67</td>
<td>0.00</td>
<td>89.69</td>
<td>90.01</td>
<td>102.77</td>
<td>68.57</td>
<td>111.87</td>
<td>96.61</td>
<td>95.63</td>
</tr>
<tr>
<td>13</td>
<td>123.20</td>
<td>90.05</td>
<td>89.99</td>
<td>39.95</td>
<td>89.69</td>
<td>0.00</td>
<td>61.22</td>
<td>90.07</td>
<td>89.87</td>
<td>90.15</td>
<td>104.90</td>
<td>73.29</td>
</tr>
<tr>
<td>17</td>
<td>107.48</td>
<td>89.97</td>
<td>90.04</td>
<td>90.02</td>
<td>90.02</td>
<td>61.22</td>
<td>0.00</td>
<td>89.91</td>
<td>90.15</td>
<td>89.96</td>
<td>80.56</td>
<td>127.80</td>
</tr>
<tr>
<td>21</td>
<td>90.05</td>
<td>106.57</td>
<td>116.99</td>
<td>73.19</td>
<td>102.77</td>
<td>90.07</td>
<td>89.91</td>
<td>0.00</td>
<td>93.88</td>
<td>38.05</td>
<td>93.50</td>
<td>93.10</td>
</tr>
<tr>
<td>22</td>
<td>90.01</td>
<td>116.23</td>
<td>91.57</td>
<td>66.49</td>
<td>68.57</td>
<td>89.87</td>
<td>90.15</td>
<td>93.88</td>
<td>0.00</td>
<td>103.22</td>
<td>90.51</td>
<td>90.74</td>
</tr>
<tr>
<td>24</td>
<td>90.01</td>
<td>90.16</td>
<td>80.13</td>
<td>90.68</td>
<td>111.87</td>
<td>90.15</td>
<td>89.96</td>
<td>38.05</td>
<td>103.22</td>
<td>0.00</td>
<td>94.15</td>
<td>93.50</td>
</tr>
<tr>
<td>28</td>
<td>39.16</td>
<td>87.89</td>
<td>89.41</td>
<td>92.45</td>
<td>96.61</td>
<td>104.90</td>
<td>80.56</td>
<td>93.50</td>
<td>90.51</td>
<td>94.15</td>
<td>0.00</td>
<td>89.82</td>
</tr>
<tr>
<td>30</td>
<td>81.12</td>
<td>87.94</td>
<td>89.27</td>
<td>92.35</td>
<td>95.63</td>
<td>73.29</td>
<td>127.80</td>
<td>93.10</td>
<td>90.74</td>
<td>93.50</td>
<td>89.82</td>
<td>0.00</td>
</tr>
</tbody>
</table>
TABLE VI

Relative Angles (in degrees) Between Modes (36)

<table>
<thead>
<tr>
<th>Mode</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>102</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>111</td>
<td>43</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>98</td>
<td>82</td>
<td>84</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>53</td>
<td>116</td>
<td>109</td>
<td>100</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>75</td>
<td>149</td>
<td>146</td>
<td>106</td>
<td>71</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>94</td>
<td>102</td>
<td>111</td>
<td>116</td>
<td>103</td>
<td>70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>85</td>
<td>115</td>
<td>107</td>
<td>81</td>
<td>63</td>
<td>73</td>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>103</td>
<td>60</td>
<td>61</td>
<td>76</td>
<td>98</td>
<td>129</td>
<td>107</td>
<td>88</td>
</tr>
<tr>
<td>13</td>
<td>83</td>
<td>43</td>
<td>53</td>
<td>81</td>
<td>96</td>
<td>133</td>
<td>131</td>
<td>87</td>
</tr>
<tr>
<td>14</td>
<td>98</td>
<td>142</td>
<td>135</td>
<td>91</td>
<td>86</td>
<td>41</td>
<td>73</td>
<td>70</td>
</tr>
<tr>
<td>15</td>
<td>94</td>
<td>58</td>
<td>43</td>
<td>80</td>
<td>93</td>
<td>140</td>
<td>112</td>
<td>96</td>
</tr>
<tr>
<td>16</td>
<td>80</td>
<td>63</td>
<td>86</td>
<td>95</td>
<td>114</td>
<td>100</td>
<td>60</td>
<td>135</td>
</tr>
<tr>
<td>17</td>
<td>87</td>
<td>87</td>
<td>72</td>
<td>108</td>
<td>77</td>
<td>98</td>
<td>64</td>
<td>123</td>
</tr>
<tr>
<td>18</td>
<td>98</td>
<td>123</td>
<td>134</td>
<td>85</td>
<td>87</td>
<td>47</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>19</td>
<td>108</td>
<td>82</td>
<td>98</td>
<td>62</td>
<td>96</td>
<td>91</td>
<td>106</td>
<td>72</td>
</tr>
<tr>
<td>20</td>
<td>73</td>
<td>64</td>
<td>60</td>
<td>87</td>
<td>77</td>
<td>118</td>
<td>131</td>
<td>79</td>
</tr>
<tr>
<td>21</td>
<td>99</td>
<td>127</td>
<td>121</td>
<td>96</td>
<td>103</td>
<td>61</td>
<td>59</td>
<td>88</td>
</tr>
<tr>
<td>22</td>
<td>105</td>
<td>121</td>
<td>105</td>
<td>71</td>
<td>83</td>
<td>75</td>
<td>97</td>
<td>59</td>
</tr>
<tr>
<td>23</td>
<td>96</td>
<td>95</td>
<td>80</td>
<td>76</td>
<td>85</td>
<td>100</td>
<td>108</td>
<td>71</td>
</tr>
<tr>
<td>24</td>
<td>105</td>
<td>121</td>
<td>108</td>
<td>101</td>
<td>92</td>
<td>68</td>
<td>64</td>
<td>95</td>
</tr>
<tr>
<td>25</td>
<td>103</td>
<td>27</td>
<td>43</td>
<td>68</td>
<td>106</td>
<td>157</td>
<td>117</td>
<td>99</td>
</tr>
<tr>
<td>26</td>
<td>107</td>
<td>80</td>
<td>82</td>
<td>74</td>
<td>100</td>
<td>96</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>27</td>
<td>95</td>
<td>120</td>
<td>112</td>
<td>77</td>
<td>75</td>
<td>58</td>
<td>85</td>
<td>81</td>
</tr>
<tr>
<td>28</td>
<td>91</td>
<td>64</td>
<td>73</td>
<td>89</td>
<td>108</td>
<td>118</td>
<td>68</td>
<td>122</td>
</tr>
<tr>
<td>29</td>
<td>101</td>
<td>96</td>
<td>78</td>
<td>78</td>
<td>63</td>
<td>94</td>
<td>104</td>
<td>78</td>
</tr>
<tr>
<td>30</td>
<td>101</td>
<td>101</td>
<td>99</td>
<td>79</td>
<td>102</td>
<td>80</td>
<td>85</td>
<td>88</td>
</tr>
<tr>
<td>31</td>
<td>92</td>
<td>74</td>
<td>69</td>
<td>82</td>
<td>95</td>
<td>107</td>
<td>77</td>
<td>121</td>
</tr>
<tr>
<td>32</td>
<td>96</td>
<td>89</td>
<td>97</td>
<td>78</td>
<td>76</td>
<td>81</td>
<td>91</td>
<td>89</td>
</tr>
<tr>
<td>33</td>
<td>92</td>
<td>76</td>
<td>74</td>
<td>78</td>
<td>91</td>
<td>112</td>
<td>101</td>
<td>91</td>
</tr>
<tr>
<td>34</td>
<td>110</td>
<td>90</td>
<td>94</td>
<td>63</td>
<td>106</td>
<td>92</td>
<td>95</td>
<td>87</td>
</tr>
<tr>
<td>35</td>
<td>91</td>
<td>121</td>
<td>115</td>
<td>84</td>
<td>69</td>
<td>62</td>
<td>101</td>
<td>52</td>
</tr>
<tr>
<td>36</td>
<td>92</td>
<td>64</td>
<td>65</td>
<td>86</td>
<td>85</td>
<td>119</td>
<td>106</td>
<td>90</td>
</tr>
<tr>
<td>Mode</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>63</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>122</td>
<td>140</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>33</td>
<td>56</td>
<td>134</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>84</td>
<td>82</td>
<td>115</td>
<td>87</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>82</td>
<td>104</td>
<td>107</td>
<td>68</td>
<td>80</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>117</td>
<td>135</td>
<td>47</td>
<td>139</td>
<td>99</td>
<td>105</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>88</td>
<td>94</td>
<td>81</td>
<td>106</td>
<td>101</td>
<td>113</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>54</td>
<td>37</td>
<td>141</td>
<td>46</td>
<td>86</td>
<td>90</td>
<td>128</td>
<td>101</td>
</tr>
<tr>
<td>21</td>
<td>100</td>
<td>135</td>
<td>48</td>
<td>107</td>
<td>91</td>
<td>91</td>
<td>59</td>
<td>93</td>
</tr>
<tr>
<td>22</td>
<td>76</td>
<td>119</td>
<td>59</td>
<td>85</td>
<td>117</td>
<td>91</td>
<td>64</td>
<td>74</td>
</tr>
<tr>
<td>23</td>
<td>58</td>
<td>90</td>
<td>95</td>
<td>57</td>
<td>103</td>
<td>78</td>
<td>90</td>
<td>83</td>
</tr>
<tr>
<td>24</td>
<td>108</td>
<td>128</td>
<td>67</td>
<td>108</td>
<td>97</td>
<td>79</td>
<td>59</td>
<td>91</td>
</tr>
<tr>
<td>25</td>
<td>52</td>
<td>40</td>
<td>137</td>
<td>51</td>
<td>81</td>
<td>92</td>
<td>124</td>
<td>77</td>
</tr>
<tr>
<td>26</td>
<td>68</td>
<td>80</td>
<td>107</td>
<td>76</td>
<td>83</td>
<td>89</td>
<td>91</td>
<td>77</td>
</tr>
<tr>
<td>27</td>
<td>96</td>
<td>122</td>
<td>69</td>
<td>106</td>
<td>96</td>
<td>89</td>
<td>55</td>
<td>76</td>
</tr>
<tr>
<td>28</td>
<td>71</td>
<td>89</td>
<td>107</td>
<td>71</td>
<td>65</td>
<td>67</td>
<td>103</td>
<td>93</td>
</tr>
<tr>
<td>29</td>
<td>81</td>
<td>101</td>
<td>90</td>
<td>78</td>
<td>124</td>
<td>62</td>
<td>86</td>
<td>73</td>
</tr>
<tr>
<td>30</td>
<td>76</td>
<td>101</td>
<td>77</td>
<td>87</td>
<td>87</td>
<td>97</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>31</td>
<td>57</td>
<td>90</td>
<td>113</td>
<td>54</td>
<td>65</td>
<td>49</td>
<td>109</td>
<td>105</td>
</tr>
<tr>
<td>32</td>
<td>103</td>
<td>104</td>
<td>85</td>
<td>113</td>
<td>96</td>
<td>89</td>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>33</td>
<td>78</td>
<td>80</td>
<td>114</td>
<td>77</td>
<td>79</td>
<td>93</td>
<td>96</td>
<td>82</td>
</tr>
<tr>
<td>34</td>
<td>106</td>
<td>100</td>
<td>75</td>
<td>108</td>
<td>101</td>
<td>104</td>
<td>59</td>
<td>51</td>
</tr>
<tr>
<td>35</td>
<td>96</td>
<td>112</td>
<td>53</td>
<td>105</td>
<td>116</td>
<td>106</td>
<td>63</td>
<td>77</td>
</tr>
<tr>
<td>36</td>
<td>68</td>
<td>67</td>
<td>107</td>
<td>63</td>
<td>85</td>
<td>86</td>
<td>115</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>125</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>51</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>71</td>
<td>70</td>
<td>40</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>115</td>
<td>46</td>
<td>65</td>
<td>71</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>128</td>
<td>108</td>
<td>85</td>
<td>119</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>72</td>
<td>105</td>
<td>86</td>
<td>80</td>
<td>100</td>
<td>81</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>100</td>
<td>81</td>
<td>63</td>
<td>85</td>
<td>76</td>
<td>122</td>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>96</td>
<td>80</td>
<td>95</td>
<td>83</td>
<td>88</td>
<td>65</td>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td>29</td>
<td>90</td>
<td>106</td>
<td>70</td>
<td>75</td>
<td>91</td>
<td>84</td>
<td>77</td>
<td>72</td>
</tr>
<tr>
<td>30</td>
<td>94</td>
<td>83</td>
<td>78</td>
<td>94</td>
<td>105</td>
<td>103</td>
<td>50</td>
<td>63</td>
</tr>
<tr>
<td>31</td>
<td>76</td>
<td>95</td>
<td>84</td>
<td>74</td>
<td>100</td>
<td>82</td>
<td>65</td>
<td>73</td>
</tr>
<tr>
<td>32</td>
<td>103</td>
<td>103</td>
<td>88</td>
<td>99</td>
<td>83</td>
<td>90</td>
<td>89</td>
<td>61</td>
</tr>
<tr>
<td>33</td>
<td>72</td>
<td>100</td>
<td>93</td>
<td>82</td>
<td>90</td>
<td>70</td>
<td>79</td>
<td>93</td>
</tr>
<tr>
<td>34</td>
<td>114</td>
<td>76</td>
<td>74</td>
<td>79</td>
<td>64</td>
<td>85</td>
<td>99</td>
<td>90</td>
</tr>
<tr>
<td>35</td>
<td>101</td>
<td>76</td>
<td>54</td>
<td>78</td>
<td>85</td>
<td>119</td>
<td>91</td>
<td>52</td>
</tr>
<tr>
<td>36</td>
<td>72</td>
<td>111</td>
<td>93</td>
<td>84</td>
<td>110</td>
<td>69</td>
<td>98</td>
<td>93</td>
</tr>
<tr>
<td>Mode</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>94</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>113</td>
<td>91</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>74</td>
<td>77</td>
<td>67</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>93</td>
<td>63</td>
<td>108</td>
<td>94</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>82</td>
<td>87</td>
<td>88</td>
<td>92</td>
<td>90</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>85</td>
<td>87</td>
<td>115</td>
<td>109</td>
<td>63</td>
<td>95</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>124</td>
<td>82</td>
<td>76</td>
<td>93</td>
<td>76</td>
<td>110</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>88</td>
<td>92</td>
<td>95</td>
<td>71</td>
<td>91</td>
<td>97</td>
<td>94</td>
<td>68</td>
</tr>
</tbody>
</table>
VII. Results

As in most research efforts, much more data was produced than will be presented in this section. The eigenvalue results that do appear should be considered representative of the controller system configurations studied. Results are presented in order of system magnitude, i.e. single controller, twelve mode multiple controller, and 33 mode multiple controller.

The first controller studied was a four mode single controller. The open loop damping ratio applied was 0.01 and a control weighting matrix of \(Q = 1000 I \) was used for modes 12, 17, 22, and 24. The response of this controller using position sensors only, rate sensors only, a mix of position and rate sensors, and both position and rate sensors (full C matrix) is given in Table VII. Next the rigid body modes were placed in a single controller with position sensors and again with rate sensors. The control weighting matrix was set at \(Q = 2 I \). The results for these controllers are given in Table VIII. The performance of the single controllers revealed that rate sensors provided the desired response for flexible body modes, but the response of the rigid body modes was undamped for position sensor information and overdamped for rate sensor information. The rigid body modes, however, were retained in the 12 and 33 mode design models, and for these multiple controller runs, only rate sensors were used.

The twelve mode model was examined with three and four controllers. The modes selected for this system are the 12 critical modes identified in the ACOSS Five report (15), i.e. modes 4, 5, 6, 7, 12, 13, 17, 21, 22, 24, 28, 30. The initial mode grouping was identical to Aldridge's three controller (1). The groupings are:
Controller 1: 4, 5, 6
Controller 2: 7, 13, 17, 21, 30
Controller 3: 12, 22, 24, 28

The groupings in these controllers appear undesirable since modes pairs 4-5, 4-6, 7-13, 7-17, 7-30, 13-21, 17-21, 21-30, 12-28, 22-28, and 24-28 are essentially orthogonal (see Table V). The control weighting matrix for the flexible modes was set at $Q = 5000 I$ and remained at $Q = 2 I$ for the rigid body modes. The eigenvalues for the closed loop system appear in Table IX. While the untransformed system shows improved damping for six of the nine flexible modes, the controller coupling has driven mode 13 (3.74 rad s$^{-1}$) unstable. After the transformation, the flexible modes remain stable with improved closed loop damping. Modes 28 and 30 remain unchanged though. These two nearly orthogonal modes were subsequently given a higher control weighting and reassigned to other mode groupings:

Controller 1: 4, 5, 6
Controller 2: 7, 13, 17, 21
Controller 3: 12, 22, 24, 28, 30

and

Controller 1: 4, 5, 6
Controller 2: 7, 13, 17, 21
Controller 3: 12, 22, 24
Controller 4: 28, 30

However, the closed loop damping of modes 28 and 30 remained unchanged from the open loop damping of .010. These two modes appear weakly controllable with the given actuator configuration. Examination of the modal matrix (Appendix B) shows the elements for modes 28 and 30 are zero or "small"
compared to the elements for the other modes, which supports the condition of weakly controllable/observable. Also of note is that orthogonal mode pairs like 7-13 not only remained controllable, but both show nice improvements of closed loop damping. The optimal control performance before and after transformation is also of interest and is compared for this system in Table X.

With the multiple controller program operating, the next step was to apply it to the 33 mode design model. Aldridge's results showed ill conditioning of matrices when the rigid body modes were grouped with flexible modes. So for the first run the rigid modes were grouped in a separate controller and the system modes were grouped as:

Controller 1: 4, 5, 6
Controller 2: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Controller 3: 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
Controller 4: 27, 28, 29, 30, 31, 32, 33, 34, 35, 36

The eigenvalue results for this system are given in Table XI. Here, as with the 12 mode case, the untransformed system shows coupling that destabilizes modes 8, 18, 20, 21, and 30, with mode 8 driven unstable. The transformed system remains completely stable with only one mode (11) suffering some damping loss. Most modes closed loop damping improves. Especially note controller 3 (modes 17-26) whose closed loop damping for all modes has at least doubled. Five of the higher frequency modes in controller 4 improved, including mode 30 which was uncontrollable in the 12 mode model. The modes whose closed loop damping remained equal to the passive .010 value may again be weakly observable/controllable with the given actuator/sensor configuration.
At this point there were two system conditions to investigate. First was the ill conditioning of matrices that was seen when grouping rigid and flexible modes in one controller. And second, was the initial 33 mode grouping denying better control of the higher frequencies. To check for ill conditioning, the rigid body modes were mixed with flexible modes in four different configurations as follows:

- **Grouping 1:** 4, 5, 6, 7, 9, 10, 13
- **Grouping 2:** 4, 5, 6, 15, 16, 17, 18, 19
- **Grouping 3:** 4, 5, 6, 23, 24, 25, 26, 27
- **Grouping 4:** 4, 5, 6, 31, 32, 33, 34, 35, 36

Mixing with groupings 1, 2, and 3 resulted in completely stable decoupled controllers, but when grouped with the higher frequency modes (Grouping 4), the controller gains became large and the eigenvalue analysis was stifled with infinite values. To see if this was not just a problem of mixing rigid modes with the higher frequencies, the lower frequency modes were mixed with the higher ones as well:

- **Controller 1:** 4, 5, 6, 15, 16, 17, 18, 19
- **Controller 2:** 7, 8, 9, 23, 24, 33, 34, 35
- **Controller 3:** 10, 11, 12, 25, 26, 31, 32, 36
- **Controller 4:** 13, 14, 20, 21, 22, 27, 28, 29, 30

This configuration was "nice" and eigenvalue results after transformation are given in Table XII. Mode 28 remained the only mode whose closed loop damping could not be improved via modal grouping. Unfortunately this mode is considered critical to LOS performance.

Finally the 33 mode model was run in the three controller configuration with residuals. Most of the configurations that contained more than five residuals drove one or more of the transformed system modes unstable.
However, two modal groupings that were successful, i.e. remained stable after transformation, were one with three residual modes and the other with seven residuals. The first system retained weighting matrices of $Q_{\text{rigid}} = 2I$ and $Q_{\text{flexible}} = 5000I$ and was grouped as:

Controller 1: 4, 5, 6, 9, 10, 11, 28, 29
Controller 2: 8, 12, 14, 15, 16, 17, 18, 19, 30, 31
Controller 3: 20, 21, 22, 23, 24, 25, 26, 27, 32, 33
Residuals: 34, 35, 36

The system eigenvalue results for this configuration are given in Table XIII. For this configuration, mode 28 grudgingly improved and most of the actively controlled modes show improved closed loop damping.

The last controller system to examine has the modal groupings:

Controller 1: 4, 5, 6, 9, 10, 11, 13
Controller 2: 8, 12, 14, 15, 16, 17, 18, 19, 20
Controller 3: 21, 22, 23, 24, 25, 26, 28, 29, 30, 31
Residuals: 25, 27, 32, 33, 34, 35, 36

The control weighting matrix on modes 7-20 was raised to $Q = 50,000I$ and lowered on modes 21-36 to create high control of mode frequencies below 6 rad s$^{-1}$, and a "dead zone" effect for the frequencies above that cutoff. The eigenvalue results for this system are given in Table XIV. Again the closed loop damping is remarkably improved for modes 20 and below and only the residual mode 35 loses some damping.

In general, the untransformed system shows the destabilizing effect of spillover. After transformation, though, system performance still is highly dependent upon modal grouping and control weighting. The condition and degree of controllability/observability is absolutely dependent
on the actuator/sensor configuration and modal matrix values. This is easily seen in following the response of mode 28 through it various controller assignments.
TABLE VII
Eigenvalue Analysis - Single Controller

Modes: 12, 17, 22, 24

<table>
<thead>
<tr>
<th>OPTIMAL FULL STATE FEEDBACK</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.6978118 + 11.1193805i</td>
<td>.063</td>
</tr>
<tr>
<td>-.1950110 + 7.2780866i</td>
<td>.027</td>
</tr>
<tr>
<td>-.0613474 + 5.1212778i</td>
<td>.012</td>
</tr>
<tr>
<td>-.1814128 + 3.4979155i</td>
<td>.052</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOFB POSITION SENSORS</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.111409 + 11.1441i</td>
<td>.010</td>
</tr>
<tr>
<td>-.072806 + 7.2804i</td>
<td>.010</td>
</tr>
<tr>
<td>-.051216 + 5.1214i</td>
<td>.010</td>
</tr>
<tr>
<td>-.035193 + 3.5013i</td>
<td>.010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOFB RATE SENSORS</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.697751 + 11.115567i</td>
<td>.063</td>
</tr>
<tr>
<td>-.194998 + 7.277893i</td>
<td>.027</td>
</tr>
<tr>
<td>-.061347 + 5.121270i</td>
<td>.012</td>
</tr>
<tr>
<td>-.181487 + 3.498374i</td>
<td>.052</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSITION (12,17) AND RATE (22,24)</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.697816 + 11.117928i</td>
<td>.063</td>
</tr>
<tr>
<td>-.194983 + 7.278735i</td>
<td>.027</td>
</tr>
<tr>
<td>-.051216 + 5.121389i</td>
<td>.010</td>
</tr>
<tr>
<td>-.035056 + 3.501293i</td>
<td>.010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSITION AND RATE SENSORS</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.425969 + 11.160118i</td>
<td>.038</td>
</tr>
<tr>
<td>-.134633 + 7.287732i</td>
<td>.018</td>
</tr>
<tr>
<td>-.056303 + 5.122321i</td>
<td>.011</td>
</tr>
<tr>
<td>-.107221 + 3.521215i</td>
<td>.030</td>
</tr>
</tbody>
</table>
TABLE VIII

Eigenvalue Analysis - Single Controller

Rigid Body Modes: 4, 5, 6

<table>
<thead>
<tr>
<th>OPTIMAL</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.16093 ± .15691i</td>
<td>.716</td>
</tr>
<tr>
<td>-0.14062 ± .13792i</td>
<td>.714</td>
</tr>
<tr>
<td>-0.11454 ± .11307i</td>
<td>.712</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSITION SENSORS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 ± .2248i</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0 ± .1970i</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0 ± .1609i</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RATE SENSORS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-.55906 ± 0.0i</td>
<td>>>1</td>
</tr>
<tr>
<td>-.00018 ± 0.0i</td>
<td>>>1</td>
</tr>
<tr>
<td>-.17413 ± 0.0i</td>
<td>>>1</td>
</tr>
<tr>
<td>-.00057 ± 0.0i</td>
<td>>>1</td>
</tr>
<tr>
<td>-.04497 ± 0.0i</td>
<td>>>1</td>
</tr>
<tr>
<td>-.00222 ± 0.0i</td>
<td>>>1</td>
</tr>
</tbody>
</table>

60
TABLE IX

Eigenvalue Analysis - 3 Controllers

\(Q_{\text{rigid}} = 2 \quad Q_{\text{flexible}} = 5000 \)

Mode Assignments

Controller 1: 4, 5, 6
Controller 2: 7, 13, 17, 21, 30
Controller 3: 12, 22, 24, 28
Residuals: None

Overall System Eigenvalues

<table>
<thead>
<tr>
<th>Mode</th>
<th>Before Transformation</th>
<th>Before Transformation</th>
<th>After Transformation</th>
<th>After Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>-0.2505 + 25.0483i</td>
<td>0.010</td>
<td>-0.2505 + 25.0483i</td>
<td>0.010</td>
</tr>
<tr>
<td>28</td>
<td>-0.2169 + 21.6903i</td>
<td>0.010</td>
<td>-0.2169 + 21.6903i</td>
<td>0.010</td>
</tr>
<tr>
<td>24</td>
<td>-2.7170 + 10.5290i</td>
<td>0.250</td>
<td>-0.7316 + 11.1106i</td>
<td>0.066</td>
</tr>
<tr>
<td>22</td>
<td>-0.3863 + 7.1399i</td>
<td>0.054</td>
<td>-0.2549 + 7.2653i</td>
<td>0.035</td>
</tr>
<tr>
<td>21</td>
<td>-0.2484 + 6.1062i</td>
<td>0.041</td>
<td>-0.2987 + 6.0988i</td>
<td>0.049</td>
</tr>
<tr>
<td>17</td>
<td>-0.0679 + 5.1249i</td>
<td>0.013</td>
<td>-0.0853 + 5.1191i</td>
<td>0.017</td>
</tr>
<tr>
<td>13</td>
<td>+0.3818 + 4.1764i</td>
<td>unstable</td>
<td>-0.9443 + 3.6271i</td>
<td>0.252</td>
</tr>
<tr>
<td>12</td>
<td>-0.1040 + 3.3917i</td>
<td>0.031</td>
<td>-0.2371 + 3.5011i</td>
<td>0.068</td>
</tr>
<tr>
<td>7</td>
<td>-0.0191 + 0.6893i</td>
<td>0.028</td>
<td>-0.0427 + 3.7148i</td>
<td>0.060</td>
</tr>
<tr>
<td>6</td>
<td>-7.1082 + 0.01i</td>
<td>>>1</td>
<td>-0.3219 + 0.01i</td>
<td>>>1</td>
</tr>
<tr>
<td></td>
<td>0.1E-8 + 0.01i</td>
<td></td>
<td>0.0002 + 0.01i</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-2.1548 + 0.01i</td>
<td>>>1</td>
<td>-0.2535 + 0.01i</td>
<td>>>1</td>
</tr>
<tr>
<td></td>
<td>0.2E-7 + 0.01i</td>
<td></td>
<td>0.0002 + 0.01i</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.4526 + 0.01i</td>
<td>>>1</td>
<td>0.1414 + 0.01i</td>
<td>>>1</td>
</tr>
<tr>
<td></td>
<td>0.0001 + 0.01i</td>
<td></td>
<td>0.0023 + 0.01i</td>
<td></td>
</tr>
</tbody>
</table>
TABLE X

Eigenvalue Analysis - 3 Controllers (Optimal)

Q_{rigid} = 2
Q_{flexible} = 5000

Mode Assignments

Controller 1: 4, 5, 6
Controller 2: 7, 13, 17, 21, 30
Controller 3: 12, 22, 24, 28
Residuals: None

Controller Eigenvalues

<table>
<thead>
<tr>
<th>Controller</th>
<th>Before Transformation (BG)</th>
<th>After Transformation (BG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller 1</td>
<td>(-0.16093 \pm 0.15691i)</td>
<td>(-0.16093 \pm 0.15691i)</td>
</tr>
<tr>
<td></td>
<td>(-0.14062 \pm 0.13792i)</td>
<td>(-0.14062 \pm 0.13792i)</td>
</tr>
<tr>
<td></td>
<td>(-0.11454 \pm 0.11307i)</td>
<td>(-0.11454 \pm 0.11307i)</td>
</tr>
<tr>
<td>Controller 2</td>
<td>(-0.25050 \pm 25.04834i)</td>
<td>(-0.25050 \pm 25.04834i)</td>
</tr>
<tr>
<td></td>
<td>(-0.34700 \pm 6.09807i)</td>
<td>(-0.29920 \pm 6.10041i)</td>
</tr>
<tr>
<td></td>
<td>(-0.08782 \pm 5.12071i)</td>
<td>(-0.08661 \pm 5.12082i)</td>
</tr>
<tr>
<td></td>
<td>(-1.12614 \pm 3.59620i)</td>
<td>(-0.94251 \pm 3.64174i)</td>
</tr>
<tr>
<td></td>
<td>(-0.59706 \pm 0.75548i)</td>
<td>(-0.04268 \pm 0.71644i)</td>
</tr>
<tr>
<td>Controller 3</td>
<td>(-0.21692 \pm 21.69033i)</td>
<td>(-0.21691 \pm 21.69033i)</td>
</tr>
<tr>
<td></td>
<td>(-1.54350 \pm 11.03465i)</td>
<td>(-0.73205 \pm 11.11716i)</td>
</tr>
<tr>
<td></td>
<td>(-0.40996 \pm 7.26962i)</td>
<td>(-0.25523 \pm 7.27624i)</td>
</tr>
<tr>
<td></td>
<td>(-0.39925 \pm 3.48263i)</td>
<td>(-0.23632 \pm 3.49517i)</td>
</tr>
<tr>
<td>Mode</td>
<td>Before Transformation</td>
<td>ξ</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>36</td>
<td>-0.5563 + 55.6271i</td>
<td>.010</td>
</tr>
<tr>
<td>5</td>
<td>-0.5311 + 53.1101i</td>
<td>.010</td>
</tr>
<tr>
<td>4</td>
<td>-0.5066 + 50.6708i</td>
<td>.010</td>
</tr>
<tr>
<td>3</td>
<td>-0.4952 + 41.2112i</td>
<td>.012</td>
</tr>
<tr>
<td>2</td>
<td>-2.1740 + 26.8590i</td>
<td>.081</td>
</tr>
<tr>
<td>1</td>
<td>-0.3027 + 25.5128i</td>
<td>.010</td>
</tr>
<tr>
<td>30</td>
<td>-0.2300 + 25.0623i</td>
<td>.009</td>
</tr>
<tr>
<td>29</td>
<td>-0.2486 + 24.8632i</td>
<td>.010</td>
</tr>
<tr>
<td>28</td>
<td>-0.2170 + 21.5769i</td>
<td>.011</td>
</tr>
<tr>
<td>27</td>
<td>-0.2274 + 21.5769i</td>
<td>.010</td>
</tr>
<tr>
<td>26</td>
<td>-0.1372 + 14.1619i</td>
<td>.015</td>
</tr>
<tr>
<td>25</td>
<td>-0.2164 + 14.1263i</td>
<td>.011</td>
</tr>
<tr>
<td>24</td>
<td>-0.1203 + 11.1374i</td>
<td>.011</td>
</tr>
<tr>
<td>23</td>
<td>-0.1085 + 9.7419i</td>
<td>.011</td>
</tr>
<tr>
<td>22</td>
<td>-0.1823 + 7.2325i</td>
<td>.025</td>
</tr>
<tr>
<td>21</td>
<td>-0.0529 + 6.1024i</td>
<td>.009</td>
</tr>
<tr>
<td>20</td>
<td>-0.0463 + 5.6700i</td>
<td>.008</td>
</tr>
<tr>
<td>19</td>
<td>-0.0535 + 5.1690i</td>
<td>.010</td>
</tr>
<tr>
<td>18</td>
<td>-0.0093 + 5.1363i</td>
<td>.002</td>
</tr>
<tr>
<td>17</td>
<td>-0.0987 + 5.1204i</td>
<td>.018</td>
</tr>
<tr>
<td>16</td>
<td>-0.0511 + 4.0070i</td>
<td>.013</td>
</tr>
<tr>
<td>15</td>
<td>-0.0409 + 3.9980i</td>
<td>.010</td>
</tr>
<tr>
<td>14</td>
<td>-0.0643 + 3.8315i</td>
<td>.017</td>
</tr>
<tr>
<td>13</td>
<td>-0.0855 + 3.7221i</td>
<td>.023</td>
</tr>
<tr>
<td>12</td>
<td>-0.1230 + 3.4744i</td>
<td>.035</td>
</tr>
<tr>
<td>11</td>
<td>-0.1786 + 2.8124i</td>
<td>.063</td>
</tr>
<tr>
<td>10</td>
<td>-0.0247 + 1.0029i</td>
<td>.025</td>
</tr>
<tr>
<td>9</td>
<td>-0.0100 + 0.9235i</td>
<td>.011</td>
</tr>
<tr>
<td>8</td>
<td>+0.0242 + 0.7261i</td>
<td>unstable</td>
</tr>
<tr>
<td>7</td>
<td>-0.4161 + 0.6663i</td>
<td>.530</td>
</tr>
<tr>
<td>6</td>
<td>-0.9692 + 0.0i</td>
<td>}</td>
</tr>
<tr>
<td></td>
<td>-0.0002 + 0.0i</td>
<td>}</td>
</tr>
<tr>
<td>5</td>
<td>-0.1755 + 0.0i</td>
<td>}</td>
</tr>
<tr>
<td></td>
<td>-0.0006 + 0.0i</td>
<td>}</td>
</tr>
</tbody>
</table>

TABLE XI
Eigenvalue Analysis - 4 Controllers

Mode Assignments

Controller 1: 4-6
Controller 2: 7-16
Controller 3: 17-26
Controller 4: 27-36
TABLE XII

Eigenvalue Analysis - 4 Controllers

Mode Assignments

Controller 1: 4-6, 15-19
Controller 3: 10-12, 25, 26, 31, 32, 36
Controller 2: 7-9, 23, 23, 33, 34, 35
Controller 4: 13, 14, 20-22, 27-30

<table>
<thead>
<tr>
<th>Controller</th>
<th>After Transformation</th>
<th>ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller 1</td>
<td>-0.0590 + 5.1721i</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>-0.0513 + 5.1248i</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>-0.4740 + 4.9394i</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td>-0.1130 + 4.0306i</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>-0.0406 + 3.9992i</td>
<td>0.010</td>
</tr>
<tr>
<td>Rigid Body</td>
<td>>>1</td>
<td></td>
</tr>
<tr>
<td>Controller 2</td>
<td>-0.6904 + 53.1049i</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>-0.5774 + 50.6682i</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>-0.4449 + 41.2314i</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>-0.3913 + 11.0811i</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>-0.3550 + 9.7809i</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>-0.3861 + 0.8432i</td>
<td>0.416</td>
</tr>
<tr>
<td></td>
<td>-0.4367 + 0.6173i</td>
<td>0.578</td>
</tr>
<tr>
<td></td>
<td>-0.7272 + 0.5072i</td>
<td>0.820</td>
</tr>
<tr>
<td>Controller 3</td>
<td>-0.5927 + 55.6253i</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>-0.4866 + 27.2171i</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>-0.5558 + 25.4804i</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>-0.1890 + 14.1351i</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>-0.9301 + 14.0928i</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>-0.1337 + 3.4590i</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>-0.3617 + 2.8683i</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>-0.5185 + 0.9766i</td>
<td>0.469</td>
</tr>
<tr>
<td>Controller 4</td>
<td>-0.2513 + 25.0480i</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>-0.3108 + 24.8594i</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>-0.2210 + 21.6878i</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>-0.2834 + 21.5732i</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>-0.1345 + 7.2705i</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>-0.0616 + 6.1070i</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>-0.1522 + 5.7430i</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>-0.0564 + 3.8072i</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>-0.2251 + 3.8044i</td>
<td>0.059</td>
</tr>
<tr>
<td>Mode</td>
<td>After Transformation</td>
<td>δ</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>36</td>
<td>-0.5562 + 55.6270i</td>
<td>0.010</td>
</tr>
<tr>
<td>35</td>
<td>-0.5313 + 53.1227i</td>
<td>0.010</td>
</tr>
<tr>
<td>34</td>
<td>-0.5067 + 50.6687i</td>
<td>0.010</td>
</tr>
<tr>
<td>33</td>
<td>-0.4124 + 41.2324i</td>
<td>0.010</td>
</tr>
<tr>
<td>32</td>
<td>-0.2730 + 27.2535i</td>
<td>0.010</td>
</tr>
<tr>
<td>31</td>
<td>-0.6159 + 25.4194i</td>
<td>0.024</td>
</tr>
<tr>
<td>30</td>
<td>-0.6987 + 25.0474i</td>
<td>0.028</td>
</tr>
<tr>
<td>29</td>
<td>-0.2496 + 24.8631i</td>
<td>0.010</td>
</tr>
<tr>
<td>28</td>
<td>-0.2484 + 21.6868i</td>
<td>0.011</td>
</tr>
<tr>
<td>27</td>
<td>-0.2164 + 21.5727i</td>
<td>0.010</td>
</tr>
<tr>
<td>26</td>
<td>-0.2615 + 14.1483i</td>
<td>0.018</td>
</tr>
<tr>
<td>25</td>
<td>-0.1416 + 14.1373i</td>
<td>0.010</td>
</tr>
<tr>
<td>24</td>
<td>-0.2567 + 11.1296i</td>
<td>0.023</td>
</tr>
<tr>
<td>23</td>
<td>-0.1845 + 9.7514i</td>
<td>0.019</td>
</tr>
<tr>
<td>22</td>
<td>-0.0785 + 7.2801i</td>
<td>0.011</td>
</tr>
<tr>
<td>21</td>
<td>-0.0864 + 6.1025i</td>
<td>0.014</td>
</tr>
<tr>
<td>20</td>
<td>-0.1328 + 5.7604i</td>
<td>0.023</td>
</tr>
<tr>
<td>19</td>
<td>-0.6081 + 5.0370i</td>
<td>0.120</td>
</tr>
<tr>
<td>18</td>
<td>-0.4594 + 5.0346i</td>
<td>0.091</td>
</tr>
<tr>
<td>17</td>
<td>-0.2799 + 5.0143i</td>
<td>0.056</td>
</tr>
<tr>
<td>16</td>
<td>-0.7299 + 4.0903i</td>
<td>0.176</td>
</tr>
<tr>
<td>15</td>
<td>-0.2282 + 3.9903i</td>
<td>0.057</td>
</tr>
<tr>
<td>14</td>
<td>-0.7534 + 3.7874i</td>
<td>0.195</td>
</tr>
<tr>
<td>13</td>
<td>-0.0503 + 3.7379i</td>
<td>0.013</td>
</tr>
<tr>
<td>12</td>
<td>-0.2638 + 3.5546i</td>
<td>0.074</td>
</tr>
<tr>
<td>11</td>
<td>-0.0310 + 2.8596i</td>
<td>0.011</td>
</tr>
<tr>
<td>10</td>
<td>-0.0149 + 1.0883i</td>
<td>0.014</td>
</tr>
<tr>
<td>9</td>
<td>-0.0364 + 0.8697i</td>
<td>0.042</td>
</tr>
<tr>
<td>8</td>
<td>-0.0183 + 0.6945i</td>
<td>0.026</td>
</tr>
<tr>
<td>7</td>
<td>-0.7512 + 0.5480i</td>
<td>0.808</td>
</tr>
<tr>
<td>4-5-6</td>
<td></td>
<td>>>1</td>
</tr>
</tbody>
</table>

TABLE XIII

Eigenvalue Analysis - 3 Controller

Mode Assignments

Controller 1: 4-6, 9-11, 28, 29
Controller 2: 8, 12, 14-19, 30, 31
Controller 3: 20-27, 32, 33
Residuals: 34-36
TABLE XIV

Eigenvalue Analysis - 3 Controllers

Mode Assignments

Controller 1: 4-6, 9-11, 13
Controller 2: 8, 12, 14-20
Controller 3: 21-24, 26, 28-31
Residuals: 25, 27, 32-36

<table>
<thead>
<tr>
<th>Mode</th>
<th>After Transformation</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>-0.5488 ± 55.6505i</td>
<td>.010</td>
</tr>
<tr>
<td>35</td>
<td>-0.3455 ± 53.1892i</td>
<td>.006</td>
</tr>
<tr>
<td>34</td>
<td>-0.5839 ± 50.6627i</td>
<td>.012</td>
</tr>
<tr>
<td>33</td>
<td>-0.5755 ± 41.0474i</td>
<td>.014</td>
</tr>
<tr>
<td>32</td>
<td>-2.0730 ± 26.9359i</td>
<td>.077</td>
</tr>
<tr>
<td>31</td>
<td>-0.2586 ± 25.4573i</td>
<td>.010</td>
</tr>
<tr>
<td>30</td>
<td>-0.2524 ± 25.0479i</td>
<td>.010</td>
</tr>
<tr>
<td>29</td>
<td>-0.2507 ± 24.8623i</td>
<td>.010</td>
</tr>
<tr>
<td>28</td>
<td>-0.2172 ± 21.6903i</td>
<td>.010</td>
</tr>
<tr>
<td>27</td>
<td>-0.4040 ± 21.5123i</td>
<td>.019</td>
</tr>
<tr>
<td>26</td>
<td>-0.1450 ± 14.1625i</td>
<td>.010</td>
</tr>
<tr>
<td>25</td>
<td>-0.2526 ± 14.1139i</td>
<td>.018</td>
</tr>
<tr>
<td>24</td>
<td>-0.1137 ± 11.1404i</td>
<td>.010</td>
</tr>
<tr>
<td>23</td>
<td>-0.0989 ± 9.7452i</td>
<td>.010</td>
</tr>
<tr>
<td>22</td>
<td>-0.0740 ± 7.2802i</td>
<td>.010</td>
</tr>
<tr>
<td>21</td>
<td>-0.0643 ± 6.1075i</td>
<td>.011</td>
</tr>
<tr>
<td>20</td>
<td>-0.3642 ± 4.9781i</td>
<td>.073</td>
</tr>
<tr>
<td>19</td>
<td>-0.3872 ± 4.8587i</td>
<td>.079</td>
</tr>
<tr>
<td>18</td>
<td>-1.2217 ± 4.8231i</td>
<td>.246</td>
</tr>
<tr>
<td>17</td>
<td>-1.9930 ± 4.2648i</td>
<td>.423</td>
</tr>
<tr>
<td>16</td>
<td>-2.2082 ± 3.9841i</td>
<td>.485</td>
</tr>
<tr>
<td>15</td>
<td>-0.9154 ± 3.9237i</td>
<td>.227</td>
</tr>
<tr>
<td>14</td>
<td>-0.4845 ± 3.7452i</td>
<td>.128</td>
</tr>
<tr>
<td>13</td>
<td>-0.1403 ± 3.5873i</td>
<td>.039</td>
</tr>
<tr>
<td>12</td>
<td>-2.6692 ± 3.3207i</td>
<td>.627</td>
</tr>
<tr>
<td>11</td>
<td>-3.0419 ± 2.6371i</td>
<td>.756</td>
</tr>
<tr>
<td>10</td>
<td>-0.2659 ± 2.3818i</td>
<td>.111</td>
</tr>
<tr>
<td>9</td>
<td>-0.0274 ± 0.8565i</td>
<td>.032</td>
</tr>
<tr>
<td>8</td>
<td>-0.1131 ± 0.2524i</td>
<td>.409</td>
</tr>
<tr>
<td>7</td>
<td>-0.1027 ± 0.0386i</td>
<td>.936</td>
</tr>
</tbody>
</table>

4-5-6 >>1
VIII. Conclusions

This investigation demonstrated the feasibility and merits of the decentralized direct output feedback control method. This technique can be used to design feedback gains for multiple controllers that decouple the individual controllers by eliminating controller to controller observation (or control) spillover. While system stability was maintained for design models that did not include residual modes, system stability cannot be guaranteed for design models that include residual modes. Modal grouping played a significant part in the system stability achieved.

Suitable modal grouping may have to be accomplished by "trial and error" unless a more technical approach can be devised. The use of angles between modal amplitude or rate vectors is a convenient method for initial grouping of modes. However, orthogonal modal pairs may be satisfactorily controlled even though they are in the same controller. The rank of the B and C matrices should be examined closely. If they are not of full rank, the modal groups may not be fully compatible as indicated by zero entries in the non-zero singular values of the singular value decomposition. Since the B and C matrices are a function of actuator and sensor placement, this model evaluation technique is a valuable design tool for examining performance of actuator and sensor configurations. The $\Phi^T D$ matrix can be checked for determining mode observability and controllability. This step should be considered part of the control-configured system approach.

A major shortcoming of direct output feedback using rate sensors was the loss of control of the rigid body modes. This is certainly not a fatal flaw for this control method. The rigid body modes may be controlled by a
separate optimal control system or additional states (e.g., rigid body angles) may be added to the state vector.

Overall closed loop damping was improved for actively controlled modes and system stability maintained for both the 12- and 33-mode design models. This study has demonstrated a control technique that eliminated the requirement for the observer states of modern control and allows either control of twice as many modes or dramatically reduces the computation burden to control the same number of modes.
IX. **Recommendations**

While this study has demonstrated the successful application of the decentralized DOFB method, it is not an end in itself. Before a control method is applied to a system, a control-configuration approach should be developed to establish desirable mode selection and grouping. This should involve examination of techniques to orient sensors and actuators specifically for the critical modes. This approach should include examination of the changes in the $\phi^T \Omega$ matrices with variations of the number of modes in the design model and reconfiguration of sensors/actuators. It may be possible to develop a method to establish optimal modal grouping.

System robustness is a desirable characteristic for control systems. Just how sensitive this control method is to parameter variations and component failure should be established. Also, analysis to predict ill conditioning of matrices would certainly be useful to a control designer.

The systems studied have provided a take off point for calculations of the line of sight (LOS) error for both forced and unforced responses. The systems should also be modified to provide proper control of the rigid body modes if they are included in the design model. This may be easily achieved by addition of body angles to the state vector.

One further item of interest is the computer burden comparisons for modern (cost optimal) and DOFB calculations. Both systems should be written using efficient programming techniques.
Appendix A

Main Program and Subroutine Listing
PROGRAM DOFB33(INPUT, OUTPUT, TAPE8, TAPE6)

C
PFN: DOFB33

C THIS PROGRAM GENERATES A LOWER TRIANGULAR TRANSFORMATION
C THE THREE OR FOUR CONTROLLER SOLUTION MAY INCLUDE RESIDUALS.
C
REAL A1(21, 21), A2(21, 21), A3(21, 21), A4(21, 21)
REAL B1(21, 21), B2(21, 21), B3(21, 21), B4(21, 21)
REAL BSTAR2(21, 21), BSTAR3(21, 21), BSTAR4(21, 21)
REAL CSTAR1(21, 21), CSTAR2(21, 21), CSTAR3(21, 21)
REAL C1(21, 21), C2(21, 21), C3(21, 21), C4(21, 21)
REAL CTCC1(21, 21), CTCC2(21, 21), CTCC3(21, 21)
REAL GT1(21, 21), GT2(21, 21), GT3(21, 21)
REAL SI(24), KSTAR4(21, 21), GSTAR4(21, 21)
REAL UT(21, 21), VP(21, 21), QPLUS(21, 21)
REAL QUT(21, 21), CPLUS(21, 21), KHAT4(21, 21)
REAL KSTAR1(21, 21), KSTAR2(21, 21), KSTAR3(21, 21)
REAL SAT(21, 21), SAT2(21, 21), SAT3(21, 21), SAT4(21, 21)
REAL ACK(21, 21), ACT(21, 21), BCG(21, 21), KCC(21, 21)
REAL P(21, 21), S(21, 21)
REAL ABK1(21, 21), ABK2(21, 21), ABK3(21, 21)
REAL GSTAR1(21, 21), GSTAR2(21, 21), GSTAR3(21, 21)
REAL TKG1(21, 21), TKG2(21, 21), TKG3(21, 21)
REAL QA1(21, 21), QA2(21, 21), QA3(21, 21), QA4(21, 21)
REAL ABGI(21, 21), ABG2(21, 21), ABG3(21, 21), ABG4(21, 21)
REAL ABG5(21, 21), ABG6(21, 21), ABG7(21, 21), ABG8(21, 21)
REAL GAIN1(21, 21), GAIN2(21, 21), GAIN3(21, 21), GAIN4(21, 21)
REAL KT1(21, 21), KT2(21, 21), KT3(21, 21), KT4(21, 21)
REAL KOB1(21, 21), KOB2(21, 21), KOB3(21, 21), KOB4(21, 21)
REAL GAMMA1(21, 21), GAMMA2(21, 21), GAMMA3(21, 21)
REAL T2(21, 21), T3(21, 21), T4(21, 21)
REAL TRT(21, 21), TEN(21, 21), CT(21, 21), V(21, 21)
REAL RK(21, 21), RK1(21, 21), RK2(21, 21), RK3(21, 21)
REAL RG2(21, 21), RG3(21, 21), RG4(21, 21)
REAL MAJM(66, 66), D(33), X0(66), W(33), TOL, DT
REAL ZETA, AA(33), BB(33), SING(21), XTR(21, 21), X1(66)
REAL EAT(1, 1), EAT2(1, 1), WORK(66, 66), STOR(21, 21)
REAL PHI(33, 21), PHIS(33, 21), MODE(2, 21), INIT(4, 21)
INTEGER N, N2, NC1, NC2, NC3, NC12, NC22, NC32, NR, NR2
INTEGER IC1(21), IC2(21), IC3(21), I, J, K, L, M, MM
INTEGER DEC, Q, NACT, NSEN, IR(21), IER, SKIP, NCOL, NCOL1
INTEGER NDA, NDIM, NDA1, NDIM1, ZZ, E2, E3, E4, P1, P2, P3, P5
COMPLEX Z(24), WI(12)
COMMON/MAINA/NDA, NDA1
COMMON/MAINB/NCOL, NCOL1
COMMON/MAIN1/NDIM, NDIM1, TEN, X(3364)
COMMON/MAIN2/STOR
COMMON/MAIN3/XTR
COMMON/SAVE/T(100), TS(100)
COMMON/INOUT/KOUT, TAPE
COMMON/NUM/IC1, IC2, IC3, IR, NC1, NC2, NC3, NR

71
INITIALIZATIONS

NDIM = 33
NDIM1 = 34
NCL = 21
NCL1 = 22
NDA = 66
NDA1 = 67
KOUT = 6
TAPE = 9
Q = 0
IER = 0
ZZ = 0

PRINT'(/I)/',
PRINT*, '-----------------
PRINT*, **** **I**
PRINT*, **..* DIRECT OUTPUT FEEDBACK **..*
PRINT*, **** 34 LOWER-RESIDUAL BLOCK ****
PRINT*, **** CSDL II ****
PRINT*, ****
PRINT'(/I)',
PRINT', THIS PROGRAM GENERATES A SOLUTION',
PRINT', USING A LOWER TRIANGULAR TRANSFORMATION'
PRINT'(/I)/'

INITIAL SELECTION FOR THREE OR FOUR CONTROLLERS

PRINT*, ' FOR A THREE CONTROLLER RUN, ENTER 3, OR,'
PRINT*, ' FOR A FOUR CONTROLLER RUN, ENTER 4
READ(8,*X) DEC

DEC DEFAULT SWITCH

IF (DEC.NE.4) DEC = 3
PRINT*, ' THIS IS A ',DEC,' CONTROLLER RUN '
PHI MATRICES AND CONTROLLER ENTRIES

PRINT('(///)'
IF (DEC.EQ.3) THEN
PRINT*, 'ENTER NC1,NC2,NC3,NR,NACT,NSEN,ZETA >'
ELSE
PRINT*, 'ENTER NC1,NC2,NC3,NC4,NACT,NSEN,ZETA >'
ENDIF
READ(B,*), NC1,NC2,NC3,NC4,NR,NACT,NSEN,ZETA
PRINT*, NC1,NC2,NC3,NC4,NACT,NSEN,ZETA
PRINT*, 'ENTER THE ',NACT,' ELEMENTS FOR EACH PHIA '
PRINT*, ' '
N = NC1 + NC2 + NC3 + NR
DO 1 I=1,N
PRINT*, 'ENTER PHIA ',I,' >'
READ(B,*), (PHIA(I,J),J=1,NACT)
PRINT*, ',(PHIA(I,J),J=1,NACT)
1 CONTINUE
PRINT('(///)'
PRINT*, 'ENTER THE ',NSEN,' ELEMENTS FOR EACH PHIS '
PRINT*, ' '
DO 2 I=1,N
PRINT*, 'ENTER PHIS ',I,' >'
READ(8,*), (PHIS(I,J),J=1,NSEN)
PRINT*, ',(PHIS(I,J),J=1,NSEN)
2 CONTINUE
PRINT'(///)'

OMEGAS

PRINT*, 'ENTER THE VALUE FOR EACH OMEGA '
PRINT*, ' '
DO 3 I=1,N
PRINT*, 'ENTER OMEGA ',I,' >'
READ(B,*), W(I)
PRINT*, ',W(I)
D(I) = -2. * ZETA * W(I)
3 CONTINUE

20 CONTINUE

SECONDARY SELECTION FOR THREE OR FOUR CONTROLLERS, TO
BE USED FOR RUNS AFTER THE FIRST JOB

IF (Q.EQ.2) THEN
PRINT*, 'FOR A THREE CONTROLLER RUN, ENTER 3, OR,'
PRINT*, ' FOR A FOUR CONTROLLER RUN, ENTER 4 >'
READ(8,*) DEC

DEC DEFAULT SWITCH
IF (DEC.NE.4) DEC = 3
PRINT*, ''
PRINT*, ' THIS IS A ',DEC,' CONTROLLER RUN '
PRINT'//(//)'

IF (DEC.EQ.3) THEN
PRINT*, ' ENTER THE VALUES OF NC1,NC2,NC3, NR >'
ELSE
PRINT*, ' ENTER THE VALUES OF NC1,NC2,NC3,NC4 >'
ENDIF
READ(8,*) NC1,NC2,NC3, NR
PRINT*,NC1,NC2,NC3, NR
PRINT'//(//)'
ENDIF

MODE ASSIGNMENT TO CONTROLLERS

PRINT'//(//)'
PRINT*, ' THE FOLLOWING MODES ARE ENTERED ACCORDING TO THE '
PRINT*, ' ORDER IN WHICH THEY ARE ENTERED IN THE DATA FILE '
PRINT*, ' AND NOT ACCORDING TO THEIR ACTUAL MODE NUMBER. '
PRINT'//(//)'
PRINT*, ' ENTER THE ',NC1,' CONTROLLER 1 MODES >'
READ(8,*) (IC1(I),I=1,NC1)
PRINT*, ' ',(IC1(I),I=1,NC1)
PRINT*, ''
PRINT*, ' ENTER THE ',NC2,' CONTROLLER 2 MODES >'
READ(8,*) (IC2(I),I=1,NC2)
PRINT*, ' ',(IC2(I),I=1,NC2)
PRINT*, ''
PRINT*, ' ENTER THE ',NC3,' CONTROLLER 3 MODES >'
READ(8,*) (IC3(I),I=1,NC3)
PRINT*, ' ',(IC3(I),I=1,NC3)
PRINT*, ''
IF (DEC.EQ.3) THEN
PRINT*, ' ENTER THE ',NR,' RESIDUAL MODES >'
ELSE
PRINT*, ' ENTER THE ',NR,' CONTROLLER 4 MODES >'
ENDIF
READ(8,*) (IR(I),I=1,NR)
PRINT*, ' ',(IR(I),I=1,NR)
PRINT*, ' ',

NC12 = 2 * NC1

74
NC22 = 2 * NC2
NC32 = 2 * NC3
N2 = 2 * N
NR2 = 2 * NR
M = NC12 + NC22 + NC32 + NR2
NDA = M
NDA1 = M + 1
NDIM = N
NDIM1 = N + 1
100 CONTINUE
PRINT*, ' TO PRINT ALL OF THE MATRICES ENTER 1, ELSE ENTER 0 >'
READ(B,*) Q
PRINT'(////)'

READ IN THE WEIGHTING MATRIX DIAGONAL
VALUE FOR EACH MODE

PRINT*, ' ENTER THE DIAGONAL VALUES, IN MODE INPUT '
PRINT*, ' ORDER, FOR THE CONTROL WEIGHTING MATRIX >'
READ(B,*) (AA(I), I=1, N)
PRINT*, '(
PRINT*, (AA(I), I=1, N)
PRINT'(////)'
PRINT'(///)'

FORMING THE A, B, C AND WEIGHTING MATRICES

CALL FORMA(A1, D, W, NC1, NC12, IC1)
CALL FORMB(B1, PHIA, NC1, NC12, NACT, IC1)
CALL FORMC(C1, PHIS, NC1, NC12, NSEN, IC1)
CALL FORMA(A2, D, W, NC2, NC22, IC2)
CALL FORMB(B2, PHIA, NC2, NC22, NACT, IC2)
CALL FORMC(C2, PHIS, NC2, NC22, NSEN, IC2)
CALL FORMA(A3, D, W, NC3, NC32, IC3)
CALL FORMB(B3, PHIA, NC3, NC32, NACT, IC3)
CALL FORMC(C3, PHIS, NC3, NC32, NSEN, IC3)
CALL FORMA(A4, D, W, NR, NR2, IR)
CALL FORMB(B4, PHIA, NR, NR2, NACT, IR)
CALL FORMC(C4, PHIS, NR, NR2, NSEN, IR)
CALL FORMQ(QA1, AA, NC1, IC1)
CALL FORMQ(QA2, AA, NC2, IC2)
CALL FORMQ(QA3, AA, NC3, IC3)
IF (DEC.EQ.4) THEN
CALL FORMQ(QA4, AA, NR, IR)
ENDIF

PRINTING THE A, B, C AND WEIGHTING MATRICES

75
IF (Q.EQ.1) THEN
PRINT*, ' THE CONTROLLER 1 A MATRIX IS '
CALL PRNT(A1, NC12, NC12)
PRINT*, ' THE CONTROLLER 1 B MATRIX IS '
CALL PRNT(B1, NC12, NACT)
PRINT*, ' THE CONTROLLER 1 C MATRIX IS '
CALL PRNT(C1, NSEN, NC12)
PRINT*, ' THE C1 CONTROL WEIGHTING MATRIX IS '
CALL PRNT(QA1, NC12, NC12)
PRINT*, ' THE CONTROLLER 2 A MATRIX IS '
CALL PRNT(A2, NC22, NC22)
PRINT*, ' THE CONTROLLER 2 B MATRIX IS '
CALL PRNT(B2, NC22, NACT)
PRINT*, ' THE CONTROLLER 2 C MATRIX IS '
CALL PRNT(C2, NSEN, NC22)
PRINT*, ' THE C2 CONTROL WEIGHTING MATRIX IS '
CALL PRNT(QA2, NC22, NC22)
PRINT*, ' THE CONTROLLER 3 A MATRIX IS '
CALL PRNT(A3, NC32, NC32)
PRINT*, ' THE CONTROLLER 3 B MATRIX IS '
CALL PRNT(B3, NC32, NACT)
PRINT*, ' THE CONTROLLER 3 C MATRIX IS '
CALL PRNT(C3, NSEN, NC32)
PRINT*, ' THE C3 CONTROL WEIGHTING MATRIX IS '
CALL PRNT(QA3, NC32, NC32)
IF (NR.EQ.0) THEN
PRINT*, ' NO RESIDUAL TERMS '
GOTO 115
ENDIF
IF (DEC.EQ.3) THEN
PRINT*, ' THE A RESIDUAL MATRIX IS '
CALL PRNT(A4, NR2, NR2)
PRINT*, ' THE B RESIDUAL MATRIX IS '
CALL PRNT(B4, NR2, NACT)
PRINT*, ' THE C RESIDUAL MATRIX IS '
CALL PRNT(C4, NSEN, NR2)
ELSE
PRINT*, ' THE CONTROLLER 4 A MATRIX IS '
CALL PRNT(A4, NR2, NR2)
PRINT*, ' THE CONTROLLER 4 B MATRIX IS '
CALL PRNT(B4, NR2, NACT)
PRINT*, ' THE CONTROLLER 4 C MATRIX IS '
CALL PRNT(C4, NSEN, NR2)
PRINT*, ' THE C4 CONTROL WEIGHTING MATRIX IS '
CALL PRNT(QA4, NR2, NR2)
ENDIF
END:
115 CONTINUE
THIS SECTION GENERATES THE RICCATI SOLUTIONS
AND THE GAIN MATRICES OF EACH CONTROLLER

CALL VMULFP(B1, B1, NC12, NACT, NC12, NCOL, NCOL, SAT, NCOL, IER)

CONTINUE
IER = 0
TOL = 0.001
PRINT*, 'THE FOLLOWING ARE THE MRIC A+BG 1 INPUTS'
PRINT('(/)')
PRINT*, 'THE MATRIX A1 IS'
CALL PRINT(A1, NC12, NC12)
PRINT*, 'THE MATRIX SAT (B1*B1T) IS'
CALL PRINT(SAT, NC12, NC12)
PRINT*, 'THE MATRIX QA1 IS'
CALL PRINT(QA1, NC12, NC12)
PRINT*, 'NC12 = ', NC12
PRINT('(/)')
CALL MRIC(NC12, A1, SAT, QA1, S, ABG1, TOL, IER)

ABG1 = A1 + B1G1

PRINT*, 'THE EIGENVALUES IF A1 + B1G1'
PRINT('(/)')
CALL EIGRF(ABG1, NC12, NCOL, 0, W1, TEN, NCOL, STOR, IER)
DO 629 I = 1, NC12
629 PRINT*, ', W1(I)
PRINT('(/)'
PRINT*, 'THE RICCATI SOLUTION OF AC + BCG 1 IS'
CALL PRINT(S, NC12, NC12)
CALL VMULFM(B1, S, NC12, NACT, NC12, NCOL, NCOL, GAIN1, NCOL, IER)
PRINT*, 'THE GI GAIN MATRIX IS'
CALL PRINT(GAIN1, NACT, NC12)
CALL FINDK(C1, NSEN, NC12, WORK, GAIN1, NSEN, KHAT1)
PRINT*, 'THE FEEDBACK MATRIX KHAT1 IS'
CALL PRINT(KHAT1, NACT, NSEN)
CALL ABGC(A1, B1, C1, NC12, KHAT1, NACT, NSEN, ABK1)
CALL EIGRF(ABK1, NC12, NCOL, 0, W1, TEN, NCOL, STOR, IER)
PRINT*, 'EIGENVALUES OF A1 + B1K1C1 ARE'
PRINT('(/)'
DO 632 I = 1, NC12
632 PRINT*, ', W1(I)
PRINT('(/)'
CONTINUE
CALL VMULFP(B2, B2, NC22, NACT, NC22, NCOL, NCOL, SAT2, NCOL, IER)
CONTINUE
IER = 0
TOL = 0.001
PRINT*, 'THE FOLLOWING ARE THE MRIC A+BG 2 INPUTS'
PRINT('(/)')
PRINT*, 'THE MATRIX A2 IS'
CALL PRNT(A2, NC22, NC22)
PRINT*, ' THE MATRIX SAT2 (B2*B2T) IS '
CALL PRNT(SAT2, NC22, NC22)
PRINT*, ' THE MATRIX QA2 IS '
CALL PRNT(QA2, NC22, NC22)
PRINT*, ' NC22 = ', NC22
PRINT'(/)'
CALL MRIC(NC22, A2, SAT2, QA2, S, ABG2, TOL, IER)
PRINT*, ' THE EIGENVALUES OF A2 + B2G2 '
CALL EIGRF(ABG2, NC22, NCOL, 0, W1, TEN, NCOL, STOR, IER)
PRINT'(/)'
DO 630 I=1, NC22
630
PRINT*, ' ', W1(I)
PRINT'(/)'
PRINT*, ' THE RICCATI SOLUTION OF AC + BCG #2 IS '
CALL PRNT(5, NC22, NC22)
CALL VMULFM(B2, S, NC22, NACT, NC22, NCOL, NCOL, GAIN2, NCOL, IER)
PRINT*, ' THE G2 GAIN MATRIX IS '
CALL PRNT(GAIN2, NACT, NC22)
CALL FINDK(C2, NSEN, NC22, WORK, GAIN2, NSEN, KHAT2)
PRINT*, ' THE FEEDBACK MATRIX KHAT2 IS'
CALL PRNT(KHAT2, NACT, NSEN)
CALL ABGC(A2, B2, C2, NC22, KHAT2, NACT, NSEN, ABK2)
CALL EIGRF(ABK2, NC22, NCOL, 0, W1, TEN, NCOL, STOR, IER)
PRINT'(/)'
PRINT*, ' THE EIGENVALUES OF A2 + B2K2C2 ARE'
DO 633 I=1, NC22
633
PRINT*, ' ', W1(I)
PRINT'(/)'
145 CONTINUE
CALL VMULFP(B3, B3, NC32, NACT, NC32, NCOL, NCOL, SAT3, NCOL, IER)
150 CONTINUE
IER = 0
TOL = 0.001
PRINT*, ' THE FOLLOWING ARE THE MRIC A+BG 3 INPUTS '
PRINT'(/)'
PRINT*, ' THE MATRIX A3 IS '
CALL PRNT(A3, NC32, NC32)
PRINT*, ' THE MATRIX SAT3 (B3*B3T) IS '
CALL PRNT(SAT3, NC32, NC32)
PRINT*, ' THE MATRIX QA3 IS '
CALL PRNT(QA3, NC32, NC32)
PRINT*, ' NC32 = ', NC32
PRINT'(/)'
CALL MRIC(NC32, A3, SAT3, QA3, S, ABG3, TOL, IER)
PRINT*, ' THE EIGENVALUES OF A3 + B3G3 '
CALL EIGRF(ABG3, NC32, NCOL, 0, W1, TEN, NCOL, STOR, IER)
PRINT'(/)'
DO 631 I=1, NC32
631
PRINT*, ' ', W1(I)
PRINT'(/)'
PRINT*, ' THE RICCATI SOLUTION OF AC + BCG #3 IS '
CALL PRNT(5, NC32, NC32)
CALL VMULFM(B3, S, NC32, NACT, NC32, NCOL, NCOL, GAIN3, NCOL, IER)
PRINT*, ' THE G3 GAIN MATRIX IS'
CALL PRNT(GAIN3, NACT, NC32)
CALL FINDK(C3, NSEN, NC32, WORK, GAIN3, NSEN, KHAT3)
PRINT*, ' THE FEEDBACK MATRIX KHAT3 IS'
CALL PRNT(KHAT3, NSEN, NSEN)
CALL ABGC(A3, B3, C3, NC32, KHAT3, NACT, NSEN, ABK3)
CALL EIGRF(ABK3, NC32, NCOL, O, WI, TEN, NCOL, STOR, IER)
PRINT*,' THE EIGENVALUES OF A3 + B3K3C3 OF
PRINT'(/)
DO 634 I=1,NC32
634 PRINT*, 'W1(I)
PRINT'(/) 155 CONTINUE
IF (DEC.EQ.4) THEN
CALL VMULFP(B4, B4, NR2, NACT, NR2, NCOL, NCOL, SAT4, NCOL, IER)
160 CONTINUE
IER = 0
TOL = 0.001
CALL MRIC(NR2, A4, SAT4, QA4, S, ABG4, TOL, IER)
PRINT*, ' THE RICCATI SOLUTION OF AC + BCG #4 IS'
CALL PRNT(S, NR2, NR2)
CALL VMULFM(B4, S, NR2, NACT, NR2, NCOL, NCOL, GAIN4, NCOL, IER)
PRINT*,' THE G4 GAIN MATRIX IS'
CALL PRNT(GAIN4, NACT, NR2)
CALL FINDK(C4, NSEN, NR2, WORK, GAIN4, NSEN, KHAT4)
PRINT*, 'THE FEEDBACK MATRIX KHAT4 IS'
CALL PRNT(KHAT4, NSEN, NSEN)
ENDIF
165 CONTINUE
C
C CALCULATE SUMMATION OF KHATS
C
CALL MADD(KHAT1, KHAT2, NACT, NACT, KCC)
CALL MADD(KCC, KHAT3, NACT, NACT, BCG)
IF (DEC.EQ.3) THEN
DO 166 I=1, NACT
DO 166 J=1, NACT
166 KCC(I, J)=BCG(I, J)
ELSE
CALL MADD(BCG, KHAT4, NACT, NACT, KCC)
ENDIF
C
C SUMMATION OF KHAT IS NOW IN KCC
C
C THIS SECTION GENERATES THE BLOCK SEGMENTS
C OF MAJM AND PUTS THEM INTO THE MAJM MATRIX
C
C THE FOUR CONTROLLER MATRIX WILL CONTAIN
C RESIDUAL TERMS (SEE DIAGRAM BELOW).
C THE FOUR CONTROLLER MATRIX DOES NOT IN-
C CLUDE RESIDUALS (YET).
THE FOUR CONTROLLER MATRIX (MAJM) WITH RESIDUAL TERMS WILL LOOK LIKE:

```
K = NC12
L = NC22 + K
P5 = NC32 + L
MM = NC12 + NC22 + NC32 + NR2
```

```
DO 200 I = 1, MM
DO 200 J = 1, MM
200 MAJM(I, J) = 0.0
CALL ABGC(A1, B1, C1, NC12, KCC, NACT, NSEN, ABG1)
DO 201 I = 1, NC12
DO 201 J = 1, NC12
201 MAJM(I+K, J+K) = ABG1(I, J)
CALL ABGC(A2, B2, C2, NC22, KCC, NACT, NSEN, ABG2)
DO 202 I = 1, NC22
DO 202 J = 1, NC22
202 MAJM(I+K, J+K) = ABG2(I, J)
CALL ABGC(A3, B3, C3, NC32, KCC, NACT, NSEN, ABG3)
DO 203 I = 1, NC32
DO 203 J = 1, NC32
203 MAJM(I+L, J+L) = ABG3(I, J)
CALL MMUL(B1, KCC, NC12, NACT, NSEN, TEN)
CALL MMUL(TEN, C2, NC12, NACT, NC22, BCG)
DO 208 I = 1, NC12
DO 208 J = 1, NC22
208 MAJM(I, J+K) = BCG(I, J)
CALL MMUL(B1, KCC, NC12, NACT, TEN)
CALL MMUL(TEN, C3, NC12, NACT, NC32, BCG)
DO 209 I = 1, NC12
DO 209 J = 1, NC32
209 MAJM(I+L, J) = BCG(I, J)
CALL MMUL(B2, KCC, NC22, NACT, TEN)
CALL MMUL(TEN, C1, NC22, NACT, NC12, BCG)
DO 210 I = 1, NC22
DO 210 J = 1, NC12
210 MAJM(I+K, J) = BCG(I, J)
```
CALL MMUL(B2, KCC, NC22, NACT, NACT, TEN)
CALL MMUL(TEN, C3, NC22, NACT, NC32, BCG)
DO 212 I=1, NC22
DO 212 J=1, NC32
212 MAJM(I+K, J+L) = BCG(I, J)
CALL MMUL(B3, KCC, NC32, NACT, NACT, TEN)
CALL MMUL(TEN, C1, NC32, NACT, NC12, BCG)
DO 213 I=1, NC32
DO 213 J=1, NC12
213 MAJM(I+J, J) = BCG(I, J)
CALL MMUL(B3, KCC, NC32, NACT, NACT, TEN)
CALL MMUL(TEN, C2, NC32, NACT, NC22, BCG)
DO 214 I=1, NC32
DO 214 J=1, NC22
214 MAJM(I+L, J+K) = BCG(I, J)
CALL MMUL(B4, KCC, NR2, NACT, NACT, TEN)
CALL MMUL(TEN, C1, NR2, NACT, NC12, BCG)
DO 222 I=1, NR2
DO 222 J=1, NC12
222 MAJM(I+P5, J) = BCG(I, J)
CALL MMUL(B4, KCC, NR2, NACT, NACT, TEN)
CALL MMUL(TEN, C2, NR2, NACT, NC22, BCG)
DO 223 I=1, NR2
DO 223 J=1, NC22
223 MAJM(I+P5, J+K) = BCG(I, J)
CALL MMUL(B4, KCC, NR2, NACT, NACT, TEN)
CALL MMUL(TEN, C3, NR2, NACT, NC32, BCG)
DO 224 I=1, NR2
DO 224 J=1, NC32
224 MAJM(I+P5, J+L) = BCG(I, J)

IF (DEC.EQ.4) THEN

CALL ABGC(A4, B4, C4, NR2, KCC, NACT, NSEN, ABG4)
DO 230 I=1, NR2
DO 230 J=1, NR2
230 MAJM(I+P5, J+P5) = ABG4(I, J)
CALL MMUL(B1, KCC, NC12, NACT, NACT, TEN)
CALL MMUL(TEN, C4, NC12, NACT, NR2, BCG)
DO 232 I=1, NC12
DO 232 J=1, NR2
232 MAJM(I+J+P5) = BCG(I, J)
CALL MMUL(B2, KCC, NC22, NACT, NACT, TEN)
CALL MMUL(TEN, C4, NC22, NACT, NR2, BCG)
DO 233 I=1, NC22
DO 233 J=1, NR2
233 MAJM(I+K, J+P5) = BCG(I, J)
CALL MMUL(B3, KCC, NC32, NACT, NACT, TEN)
CALL MMUL(TEN, C4, NC32, NACT, NR2, BCG)
DO 234 I=1, NC32
DO 234 J=1, NR2
MAJM(I+L,J+P5) = BCG(I,J)

ELSE

CALL FORMA(A4,D,W,NR,NR2,IR)
CALL ABGC(A4,B4,C4,NR2,KCC,NACT,NSEN,ABG4)
DO 250 I=1,NR2
DO 250 J=1,NR2
250 MAJM(I+P5,J+P5) = ABG4(I,J)
ENDIF

NOW WE HAVE THE MAJM MATRIX

IF (DEC.EQ.4) THEN
PRINT*, ' THE FOUR CONTROLLER MAJOR MATRIX '
ELSE
PRINT*, ' THE THREE CONTROLLER MAJOR MATRIX '
ENDIF
CALL PRNTXL(MAJM,MM,MM)

NEXT, FORM E TO THE AT

PRINT*, ' FOR THE TIME RESPONSE AND THE EIGENVALUE'
* ' ANALYSIS ENTER 1'
PRINT*, ' FOR ONLY THE EIGENVALUE ANALYSIS ENTER 2 '
READ(8,*) SKIP
IF (SKIP.EQ.2) THEN
PRINT*, '
PRINT*, ' YOU CHOSE "2" SO WE WILL FORGET THE TIME RESPONSE '
GOTO 300
ENDIF
PRINT*, ' YOU WANT BOTH, EH? '
PRINT*, '
PRINT*, ' O.K. HERE THEY ARE! '
PRINT*, '
PRINT*, ' THE TIME RESPONSE IS FIRST... '
DT = 0.1
TOL = 0.001
CALL MEXP(MM,MAJM,DT,EAT2)
PRINT*, ' MEXPOUT '
PRINT('//')
PRINT*, ' THE SOLUTION EAT2 IS '
CALL PRNTXL(EAT2,MM,MM)

EAT2 IS NOW THE SOLUTION TO E TO THE AT

CALL FORMX2(XO,INIT)
CALL TIME(EAT2, MM, DT, X1, XO, MODE, EAT, WORK, DEC)

300 CONTINUE

C C C
EIGENVALUE ANALYSIS SECTION
C C C

PRINT'(/)'
PRINT*, ' OVERALL SYSTEM EIGENVALUES'
CALL EIGRF(MAJM, MM, NDA, 0, Z, TEN, NCOL, WORK, IER)
PRINT'(/)'
DO 400 I=1, MM

400 PRINT*, ', Z(I)
PRINT'(/)'

 DO 401 I=1, NC12

401 PRINT*, ', W1(I)
PRINT'(/)'

 PRINT*, ' EIGENVALUES OF A1 + B1KIC1'
CALL EIGRF(ABG1, NC12, NCOL, 0, W1, TEN, NCOL, STOR, IER)
PRINT'(/)'
DO 403 I=1, NC22

403 PRINT*, ', W1(I)
PRINT'(/)'

 PRINT*, ' EIGENVALUES OF A2 + B2KIC2'
CALL EIGRF(ABG2, NC22, NCOL, 0, W1, TEN, NCOL, STOR, IER)
PRINT'(/)'
DO 405 I=1, NC32

405 PRINT*, ', W1(I)
PRINT'(/)'

 IF (NR.EQ.0) THEN
 PRINT*, ' NO RESIDUAL TERM EIGENVALUES'
 PRINT'(/)'
 GOTO 410
 ENDIF

 IF (DEC.EQ.4) THEN

 PRINT*, ' EIGENVALUES OF A4 + B4KIC4'
CALL EIGRF(ABG4, NR2, NCOL, 0, W1, TEN, NCOL, STOR, IER)
PRINT'(/)'
DO 407 I=1, NR2

407 PRINT*, ', W1(I)
PRINT'(/)'

 ELSE

 PRINT*, ' EIGENVALUES OF THE A RESIDUAL MATRIX'
CALL EIGRF(A4, NR2, NCOL, 0, W1, TEN, NCOL, STOR, IER)
PRINT'(/)'
DO 409 I=1, NR2

83
409 PRINT*, ',W1(I)
 ENDIF
 PRINT'(////)'

C

410 CONTINUE

C

THIS SECTION FORMS THE TRANSFORMATION MATRICES.

C

AFTER THE TRANSFORMATION IS COMPLETE, THE THREE OR FOUR CONTROLLER MAJM (WITHOUT RESIDUALS) WILL LOOK LIKE:

C

C *
C * (A1+B1K1C1) 0 0 0 *
C * (B2K1C1) (A2+B2K2C2) 0 0 *
C * (B3K1C1+B3K2C1) (B3K2C2) (A3+B3K3C3) 0 *
C * (B4K1C1+B4K2C1+B4K3C1) (B4K2C2+B4K3C2) (B4K3C3) (A4+B4K4C4) *
C *

WHERE THE NON-ZERO TERMS INCLUDE THE TRANSFORMATION MATRICES. (THE RESIDUALS ARE NOT ZEROED SINCE THEY ARE NOT ADDRESSED IN THIS PROGRAM)

C

GENERATE THE TRANSFORMATION MATRICES

C

GAMMA1, GAMMA2, GAMMA3 (GAMMA4 = IDENTITY)

C

CALL TFR(CT, C2, NSEN, NC22, 1, 2)
DO 500 I=1,NC2
 DO 500 J=1,NSEN
 V(I,J) = CT(I+NC2,J)
 CALL TFR(CT, C3, NSEN, NC32, 1, 2)
 DO 501 I=1,NC3
 DO 501 J=1,NSEN
 V(I+NC2,J) = CT(I+NC3,J)
 IF (DEC.EQ.4) THEN
 CALL TFR(CT, C4, NSEN, NR2, 1, 2)
 DO 502 I=1,NR
 DO 502 J=1,NSEN
 V(I+NC2+NC3,J) = CT(I+NR,J)
 NRV = NC2 + NC3 + NR
 PRINT*, ' V (C2/C3/C4) IS '
ELSE
PRINT*, 'V (C2/C3) IS'
NRV = NC2 + NC3
ENDIF
CALL PRNT(V, NRV, NSEN)
CALL LSVDF(V, NCOL, NRV, NSEN, TEN, NCOL, -1, SING, STOR, IER)
PRINT*, ''
PRINT*, 'V OUT OF LSVDF IS'
CALL PRNT(V, NSEN, NSEN)
P1 = NSEN - NRV
IF (P1.LT.1) THEN
DO 503 I=1,NSEN
503 GAMMA1(I,1) = V(I,NSEN)
P1 = 1
ELSE
DO 504 I=1,NSEN
DO 504 J=I,P1
504 GAMMA1(I,J) = V(I,J+NRV)
ENDIF
PRINT*, 'TRANSFORMATION MATRIX GAMMA1'
CALL PRNT(GAMMA1, NSEN, P1)
C
C CHECK TO SEE THAT GAMMA1 IS ORTHOGONAL TO BOTH C2 AND C3
C
C NOTE: AKC IN THIS SECTION IS JUST A WORK AREA TO TEST
C THE ORTHOGONALITY OF CT * TR. IN ALL CASES IT
C SHOULD BE A BLOCK ZERO MATRIX.
C
CALL TFR(CT, C2, NSEN, NC22, 1, 2)
CALL MMUL(CT, GAMMA1, NC22, NSEN, P1, AKC)
PRINT*, 'C2T * GAMMA1'
CALL PRNT(AKC, NC22, P1)
CALL TFR(CT, C3, NSEN, NC32, 1, 2)
CALL MMUL(CT, GAMMA1, NC32, NSEN, P1, AKC)
PRINT*, 'C3T * GAMMA1'
CALL PRNT(AKC, NC32, P1)
IF (DEC.EQ.4) THEN
CALL TFR(CT, C4, NSEN, NR2, 1, 2)
CALL MMUL(CT, GAMMA1, NR2, NSEN, P1, AKC)
PRINT*, 'C4T * GAMMA1'
CALL PRNT(AKC, NR2, P1)
ENDIF

C
IF (DEC.EQ.4) THEN
PRINT*, 'C234 SINGULAR VALUES'
ELSE
PRINT*, 'C23 SINGULAR VALUES'
ENDIF
CALL PRNT(SING, NRV, 1)
CALL TFR(TRT, GAMMA1, NSEN, P1, 1, 2)
CALL MMUL(TRT, GAMMA1, P1, NSEN, P1, RK)
CALL GMINV(P1, P1, RK, RK1, J, TAPE)
CALL TFR(CT, C1, NSEN, NC12, 1, 2)
DECENTRALIZED CONTROL OF A LARGE SPACE STRUCTURE USING DIRECT OUTPUT FEEDBACK

WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. D V THYFAULT

UNCLASSIFIED DEC 83 AFIT/GA/AA/83D-8 F/G 12/1 NL
CALL MMUL(TRT, C1, P1, NSEN, NC12, AKC)
CALL MMUL(CT, GAMMA1, NC12, NSEN, P1, KOB1)
CALL MMUL(KOB1, RK1, NC12, P1, P1, STOR)
CALL MMUL(STOR, AKC, NC12, P1, NC12, CTCC1)

C
C
C
CALL TFR(CT, C3, NSEN, NC32, 1, 2)
DO 505 I=1, NC3
DO 505 J=1, NSEN
V(I, J) = CT(I+NC3, J)
IF (DEC. EQ. 4) THEN
CALL TFR(CT, C4, NSEN, NR2, 1, 2)
DO 506 I=1, NR
DO 506 J=1, NSEN
V(I+NC3, J) = CT(I+NR, J)
NRV = NC3 + NR
PRINT*, ' V (C3/C4) IS '
ELSE
NRV = NC3
PRINT*, ' V (C3) IS '
ENDIF
CALL PRNT(V, NRV, NSEN)
CALL LSVDF(V, NCOL, NRV, NSEN, TEN, NCOL, -1, SING, STOR, IER)
PRINT*, ' V OUT OF LSVDF IS '
CALL PRNT(V, NSEN, NSEN)
P2 = NSEN - NRV
IF (P2.LT.1) THEN
DO 507 I=1, NSEN
GAMMA2(I, 1) = V(I, NSEN)
P2 = 1
ELSE
DO 508 I=1, NSEN
DO 508 J=1, P2
GAMMA2(I, J) = V(I, J+NRV)
ENDIF
PRINT*, ' TRANSFORMATION MATRIX GAMMA2 '
CALL PRNT(GAMMA2, NSEN, P2)
C
C CHECK TO SEE THAT GAMMA2 IS ORTHOGONAL TO C3
C
CALL TFR(CT, C3, NSEN, NC32, 1, 2)
CALL MMUL(CT, GAMMA2, NC32, NSEN, P2, AKC)
PRINT*, ' C3T * GAMMA2 '
CALL PRNT(AKC, NC32, P2)
IF (DEC. EQ. 4) THEN
CALL TFR(CT, C4, NSEN, NR2, 1, 2)
CALL MMUL(CT, GAMMA2, NR2, NSEN, P2, AKC)
PRINT*, ' C4T * GAMMA2 '
CALL PRNT(AKC, NR2, P2)

86
ENDIF

IF (DEC.EQ.4) THEN
PRINT*, 'C34 SINGULAR VALUES '
ELSE
PRINT*, 'C3 SINGULAR VALUES '
ENDIF
CALL PRNT(SING, NRV, 1)

CALL TFR(TRT, GAMMA2, NSEN, P2, 1, 2)
CALL MMUL(TRT, GAMMA2, P2, NSEN, P2, RK)
CALL GMINV(P2, P2, RK, RK2, J, TAPE)
CALL TFR(CT, C2, NSEN, NC22, 1, 2)
CALL MMUL(TRT, C2, P2, NSEN, NC22, AKC)
CALL MMUL(CT, GAMMA2, NC22, NSEN, P2, KOB2)
CALL MMUL(KOB2, RK2, NC22, P2, P2, STOR)
CALL MMUL(STOR, AKC, NC22, P2, NC22, CTCC2)

IF (DEC.EQ.4) THEN
CALL TFR(CT, C4, NSEN, NR2, 1, 2)
DO 509 I=1, NR
DO 509 J=1, NSEN
509 V(I,J) = CT(I+NR, J)
PRINT*, ' V (C4) IS '
CALL PRNT(V, NR, NSEN)
CALL LSVDF(V, NCOL, NR, NSEN, TEN, NCOL, -1, SING, STOR, IER)
PRINT*, ' V OUT OF LSVDF IS '
CALL PRNT(V, NSEN, NSEN)
P3 = NSEN - NR
IF (P3.LT.1) THEN
DO 510 I=1, NSEN
510 GAMMA3(I, 1) = V(I, NSEN)
P3 = 1
ELSE
DO 511 I=1, NSEN
DO 511 J=1, P3
511 GAMMA3(I, J) = V(I, J+NR)
END IF
PRINT*, 'TRANSFORMATION MATRIX GAMMA3 '
CALL PRNT(GAMMA3, NSEN, P3)

CHECK TO SEE THAT GAMMA3 IS ORTHOGONAL TO C4

CALL MMUL(CT, GAMMA3, NR2, NSEN, P3, AKC)
PRINT*, 'C4T x GAMMA3 '
CALL PRNT(AKC, NR2, P3)

PRINT*, 'C4 SINGULAR VALUES '
CALL PRNT(SING, NR, 1)
CALL TFR(TRT, GAMMA3, NSEN, P3, 1, 2)
CALL MMUL(TRT, GAMMA3, P3, NSEN, P3, RK)
CALL GMINV(P3, P3, RK, RK3, J, TAPE)
CALL TFR(CT, C3, NSEN, NC32, 1, 2)
CALL MMUL(TRT, C3, P3, NSEN, NC32, AKC)
CALL MMUL(CT, GAMMA3, NC32, NSEN, P3, KOB3)
CALL MMUL(KOB3, RK3, NC32, P3, P3, STOR)
CALL MMUL(STOR, AKC, NC32, P3, NC32, CTCC3)
ENDIF
DO 411 I=1, NSEN
DO 411 J=1, P1
411 GT1(J, I)=GAMMA1(I, J)
DO 412 I=1, NSEN
DO 412 J=1, P2
412 GT2(J, I)=GAMMA2(I, J)
PRINT*, ' GAMMA1 TRANSPOSE '
CALL PRNT(GT1, P1, NSEN)
PRINT*, ' GAMMA2 TRANSPOSE '
CALL PRNT(GT2, P2, NSEN)
IF(DEC.EQ.4) THEN
DO 413 I=1, NSEN
DO 413 J=1, P3
413 GT3(J, I)=GAMMA3(I, J)
PRINT*, ' GAMMA3 TRANSPOSE '
CALL PRNT(GT3, P3, NSEN)
ENDIF
C
C
CSTAR = GAMMA * C

CALL MMUL(GT1, C1, P1, NSEN, NC12, CSTAR1)
PRINT*, ' (GT1)(C1) '
CALL PRNT(CSTAR1, P1, NC12)
CALL MMUL(GT2, C2, P2, NSEN, NC22, CSTAR2)
PRINT*, ' (GT2)(C2) '
CALL PRNT(CSTAR2, P2, NC22)
IF(DEC.EQ.4) THEN
CALL MMUL(GT3, C3, P3, NSEN, NC32, CSTAR3)
PRINT*, ' (GT3)(C3) '
CALL PRNT(CSTAR3, P3, NC32)
ENDIF
C
C
TRANSFORMATION MATRICES T2, T3, T4 (T1 = IDENTITY)
C
C
DO 512 I=1, NC1
DO 512 J=1, NACT
512 V(I, J) = B1(I+NC1, J)
PRINT*, ' V (B1) IS '
CALL PRNT(V, NC1, NACT)
CALL LSVDF(V, NCOL, NC1, NACT, TEN, NCOL, -1, SING, STOR, IER)
PRINT*, ' V OUT OF LSVDF IS '
CALL PRNT(V,NACT,NACT)
E2 = NACT - NC1
IF (E2.LT.1) THEN
DO 513 I=1,NACT
513 T2(I,1) = V(I,NACT)
E2 = 1
ELSE
DO 514 I=1,NACT
DO 514 J=1,E2
514 T2(I,J) = V(I,J+NC1)
ENDIF
PRINT*, ' TRANSFORMATION MATRIX T2 '
CALL PRNT(T2,NACT,E2)

C CHECK TO SEE THAT T2 IS ORTHOGONAL TO B1
C NOTE: IN THIS SECTION, BCG IS THE WORK AREA
FOR B * T. IN ALL CASES THESE SHOULD
BE BLOCK ZERO MATRICES.
C
CALL MMUL(B1,T2,NC12,NACT,E2,BCG)
PRINT*, ' B1 * T2 '
CALL PRNT(BCG,NC12,E2)

C PRINT*, ' B1 SINGULAR VALUES '
CALL PRNT(SING,NC1,1)
C
CALL VMULFM(T2,T2,NACT,E2,E2,NACT,NACT,RK,NACT,IER)
CALL GMINV(E2,E2,RK,RG2,J,TAPE)
CALL MMUL(B2,T2,NC22,NACT,E2,KOB2)
CALL MMUL(KOB2,RG2,NC22,E2,E2,SAT2)
CALL VMULFP(SAT2,T2,NC22,E2,NACT,NCOL,NACT,KOB2,NCOL,IER)
CALL VMULFP(KOB2,B2,NC22,NACT,NC22,NCOL,NCOL,SAT2,NCOL,IER)
C
C THIS SAT2 WILL BE SUBSTITUTED BACK INTO MRIC
C SYSTEM 2 FOR A NEW G2.
C C
TRANSFORMATION MATRIX T3
C
DO 515 I=1,NC1
DO 515 J=1,NACT
515 V(I,J) = B1(I+NC1,J)
DO 516 I=1,NC2
DO 516 J=1,NACT
516 V(I+NC1,J) = B2(I+NC2,J)
C
V IS NOW AN NC1+NC2 BY NACT MATRIX
C
PRINT*, ' V (B1/B2) IS '
89
NRV = NC1 + NC2
CALL PRNT(V, NRV, NACT)
CALL LSVDF(V, NCOL, NRV, NACT, TEN, NCOL, -1, SING, STOR, IER)
PRINT*, ' V OUT OF LSVDF IS '
CALL PRNT(V, NACT, NACT)
E3 = NACT - NRV
IF (E3.LT.1) THEN
DO 517 I = 1, NACT
517 T3(I, 1) = V(I, NACT)
 E3 = 1
ELSE
DO 518 I = 1, NACT
 DO 518 J = 1, E3
 T3(I, J) = V(I, J + NRV)
 ENDIF
PRINT*, ' TRANSFORMATION MATRIX T3 '
CALL PRNT(T3, NACT, E3)
C CHECK TO SEE THAT T3 IS ORTHOGONAL TO B1 AND B2
CALL MMUL(B1, T3, NC12, NACT, E3, BCG)
PRINT*, ' B1 * T3 '
CALL PRNT(BCG, NC12, E3)
CALL MMUL(B2, T3, NC22, NACT, E3, BCG)
PRINT*, ' B2 * T3 '
CALL PRNT(BCG, NC22, E3)
PRINT*, ' B12 SINGULAR VALUES '
CALL PRNT(SING, NRV, 1)
C
CALL VMULFM(T3, T3, NACT, E3, NACT, NACT, RK, NACT, IER)
CALL GMINV(E3, E3, RG3, 3, TAPE)
CALL MMUL(KOB3, RG3, NC32, E3, E3, SAT3)
CALL VMULFP(SAT3, T3, NC32, E3, NACT, NCOL, NACT, IER)
CALL VMULFP(KOB3, B3, NC32, NACT, NC32, NCOL, NCOL, IER)
C
IF (DEC. EQ. 4) THEN
DO 519 I = 1, NC1
 DO 519 J = 1, NACT
519 V(I, J) = B1(I + NC1, J)
 DO 520 I = 1, NC2
 DO 520 J = 1, NACT
520 V(I + NC1, J) = B2(I + NC2, J)
 DO 521 I = 1, NC3
 DO 521 J = 1, NACT
521 V(I + NC1 + NC2, J) = B3(I + NC3, J)
C
V IS NOW A (NC1+NC2+NC3) BY NACT MATRIX
PRINT*, ' V(B1/B2/B3) IS '
NRV = NC1 + NC2 + NC3
CALL PRNT(V, NRV, NACT)
CALL LSVDF(V, NCOL, NRV, NACT, TEN, NCOL, -1, SING, STOR, IER)
PRINT*, 'V OUT OF LSVDF IS'
CALL PRNT(V, NACT, NACT)
E4 = NACT - NRV
IF (E4.LT.1) THEN
DO 522 I=1, NACT
522 T4(I,1) = V(I, NACT)
E4 = 1
ELSE
DO 523 I=1, NACT
DO 523 J=1, E4
523 T4(I, J) = V(I, J+NRV)
ENDIF
PRINT*, 'TRANSFORMATION MATRIX T4'
CALL PRNT(T4, NACT, E4)
C
C CHECK TO SEE THAT T4 IS ORTHOGONAL TO B1, B2, B3
C
CALL MMUL(B1, T4, NC12, NACT, E4, BCG)
PRINT*, 'B1 * T4'
CALL PRNT(BCG, NC12, E4)
CALL MMUL(B2, T4, NC22, NACT, E4, BCG)
PRINT*, 'B2 * T4'
CALL PRNT(BCG, NC22, E4)
CALL MMUL(B3, T4, NC32, NACT, E4, BCG)
PRINT*, 'B3 * T4'
CALL PRNT(BCG, NC32, E4)
C
PRINT*, 'B123 SINGULAR VALUES'
CALL PRNT(SING, NRV, 1)
CALL VMULFM(T4, T4, NACT, E4, E4, NACT, E4, E4, RK, NACT, IER)
CALL GMINV(E4, E4, RK, RG4, J, TAPE)
CALL MMUL(B4, T4, NR2, NACT, E4, KOB4)
CALL MMUL(KOB4, RG4, NR2, E4, E4, SAT4)
CALL VMULFP(SAT4, T4, NR2, E4, NACT, NCOL, NACT, KOB4, NCOL, NIER)
CALL VMULFP(KOB4, B4, NR2, NACT, NR2, NCOL, NCOL, SAT4, NCOL, IER)
ENDIF
GSTAR1 = GAIN1
CALCULATE UT, V, QPLUS WHERE CSTAR = U*Q*VT AND
CSTAR+ = V*QPLUS*UT
KSTAR = GSTAR*CSTAR+
CALL FINDK(CSTAR1, P1, NC12, WORK, GAIN1, NACT, KSTAR1)
PRINT*, 'KSTAR1'
CALL PRNT(KSTAR1, NACT, P1)
CALL MMUL(B2, T2, NC22, NACT, E2, BSTAR2)
CALL VMULFP(BSTAR2, BSTAR2, NC22, E2, NC22, NCOL, NCOL, SAT2, NCOL, IER)
CALL MRIC(NC22, A2, SAT2, QA2, S, ABG2, TOL, IER)
PRINT*, ' THE EIGENVALUES OF A2 + BSTAR2GSTAR2 '
PRINT('(/)
CALL EIGRF(ABG2, NC22, NCOL, 0, W1, TEN, NCOL, STOR, IER)
DO 714 I=1, NC22

714 PRINT*, ', W1(I)
PRINT('(/)
CALL VMULFM(BSTAR2, S, NC22, E2, NC22, NCOL, NCOL, GSTAR2, NCOL, IER)
PRINT*, ' THE GSTAR2 MATRIX '
CALL PRINT(GSTAR2, E2, NC22)
PRINT('(/)
CALL FINDK(CSTAR2, P2, NC22, WORK, GSTAR2, E2, KSTAR2)
PRINT*, ' KSTAR2 '
CALL PRINT(KSTAR2, E2, P2)

C C
CALL MMUL(B3, T3, NC32, NACT, E3, BSTAR3)
CALL VMULFP(BSTAR3, BSTAR3, NC32, E3, NC32, NCOL, NCOL, SAT3, NCOL, IER)
CALL MRIC(NC32, A3, SAT3, QA3, S, ABG3, TOL, IER)
PRINT*, ' THE EIGENVALUES OF A3 + BSTAR3GSTAR3 '
PRINT('(/)
CALL EIGRF(ABG3, NC32, NCOL, 0, W1, TEN, NCOL, STOR, IER)
DO 722 I=1, NC32

722 PRINT*, ', W1(I)
PRINT('(/)
CALL VMULFM(BSTAR3, S, NC32, E3, NC32, NCOL, NCOL, GSTAR3, NCOL, IER)
PRINT*, ' THE GSTAR3 MATRIX '
CALL PRINT(GSTAR3, E3, NC32)
PRINT('(/)
IF(DEC. EQ. 3) THEN
CALL FINDK(C3, NSEN, NC32, WORK, GSTAR3, E3, KSTAR3)
ELSE
CALL FINDK(CSTAR3, P3, NC32, WORK, GSTAR3, E3, KSTAR3)
END IF
CALL MMUL(B4, T4, NR2, NACT, E4, BSTAR4)
CALL VMULFP(BSTAR4, BSTAR4, NR2, E4, NR2, NCOL, NCOL, SAT4, NCOL, IER)
CALL MRIC(NR2, A4, SAT4, QA4, S, ABG4, TOL, IER)
CALL VMULFM(BSTAR4, S, NR2, E4, NR2, NCOL, NCOL, GSTAR4, NCOL, IER)
PRINT*, ' EIGENVALUES OF A4 + BSTAR4GSTAR4 '
PRINT('(/)
CALL EIGRF(ABG4, NR2, NCOL, 0, W1, TEN, NCOL, STOR, IER)
DO 420 I=1, NR2

420 PRINT*, ', W1(I)
PRINT('(/)
CALL FINDK(C4, NSEN, NR2, WORK, GSTAR4, E4, KSTAR4)
ENDIF

C C
FORM TKG = T + KSTAR * GAMMA

CALL MMUL(KSTAR1, GT1, NACT, P1, NSEN, TKG1)
PRINT*, ' (KSTAR1)(GT1) '
CALL PRINT(TKG1, NACT, NSEN)
CALL MMUL(T2, KSTAR2, NACT, E2, P2, BCG)
CALL MMUL(BCG, GT2, NACT, P2, NSEN, TKG2)
PRINT*, ' (T2)(KSTAR2)(GT2) '
CALL PRNT(TKG2, NACT, NSEN)
IF(DEC.EQ.3) THEN
CALL MMUL(T3, KSTAR3, NACT, E3, NSEN, TKG3)
PRINT*, ' (T3)(KSTAR3) '
CALL PRNT(TKG3, NACT, NSEN)
ELSE
CALL MMUL(T3, KSTAR3, NACT, E3, P3, BCG)
CALL MMUL(BCG, GT3, NACT, P3, NSEN, TKG3)
CALL MMUL(T4, KSTAR4, NACT, E4, NSEN, TKG4)
PRINT*, ' (T4)(KSTAR4) '
CALL PRNT(TKG4, NACT, NSEN)
ENDIF

C FORM \((B^*)(K^*)(C^*) = (B)(TKG)(C) \) AND \(A + (B^*)(K^*)(C^*)\)

CALL MMUL(B1, KSTAR1, NC12, NACT, P1, BCG)
CALL MMUL(BCG, CSTAR1, NC12, P1, NC12, KCC)
PRINT*, ' (B1)(KSTAR1)(CSTAR1) '
CALL PRNT(KCC, NC12, NC12)
CALL UBOAT(A1, KCC, NC12, NC12, KOB1)
PRINT*, ' A1 + (B1)(KSTAR1)(CSTAR1) '
CALL PRNT(KOB1, NC12, NC12)
CALL MMUL(BSTAR2, KSTAR2, NC22, E2, P2, BCG)
CALL MMUL(BCG, CSTAR2, NC22, P2, NC22, KCC)
PRINT*, ' (BSTAR2)(KSTAR2)(CSTAR2) '
CALL PRNT(KCC, NC22, NC22)
CALL UBOAT(A2, KCC, NC22, NC22, KOB2)
PRINT*, ' A2 + (BSTAR2)(KSTAR2)(CSTAR2) '
CALL PRNT(KOB2, NC22, NC22)
IF(DEC.EQ.3) THEN
CALL MMUL(BSTAR3, KSTAR3, NC32, E3, NSEN, BCG)
CALL MMUL(BCG, CSTAR3, NC32, NSEN, NC32, KCC)
PRINT*, ' (BSTAR3)(KSTAR3)(C3) '
CALL PRNT(KCC, NC32, NC32)
CALL UBOAT(A3, KCC, NC32, NC32, KOB3)
PRINT*, ' A3 + (BSTAR3)(KSTAR3)(C3) '
CALL PRNT(KOB3, NC32, NC32)
ELSE
CALL MMUL(BSTAR3, KSTAR3, NC32, E3, P3, BCG)
CALL MMUL(BCG, CSTAR3, NC32, P3, NC32, KCC)
PRINT*, ' (BSTAR3)(KSTAR3)(CSTAR3) '
CALL PRNT(KCC, NC32, NC32)
CALL UBOAT(A3, KCC, NC32, NC32, KOB3)
PRINT*, ' A3 + (BSTAR3)(KSTAR3)(CSTAR3) '
CALL PRNT(KOB3, NC32, NC32)
CALL MMUL(BSTAR4, KSTAR4, NR2, E4, NSEN, BCG)
CALL MMUL(BCG, CSTAR4, NR2, NSEN, NR2, KCC)
PRINT*, ' (BSTAR4)(KSTAR4)(C4) '

93
CALL PRINT(KCC,NR2,NR2)
CALL UBOAT(A4,KCC,NR2,NR2,KOB4)
PRINT*, ' A4 + (BSTAR4)(KSTAR4)(C4)'
CALL PRINT(KOB4,NR2,NR2)
ENDIF
CALL EIGRF(KOB1,NC12,NCOL,0,W1,TEN,NCOL,STOR,IER)
PRINT*, ' EIGENVALUES A1 + (B1)(KSTAR1)(CSTAR1)'
PRINT'(/)'
DO 421 I=1,NC12
421 PRINT*, ' ,W1(I)
PRINT'(/)'
PRINT*, ' EIGENVALUES A2 + (BSTAR2)(KSTAR2)(CSTAR2)'
CALL EIGRF(KOB2,NC22,NCOL,0,W1,TEN,NCOL,STOR,IER)
PRINT'(/)'
DO 422 I=1,NC22
422 PRINT*, ' ,W1(I)
PRINT'(/)'
IF(DEC.EQ.3) THEN
PRINT*, ' EIGENVALUES A3 + (BSTAR3)(KSTAR3)(C3)'
ELSE
PRINT*, ' EIGENVALUES A3 + (BSTAR3)(KSTAR3)(CSTAR3)'
ENDIF
CALL EIGRF(KOB3,NC32,NCOL,0,W1,TEN,NCOL,STOR,IER)
PRINT'(/)'
DO 423 I=1,NC32
423 PRINT*, ' ,W1(I)
PRINT'(/)'
IF(DEC.EQ.4) THEN
PRINT*, ' EIGENVALUES A4 + (BSTAR4)(KSTAR4)(C4)'
CALL EIGRF(KOB4,NR2,NR2,0,W1,TEN,NCOL,STOR,IER)
PRINT'(/)'
DO 424 I=1,NR2
424 PRINT*, ' ,W1(I)
PRINT'(/)'
ENDIF
CALL ABGC(A1,B1,C1,NC12,TKG1,NACT,NSEN,ABG1)
PRINT*, ' A1 + (B1)(TKG1)(C1)'
CALL PRINT(ABG1,NC12,NC12)
CALL ABGC(A2,B2,C2,NC22,TKG2,NACT,NSEN,ABG2)
PRINT*, ' A2 + (B2)(TKG2)(C2)'
CALL PRINT(ABG2,NC22,NC22)
CALL ABGC(A3,B3,C3,NC32,TKG3,NACT,NSEN,ABG3)
PRINT*, ' A3 + (B3)(TKG3)(C3)'
CALL PRINT(ABG3,NC32,NC32)
PRINT*, ' EIGENVALUES OF A1 + (B1)(TKG1)(C1)'
CALL EIGRF(ABG1,NC12,NCOL,0,W1,TEN,NCOL,STOR,IER)
PRINT'(/)'
DO 723 I=1,NC12
723 PRINT*, ' ,W1(I)
PRINT'(/)'
PRINT*, ' EIGENVALUES OF A2 + (B2)(TKG2)(C2)'
CALL EIGRF(ABG2,NC22,NCOL,0,W1,TEN,NCOL,STOR,IER)
PRINT'(/)'
PRINT*
DO 724 I=1,NC32
724 PRINT*, ' ', 'W1(I)
PRINT('/', ')
PRINT*, ' EIGENVALUES OF A3 + (B3)(TKG3)(C3)'
CALL EIGRF(ABG3, NC32, NCOL, 0, W1, TEN, NCOL, STOR, IER)
PRINT('/', ')
DO 725 I=1,NC32
725 PRINT*, ' ', 'W1(I)
PRINT('/', ')
IF(DEC.EQ.4) THEN
CALL ABGC(A4, B4, C4, NR2, TKG4, NACT, NSEN, ABG4)
PRINT*, ' A4 + (B4)(TKG4)(C4)'
CALL PRNT(ABG4, NR2, NR2)
PRINT*, ' EIGENVALUES A4 + (B4)(TKG4)(C4)'
CALL EIGRF(ABG4, NR2, NCOL, 0, W1, TEN, NCOL, STOR, IER)
PRINT('/', ')
DO 726 I=1,NR2
726 PRINT*, ' ', 'W1(I)
ENDIF
PRINT('/', ')
IF(NR.EQ.0. OR. DEC.EQ.4) THEN
GOTO 600
ELSE
DO 348 I=1,NACT
DO 348 J=1,NSEN
SAT(I,J)=0.0
CALL UBOAT(SAT, TKG1, NACT, NSEN, KT1)
CALL UBOAT(SAT, TKG2, NACT, NSEN, KT2)
CALL UBOAT(SAT, TKG3, NACT, NSEN, KT3)
DO 350 I=1,M
DO 350 J=1,M
MAJM(I,J)=0.0
CALL FORMA(A1, D, W, NC1, NC12, IC1)
CALL FORMB(B1, PHIA, NC1, NC12, NACT, IC1)
CALL FORMC(C1, PHIS, NC1, NC12, NSEN, IC1)
CALL ABGC(A1, B1, C1, NC12, TKG1, NACT, NSEN, ABG5)
PRINT*, ' A1 + B1(TKG1)C1'
CALL PRNT(ABG5, NC12, NC12)
DO 351 I=1,NC12
DO 351 J=1,NC12
350 MAJM(I,J)=ABG5(I,J)
CALL FORMA(A2, D, W, NC2, NC22, IC2)
CALL FORMB(B2, PHIA, NC2, NC22, NACT, IC2)
CALL FORMC(C2, PHIS, NC2, NC22, NSEN, IC2)
CALL ABGC(A2, B2, C2, NC22, TKG2, NACT, NSEN, ABG6)
PRINT*, ' A2 + B2(TKG2)C2'
CALL PRNT(ABG6, NC22, NC12)
DO 352 I=1,NC22
DO 352 J=1,NC22
351 MAJM(I+K, J+K)=ABG6(I, J)
CALL FORMA(A3, D, W, NC3, NC32, IC3)
CALL FORMB(B3, FHYA, NC3, NC32, NACT, IC3)
CALL FORMC(C3, PHIS, NC3, NC32, NSEN, IC3)
CALL AUGC(A3, B3, C3, NC32, TKG3, NACT, NSEN, ABG7)
PRINT*, ' A3 + B3(TKG3)C3'
CALL PRNT(ABG7, NC32, NC32)
DO 353 I=1, NC32
DO 353 J=1, NC32
353 MAJM(I+L, J+L)=ABG7(I, J)
CALL MMUL(B2, KT1, NC22, NACT, NSEN, BCG)
CALL MMUL(BCG, C1, NC22, NSEN, NC12, KCC)
PRINT*, ' B2(TKG1)C1'
CALL PRNT(KCC, NC22, NC12)
DO 354 I=1, NC22
DO 354 J=1, NC12
354 MAJM(I+K, J)=KCC(I, J)
CALL MMUL(B3, KT1, NC32, NACT, NSEN, BCG)
CALL MMUL(BCG, C1, NC32, NSEN, NC12, KOB1)
CALL MMUL(B3, KT2, NC32, NACT, NSEN, BCG)
CALL MMUL(BCG, C1, NC32, NSEN, NC12, KOB2)
CALL MADD(KOB1, KOB2, NC32, NC12, KCC)
PRINT*, ' B3(TKG1)C1 + B3(TKG2)C1'
CALL PRNT(KCC, NC32, NC12)
DO 355 I=1, NC32
DO 355 J=1, NC12
355 MAJM(I+L, J)=KCC(I, J)
CALL MMUL(B3, KT2, NC32, NACT, NSEN, BCG)
CALL MMUL(BCG, C2, NC32, NSEN, NC22, KCC)
PRINT*, ' B3(TKG2)C2'
CALL PRNT(KCC, NC32, NC22)
DO 356 I=1, NC32
DO 356 J=1, NC22
356 MAJM(I+K, J)=KCC(I, J)
CALL MMUL(B4, KT1, NR2, NACT, NSEN, BCG)
CALL MMUL(BCG, C1, NR2, NSEN, NC12, KOB1)
CALL MMUL(B4, KT2, NR2, NACT, NSEN, BCG)
CALL MMUL(BCG, C1, NR2, NSEN, NC12, KOB2)
CALL MMUL(B4, KT3, NR2, NACT, NSEN, BCG)
CALL MMUL(BCG, C1, NR2, NSEN, NC12, KOB3)
CALL MADD(KOB1, KOB2, NR2, NC12, BCG)
CALL MADD(BCG, KOB3, NR2, NC12, KOB4)
PRINT*, ' B4(TKG1)C1 + B4(TKG2)C1 + B4(TKG3)C1'
CALL PRNT(KOB4, NR2, NC12)
DO 357 I=1, NR2
DO 357 J=1, NC12
357 MAJM(I+K, J)=KOB4(I, J)
CALL MMUL(B4, KT2, NR2, NACT, NSEN, BCG)
CALL MMUL(BCG, C2, NR2, NSEN, NC22, KOB2)
CALL MMUL(B4, KT3, NR2, NACT, NSEN, BCG)
CALL MMUL(BCG, C2, NR2, NSEN, NC22, KOB3)
CALL MADD(KOB2, KOB3, NR2, NC22, KOB4)
PRINT*, ' B4(TKG2)C2 + B4(TKG3)C2'
CALL PRNT(KOB4, NR2, NC22)
DO 358 I=1,NR2
DO 358 J=1,NC22
358 MAJM(I+P5,J+K)=KOB4(I,J)
CALL MMUL(B4,KT3,NR2,NACT,NSEN,KOB1)
CALL MMUL(KOB1,C3,NR2,NSEN,NC32,KOB2)
PRINT*,' B4(TK3)C3'
CALL PRNT(KOB2,NR2,NC32)
DO 359 I=1,NR2
DO 359 J=1,NC32
359 MAJM(I+P5,J+L)=KOB2(I,J)
CALL MADD(KT1,KT2,NACT,NSEN,BCG)
CALL MADD(BCG,KT3,NACT,NSEN,KCC)
CALL MMUL(KCC,C4,NACT,NSEN,NR2,BCG)
CALL MMUL(B1,BCG,NC12,NACT,NR2,ABK1)
PRINT*,' B1(TKG1 + TKG2 + TKG3)C4'
CALL PRNT(ABK1,NC12,NR2)
DO 361 I=1,NC12
DO 361 J=1,NR2
361 MAJM(I,J+P5)=ABK1(I,J)
CALL MMUL(B2,BCG,NC22,NACT,NR2,ABK2)
PRINT*,' B2(TKG1 + TKG2 + TKG3)C4'
CALL PRNT(ABK2,NC22,NR2)
DO 362 I=1,NC22
DO 362 J=1,NR2
362 MAJM(I+K,J+P5)=ABK2(I,J)
CALL MMUL(B3,BCG,NC32,NACT,NR2,ABK3)
PRINT*,' B3(TKG1 + TKG2 + TKG3)C4'
CALL PRNT(ABK3,NC32,NR2)
DO 363 I=1,NC32
DO 363 J=1,NR2
363 MAJM(I+L,J+P5)=ABK3(I,J)
CALL MADD(TKG1,TKG2,NACT,NSEN,BCG)
CALL MADD(BCG,TKG3,NACT,NSEN,KCC)
CALL FORMA(A4,D,W,NR,NR2,IR)
CALL FORMB(B4,PHIA,NR,NR2,NACT,IR)
CALL FORMC(C4,PHIS,NR,NR2,NSEN,IR)
CALL ABGC(A4,B4,C4,NR2,KCC,NACT,NSEN,ABG8)
PRINT*,' A4 + B4(TKG1 + TKG2 + TKG3)C4'
CALL PRNT(ABG8,NR2,NR2)
DO 365 I=1,NR2
DO 365 J=1,NR2
365 MAJM(I+P5,J+P5)=ABG8(I,J)
PRINT*,' LOWER TRIANGLE THREE CONTROLLER MAJOR MATRIX'
PRINT*,' WITH RESIDUALS'
CALL PRNT(MAJM,M,M)
PRINT('///')
PRINT*,' TRANSFORMED SYSTEM EIGENVALUES'
CALL EIGRF(MAJM,M,ND,A,Z,TEN,NCOL,WORK,IER)
PRINT('///')
DO 366 I=1,M
366 PRINT*,',Z(I)
PRINT('///')
ENDIF
CONTINUE

PRINT('///')
PRINT*, '---------------
PRINT*, 4.**H1*
PRINT*, 4.
PRINT*, ~.
END
D0335
PROGRAM.
PRINT*, PNT*, ~.
PRINT'(///)'.
END

SUBROUTINE FORMX2(XO, INIT)

FORMX2 IS THE SAME FOR THREE OR FOUR CONTROLLERS SINCE THE RESIDUALS BECOME THE FOURTH CONTROLLER.

COMMON/NUM/IC1(21), IC2(21), IC3(21), IR(21), NC1, NC2, NC3, NR
REAL XO(44), INIT(4, 12)
INTEGER M, I, J, K, L
DO 1 I=1, NC1
 M = IC1(I)
 XO(I) = INIT(1, M)
 XO(I+NC1) = INIT(2, M)
 XO(I+NC1*2) = INIT(3, M)
 XO(I+NC1*3) = INIT(4, M)
 J = NC1*4
 DO 2 I=1, NC2
 M = IC2(I)
 XO(I+J) = INIT(1, M)
 XO(I+J+NC2) = INIT(2, M)
 XO(I+J+NC2*2) = INIT(3, M)
 XO(I+J+NC2*3) = INIT(4, M)
 K = J + NC2*4
 DO 3 I=1, NC3
 M = IC3(I)
 XO(I+K) = INIT(1, M)
 XO(I+K+NC3) = INIT(2, M)
 XO(I+K+NC3*2) = INIT(3, M)
 XO(I+K+NC3*3) = INIT(4, M)
 L = K + NC3*4
 DO 4 I=1, NR
 M = IR(I)
 XO(I+L) = INIT(1, M)
 XO(I+L+NR) = INIT(2, M)
 XO(I+L+NR*2) = INIT(3, M)
 XO(I+L+NR*3) = INIT(4, M)
 4 END
 SUBROUTINE FACTOR(N, A, S, MR)

A=S'S
DIMENSION A(1), S(1)
COMMON/MAINB/ NCOL, NCOL1
COMMON/INOUT/KOUT
TOL=1.E-6
MR=0
NN=NCOL
TOL1=0.
DO 1 I=1,NN,NCOL1
1 R=ABS(A(I))
IF (R.GT.TOL1) TOL1=R
TOL1=TOL1*1.E-12
II=1
DO 50 I=I,N
IM1=I-1
DO 5 J=I,NN,NCOL
5 S(JJ)=0.
ID=II.IM1
R=A(ID)-DOT(IM1,S(II),S(JJ))
IF (ABS(R).LT.(TOL*A(ID)+TOL1)) GO TO 50
IF (R) 15,50,20
15 MR=-1
WRITE(KOUT, 1000)
1000 FORMAT(37M30TRIED TO FACTOR AN INDEFINITE MATRIX)
RETURN
20 S(ID)=SQRT(R)
MR=MR+1
IF (I.EQ.N) RETURN
L=II+NCOL
DO 25 JJ=L,NN,NCOL
25 S(IJ)=(A(IJ)-DOT(IM1,S(II),S(JJ)))/S(ID)
50 II=II+NCOL
RETURN
END
SUBROUTINE FORMA(A,D,W,N,N2, IC)
COMMON/MAINB/NCOL
REAL A(NCOL,NCOL),W(17),D(17)
INTEGER IC(N),I,J,N,M
DO 1 I=1,N2
DO 1 J=1,N2
A(I,J)=0.0
1 CONTINUE
DO 2 I=1,N
M= IC(I)
A((I+N),(I+N))=D(M)
A(I,(I+N)) = 1.0
A((I+N),I) = -(W(M)**2)
2 CONTINUE
RETURN
END
SUBROUTINE FORMB(B,PHI,N,N2,NACT, IC)
COMMON/MAINB/NCOL
REAL B(NCOL,NCOL),PHI(NCOL,NCOL)
INTEGER IC(N),NACT,N,M,I,J
DO 1 I=1,N2
DO 1 J=1,NACT
B(I,J) = 0.0
1 CONTINUE
DO 2 I=1,N
M = IC(I)
DO 2 J=1,NACT
B((N+I),J) = PHI(M,J)
2 CONTINUE
RETURN
END
SUBROUTINE FORMC(C,PHIS,N,N2,NSEN,IC)
COMMON/MAINB/NCOL
REAL C(NCOL,NCOL),PHIS(NCOL,NCOL)
INTEGER IC(N),M,NSEN,N,N2,I,J
DO 1 I=1,NSEN
DO 1 J=1,N2
C(I,J) = 0.0
1 CONTINUE
DO 2 I=1,NSEN
DO 2 J=1,N
M = IC(J)
C(I,N4+J)=PHIS(M,I)
2 CONTINUE
RETURN
END
SUBROUTINE FORMQ(Q,A,N,IC)
COMMON/MAINB/NCOL
REAL A(NCOL),Q(NCOL,NCOL)
INTEGER I,J,K,M,N,N2,IC(NCOL)
N2 = N * 2
DO 1 I=1,N2
DO 1 J=1,N2
Q(I,J) = 0.0
1 CONTINUE
DO 2 I=1,N
J = 1
M = IC(I)
DO 3 K=I-1,I
3 Q(I+K,J+K) = A(M)
2 CONTINUE
RETURN
END
SUBROUTINE GMINV(NR,N, A, U,MR, MT)
DIMENSION A(1),U(1)
COMMON/MAIN1/ NDIM,NDIM1,S(1)
COMMON/MAINB/NCOL,NCOL1
COMMON/INOUT/KOUT
TOL=1.E-12
MR=NC
NRM1=NR-1
TOL1=1.E-20
JJ=1
DO 100 J=1,NC
FAC=DOT(NR,A(JJ),A(JJ))
JM1=J-1
JRM=JJ+NM1
JCM=JJ+JM1
DO 20 I=JJ,JCM
20 U(I)=0.
U(JCM)=1.0
IF (J.EQ.1) GO TO 54
KK=1
DO 30 K=1,JM1
IF (S(K).EQ.1.0) GO TO 30
TEMP=-DOT(NR,A(JJ),A(KK))
CALL VADD(K,TEMP,U(JJ),U(KK))
30 KK=KK+NCOL
DO 50 L=1,2
KK=1
DO 50 K=1,JM1
IF (S(K).EQ.0.0) GO TO 50
TEMP=-DOT(NR,A(JJ),A(KK))
CALL VADD(NR,TEMP,A(JJ),A(KK))
CALL VADD(K,TEMP,U(JJ),U(KK))
50 KK=KK+NCOL
TOL1=TOL*FAC
FAC=DOT(NR,A(JJ),A(JJ))
54 IF (FAC.GT.TOL1) GO TO 70
DO 55 I=JJ,JRM
55 A(I)=0.
S(J)=0.
KK=1
DO 65 K=1,JM1
IF (S(K).EQ.0.) GO TO 65
TEMP=-DOT(K,U(KK),U(JJ))
CALL VADD(NR,TEMP,A(JJ),A(KK))
65 KK=KK+NCOL
FAC=DOT(J,U(JJ),U(JJ))
MR=MR-1
GO TO 75
70 S(J)=1.0
KK=1
DO 72 K=1,JM1
IF (S(K).EQ.1.) GO TO 72
TEMP=-DOT(NR,A(JJ),A(KK))
CALL VADD(K,TEMP,U(JJ),U(KK))
72 KK=KK+NCOL
75 FAC=1./SQRT(FAC)
DO 80 I=JJ,JRM
80 A(I)=A(I)*FAC
DO 85 I=JJ,JCM
85 U(I)=U(I)*FAC
100 JJ=JJ+NCOL
IF (MR.EQ.NR.OR.MR.EQ.NC) GO TO 120
IF (MT.NE.0) WRITE(KOUT,110)NR,NC,MR
FORMAT(13,1HX,I2,8H M RANK,I2)

NEND=NC*NCOL
JJ=1
DO 135 J=1,NC
DO 125 I=1,NR
II=I-J
S(I)=0.
DO 125 KK=JJ,NEND,NCOL
125 S(I)=S(I)+A(II+KK)*U(KK)
II=J
DO 130 I=1,NR
U(II)=S(I)
130 II=II+NCOL
135 JJ=JJ+NCOL1
RETURN
END
SUBROUTINE GMINV1(NR, NC, A, U, MR, MT)
DIMENSION A(1),U(1)
COMMON/MAINI/NOIM, NOIMI, S(1)
COMMON/MAINT/NCOL, NCOL1
COMMON/INOUT/KOUT
TOL=1.E-12
MR=NC
NRM1=NR-1
TOL1=1.E-20
I
DO 1130 J=1,NC
FAC=DOT(NR,A(JJ),A(JJ))
JRM=J3+NRM1
DO 20 I=33,3CM
20 U(I)=0.
U(JCM)=1.0
IF (J.EQ.1) GO TO 54
KK=1
DO 30 K=1,JM1
IF (S(K).EQ.1.0) GO TO 313
TEMP=-DOT(NR,A(JJ),A(KK))
CALL VADD(K,TEMP,A(JJ),A(KK))
30 KK=KK+NDA
DO 50 L=1,2
KK=1
DO 50 K=1,JM1
IF (S(K).EQ.0.) GO TO 50
TEMP=DOT(NR,A(JJ),A(KK))
CALL VADD(NR,TEMP,A(JJ),A(KK))
CALL VADD(K,TEMP,A(JJ),U(KK))
50 KK=KK+NDA
TOL1=TOL*FAC
FAC=DOT(NR,A(JJ),A(JJ))
54 IF (FAC.GT.TOL1) GO TO 70
DO 55 I=JJ, JRM
 55 A(I)=0.
 S(J)=0.
 KK=1
 DO 65 K=1, J1
 IF (S(K).EQ.0.) GO TO 65
 TEMP=-DOT(K, U(KK), U(JJ))
 CALL VADD(NR, TEMP, A(JJ), A(KK))
 65 KK=KK+NDA
 FAC=DOT(J, U(JJ), U(JJ))
 MR=MR-1
 GO TO 75
 70 S(J)=1.0
 KK=1
 DO 72 K=1, J1
 IF (S(K).EQ.1.) GO TO 72
 TEMP=-DOT(NR, A(JJ), A(KK))
 CALL VADD(K, TEMP, U(JJ), U(KK))
 72 KK=KK+NDA
 75 FAC=1./SQRT(FAC)
 DO 80 I=JJ, JRM
 80 A(I)=A(I)*FAC
 DO 85 I=JJ, JCM
 85 A(I)=U(I)*FAC
 DO 88 I=JJ, JRM
 S(I)=0.
 DO 88 KK=1, NNO, NDA
 S(I)=S(I)+A(I)+KK)+U(KK)
 88 I=I+1
 JJ=JJ+NDA
 IF (MR.EQ.NR OR MR.EQ.NC) GO TO 120
 IF (MT.NE.0) WRITE(KOUT, 110) NR, NC, MR
 110 FORMAT(I3, 1HX, 12, 8H M RANK, 12)
 120 NEND=NC*NDA
 JJ=1
 DO 135 J=1, NC
 DO 125 I=1, NR
 II=I-J
 S(I)=0.
 DO 125 KK=J, NEND, NDA
 S(I)=S(I)+A(II+KK)*U(KK)
 125 II=II+1
 125 U(II)=S(I)
 JJ=JJ+NDA
 135 RETURN
SUBROUTINE INTEG(N, A, C, S, T)
 S=INTEGRAL EA*C*EA FROM 0 TO T
 C IS DESTROYED
 DIMENSION A(1), C(1), S(1)
 COMMON/MAIN1/ NDIM, NDIM1, X(1)
 COMMON/MAINB/ NCOL, NCOL1
 COMMON/MAIN2/ COEF(100)
 NN=N*NCOL
 NM1=N-1
 IND=0
ANORM=XNORM(N, A)
DT=T
5 IF (ANORM*ABS(DT).LE.0.5) GO TO 10
DT=DT/2.
IND=IND+1
GO TO 5
10 DO 15 I=1, NN, NCOL
 J=I+NM1
 DO 15 JJ=I, J
 15 S(JJ)=DT*C(JJ)
 T1=DT*2/2.
 DO 25 IT=3, 15
 CALL MMUL(A, C, N, N, N, X)
 DO 20 I=1, N
 II=(I-1)*NCOL
 DO 20 J=I, NN, NCOL
 II=II+1
 C(JJ)=(X(JJ)+X(II))*T1
 20 S(JJ)=S(JJ)+C(JJ)
 25 T1=DT/FLOAT(IT)
 IF (IND.EQ.0) GO TO 100
 COEF(11)=1.0
 DO 30 I=1, 10
 II=II+I
 30 COEF(II)=DT*COEF(II+1)/FLOAT(I)
 II=1
 DO 40 I=1, NN, NCOL
 J=I+NM1
 DO 35 J=I, J
 35 X(JJ)=A(JJ)*COEF(1)
 X(II)=X(II)+COEF(2)
 40 II=II+NCOL1
 DO 55 L=3, 11
 CALL MMUL(A, X, N, N, N, C)
 II=1
 T1=COEF(L)
 DO 55 I=1, NN, NCOL
 J=I+NM1
 DO 50 JJ=I, J
 50 X(JJ)=C(JJ)
 X(II)=X(II)+T1
 55 II=II+NCOL1
C X=EXP(A*DT)
 L=0
60 L=L+1
 CALL MMUL(X, S, N, N, N, C)
 II=1
 DO 90 I=1, N
 J=II
 IF (I.EQ.1) GO TO 75
 DO 70 JJ=I, II, NCOL
 S(JJ)=S(J)
 70 J=J+I
90 CONTINUE
100 CONTINUE

DO 85 JJ=I, N
 KK=JJ
 DO 80 K=I,NN,NCOL
 S(J)=S(J)+C(K)*X(KK)
80 KK=KK+NCOL
85 J=J+NCOL
 DO 87 JJ=I,NN,NCOL
87 C(JJ)=X(JJ)
90 II=II+NCOL
 IF (L.EQ.IND) GO TO 100
 CALL MMUL(C,C,N,N,X)
 GO TO 60
100 CONTINUE
RETURN
END

SUBROUTINE MEXP(N,A,T,EAN)
DIMENSION A(3364),EA(3364),C(100),D(101),E(100)
COMMON/MAIN/A/NDA, NDA1
COMMON/MAIN1/NIM, N Nim,TEN, X(3364)
COMMON/MAINB/NCOL, NCOL1
NN=NDA*N
NM=1-N
PRINT*, 'MEXPIN'
IF (N.GT.1) GO TO 5
 EA(I)=EXP(T*A(I))
RETURN
5 W=1.0
 DO 10 I=1,NN,NDA
 IL=I+NM1
 10 EA(J)=A(J)
 C1=XNORM1(N,A)
 IND=0
 L=1
 T1=T
15 IF (ABS(T1*C1).LE.3.0) GO TO 20
 T1=T1/2.
 IND=IND+1
 GO TO 15
20 C2=0.
 DO 25 I=1,NN,NDA1
25 C2=C2+EA(I)
 C2=C2/FLOAT(L)
 C(L)=C2
 D(L+1)=0.
 II=N+1-L
 E(II)=W
 II=1
 DO 35 I=1,NN,NDA
50 IL=I+NM1
 35 DO 30 J=I,IL
30 X(J)=EA(J)
 X(II)=X(II)+C2
II=II+NDA1
IF (L.EQ.N) GO TO 40
CALL MMUL(X,A,N,N,N,EA)
W=W*T1/FLOAT(L)
L=L+1
GO TO 20
40 CONTINUE
C------- CAN CHECK X 0 FOR ACCURACY
J=N+25
DO 50 L=N,J
DO 45 K=1,N
D(K)=(D(K+1)-W*C(K))*T1/FLOAT(L)
45 E(K)=E(K)+D(K)
50 W=D(1)
II=1
DO 60 I=1,NN,NDA
IL=I+NM1
DO 55 J=I,IL
55 EA(J)=E(1)*A(J);
EA(I)=EA(I)+E(2)
60 II=II+NDA1
IF (N.EQ.2) GO TO 85
DO 80 L=3,N
CALL MMUL(EA,A,N,N,N,X)
II=1
C2=E(L)
DO 75 I=1,NN,NDA
IL=I+NM1
DO 70 J=I,IL
70 EA(J)=X(J)
EA(I)=EA(I)+C2
75 II=II+NDA1
80 CONTINUE
85 IF (IND.EQ.0) RETURN
DO 100 L=1,IND
DO 90 I=1,NN,NDA
IL=I+NM1
DO 90 J=I,IL
90 X(J)=EA(J)
100 CALL MMUL(X,X,N,N,N,EA)
RETURN
END
SUBROUTINE MLINEQ(N,A,C,X,TOL,IER)
C SOLVES A*X+A+C=0
C A AND X CAN BE IN SAME LOCATION
C ANSWER RETURNED IN C AND X
DIMENSION A(1),C(1),X(1)
COMMON/MAINB/ NCQL, NCOL1
COMMON/MAIN3/F(1)
ADV=TOL*1.E-6
DT=.5
DT1=0.
NN=N+NCOL
DO 5 II=1,NN,NCOL
DT1=DT1-A(II)
DT1=DT1/N
IF (DT1.GT.4.0) DT=DT+4.0/DT1
II=1
DO 20 I=1,N
DO 15 JJ=I,NN,NCOL
X(JJ)=DT*A(JJ)
X(II)=X(II)-.5
20 II=II+NCOL
CALL GMINV(N,N,X,F,MR,0)
IER=4
IF (MR.NE.N) RETURN
CALL MMUL(C,F,N,N,X)
C
INITIALIZATION OF X,F
I=1
DO 40 II=1,NN,NCOL
J=II
IF (I.EQ.1) GO TO 30
DO 25 JJ=I,II,NCOL
C(J)=C(JJ)
25 J=J+1
30 ID=J
DO 35 JJ=II,NN,NCOL
C(J)=DT*DOT(N,F(II),X(JJ))
35 J=J+1
F(ID)=F(ID)+1.0
40 I=I+1
DO 90 IT=1,20
NEZ=0
CALL MMUL(C,F,N,N,N,X)
I=1
II=1
J=1
GO TO 70
60 J=II
DO 65 JJ=I,II,NCOL
C(J)=C(JJ)
65 J=J+1
70 ID=J
DT1=C(J)
DO 75 JJ=II,NN,NCOL
C(J)=C(J)+DOT(N,F(II),X(JJ))
75 J=J+1
J=J-1
DO 80 JJ=II,J
X(JJ)=F(JJ)
IF (ABS(C(ID)).GT.1.E150) GO TO 95
IF (ABS(C(ID)-DT1).LT.(ADV+TOL*ABS(C(ID)))) NEZ=NEZ+1
I=I+1
II=II+NCOL
IF (I.LE.N) GO TO 60
IF (NEZ.EQ.N) GO TO 150

CALL MMUL(X, X, N, N, N, F)
90 CONTINUE
95 IER=1
RETURN
150 CONTINUE
N1=N-1
DO 155 I=1, NN, NCOL
II=I+N1
DO 155 JJ=I, II
155 X(JJ)=C(JJ)
IER=0
RETURN
END
SUBROUTINE MMUL(X, Y, N1, N2, N3, Z)
C(*14N
/MAINB/ NCOL
DIMENSION X(NCOL,1), Y(NCOL,1), Z(NCOL,1)
DO 3 J=1, N3
DO 2 I=1, N1
S=0.
DO 1 K=1, N2
1 S=S+X(I,K)*Y(K,J)
2 Z(I,J)=S
3 CONTINUE
END
SUBROUTINE MRIC(N, A, R, Q, X, Z, TOL, IER)
DIMENSION A(1), R(1), Q(1), X(1), Z(1)
COMMON/MAIN1/NDIM, NDIM1, F(1)
COMMON/MAINB/NCOL, NCOL1
COMMON/MAIN2/TR(1)
COMMON/INOUT/KOUT
ADV=TOL*1. E-6
NN=N=NCOL
N1=N-1
IND=1
COUNT=0.
IF (IER.EQ.1) COUNT=99.
IF (IER.EQ.1) MR=N
IF (IER.EQ.1) GO TO 100
T1=-1.
300 CONTINUE
IER=0
COUNT=COUNT+1.
DO 15 I=1, N
DO 15 J=1, NN, NCOL
15 X(J)=-S(J)
CALL INTEG(N, A, X, Z, T1)
CALL FACTOR(N, Z, X, MR)
IER=1
IF (MR.LT.0) GO TO 200
IER=0
CALL GMINV(N, N, X, Z, MR, 0)
CALL TFR(TR, Z, N, N, 1, 2)
CALL MMUL(Z, TR, N, N, N, X)
DO 18 II=1,NN,NCOL1
I=1
18 CONTINUE
100 CONTINUE
DO 16 I=1,N
16 TR(I)=-1.0
C A+SX IS STABLE
C POSSIBLE UNCONTROLLABILITY IF MR.NE.N
C JIM DILLOW IS A NUTTY MATH PROF
TOL1=TOL/10.
MAXIT=40
DO 40 IT=1,MAXIT
IF (IER.EQ.1) GO TO 101
CALL MMUL(S,X,N,N,N,F)
CALL MMUL(X,F,N,N,N,Z)
DO 20 I=1,NN,NCOL
II=I+NM1
DO 20 J=I,II
X(J)=A(J)-F(J)
20 Z(J)=Z(J)+Q(J)
101 CONTINUE
IER=0
CALL MLINEQ(N, X,Z, X,TOL1,IER)
IF (IER.NE.0) GO TO 200
L=0
C1=0.0
II=1
DO 25 I=1,N
IF (ABS(X(II)-TR(I)).LT.(ADV+TOL*X(II))) L=L+1
TR(I)=X(II)
II=II+NCOL1
25 C1=C1+TR(I)
IF (ABS(C1).GE.1.E20) GO TO 50
IF (L.NE.N) GO TO 40
CALL GMINV(N,N,Z,F,MR,0)
CALL MMUL(S,X,N,N,N,Z)
DO 30 I=1,NN,NCOL
II=I+NM1
DO 30 J=I,II
Z(J)=A(J)-Z(J)
30 IF (MR.NE.N) WRITE(KOUT,35)MR
35 FORMAT(27HORICCATI SOLN IS PSD--RANK ,13)
GO TO 65
40 CONTINUE
WRITE(KOUT,45) MAXIT
45 FORMAT(27HORICCATI NON-CONVERGENT IN ,I2,11H ITERATIONS)
GO TO 60
50 WRITE(KOUT,55)IT,1
55 FORMAT(30HORICCATI BLOW-UP AT ITERATION ,I2,12H INITIAL T= ,F10.5)
IER=1
RETURN
IF (IND.EQ.2) GO TO 250
IF (COUNT.GE.10.) RETURN
T1=T1/(2.**COUNT)
IND=2
GO TO 300
T1=T1*(2.**COUNT)
IND=1
GO TO 300
END
SUBROUTINE PRNT(MAT,N,M)
COMMON/MAINB/NCOL
REAL MAT(NCOL,NCOL)
INTEGER N,I,J,K,M
PRINT*, ' ';
IF (M.GT.12) GO TO 2
CO 1 I=1,N
PRINT'(1X,12F10.4)',(MAT(I,J),J=1,M)
1 CONTINUE
GO TO 10
2 CONTINUE
IF (M.GT.24) THEN
CALL PRNTXL(MAT,N,M)
RETURN
ENDIF
DO 3 I=1,N
PRINT'(1X,12F10.4)',(MAT(I,J),J=1,12)
3 CONTINUE
PRINT'(///)'
DO 4 I=1,N
PRINT'(1X,12F10.4)',(MAT(I,J),J=13,M)
4 CONTINUE
10 PRINT'(///)'
RETURN
END
SUBROUTINE PRNTXL(MAT,N,M)
COMMON/MAINB/NCOL
COMMON/MAIN/(NDA)
REAL MAT(NDA,NDA)
INTEGER I,J,K,L,M,N
PRINT*, ' ';
DO 1 L=1,M,12
K = L + 11
IF (M-L.LT.11) K = M
DO 2 I=1,N
PRINT'(1X,12F10.5)',(MAT(I,J),J=L,K)
2 CONTINUE
PRINT'(///)'
1 CONTINUE
PRINT'(///)'
RETURN
END
SUBROUTINE PFR(X, A, N, M, K, I)

 I - 1 GIVES X = A
 2 GIVES X = A'
 3 GIVES X = A AS A VECTOR
 4 GIVES A = X WHERE X WAS A VECTOR

DIMENSION X(1), A(1)
COMMON/MAINB/NCOL
JS=(K-1)*NCOL*M
JEND=M+NCOL
GO TO (10, 30, 50, 70), I
10 DO 20 II=1, N
 DO 20 JJ=II, JEND, NCOL
 X(JJ)=A(JJ+JS)
 RETURN
20 X(JJ)=A(JJ+JS)
 RETURN
30 DO 40 II=1, N
 KK=(II-1)*NCOL
 DO 40 JJ=1, M
 LL=(JJ-1)*NCOL+II
 X(KK+JJ)=A(LL+JS)
 RETURN
40 X(KK+JJ)=A(LL+JS)
 RETURN
50 KK=0
 DO 60 II=1, JEND, NCOL
 LL=II+N-1
 DO 60 JJ=II, LL
 KK=KK+1
 X(KK)=A(JJ+JS)
 RETURN
60 X(KK)=A(JJ+JS)
 RETURN
70 KK=M+N+1
 DO 80 II=1, M
 LL=(M-II)*NCOL+1
 DO 80 JJ=1, N
 KK=KK-1
 JJ=LL+N-IJ
 A(JJ+JS)=X(KK)
 RETURN
END

SUBROUTINE TIME(EAT2, MM, DT, X1, XO, MODE, EAT, WORK, DEC)
COMMON/MAINA/NCOL, NDA
COMMON/SAVE/T(100), TS(100)
COMMON/NUM/IC1(21), IC2(21), IC3(21), IR(21), NC1, NC2, NC3, NR
REAL XO(NDA), EAT2(NDA, NDA), EAT(NDA, NDA), DT, MODE(2, 12)
REAL WORK(NDA, NDA), A, AA, Z, XI(NDA)
INTEGER DEC, I, J, K, L, M, N, KK, LL, MM
PRINT*, ' TIMEIN '
DO 222 I=1, MM
 WORK(I, J) = EAT2(I, J)
222 WORK(I, J) = EAT2(I, J)
N = 1
Z = DT*5.
PRINT*, ' TIME ' X
KK = 0
DO I = 1, MM
 DO J = 1, MM
 EAT2(I, J) = EAT(I, J)
 CONTINUE
 PRINT*, 'DO
 END IF
K
K = 1
CALL VMUFF(EAT2, XO, MM, MM, 1, NDA, NDA, X1, NDA, IER)
PRINT*, 'DO
DO I = 1, MM
 X0(I) = X1(I)
 M = 1
 IF (M*DT).EQ.0 THEN
 AA = AA + Z
 DO K = 1, 2
 AA = AA + MODE(K, J) * X1(I)
 ENDIF
 M = M + NC1
 DO I = 1, NC2
 AA = AA + MODE(K, J) * X1(I + L)
 ENDIF
 M = M + NC3
 DO I = 1, NR
 X(I) = X(I + M)
 ENDIF
 T(K) = AA
 ELSE IF (A.GE.20.0) GOTO 210
 GOTO 201
ELSE
 GOTO 201
END IF
210 CONTINUE

PRINT*, '
211 CONTINUE

202 CONTINUE
WRITE(*,9) A, T(1), T(2)
204 CONTINUE

206 IF (DEC.EQ.4) THEN
 M = M + 4
 DO I = 1, NR
 IR(I) = IR(I + M)
 ENDIF
 ELSE IF (A.GE.20.0) GOTO 210
 GOTO 201
 ELSE
 GOTO 201
 END IF
FORMAT(3X,F4.1,4X,F15.6,4X,F15.6)
END
FUNCTION DOT(NR,A,B)
DIMENSION A(1),B(1)
DOT=0.
DO 1 I=1,NR
1 DOT=DOT+A(I)*B(I)
RETURN
END
SUBROUTINE VADD(N,C1,A,B)
DIMENSION A(1),B(1)
DO 1 I=1,N
1 A(I)=A(I)+C1*B(I)
RETURN
END
FUNCTION XNORM1(N,A)
C COMPUTES AN APPROXIMATION TO NORM OF A -- NOT A BOUND
DIMENSION A(N)
COMMON/MAINA/ NDA, NOA1
NN=N*NDA
C1=0.
TR=A(1)
IF (N.EQ.1) GO TO 20
I=2
DO 10 I=II=1,NN,NDA
J=II
DO 5 JJ=I,II,NCOL
C1=C1+ABS(A(J)*A(JJ))
5 J=J+1
TR=TR+A(J)
10 I=I+1
TR=TR/FLOAT(N)
DO 15 II=1,NN,NCOL
15 C1=C1+(A(II)-TR)**2
20 XNORM1=ABS(TR)+SQRT(C1)
RETURN
END
FUNCTION XNORM(N,A)
C COMPUTES AN APPROXIMATION TO NORM OF A -- NOT A BOUND
DIMENSION A(N)
COMMON/MAINB/NCOL, NCOL1
NN=N*NCOL
C1=0.
TR=A(1)
IF (N.EQ.1) GO TO 20
I=2
DO 10 II=NCOL1,NN,NCOL
J=II
DO 5 JJ=I,II,NCOL
C1=C1+ABS(A(J)*A(JJ))
5 J=J+1
TR=TR+A(J)
10 I=I+1
TR=TR/FLOAT(N)
DO 15 II=1,NN,NCOL
15 C1=C1+(A(II)-TR)**2
20 XNORM=ABS(TR)+SQRT(C1)
RETURN
END
TR=TR/FLOAT(N)
DO 15 II=1,NN,NCOL1
15 C1=C1+(A(II)-TR)**2
20 XNORM=ABS(TR)+SQRT(C1)
RETURN
END

SUBROUTINE ABGC(A, B, C, N2, KCC, NACT, NSEN, ABG)
REAL B(NCOL,1), A(NCOL,1), C(NCOL,1), KCC(NCOL,1), ABG(NCOL,1)
INTEGER N2, NACT, NSEN
CALL MMUL(B, KCC, N2, NACT, NACT, ABG)
CALL MMUL(ABG, C, N2, NACT, N2, KCC)
CALL UBOAT(A, KCC, N2, N2, ABG)
RETURN
END

SUBROUTINE MADD(A, B, N, M, C)
COMMON/MAINB/NCOL
REAL A(NCOL,NCOL), B(NCOL,NCOL), C(NCOL,NCOL)
INTEGER N, M
DO 1 I=1,N
DO 1 J=1,M
C(I,J)=A(I,J)+B(I,J)
1 CONTINUE
RETURN
END

SUBROUTINE UBOAT(A, B, N, M, C)
COMMON/MAINB/NCOL
REAL A(NCOL,NCOL), B(NCOL,NCOL), C(NCOL,NCOL)
INTEGER N, M
DO 1 I=1,N
DO 1 J=1,M
C(I,J)=A(I,J)-B(I,J)
1 CONTINUE
RETURN
END

SUBROUTINE FINDK(C, M, N, W, Q, L, K)
REAL UT(21,21), VP(21,21), QPLUS(21,21)
REAL SI(24), CPLUS(21,21), QUT(21,21)
REAL V(21,21), C(21,21), G(21,21)
REAL K(21,21), W(48,48)
*DO 1
DO 1 I=1,M
DO 1 J=1,N
1 UT(I,J)=0.0
DO 2 I=1,M
2 UT(I,I)=1.0
DO 3 I=1,M
3 UT(I,I)=0.0
DO 2 I=1,M
2 VP(I,J)=C(I,J)
CALL LSVDF(VP, 21, M, N, UT, 21, M, SI, W, IER)
DO 4 I=1,N
4 QPLUS(I,J)=0.0
DO 5 I=1,N
5 IF(SI(I).GT.0.00001) QPLUS(I,I)=1/SI(I)
 DO 6 I=1,N
 DO 6 J=1,N
6 V(I,J)=VP(I,J)
 CALL MMUL(QPLUS,UT,N,M,M,QUT)
 CALL MMUL(V,QUT,N,N,M,CPLUS)
 CALL MMUL(G,CPLUS,L,N,M,K)
 RETURN
END
Appendix B

NASTRAN Analysis - 12 Modes
$\phi^T D$ Matrix (12x21)

Mode 4	0.004775	0.004876	-.004429	0.000000
	0.004775	0.004876	-.004429	0.000000
	-.013837	0.003015	-.002568	-.013837
	0.003015	-.002568	0.009529	0.009529
	0.000000	-.013837	-.009082	-.013837
	-.009082			

Mode 5	0.000001	0.003619	0.003618	-.004642
	0.000001	-.003618	-.003618	0.013451
	-.000002	0.003619	0.003619	-.000002
	-.003618	-.003619	-.003619	0.009529
	0.013452	-.000002	0.003617	-.000002
	-.003620			

Mode 6	-.006023	0.000267	0.000266	-.008232
	0.006023	-.000266	-.000266	0.003888
	-.006023	0.000266	0.000266	0.006023
	-.000266	-.000266	-.000266	0.00266
	0.015687	-.006023	0.000266	0.006023
	-.000266			

Mode 7	0.000026	-.001570	-.001533	0.002816
	-.000026	0.001569	0.001532	-.006275
	0.000098	-.001565	-.001541	-.000096
	0.001563	0.001540	-.001585	0.001583
	-.006567	0.000089	-.001520	-.000088
	0.001519			

Mode 12	-.000452	-.000859	-.000903	0.010104
	0.000432	0.000869	0.000927	-.001977
	-.000531	0.000880	0.000909	0.000536
	0.000891	0.000928	-.000822	0.000824
	-.000105	-.000570	-.000940	0.000577
	0.000970			

Mode 13	-.016036	-.002018	0.006244	0.000073
	-.016045	-.002002	0.006278	-.000012
	0.000644	-.000401	0.004628	0.000668
	-.000382	0.004658	-.006268	-.006263
	0.000033	0.000658	0.010503	0.000686
	0.010546			

Mode 17	-.000811	-.000616	-.000255	0.000002
	-.000812	-.000619	-.000257	0.000000
	-.000085	-.000550	-.000331	-.000086
	-.000552	-.000333	-.000810	-.000812
	0.000000	-.000085	-.000073	-.000086
	-.000075			
$\phi^T \phi$ Matrix (12x21) - (Continued)

<table>
<thead>
<tr>
<th>Mode 21</th>
<th>-.001659</th>
<th>-.001165</th>
<th>0.000520</th>
<th>-.001659</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.001649</td>
<td>0.001152</td>
<td>-0.000527</td>
<td>0.001115</td>
</tr>
<tr>
<td></td>
<td>0.001645</td>
<td>-0.000847</td>
<td>0.000291</td>
<td>-0.006164</td>
</tr>
<tr>
<td></td>
<td>0.000840</td>
<td>-0.000291</td>
<td>-0.002043</td>
<td>0.002030</td>
</tr>
<tr>
<td></td>
<td>-.004348</td>
<td>0.001618</td>
<td>0.001328</td>
<td>-.001622</td>
</tr>
<tr>
<td></td>
<td>-.001337</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 22</td>
<td>0.000981</td>
<td>-0.002849</td>
<td>-0.003470</td>
<td>0.001226</td>
</tr>
<tr>
<td></td>
<td>-.000980</td>
<td>0.002859</td>
<td>0.003478</td>
<td>0.000638</td>
</tr>
<tr>
<td></td>
<td>-.000292</td>
<td>-0.002955</td>
<td>-0.003384</td>
<td>0.000293</td>
</tr>
<tr>
<td></td>
<td>0.002965</td>
<td>0.003389</td>
<td>-0.002561</td>
<td>0.002570</td>
</tr>
<tr>
<td></td>
<td>0.001357</td>
<td>-0.000201</td>
<td>-0.003782</td>
<td>0.000206</td>
</tr>
<tr>
<td></td>
<td>0.003795</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 24</td>
<td>-.019403</td>
<td>-0.005697</td>
<td>0.005622</td>
<td>-.017699</td>
</tr>
<tr>
<td></td>
<td>0.019497</td>
<td>0.005625</td>
<td>-0.005680</td>
<td>0.001840</td>
</tr>
<tr>
<td></td>
<td>0.002955</td>
<td>-0.003584</td>
<td>0.004155</td>
<td>-.002891</td>
</tr>
<tr>
<td></td>
<td>0.003542</td>
<td>-0.004167</td>
<td>-.011645</td>
<td>0.011593</td>
</tr>
<tr>
<td></td>
<td>-.008292</td>
<td>0.002726</td>
<td>0.011238</td>
<td>-.002757</td>
</tr>
<tr>
<td></td>
<td>-.011342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 28</td>
<td>-.000000</td>
<td>-0.000004</td>
<td>0.000001</td>
<td>-.000003</td>
</tr>
<tr>
<td></td>
<td>-.000003</td>
<td>-0.000005</td>
<td>0.000001</td>
<td>-.000000</td>
</tr>
<tr>
<td></td>
<td>-.000008</td>
<td>-0.000002</td>
<td>-0.000004</td>
<td>-.000008</td>
</tr>
<tr>
<td></td>
<td>-.000000</td>
<td>-0.000003</td>
<td>0.000004</td>
<td>0.000003</td>
</tr>
<tr>
<td></td>
<td>0.000000</td>
<td>-0.000009</td>
<td>-0.000009</td>
<td>-0.000009</td>
</tr>
<tr>
<td></td>
<td>-.000007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 30</td>
<td>-.000003</td>
<td>0.000010</td>
<td>0.000015</td>
<td>-.000005</td>
</tr>
<tr>
<td></td>
<td>-.000009</td>
<td>0.000008</td>
<td>0.000016</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>-.000004</td>
<td>0.000018</td>
<td>0.000016</td>
<td>-.000004</td>
</tr>
<tr>
<td></td>
<td>0.000016</td>
<td>0.000016</td>
<td>0.000023</td>
<td>0.000018</td>
</tr>
<tr>
<td></td>
<td>0.000000</td>
<td>-0.000005</td>
<td>0.000011</td>
<td>-.000004</td>
</tr>
<tr>
<td></td>
<td>0.000014</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C

NASTRAN Analysis - 33 Modes
Φ^TD Matrix (33x21)

<table>
<thead>
<tr>
<th>Mode 4</th>
<th>0.004775</th>
<th>0.004876</th>
<th>-0.004430</th>
<th>0.000000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.004775</td>
<td>0.004876</td>
<td>-0.004430</td>
<td>-0.013837</td>
</tr>
<tr>
<td></td>
<td>-0.013837</td>
<td>-0.002568</td>
<td>0.009529</td>
<td>0.009529</td>
</tr>
<tr>
<td></td>
<td>-0.000000</td>
<td>-0.013837</td>
<td>-0.009082</td>
<td>-0.013837</td>
</tr>
<tr>
<td></td>
<td>-0.009082</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode 5</th>
<th>0.000001</th>
<th>0.003619</th>
<th>0.003618</th>
<th>-0.004642</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000001</td>
<td>-0.003619</td>
<td>-0.003619</td>
<td>0.13452</td>
</tr>
<tr>
<td></td>
<td>-0.000002</td>
<td>0.003619</td>
<td>0.003619</td>
<td>-0.000002</td>
</tr>
<tr>
<td></td>
<td>-0.003618</td>
<td>-0.003619</td>
<td>0.003620</td>
<td>-0.003617</td>
</tr>
<tr>
<td></td>
<td>0.013452</td>
<td>-0.000002</td>
<td>0.003617</td>
<td>-0.000002</td>
</tr>
<tr>
<td></td>
<td>-0.003620</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode 6</th>
<th>-0.006023</th>
<th>0.000267</th>
<th>0.002666</th>
<th>-0.008232</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.006023</td>
<td>-0.002666</td>
<td>-0.002666</td>
<td>-0.003888</td>
</tr>
<tr>
<td></td>
<td>-0.006023</td>
<td>0.002666</td>
<td>0.002666</td>
<td>-0.006023</td>
</tr>
<tr>
<td></td>
<td>-0.002666</td>
<td>-0.002666</td>
<td>0.00267</td>
<td>-0.000266</td>
</tr>
<tr>
<td></td>
<td>0.015687</td>
<td>-0.006023</td>
<td>0.002666</td>
<td>0.006023</td>
</tr>
<tr>
<td></td>
<td>-0.000267</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode 7</th>
<th>0.000026</th>
<th>-0.001570</th>
<th>-0.001532</th>
<th>0.002816</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000026</td>
<td>0.001569</td>
<td>0.001532</td>
<td>-0.006275</td>
</tr>
<tr>
<td></td>
<td>-0.000098</td>
<td>0.001564</td>
<td>-0.001541</td>
<td>-0.000096</td>
</tr>
<tr>
<td></td>
<td>0.001563</td>
<td>-0.001540</td>
<td>-0.001585</td>
<td>-0.001583</td>
</tr>
<tr>
<td></td>
<td>-0.006567</td>
<td>0.000090</td>
<td>-0.001520</td>
<td>-0.000088</td>
</tr>
<tr>
<td></td>
<td>0.001520</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode 8</th>
<th>-0.000057</th>
<th>-0.002771</th>
<th>-0.002719</th>
<th>0.000002</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.000057</td>
<td>-0.002771</td>
<td>-0.002719</td>
<td>-0.000000</td>
</tr>
<tr>
<td></td>
<td>-0.000049</td>
<td>-0.002762</td>
<td>-0.002730</td>
<td>-0.000049</td>
</tr>
<tr>
<td></td>
<td>-0.002762</td>
<td>-0.002730</td>
<td>-0.002799</td>
<td>-0.002799</td>
</tr>
<tr>
<td></td>
<td>-0.000000</td>
<td>0.000049</td>
<td>-0.002693</td>
<td>0.000049</td>
</tr>
<tr>
<td></td>
<td>-0.002693</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode 9</th>
<th>0.003516</th>
<th>0.000906</th>
<th>-0.000769</th>
<th>0.000000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.003515</td>
<td>0.000906</td>
<td>-0.000769</td>
<td>0.000001</td>
</tr>
<tr>
<td></td>
<td>0.000165</td>
<td>0.000572</td>
<td>-0.000434</td>
<td>0.000164</td>
</tr>
<tr>
<td></td>
<td>0.000572</td>
<td>-0.000434</td>
<td>0.001745</td>
<td>0.001745</td>
</tr>
<tr>
<td></td>
<td>-0.000001</td>
<td>0.000165</td>
<td>-0.001607</td>
<td>0.000163</td>
</tr>
<tr>
<td></td>
<td>-0.001607</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode 10</th>
<th>-0.005664</th>
<th>0.000499</th>
<th>0.000306</th>
<th>-0.008190</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.005664</td>
<td>-0.000497</td>
<td>-0.000305</td>
<td>-0.003592</td>
</tr>
<tr>
<td></td>
<td>-0.006042</td>
<td>0.000463</td>
<td>0.000333</td>
<td>0.006041</td>
</tr>
<tr>
<td></td>
<td>-0.000461</td>
<td>-0.003322</td>
<td>0.000599</td>
<td>-0.000597</td>
</tr>
<tr>
<td></td>
<td>0.016056</td>
<td>-0.006038</td>
<td>0.000215</td>
<td>0.006038</td>
</tr>
<tr>
<td></td>
<td>-0.000213</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>(D) Matrix (33x21) - (Continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 11</td>
<td>0.001926 0.009437 0.009099 -0.000042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.001924 0.009438 0.009099 0.000005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.001279 0.009391 0.009196 0.001274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.009392 0.009196 0.009638 0.009639</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000007 0.001284 0.008962 0.001279</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.008961</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 12</td>
<td>-0.000452 -0.000859 -0.000904 0.010105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000432 0.000869 0.000927 -0.001977</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000531 -0.000880 -0.000909 0.000536</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000891 0.000929 0.000822 0.000824</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000105 -0.000570 -0.000940 0.000577</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000970</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 13</td>
<td>-0.016036 -0.002018 0.006244 0.000073</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.016045 -0.002002 0.006278 -0.000012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000644 0.000401 0.004628 0.000668</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000382 0.004658 0.006268 -0.006263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000033 0.000658 0.010503 0.000686</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.010546</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 14</td>
<td>0.000554 -0.001865 -0.001122 0.007250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000518 0.001872 0.001116 0.001287</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.002022 -0.001729 -0.001220 -0.002008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.001735 0.001220 -0.002262 0.002277</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.005328 0.002010 -0.000762 -0.002002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000748</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 15</td>
<td>-0.006917 -0.001207 0.001357 -0.000168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.006931 -0.001238 0.001291 0.000031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.001849 -0.000686 0.000834 -0.001932</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000724 0.000773 -0.002469 -0.002481</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000105 -0.001852 0.002606 -0.001935</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.002522</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 16</td>
<td>-0.000400 0.001771 -0.003199 -0.002532</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000377 0.001782 0.003200 -0.002532</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.003176 0.002052 -0.003001 0.003124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.002057 0.002995 0.001045 0.001058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.007844 0.003162 -0.003875 0.003123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.003873</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 17</td>
<td>-0.000911 -0.000616 -0.000255 0.000002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000813 -0.000619 -0.000257 -0.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000085 -0.000550 0.000331 0.000086</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000552 -0.000333 0.000810 0.000812</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000000 -0.000085 0.000073 -0.000086</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000075</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\Phi^T D \text{ Matrix (33x21) - (Continued)} \]

<table>
<thead>
<tr>
<th>Mode 18</th>
<th>(0.002003)</th>
<th>(0.00107)</th>
<th>(-0.00857)</th>
<th>(0.00002)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.002006)</td>
<td>(0.00106)</td>
<td>(-0.00859)</td>
<td>(0.00000)</td>
</tr>
<tr>
<td></td>
<td>(0.00053)</td>
<td>(-0.00082)</td>
<td>(-0.00671)</td>
<td>(0.00054)</td>
</tr>
<tr>
<td></td>
<td>(-0.00082)</td>
<td>(-0.00672)</td>
<td>(0.00606)</td>
<td>(0.00606)</td>
</tr>
<tr>
<td></td>
<td>(0.00001)</td>
<td>(0.00050)</td>
<td>(-0.01360)</td>
<td>(0.00051)</td>
</tr>
<tr>
<td></td>
<td>(-0.001362)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 19</td>
<td>(0.000000)</td>
<td>(0.00000)</td>
<td>(-0.00000)</td>
<td>(-0.00001)</td>
</tr>
<tr>
<td></td>
<td>(0.000001)</td>
<td>(-0.00000)</td>
<td>(-0.00000)</td>
<td>(-0.00000)</td>
</tr>
<tr>
<td></td>
<td>(-0.000000)</td>
<td>(-0.00000)</td>
<td>(-0.00000)</td>
<td>(-0.00000)</td>
</tr>
<tr>
<td></td>
<td>(-0.000000)</td>
<td>(-0.00000)</td>
<td>(-0.00000)</td>
<td>(-0.00000)</td>
</tr>
<tr>
<td></td>
<td>(-0.000000)</td>
<td>(-0.00000)</td>
<td>(-0.00000)</td>
<td>(-0.00000)</td>
</tr>
<tr>
<td>Mode 20</td>
<td>(-0.000479)</td>
<td>(0.000083)</td>
<td>(0.00025)</td>
<td>(-0.00018)</td>
</tr>
<tr>
<td></td>
<td>(-0.000475)</td>
<td>(0.000088)</td>
<td>(0.00027)</td>
<td>(0.00001)</td>
</tr>
<tr>
<td></td>
<td>(-0.000675)</td>
<td>(0.000089)</td>
<td>(0.00022)</td>
<td>(-0.000676)</td>
</tr>
<tr>
<td></td>
<td>(0.000094)</td>
<td>(0.00025)</td>
<td>(-0.00162)</td>
<td>(0.000170)</td>
</tr>
<tr>
<td></td>
<td>(-0.000003)</td>
<td>(-0.000680)</td>
<td>(-0.00057)</td>
<td>(-0.000683)</td>
</tr>
<tr>
<td></td>
<td>(-0.000057)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 21</td>
<td>(-0.001659)</td>
<td>(-0.001165)</td>
<td>(0.000520)</td>
<td>(-0.001659)</td>
</tr>
<tr>
<td></td>
<td>(0.001650)</td>
<td>(0.001152)</td>
<td>(-0.000527)</td>
<td>(0.001115)</td>
</tr>
<tr>
<td></td>
<td>(0.001645)</td>
<td>(-0.000847)</td>
<td>(0.000291)</td>
<td>(-0.001636)</td>
</tr>
<tr>
<td></td>
<td>(0.000840)</td>
<td>(-0.000291)</td>
<td>(-0.002043)</td>
<td>(0.002030)</td>
</tr>
<tr>
<td></td>
<td>(-0.004348)</td>
<td>(0.001618)</td>
<td>(0.001328)</td>
<td>(-0.001621)</td>
</tr>
<tr>
<td></td>
<td>(-0.001337)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 22</td>
<td>(0.000981)</td>
<td>(-0.002849)</td>
<td>(-0.003470)</td>
<td>(0.001226)</td>
</tr>
<tr>
<td></td>
<td>(-0.000980)</td>
<td>(0.002859)</td>
<td>(0.003478)</td>
<td>(0.000638)</td>
</tr>
<tr>
<td></td>
<td>(-0.00292)</td>
<td>(-0.002955)</td>
<td>(-0.003384)</td>
<td>(0.000293)</td>
</tr>
<tr>
<td></td>
<td>(0.002965)</td>
<td>(0.003389)</td>
<td>(-0.002561)</td>
<td>(0.002570)</td>
</tr>
<tr>
<td></td>
<td>(0.001357)</td>
<td>(-0.000201)</td>
<td>(-0.003782)</td>
<td>(0.000206)</td>
</tr>
<tr>
<td></td>
<td>(0.003795)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 23</td>
<td>(-0.000486)</td>
<td>(-0.021293)</td>
<td>(-0.020538)</td>
<td>(-0.005602)</td>
</tr>
<tr>
<td></td>
<td>(0.000464)</td>
<td>(0.021322)</td>
<td>(0.020568)</td>
<td>(0.003478)</td>
</tr>
<tr>
<td></td>
<td>(0.000061)</td>
<td>(-0.021077)</td>
<td>(-0.020851)</td>
<td>(-0.000042)</td>
</tr>
<tr>
<td></td>
<td>(0.021124)</td>
<td>(0.020881)</td>
<td>(-0.021074)</td>
<td>(0.021719)</td>
</tr>
<tr>
<td></td>
<td>(0.001631)</td>
<td>(0.00545)</td>
<td>(-0.020744)</td>
<td>(-0.000513)</td>
</tr>
<tr>
<td></td>
<td>(0.020813)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode 24</td>
<td>(-0.019403)</td>
<td>(-0.005697)</td>
<td>(0.005622)</td>
<td>(-0.017699)</td>
</tr>
<tr>
<td></td>
<td>(0.019407)</td>
<td>(0.005625)</td>
<td>(-0.005680)</td>
<td>(0.001840)</td>
</tr>
<tr>
<td></td>
<td>(0.002955)</td>
<td>(-0.003584)</td>
<td>(0.004155)</td>
<td>(-0.002891)</td>
</tr>
<tr>
<td></td>
<td>(0.003542)</td>
<td>(-0.004167)</td>
<td>(-0.011645)</td>
<td>(0.011593)</td>
</tr>
<tr>
<td></td>
<td>(-0.008292)</td>
<td>(0.002726)</td>
<td>(0.011238)</td>
<td>(-0.002757)</td>
</tr>
<tr>
<td></td>
<td>(-0.011342)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{cccc}
\text{Mode 25} & 0.00001 & 0.00000 & -0.00000 & 0.00001 \\
 & -0.00001 & -0.00000 & 0.00000 & -0.00000 \\
 & -0.00000 & 0.00000 & -0.00000 & 0.00000 \\
 & -0.00000 & 0.00000 & 0.00000 & -0.00000 \\
 & 0.00000 & -0.00000 & -0.00000 & 0.00000 \\
 & 0.00000 & 0.00000 & 0.00000 & -0.00000 & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Mode 26} & -0.00001 & -0.00001 & -0.00001 & -0.00001 \\
 & -0.00004 & -0.00002 & -0.00001 & -0.00000 \\
 & -0.00012 & -0.00001 & -0.00003 & -0.00011 \\
 & 0.00000 & -0.00003 & 0.00006 & 0.00003 \\
 & 0.00000 & -0.00012 & -0.00008 & -0.00012 \\
 & -0.00007 & 0.000000 & 0.000000 & -0.000000 & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Mode 27} & -0.00000 & 0.00000 & -0.00000 & 0.00000 \\
 & 0.00000 & 0.00000 & -0.00000 & 0.00000 \\
 & 0.00000 & -0.00000 & 0.00000 & 0.00000 \\
 & 0.00000 & 0.00000 & -0.00000 & 0.00000 \\
 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Mode 28} & -0.00000 & -0.00004 & 0.00001 & -0.00003 \\
 & -0.00003 & -0.00005 & 0.00001 & -0.00000 \\
 & -0.00008 & 0.00001 & -0.00004 & -0.00008 \\
 & -0.00000 & -0.00003 & 0.00004 & 0.00003 \\
 & 0.00000 & -0.00009 & -0.00009 & -0.00009 \\
 & -0.00007 & 0.000000 & 0.000000 & -0.000000 & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Mode 29} & -0.000043 & -0.00006 & 0.00008 & 0.00000 \\
 & -0.000042 & -0.00006 & 0.00008 & -0.00000 \\
 & -0.00004 & -0.00008 & 0.00006 & -0.00004 \\
 & -0.00008 & 0.00006 & -0.00027 & -0.00027 \\
 & -0.00000 & -0.00003 & 0.000024 & -0.00003 \\
 & 0.00024 & 0.00000 & 0.000000 & 0.000000 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Mode 30} & -0.00003 & 0.00010 & 0.00015 & -0.00005 \\
 & -0.00009 & 0.00008 & 0.00016 & 0.00000 \\
 & -0.00004 & 0.00018 & 0.00016 & -0.00004 \\
 & 0.00016 & 0.00016 & 0.00023 & 0.00018 \\
 & 0.00000 & -0.00005 & 0.000011 & -0.00004 \\
 & 0.00014 & 0.00000 & 0.000000 & 0.000000 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Mode 31} & -0.000195 & -0.00069 & 0.00030 & -0.000195 \\
 & -0.000197 & 0.00069 & -0.00030 & 0.00001 \\
 & -0.00002 & -0.00051 & 0.00019 & -0.00001 \\
 & -0.000052 & -0.00019 & -0.00124 & 0.000125 \\
 & -0.00006 & 0.00001 & 0.00085 & -0.00001 \\
 & -0.00086 & 0.00000 & 0.000000 & 0.000000 \\
\end{array}
\]
<table>
<thead>
<tr>
<th></th>
<th>Mode 32</th>
<th>Mode 33</th>
<th>Mode 34</th>
<th>Mode 35</th>
<th>Mode 36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00070</td>
<td>-0.00105</td>
<td>.000112</td>
<td>-.000011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.000071</td>
<td>-.000105</td>
<td>-.00111</td>
<td>.000001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.000004</td>
<td>-.000107</td>
<td>-.00137</td>
<td>-.000002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.000107</td>
<td>-.000136</td>
<td>.000081</td>
<td>-.000080</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.000020</td>
<td>.000005</td>
<td>.000169</td>
<td>-.000006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.000170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.001316</td>
<td>-.002646</td>
<td>.001407</td>
<td>-.000041</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.001433</td>
<td>-.003269</td>
<td>.001633</td>
<td>.000746</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.001072</td>
<td>.008585</td>
<td>.006652</td>
<td>.002688</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.008136</td>
<td>.006664</td>
<td>.017513</td>
<td>.016781</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.000026</td>
<td>.000412</td>
<td>-.000583</td>
<td>.001442</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.000294</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.011539</td>
<td>-.001697</td>
<td>.003121</td>
<td>.002881</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.011322</td>
<td>-.000778</td>
<td>-.003301</td>
<td>.000771</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.000215</td>
<td>-.011488</td>
<td>-.007493</td>
<td>.003215</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.010932</td>
<td>.006959</td>
<td>-.021277</td>
<td>.023013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.001047</td>
<td>.001293</td>
<td>.010261</td>
<td>-.003702</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.014854</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.005960</td>
<td>.007119</td>
<td>.007164</td>
<td>.003841</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.000284</td>
<td>.009320</td>
<td>.007115</td>
<td>-.002497</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.002435</td>
<td>-.000120</td>
<td>.002235</td>
<td>-.006592</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.004583</td>
<td>.001767</td>
<td>-.008845</td>
<td>.000859</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.000228</td>
<td>.002261</td>
<td>.018397</td>
<td>-.000966</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.012288</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.010398</td>
<td>-.003798</td>
<td>-.005374</td>
<td>.014434</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.010019</td>
<td>-.000317</td>
<td>.001925</td>
<td>-.000109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.000137</td>
<td>-.004307</td>
<td>.003640</td>
<td>.001805</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.003038</td>
<td>-.004431</td>
<td>.010575</td>
<td>.011795</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.001445</td>
<td>-.000139</td>
<td>.004044</td>
<td>.000032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.010171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bibliography

5. ---. Active Control of Space Structures (ACOSS) Model 2. Work performed by the Charles Stark Draper Laboratory, Inc. (CSDL) under Contract F30602-80-C-0096 as part of the ACOSS program for the Rome Air Development Center, September 1981.

125

17. RADC-TR-80-78. ACOSS FOUR (Active Control of Space Structures) Theory, Vol I (of two). Study conducted by Charles Stark Draper Lab, Inc. for Rome Air Development Center, April 1980 (AD-A085654).

VITA

David Vernon Thyfault is a native of Colorado. He received his Bachelor of Science in Aerospace Engineering Sciences from the University of Colorado in May 1974 and was commissioned as a second lieutenant in the United States Air Force through the Officer Training School, Lackland AFB, Texas in September 1974. He served as a space vehicle engineer with the 6595th Space Test Group, Special Space Projects Branch, Vandenberg AFB, California. While at Vandenberg, he participated in design, test, and launch activities for the Defense Meteorological Satellite Program, Space Test Program vehicles P72-2, P76-5, P80-1, and P80-2, and the NASA meteorological series TIROS/NOAA program. His following assignment was as a space laser project officer for the Air Force Weapons Laboratory, Advanced Beam Control Branch, Kirtland AFB, New Mexico, where he evaluated control system concepts for high energy laser programs.

Permanent address: 1849 Mariposa Avenue
Boulder, Colorado 80302
Title: DECENTRALIZED CONTROL OF A LARGE SPACE STRUCTURE USING DIRECT OUTPUT FEEDBACK

Thesis Chairman: Dr. Robert A. Calico, Jr.
Direct output feedback control methods are used to develop a multiple-input multiple-output controller. The controller is applied to the ACOSS 2 Model (CSDL 2). NASTRAN is employed to generate modal approximations of the model. The first 36 modes are utilized and implemented in the controller. The control problem is formulated in state space form and direct output feedback is implemented. The state is represented as modal amplitudes and rates. System outputs are obtained by rate sensors and control is applied by point force actuators. Since the output matrices are not of full rank, their generalized inverses are obtained. These and steady full-state feedback optimal gains are used to determine suboptimal feedback gains. Control and observation spillover are eliminated using singular value decomposition. Decentralized control is accomplished using three and four controllers. Conditions for which the stability of the model is assured are developed. Sensitivity to uncontrolled residual modes was examined. Direct output feedback response was compared to that obtained using optimal full-state feedback. Full controller decoupling was achieved and stability maintained.
END
FILMED
\[\text{DTIC} \]