A multivariable regression algorithm

George L. Blaisdell and Todd Carpenter
A MULTIVARIABLE REGRESSION ALGORITHM

BASIC

Computer program documentation Mathematical analysis Regression analysis Data analysis Data processing

ABSTRACT

A BASIC algorithm has been developed that is capable of fitting a user-defined regression equation to a set of data. This best-fit-curve algorithm is unique in that it allows multiple variables and multiple forms (exponential, trigonometric, logarithmic, etc.) to be present in a single regression equation. The least-squares regression performed determines the constants for each of the regression equation terms to provide a best-fit curve. Other programs within the algorithm set allow for data entry, editing and print-out, and plotting of the raw data and their best-fit regression curve.
PREFACE

This report was prepared by George L. Blaisdell, Research Civil Engineer, of the Applied Research Branch, Experimental Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory and Todd Carpenter, cooperative education student of the Mechanical Engineering Department, Michigan Technological University. Funding was provided by DA Project 4A762730AT42, Design, Construction, and Operations Technology for Cold Regions; Technical Area A, Combat Operations Support; Work Unit 9, Winter Battlefield Mobility.

The authors recognize Mary Albert and Dr. Charles Daly for their careful technical review of this report and for their helpful suggestions.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.
CONVERSION FACTORS: U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

These conversion factors include all the significant digits given in the conversion tables in the ASTM Metric Practice Guide (E 380), which has been approved for use by the Department of Defense. Converted values should be rounded to have the same precision as the original (see E 380).

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches</td>
<td>25.4</td>
<td>millimetres</td>
</tr>
<tr>
<td>pounds (force)</td>
<td>4.448222</td>
<td>Newtons</td>
</tr>
<tr>
<td>pounds (mass) per cubic foot</td>
<td>16.01846</td>
<td>kilograms per cubic metre</td>
</tr>
<tr>
<td>Btu in./hr ft² °F</td>
<td>0.1442229</td>
<td>W/m K</td>
</tr>
</tbody>
</table>
A MULTIVARIABLE REGRESSION ALGORITHM

by

George L. Blaisdell and Todd Carpenter

INTRODUCTION

It is commonly the case in data analysis that a set of experimental data is best represented by an equation. The equation allows for convenient interpolation between measured data points and provides a simple way of referring to the data. Additionally, some mathematical manipulation of data requires an equation form.

Many algorithms exist for fitting a smooth curve to a given set of data. It is generally true, however, that these algorithms are limited to a single type of mathematical form. For instance, curve fitting routines for polynomial, exponential and logarithmic functions are abundant. These curve types may produce an adequate fit over a portion or perhaps all of the experimental data. If no one type of mathematical relationship adequately fits the data, one can resort to using the cubic-spline method for interpolating data values, approximating the area integral over a specific interval or determining the first derivative at a given point.

Since some, if not most, experimental data do not strictly fit the standard mathematical relationships for which curve fitting routines exist, in the past they were either roughly approximated or left as discrete data. To overcome this difficulty, we have developed an algorithm to allow curve fitting with a user-defined mathematical expression. This expression may contain logarithmic, exponential, trigonometric and other mathematical forms singly or combined. It is also able to handle up to 20 separate independent variables. Using the least squares method, the algorithm determines the coefficients for each of the user-defined terms to produce a best fit curve. Comparisons of the goodness-of-fit of various mathematical expressions to the experimental data can be done graphically with plots or with a fit parameter generated by the algorithm.
A discussion of the theory and concepts used to develop the algorithm and details of the computer coding are described in this report. Several application examples are also illustrated.

THEORY

The least squares method of curve fitting is used by the algorithm to generate a best fit curve. This method selects a fitted curve so as to minimize the sum of the squares of the deviations of the given data points from the curve. In the linear case (two variables— one independent, one dependent) the form of curve to be fit is

\[y = a + b \]

(1)

where

\[a \text{ and } b = \text{constants to be solved for} \]

\[x = \text{independent variable} \]

\[y = \text{dependent variable}. \]

Given a set of data points, denoted by \(y_i \) (where \(i \) ranges from one to \(n \), the number of given data points), the deviation \(D_i \) between the calculated and given values can be expressed

\[D_i = \hat{y}_i - y_i \]

(2)

where

\[\hat{y}_i = a x_i + b \]

and \(x_i \) is the value of the independent variable at the given data point \(y_i \).

Continuing with the least squares method for the linear case, and using eq 2, we are given the squared deviations by

\[D_i^2 = [\hat{y}_i - (a x_i + b)]^2 \]

(4a)

The sum of the squared deviations, \(S \), is then defined as

\[S = \sum_{i=1}^{n} D_i^2 \]

(4b)
A goodness-of-fit parameter can be defined from this summation as an average deviation, i.e., dividing S by n. To minimize the sum S, the partial derivatives with respect to each constant (a and b for the linear case) must be set equal to zero. This results in

$$\frac{\partial S}{\partial a} = \sum_{i=1}^{n} -2 x_i \left[y_i - (a x_i + b) \right] = 0 \quad (5a)$$

$$\frac{\partial S}{\partial b} = \sum_{i=1}^{n} -2 \left[y_i - (a x_i + b) \right] = 0. \quad (5b)$$

By rearranging terms, eq 5a and 5b become

$$\sum_{i=1}^{n} \frac{y_i}{x_i} x_i = a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = 0 \quad (6a)$$

$$\sum_{i=1}^{n} y_i = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} 1 = 0. \quad (6b)$$

Equations 6a and 6b represent a series of simultaneous equations that can be solved for a and b. These constants can then be put into the equation for the general form of the curve (eq 1) to yield a best fit curve for the given y_i values.

To expand the least squares method to include more than just the fit to a straight line, a general multivariable, multiform expression is defined as

$$g = a_1 T_1 + a_2 T_2 + \ldots + a_N T_N \quad (7)$$

where

g = dependent variable

$a_1 \ldots a_N$ = constants to be solved for

$T_1 \ldots T_N$ = relational expressions of the independent variables

N = number of relational expressions.

Using eq 7 to determine the deviation to be summed and minimized yields

$$D_i^2 = \left[y_i - (a_1 T_{1,i} + a_2 T_{2,i} + \ldots + a_N T_{N,i}) \right]^2$$

$$= \left[y_i - \sum_{j=1}^{N} a_j T_{j,i} \right]^2 \quad (8a)$$
where T_{ji} is the jth relational expression of the general equation (eq 7) evaluated at the ith set of known values of the independent variables. The sum to be minimized can then be defined as

$$ S = \sum_{i=1}^{n} \left[y_i - \sum_{j=1}^{N} a_j T_{ji} \right]^2 $$ \hspace{1cm} (8b)

Taking partial derivatives with respect to constants a_k gives

$$ \frac{\partial S}{\partial a_k} = -2 \sum_{i=1}^{n} T_{k,i} \left[y_i - \sum_{j=1}^{N} a_j T_{ji} \right] $$ \hspace{1cm} (9)

where k varies between 1 and N. Minimizing eq 8b by setting eq 9 equal to zero and simplifying gives

$$ \sum_{i=1}^{n} T_{k,i} \left[y_i^{\wedge} - \sum_{j=1}^{N} a_j T_{ji}^{\wedge} \right] = 0 $$ \hspace{1cm} (10)

where $k = 1, 2, 3 \ldots N$. Equation 9 represents the general form of the partial derivative with respect to one of the constants in the regression equation (eq 7). To obtain the set of simultaneous equations for solving the constants a_k, eq 10 is written specifically for k equal to 1 to N. This gives N equations and N unknowns and can be solved using the Gaussian elimination method with backward substitution and maximal column pivoting. Before applying this method, however, some algebraic simplification is advantageous. We can define a constant C by

$$ C_k \equiv \sum_{i=1}^{n} T_{k,i} y_i^{\wedge} $$ \hspace{1cm} (11)

Then using eq 10, we can further define C_k by

$$ C_k = \sum_{j=1}^{N} a_j \sum_{i=1}^{n} T_{k,i} T_{ji}^{\wedge} \equiv \sum_{j=1}^{N} a_j A_{k,j} $$ \hspace{1cm} (12)

which produces a series of simultaneous equations.

Although laborious, the Gaussian elimination method with maximal column pivoting is reliable and can be easily programmed, and it can be easily evaluated by a computer. Coding for the least squares method is contained in program REGRES (Appendix A).
PROGRAMMING

The multiform, multivariable algorithm was converted to programming code for an HP 9845B minicomputer (user manuals referenced in Appendix B). The algorithm is readily adaptable to any computing system with an interpreter; however, graphics and matrix manipulation capabilities should be available.

For convenience, the algorithm has been broken into five parts that are each separately programmed (Appendix A). The first program, AUTOST, provides for data input (either from keyboard entry or reading from a data file already generated by this set of programs) and access to the other programs (REGRES, PLOTS, EDIT, LIST). Program REGRES performs the actual regression on the user-defined equation. PLOTS provides a graphical output for the data points and a curve or series of curves of the calculated equation. The EDIT program is a data editor that allows additions, deletions or changes in the input data. Program LIST provides a hard copy listing of the input data.

Up to 20 subfiles can be defined at the time of data input. It is important that the data be organized in these subfiles in a logical manner (i.e. holding all variables constant except one). All operations contained in the five programs can be applied to the complete data set or any combination of subfiles desired.

Autostart program

AUTOST is an observation definition program that also provides access to the other programs in the set. All keyboard input of data—including subfiles, subfile names and all observations—can be stored on the assigned mass storage device in a user-defined filename that does not already exist. This data file can be called during future program runs to avoid repeated keyboard entry. Special function keys K0–K6 are defined by this program by accessing the previously defined and stored key file K1 (file K1 should always exist on the assigned mass storage device). Special function key definitions are as follows:

K0 – stops data input into the current subfile and allows data to be put into the subsequent subfile if desired.

K1 – calls the regression equation program (REGRES) and performs the regression.
K2 - calls the PLOTS program which plots the most recently calculated regression with the current data.
K3 - calls the EDIT program where the current data may be modified by adding, deleting or changing observations and add subfiles.
K4 - stores the current data under a user-defined filename (provided that filename does not already exist).
K5 - calls the LIST program which lists all the data or certain subfiles on the internal printer.
K6 - stops the program.

Key KO is only valid during keyboard entry of data and keys K1 - K6 are only active when the prompt "select K1-K6" appears on the screen. An error message will result if the keys are pressed at any other time.

An outline of the program flow for AUTOST is as follows:

1. The user is asked if the special function key definition prompts should be suppressed. If yes, go to step 3 ("Y" or "YES", CONT); if no, go to step 2.

2. The following list is output on the internal printer:
 KO = Stop data input for current subfile
 K1 = Regression
 K2 = Plots
 K3 = Edit
 K4 = Store
 K5 = List
 K6 = Quit.

3. The program asks if stored data are being used. If yes, go to step 1; if no, go to step 4.

4. Enter the number of variables for the data that are to be input from the keyboard.

5. Enter the name of the subfile that the data are to be stored under (must be no more than five characters long).

6. Input the data for all variables in the current observation. If this is the first observation of the subfile, all variables must be included and separated by commas. After data entry for the first observation is complete, an echo of the data will be printed on the screen. Following entry of the first observation, the user may indicate repeated
values of any variable with a "+" sign (all variables must still be separated by commas). It is important that all variables be satisfied for each observation, whether it is a repeated value or zero. Dependent and independent variables are not differentiated at this point but will be identified later in REGRES.

7. If all data entry for the current subfile is complete, press KO and go to step 8; if not, repeat step 6.

8. The program requests a new subfile. If more subfiles need to be entered (answer "yes" to the prompt), go to step 5; if no, go to step 9.

9. If the data are not to be stored, answer "no" to the "data stored?" prompt and go to step 12. If the data are to be stored, answer "yes" and go to step 10.

10. The program requests a filename (one that does not already exist) and then stores the data. Go to step 12.

11. Enter the filename under which the data were previously stored by this program.

12. Select key K1-K6 to access the other programs.

Regression program

The REGRES program performs a least-squares regression on the data defined by AUTOST with a multiform, multivariable equation of up to 20 terms that is supplied by the user. Each term is input as a character string (up to 70 characters long) and is defined by the matrix notation X(A,n), where A indicates the observation number and n denotes the number of the independent or dependent variables. For example, a regression on the data in Table 1 may be desired using the form

\[y = a \ln(x) + bx^3 + cx^2z + d \]

where

\[y = \text{dependent variable} \]
\[x \text{ and } z = \text{independent variables} \]
\[\ln(x) = \text{first regression term} \]
\[x^3 = \text{second regression term} \]
\[x^2z = \text{third regression term} \]

and a, b, c and d are regression constants and the fourth regression term is 1.
Under the format required by REGRES, eq 13 would appear as
\[x(A,2) = a \times \log(x(A,1)) + b \times x(A,1)^3 + c \times x(A,1)^2 \times x(A,3) + d \] (14)

where the variables x, y and z are being denoted by the numbers 1, 2 and 3, respectively, in the matrix notation.

To ease the input of laborious equations, an option to define intermediate constants for the regression equation was made available. Such constants, called user-defined terms, are input as a complete program line so it is important that proper syntax is used. User-defined terms are advantageous when the regression equation contains repeatable sections. In the example above, one could simplify the equation by creating a user-defined term

\[N1 = x(A,1) \]

and restructuring the regression eq (eq 13) as
\[x(A,2) = a \times \log(N1) + b \times N1^3 + c \times N1^2 \times x(A,3) + d. \] (15)

Clearly, this example does not show much improvement, but user-defined terms can also be used with any programmable statements.

The user is restricted in the variable names that can be used to avoid interfering with existing variables. To be safe, N1, N2, N3, etc., are recommended variable names.

The program flow for REGRES can be summarized as follows (characters in brackets indicate correct responses for the example above):

1. If this is not the first time REGRES has been run since power was turned on, go to step 9; otherwise, go to step 2.
2. The program asks if the user wants to define any user-defined terms. If not, go to step 5 [N]; otherwise, go to 3.
3. Enter the number of user-defined terms.
4. Enter each user-defined term as a complete expression within double quotes.
5. Enter the number of terms in this regression [4].
6. Enter the numerical index of the dependent variable [2].
7. Enter, one term at a time, the terms of the regression equation within double quotes:
["LOG (X(A,1)"") (then press continue)
[" X(A,1) ** 3"]
[" X(A,1) ** 2 * X(A,3)"]
[1] or ["X(A,1) ** 0"].

8. If a program or data file named BUFFER already exists on the assigned mass storage medium, its name must be changed or it will be deleted by the REGRES program. Go to step 16.

9. Since REGRES has been run before, the program still has the previous equation defined. It now asks if the previous equation is to be used again. If yes, go to step 18; if no, go to step 10.

10. The program asks if any of the previous user-defined terms are to be retained. If not go to step 13; otherwise, go to step 11.

11. Enter the number of user-defined terms to be retained and their numerical indicies.

12. Enter any additional user-defined terms.

13. The program asks if any of the terms of the previous regression equation are to be retained. If not, go to step 15; if yes, go to step 14.

14. Enter the number of terms to be retained and their numerical indicies.

15. Enter the terms necessary to complete the regression equation, as in step 7.

16. The program now asks if all the subfiles are to be used in the regression. If yes, go to step 18; if not, go to step 17.

17. Enter the number of subfiles and the subfile numbers wanted for the regression.

18. Following display of the equation and the solved constants, the program asks if the user wants a plot of the data and the regression. If no, the program branches to step 12 of AUTOST; if yes, the program branches to program PLOTS.

Plots program

For aid in determining the goodness-of-fit of the regression, a plot of the experimental and calculated data can be produced with the PLOTS program. The program will plot the dependent variable defined in REGRES against any of the other variables. Two plotting options are available to attempt to clearly display the relationships of several variables on one
Table 1. Example data for multivariable regression (values are for variable y [n=2]).

<table>
<thead>
<tr>
<th>x (n=1)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>z(n=3)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>58</td>
<td>62</td>
<td>65</td>
<td>69</td>
<td>73</td>
<td>76</td>
<td>80</td>
<td>83</td>
<td>37</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>104</td>
<td>119</td>
<td>133</td>
<td>147</td>
<td>162</td>
<td>176</td>
<td>191</td>
<td>205</td>
<td>219</td>
</tr>
<tr>
<td>3</td>
<td>157</td>
<td>190</td>
<td>222</td>
<td>255</td>
<td>287</td>
<td>319</td>
<td>352</td>
<td>394</td>
<td>417</td>
<td>449</td>
</tr>
<tr>
<td>4</td>
<td>277</td>
<td>334</td>
<td>392</td>
<td>449</td>
<td>507</td>
<td>565</td>
<td>622</td>
<td>680</td>
<td>737</td>
<td>795</td>
</tr>
<tr>
<td>5</td>
<td>463</td>
<td>553</td>
<td>643</td>
<td>733</td>
<td>823</td>
<td>913</td>
<td>1003</td>
<td>1093</td>
<td>1133</td>
<td>1273</td>
</tr>
<tr>
<td>6</td>
<td>731</td>
<td>860</td>
<td>990</td>
<td>1119</td>
<td>1249</td>
<td>1379</td>
<td>1508</td>
<td>1639</td>
<td>1767</td>
<td>1897</td>
</tr>
<tr>
<td>7</td>
<td>1096</td>
<td>1272</td>
<td>1448</td>
<td>1625</td>
<td>1801</td>
<td>1978</td>
<td>2154</td>
<td>2330</td>
<td>2507</td>
<td>2683</td>
</tr>
<tr>
<td>8</td>
<td>1573</td>
<td>1803</td>
<td>2034</td>
<td>2264</td>
<td>2494</td>
<td>2725</td>
<td>2955</td>
<td>3186</td>
<td>3416</td>
<td>3646</td>
</tr>
<tr>
<td>9</td>
<td>2177</td>
<td>2469</td>
<td>2760</td>
<td>3052</td>
<td>3343</td>
<td>3635</td>
<td>3927</td>
<td>4218</td>
<td>4510</td>
<td>4801</td>
</tr>
<tr>
<td>10</td>
<td>2924</td>
<td>3284</td>
<td>3644</td>
<td>4004</td>
<td>4364</td>
<td>4724</td>
<td>5084</td>
<td>5444</td>
<td>5804</td>
<td>6164</td>
</tr>
</tbody>
</table>

To illustrate these, the data from Table 1 are used. All of the x,y combinations are shown plotted in Figure 1. The first plotting option displays the dependent variable on the ordinate with one of the independent variables on the abscissa and a line representing a constant value of a second independent variable as calculated by the regression program (Fig. 2). The second type of display plots the data points with the dependent variable on the ordinate and the chosen independent variable on the abscissa. It also plots the calculated value from the regression using all of the variables (Fig. 3).
Figure 2. Program PLOTS output for example data of Table 1 (for $z = 5$); the ordinate displays the dependent variable (y), the abscissa displays an independent variable (x) and the plotted curve represents a constant value of a second independent variable ($z = 5$).

Figure 3. Program PLOTS output for example data of Table 1 (for $z = 5$); the ordinate displays the dependent variable (y), the abscissa displays an independent variable (x); the $*$'s represent actual data points and the o's plot calculated points (from the regression) using all of the independent variables.
The flow of program PLOTS follows:

1. Define the independent variable for the abscissa with its index number.
2. If all subfiles are to be plotted, go to step 4.
3. Enter the number of subfiles and the specific subfile numbers that are to be used in plotting.
4. The program displays the maximum and minimum values of the variable chosen for the plot axes. The user is asked to enter the limits for the axes' scaling.
5. Enter the label for the abscissa (independent variable) and the ordinate (dependent variable).
6. To plot, holding all variables constant except one (the independent variable chosen in step 1), go to step 11.
7. The program plots each data point (*) and the calculated points from the regression program (0) for each data point using all variables.
8. The program asks if a hard copy is desired, if not it branches to step 10.
9. A hard copy is printed with the regression equation and a goodness-of-fit parameter (a fit parameter of 0 is a perfect fit). If a different plot is wanted, go to step 1.
10. If another regression is desired, the program branches to step 1 of program REGRES. If no additional regressions are desired, the program branches to step 12 of AUTOST.
11. The program requests entry of a constant value for all variables except the one identified in step 1.
12. The plot is displayed. If another curve is desired, go to step 13; if not, go to step 8.
13. The program requests the number of variables to be changed, which ones (identified by their numerical index) and their new values. Go to step 12.

Edit and list programs

Program EDIT allows the user to change the values of observations, add and delete observations, and add complete subfiles to the existing files. All editing features include either subfile or absolute addressing. Absolute addressing numbers all observations sequentially from the first
observation of the first subfile to the last observation of the last subfile. Subfile addressing renumbers all observations in each subfile such that the first observation of each subfile is referenced as the first observation. The EDIT program offers menu-type edit feature selection. The delete feature first lists the values of all variables of the observation referenced and offers an escape by asking if it should be deleted.

The LIST program provides a hard copy listing of some or all subfiles. It prints the subfile name at the top of each subfile and references all observation numbers using subfile addressing.

ALGORITHM APPLICATION

In the study of snow mechanics, one of the common techniques used to classify snow compressibility is the plate-sinkage test. A circular or rectangular plate driven by a hydraulic or manual ram compacts a volume of snow, changing its original density to critical density (approximately 3.12×10^{-5} lb/ft3). At the critical density, the volume of snow is reduced very little or not at all. Increased pressure from the plate results in constant-volume flow or movement of the snow away from the plate.

Measurements taken during a plate-sinkage test include the force on the plate and an indication of the amount of sinkage or vertical compaction experienced between the beginning of the test (zero force) and each force reading. From the force-sinkage data, the compaction energy can be determined by integration between the zero-sinkage and critical sinkage (sinkage at which critical density is reached) limits. This integration can be performed numerically to yield acceptable results. Integration of the curve or comparison of the nature of the compaction relationship between various snows, however, is accomplished best with a mathematical representation. Using the multivariable algorithm, we can determine the mathematical relationship between force and sinkage.

Given the force versus sinkage data in Table 2, a best-fit mathematical expression is desired. Since we know that the curve is somewhat exponential in nature, the first regression equation form used in REGRES is

$$F = a e^z$$

which gives $a_1 = 0.01347$ and from PLOTS shows a rather poor fit (Fig. 4). The second equation type attempted is a 4th order polynomial and it results
Table 2. Typical force versus sinkage data for a plate-sinkage test in snow.

<table>
<thead>
<tr>
<th>Force (lb)</th>
<th>Sinkage (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>1.0</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>35</td>
<td>3.0</td>
</tr>
<tr>
<td>45</td>
<td>3.5</td>
</tr>
<tr>
<td>50</td>
<td>4.0</td>
</tr>
<tr>
<td>70</td>
<td>4.5</td>
</tr>
<tr>
<td>90</td>
<td>5.0</td>
</tr>
<tr>
<td>115</td>
<td>5.5</td>
</tr>
<tr>
<td>150</td>
<td>6.0</td>
</tr>
<tr>
<td>170</td>
<td>6.5</td>
</tr>
<tr>
<td>200</td>
<td>7.0</td>
</tr>
<tr>
<td>240</td>
<td>7.5</td>
</tr>
<tr>
<td>275</td>
<td>8.0</td>
</tr>
<tr>
<td>320</td>
<td>8.5</td>
</tr>
<tr>
<td>355</td>
<td>9.0</td>
</tr>
<tr>
<td>400</td>
<td>9.5</td>
</tr>
<tr>
<td>460</td>
<td>10.0</td>
</tr>
<tr>
<td>535</td>
<td>10.5</td>
</tr>
<tr>
<td>610</td>
<td>11.0</td>
</tr>
<tr>
<td>830</td>
<td>11.5</td>
</tr>
</tbody>
</table>

in the coefficients and fit shown in Figure 5. This is a much better approximation to the data, however, near the upper and lower ends of the data the polynomial shows an increasingly poor fit. (This is a common behavior for polynomial curve fitting.) Recognizing that the exponential example showed a horizontal curve near the low sinkage values and became steeper at the high sinkage values, we next attempt a combination of exponential and polynomial forms. The equation used by REGRES for this trial is

\[F = a_1 + a_2 z + a_3 z^2 + a_4 z^3 + a_5 z^4 + a_6 e^z. \]

(17)
Figure 4. Exponential curve fit on plate-sinkage data.

Figure 5. Fourth-order polynomial curve fit on plate-sinkage data.
Performing the regression with eq 17 and the data in Table 2, we obtain an excellent fit (Fig. 6). Another form of combining the polynomial and exponential fits is shown in Figure 7 where

$$F = e^Z (a_1 + a_2Z + a_3Z^2 + a_4Z^3 + a_5Z^4) + a_6 \quad (18)$$

This also results in a good curve fit and comparison of the goodness-of-fit parameter is necessary to determine that eq 18 more closely approximates the data.

Typical heat transfer problems demonstrate the multivariable power of this regression algorithm. A case in point involves the placement of flat heat flux sensors on a curved surface, such as a pipe. Heat flux sensors (HFS) are thin wafers of a material with known thermal conductivity. Thermocouples are attached to each flat side of the wafer. The output from the HFS is a voltage that is proportional to the heat flux through the sensor. The flat, inflexible HFS is attached to the pipe by an epoxy. The epoxy, in addition to securing the sensor to the pipe, fills in the void.
space between the flat HFS and the curved pipe. This attachment alters the factory calibration for thermal conductivity, which is for application on a flat surface. Using experimental data from an insulated pipe section with a HFS attached, we can determine a new calibration for thermal conductivity by relating the heat flux out of the pipe to the sensor output. This calibration relation can easily be represented by a smooth curve. Different insulation thicknesses generate a series of curves. Additionally, with different pipe insulation thermal conductivities, pages of these series of curves are generated. Likewise, with different glues for attaching the sensor, volumes of pages of series of curves are required. It soon becomes apparent that a mathematical relation is necessary to calibrate the heat flux out of the pipe with the HFS reading, the type of glue, the type and thickness of the insulation, and the diameter of the pipe.

The first step in fitting an equation to these data is to break the data into subfiles where only one variable is changing. This isolates the
effect each variable has on the heat flux out of the pipe and the heat flux through the sensor. Starting with the basic equation for heat flux out of the pipe

\[\phi_p = \frac{K_i \phi_s}{r_p + t_i} \ln \frac{r_p}{r_p} \]

(19)

where

- \(K_i \) = insulation thermal conductivity
- \(\phi_p \) = heat flux out of pipe
- \(\phi_s \) = heat flux through sensor
- \(r_p \) = radius of the pipe
- \(t_i \) = thickness of insulation,

we determine the effect of each variable on the heat flux. All the terms

Figure 8. Multivariable curve fit for heat flux through an insulated pipe with a flat heat flux sensor.
of these equations can then be included in a final regression on all the subfiles. The final form of the best fit equation is

\[\phi_p = \frac{aK_i \phi_s}{r_p + t_i} + bK_i \phi_s + cK_t \frac{dK_e}{K_s} + \frac{e}{\phi_s} + f \phi_s K_s + gK_r r_p t_i + hK_s r_p t_i + iK_t \phi_s \frac{1}{r_p t_i} + j \quad (20) \]

where \(K_e \) is the epoxy thermal conductivity and \(K_s \) is the sensor thermal conductivity. The constants \(a-j \) and a plot of the calculated and raw data are shown in Figure ~. This figure appears cluttered because all the subfiles of data were plotted. This can be avoided by either expanding the scale to look at discrete sections of the data or plotting one subfile at a time.

CONCLUSION

The multivariable, multiform regression algorithm presented can be seen to be a useful alternative to single form regressions. The algorithm allows data that do not fit one of the standard equation forms (polynomial, exponential, etc.) to be mathematically characterized by a best-fit curve. This allows the data to be easily integrated and differentiated and provides an accurate interpolating equation. An equation representation of the data also provides a method of comparing the variable relationships between separate sets of data.

Specific application of the algorithm is shown for snow compaction with a plate-sinkage device. The results can be used for predicting vehicle motion resistance when the vehicle is operating in snow. The algorithm is also applied to the problem of heat flow around a pipe. Measured heat flow data can be fit with a regression equation and a comparison of actual and analytical solutions completed.
APPENDIX A: ALGORITHM CODING.

10 REM --> PROGRAM AUTOST
20 ! STARTER PROGRAM FOR MULTI-VARIABLE REGRESSION.
30 PRINT PAGE,TAB(30);CHR$(129);"USER INSTRUCTIONS FOR MULTI-VARIABLE REGRESION":CHR$(128)
40 PRINT LIN(2);"This program is the starter program for a set of five programs"
50 PRINT "that can perform a series regression of a user-defined equation with"
60 PRINT "up to 500 observations and 20 variables per observation."
70 PRINT LIN(1);"The data is input from the terminal and can later be stored for future use."
80 PRINT "All data is broken into subfiles that can be any length as long as the 500"
90 PRINT "observation maximum is not exceeded. Up to 20 subfiles can be specified."
100 PRINT "and any regression or plotting function can be performed with any combination"
110 PRINT "of these subfiles."
120 PRINT LIN(1);"Any variable can be assigned the dependent variable by designating"
130 PRINT "the index number of the variable desired, therefore all variables are treated as the same. Plots can be made with any variable as the independent variable."
140 PRINT "except the dependent variable. The dependent variable can not appear in the regression equation."
150 DISP "PRESS 'CONT' TO CONTINUE."
160 PRINT PAGE,TAB(30);CHR$(129);"PROGRAM OPTIONS":CHR$(128)
170 PRINT LIN(2);"The following programs and options are available:
180 PRINT LIN(1),TAB(5);"1) Keyboard data input with subfile definition, or read data from a previously stored data file."
190 PRINT LIN(1),TAB(5);"2) Regression of user defined series equation such as
200 PRINT LIN(1),TAB(5);"where a, b, and c are the constants that the program solves."
210 PRINT LIN(1),TAB(5);"3) Plot the regression equation with a data scatter plot to show correlation"
220 PRINT LIN(1),TAB(5);"4) Data editing including observation changes, additions, and deletions with subfile additions and data file merging."
230 PRINT LIN(1),TAB(5);"5) Store the current data in a user-defined filename."
240 PRINT LIN(1),TAB(5);"6) List all the data or only selected subfiles."
250 DISP "PRESS 'CONT' TO CONTINUE."
260 PRINT PAGE,TAB(22);CHR$(132);"DEFINITIONS OF USER-DEFINED KEYS":CHR$(128)
270 PRINT LIN(2),TAB(5);"The user-defined keys K0-K6 are used to quickly access the various"
280 PRINT "program options. K0 is used during data input to suspend input to the current "
290 PRINT "subfile. It is used only after all data has been recorded into the current "
300 PRINT "subfile. The option of adding a subfile is then made available, after which"
310 PRINT "all data is put into the new subfile."
The keys K1-K6 access the other program options, and should be used only when the prompt SELECT K1-K6 appears. The plot option should not be.

PRINT "equation to perform."

PRINT "The option of getting a hard copy reminder of what these keys do is now available, you can suppress the prompts if so desired."

OPTION BASE 1
DIM A$(20), B$(20), C$, CON X(500, 20), Y(20) (160), Nsub$(20) (19), Ab(20, 21), INTEGER Dep, Subf(20), Nsub, Nobs, Nu, Nt, M$(20) (150), Term

INPUT "SUPRESS KEY PROMPTS?", S$
GOSUB Check
IF Check = 1 THEN 470
IF UPC$(S$(1, 1)) = "Y" THEN 590
PRINT "KO = STOP DATA INPUT FOR CURRENT SUBFILE."
PRINT "K2 = REGRESSION."
PRINT "K3 = EDIT."
PRINT "K4 = PLOT."
PRINT "K5 = LIST."
PRINT "K6 = QUIT."
PRINTER IS 16
GCLEAR
EXIT GRAPHICS
LOAD KEY "KI:T15"

INPUT "ARE YOU USING STORED DATA?", S$
GOSUB Check
IF Check = 1 THEN 640
IF UPC$(S$(1, 1)) = "N" THEN 770
ON ERROR GOTO Badfile
INPUT "FILE NAME" , Filnm$
ASSIGN #1 TO Filnm$
OFF ERROR
PRINT PAGE
READ #1; Nv, Nobs, Nsub
READ #1; Nsub$(*) , Subf(*) , X(*)
GOTO 1360
INPUT "NUMBER OF VARIABLES? (= 20.)", Nv
REDIM X(500, Nv)
IMAGE #, 2X, 4A, 2D
Nsum = 0
IMArE #, IX, 7A
IMAGE #, IX, 5D, 4D
Nobs = Subf(1) = 0
Nsub = 0
Nsub = Nsub + 1
DISP "NAME OF SUBFILE #" ; Nsub ; " = ? ; "
INPUT " (<= 5 CHARACTERS)" , Nsub$(Nsub)
PRINT CHR$(27) & "m"
PRINT PAGE, TAB(30); " SUBFILE = " ; Nsub$(Nsub)
PRINT "OBS#"
FOR B = 1 TO Nv
PRINT USING "VAR# ; B ;
NEXT B
PRINT USING 790; "VAR# ; B
NEXT B
PRINT USING 790; "VAR# ; B
PRINT
PRINT CHR$(27) & "1"
REDIM A$(Nv), B$(Nv)
Bcount = 0
Nobs = Nobs + 1
Bcount = Bcount + 1
DISP "INPUT ALL VARIABLES FOR OBSERVATION #" ; Bcount ; " + = REF E
AT " ;
1000 MAT INPUT A$
1010 IF Bcount<>1 THEN 1050
1020 FOR C=1 TO Nv
1030 B$(C)=A$(C)
1040 NEXT C
1050 PRINT
1060 PRINT LIN(2);Bcount
1070 FOR C=1 TO Nv
1080 IF A$(C)0" THEN 1140
1090 GOTO 1170
1100 X(Nobs,C)=VAL(B$(C))
1110 A$(C)=B$(C)
1120 PRINT USING 810;X(Nobs,C)
1130 GOTO 1170
1140 IF A$(C)="" THEN 1170
1150 X(Nobs,C)=VAL(A$(C))
1160 PRINT USING 810;X(Nobs,C);
1170 B$(C)=A$(C)
1180 NEXT C
1190 GOTO 970
1200 Subfi:INPUT "ANOTHER SUBFILE?",S$
1210 GOSUB Check
1220 IF Check=1 THEN Subfi
1230 Nobs=Nobs-1
1240 Subf(Nsub+1)=Nobs
1250 PRINT CHR$(27)&"m",PAGE
1260 IF UPC$(S$([,1])="Y" THEN 840
1270 INPUT "STORE DATA?",S$
1280 IF UPC$(S$([,1])="N" THEN 1360
1290 Phyrec=(Nobs*20+12/256+Nsub+12/256+2)+3/2
1300 REDIM A$(Nv),B$(Nv),Nsub$(Nsub),Subf(Nsub+1),X(Nobs,Nv)
1310 INPUT "FILE NAME?",Finnm$
1320 CREATE FinnmSPhyrec
1330 ASSIGN #1 TO FinnmS
1340 PRINT #1;Nv,Nobs,Nsub
1350 PRINT #1;Nsub$(*)Subf(*),X(*)
1360 Restart: Flaggg=0
1361 ON KEY #1 GOTO 1450
1370 ON KEY #2 GOTO 1470
1380 ON KEY #3 GOTO 1490
1390 ON KEY #4 GOTO 1290
1400 ON KEY #5 GOTO 1510
1410 ON KEY #6 GOTO 1440
1420 DISP "SELECT K1-K6"
1421 Flaggg=Flaggg+1
1430 GOTO 1430
1440 END
1450 DISP "GOING TO REGRESSION PROGRAM."
1460 LOAD "REGRES:T15"
1470 IF Flaggg>1 THEN GOTO 1479
1471 DISP "PLOTS CAN ONLY BE ACCESSED AFTER REGRESSION HAS BEEN RUN"
1472 WRIT 6000
1473 DISP "SELECT K1-K6"
1474 GOTO 1430
1479 DISP "GOING TO PLOTTING PROGRAM."
1480 LOAD "PLOTS:T15"
1490 DISP "GOING TO EDIT PROGRAM."
1500 LOAD "EDIT:T15"
1510 DISP "GOING TO LISTING PROGRAM."
1520 LOAD "LIST:T15"
1530 Check: Check=0
1540 PRINT PAGE
1550 IF UPC$(S$([,1])="Y") OR (UPC$(S$([,1])="N") THEN 1530
1560 Check=1
1570 BEEP
1580 PRINT PAGE;*** IMPROPER RESPONSE - TRY AGAIN ***
1590 RETURN
1600 1 CHECKS FILENAME
1610 Badfile: BEEP
1620 IF ERRN<>56 THEN 1650
1630 PRINT PAGE;"*** FILE NAME DOES NOT EXIST ***"
1640 GOTO 690
1650 DISP ERRM$
1660 GOTO 1440

10 REM --> PROGRAM REGRES
20 OPTION BASE 1
30 COM ((500,20),VS(20)[160]|11|sub$(20)|10|,Ab(20,21),INTEGER Dep,Subf;20;H$u
40 b,Nobs,Ht,H$(20)[150],Term
50 REDIM X(Nobs,Ht)
40 DIM Dps$(160),St$(160),Stl$(160),Sl$(20),Keep(20),H$(20)[150],Test$(150),Prf
60 INTEGER User(20)
70 MAT Ab=ZER
80 Stc=1
90 Kterm=0
100 DISP Last=H=Ht
110 IF VS$(1)="" THEN 370
120 Last=H=Ht
140 INPUT "USE SAME EQUATION?",S$
150 GOSUB Check
160 IF Check=1 THEN 140
170 IF UPC$(S$(1,11))="Y" THEN 2340
180 INPUT "DO YOU WANT TO KEEP ANY OF THE TERMS OF THE EQUATION?",S$
190 GOSUB Check
200 IF Check=1 THEN 180
210 IF UPC$(S$(1,11))="N" THEN 670
220 INPUT "HOW MANY TERMS DO YOU WANT TO KEEP?",Knt
230 IF (Knt>0) AND (Knt<=20) AND (FRAC(Knt)=0) THEN 270
240 BEEP
250 PRINT PAGE;"*** IMPROPER NUMBER OF TERMS ***"
260 GOTO 220
270 PRINT PAGE
280 FOR A=1 TO Knt
290 INPUT "TERM #?",Keep(A)
300 IF (Keep(A)>O) AND (Keep(A)<=20) AND (FRAC(Keep(A))=0) THEN 240
310 BEEP
320 PRINT PAGE;"*** IMPROPER TERM NUMBER ***"
330 GOTO 290
340 PRINT PAGE
350 NEXT A
360 GOTO 670
370 PRINT PAGE,TAB(25);CHR$(129);"NOTES ON REGRESSION PROGRAM";CHR$(129);"The regression program takes an equation defined by the user such as:" 380 PRINT LIN(1),TAB(5);"Y=a*X^3+b*X*ln(Z)+c"
390 PRINT LIN(1),"and solves for a,b,and c based on the best fit to the current data."
400 PRINT LIN(1),TAB(5);"The relational expressions are the input terms of the regression equation."
410 PRINT LIN(1),"Once you have input the regression equation, you can perform the"
420 PRINT "regression on any combination of subfiles to find the relation in one"
430 PRINT "particular subfile. Later, even after a plot has been performed, you can"
440 PRINT "repeat the same regression without the need of retyping the regression equation.
24
PRINT "or the user defined terms. So you can perform the regression on only a few"
PRINT "subfiles the first time, and later perform the regression on the whole data set."
PRINT "Also, you can pick and choose which regression terms and which user defined "
PRINT "terms you wish to keep, so remember the order in which you input the terms to "
PRINT "capitalize on this feature."
PRINT "PRESS 'CONT' TO CONTINUE."
PAUSE
PRINT PAGE,TAB(20);CHR$(129);"HOW TO INPUT USER DEFINED TERMS";CHR$;128.
PRINT "User defined terms are relational expressions that complement the "
PRINT "regression equation by defining constants that can be included in the equation.
PRINT "These terms are independent equations that must have proper syntax, and any"
PRINT "variable names can be used except A, B, and any variable in common. User defined "
PRINT "terms are placed, in order, before the regression equations and are evaluated"
PRINT "for every point in the data set. It is important that the syntax of any user"
PRINT "input terms is correct. If, for any reason, the program gets lost, the screen is blank, and the tape drive is not working, for an extended time, stop the program, and start over. The problem may be due to "
PRINT "improper syntax of the input equations."
PRINT "User defined terms can also be used with any subroutine function"
PRINT "such as PRINT or RAD to display any intermediate results or temporarily set the"
PRINT "computer into a desired computational mode."
IF MS(1)="" THEN 880
INPUT "DO YOU WANT TO KEEP ANY OF THE USER DEFINED TERMS?",S$
GOSUB Check
IF Check=1 THEN 680
INPUT "HOW MANY USER DEFINED TERMS DO YOU WANT TO KEEP",
(Kterm>0) AND (Kterm<20) AND (FRACT(Kterm)=O) THEN 770
BEEP
PRINT PAGE;"*** IMPROPER USER DEFINED TERM NUMBER ***
PRINT PAGE;"*** IMPROPER NUMBER OF USER DEFINED TERMS ***
GOTO 790
PRINT PAGE
FOR A=1 TO Kterm
INPUT "KEEP USER DEFINED ",User(A)
IF (User(A)>0) AND (User(A)<=20) AND (FRACT(User(A))=0) THEN 840
BEEP
PRINT PAGE;"*** IMPROPER USER DEFINED TERM NUMBER ***
GOTO 790
PRINT PAGE
NEXT A
GOTO 930
INPUT "DO YOU WANT ANY USER DEFINED TERMS?",S$
GOSUB Check
IF Check=1 THEN 880
Term=0
IF UPC$(S$(1,1))="N" THEN 980
INPUT "HOW MANY USER DEFINED TERMS DO YOU WANT TO KEEP",
TERM(0) AND (TERM(20) AND (FRACT(Term)=0) THEN 980
BEEP
PRINT PAGE;"*** IMPROPER NUMBER OF USER DEFINED TERMS ***
GOTO 930
PRINT PAGE
FOR A=1 TO Term
1000 Flag=0
1010 FOR B=1 TO Kterm
1020 IF User(B)=A THEN Flag=1
1030 NEXT B
1040 IF Flag<>1 THEN 1070
1050 M$(A)=M$(A)
1060 GOTO 1090
1070 DISP "INPUT USER DEFINED TERM ";A; " (IN QUOTES; 150 character limit) ";
1080 INPUT ";N$(A)
1090 Test$=N$(A)
1100 GOSUB Parenth
1110 IF Test$=1 THEN 1070
1120 M$(A)=M$(A)
1130 NEXT A
1140 PRINT PAGE;TAB(13);CHR$(129);"PROCEDURE FOR THE INPUT OF THE REGRESSION EQUATION";CHR$(129)
1150 PRINT LIN(4);CHR$(132);"FOR THE EQUATION "X(A,3)=I*X(A,2) + J*X(A,1) + K";CHR$(128)
1160 PRINT LIN(1);" X(A,3) = THE DEPENDENT VARIABLE. IN THIS CASE THE THIRD VARIABLE.
1170 PRINT LIN(1);" I*X(A,2)^2 = THE FIRST TERM OF THE EQUATION FOR WHICH I IS TO BE SOLVED."
1180 PRINT " (Input 'X(A,2)^2' as the first term within double quotes.)"
1190 PRINT LIN(1);" J*X(A,1) = THE SECOND TERM FOR WHICH J IS TO BE SOLVED."
1200 PRINT LIN(1);" K = THE THIRD TERM WHICH IS A CONSTANT WITHOUT A VARIABLE."
1210 PRINT " (Input 'I' to represent this term.)"
1220 PRINT LIN(1);"Regression terms are a maximum of 70 characters in length."
1230 Start: INPUT "HOW MANY TERMS ARE THERE IN THE REGRESSION?",Nt
1240 IF (Nt>0) AND (Nt<=20) AND (FRACT(Nt)=0) THEN 1280
1250 BEEP
1260 PRINT PAGE;"*** IMPROPER NUMBER OF TERMS ***"
1270 GOTO Start
1280 PRINT PAGE
1290 REDIM Ab(N4t,Nt+1)
1300 PRINT
1310 Last=Nt
1320 INPUT "INPUT THE INDEX OF THE DEPENDENT VARIABLE. (e.g. 1 the for 1st variable)";Dep
1330 IF (Dep>0) AND (Dep<=Nv) AND (FRACT(Dep)=0) THEN 1380
1340 BEEP
1350 PRINT PAGE;"*** IMPROPER VARIABLE NUMBER ***"
1360 GOTO 1330
1370 GOTO PAGE
1380 V$(Nt+1)="X(A, "& VAL$(Dep) &")"
1400 FOR A=1 TO Nt
1410 flag=0
1420 FOR B=1 TO Knt
1430 IF A=Keep(B) THEN Flag=1
1440 NEXT B
1450 IF Flag=1 THEN 1590
1460 DISP "INPUT TERM ";A; " (e.g. X(A,1) within quotes);"
1470 INPUT "",V$(A)
1480 Test$=V$(A)
1490 GOSUB Parenth
1500 IF Test$=1 THEN 1460
1510 St=POS(V$(A),V$(Nt+1))
1520 IF St=0 THEN 1590
1530 PRINT USING ";",K;V$(A);" IS NOT VALID SINCE THE DEPENDENT VARIABLE I: ";V$(Nt+1)
1540 BEEP
1550 DISP "PRESS CONT TO CONTINUE"
1560 PAUSE
1570 PRINT USING ";",K;""
1580 GOTO 1460
1590 NEXT A
1600 PRINT
1610 ON ERROR GOTO 1630
1620 GOTO 1680
1630 IF ERRN<54 THEN 1660
1640 PURGE "BUFFER:T15"
1650 GOTO 1680
1660 PRINT ERRM#
1670 PAUSE
1680 CREATE "BUFFER:T15",<(Nd)*(Nd+Term+3)+5)/256+1
1690 ASSIGN "BUFFER:T15" TO #1
1700 PRINT #1;"50 Builder!"
1710 PRINT #1;"S1 FOR B=1 TO Fx"
1720 Ln=50
1730 PRINT #1;VAL$(S1+Ln)=" FOR A=Subf(S1(B))+1 TO Subf(S1(B)+1)"
1740 Ln=Ln+1
1750 FOR A=1 TO Term
1760 PRINT #1;VAL$(S1+Ln)=" &N$(A)"
1770 Ln=Ln+1
1780 Po1=POS(N$(A),"X(A,"
1790 IF Po1=0 THEN Poend
1800 Po2=Po1+POS(N$(A)[Po1],")")
1810 N$(A)[Po1, Po2-1]="S1("&N$(A)[Po1+4, Po2-2]"
1820 GOTO 1780
1830 Poend: NEXT A
1840 FOR A=1 TO Nd
1850 FOR B=1 TO Nd+1
1860 St$=VAL$(S1+Ln)=" AB("&VAL$(A) "," &VAL$(B) ")="&Ab; " &VAL$(A) ;", "&Ab; " &VAL$(B) ;"
1870 Ln=Ln+1
1880 PRINT #1;St$
1890 NEXT A
1900 NEXT B
1910 PRINT #1;VAL$(S1+Ln)=" NEXT A"
1920 PRINT #1;VAL$(S2+Ln)=" NEXT B"
1930 PRINT #1;VAL$(S3+Ln)=" GOTO 5500 "
1940 Ln=Ln+3
1950 FOR D=1 TO Nd
1960 FOR B=1 TO Nd
1970 St$=" Fx=Fx+"&V$(B) "+Ab("&VAL$(B) "," &VAL$(Nd+1)"
1980 St1$=St$
1990 Strt=POS(St1$,"X(A,"&VAL$(D)"
2000 IF Strt=0 THEN 2040
2010 Nd=POS(St1$[Strt],")")
2020 St1$[Strt,Strt+Nd-1]="Var"
2030 GOTO 1990
2040 FOR C=1 TO Nd
2050 St=POS(St1$,"X(A,"&VAL$(C)"
2060 IF Strt=0 THEN 2100
2070 En=POS(St1$[Strt],")")
2080 St1$[Strt,Strt+En-1]="S1("&VAL$(C)"
2090 GOTO 2050
2100 NEXT C
2110 IF B>1 THEN 2240
2120 PRINT #1;VAL$(S1+Ln)=" A="&VAL$(D)"
2130 Ln=Ln+1
2140 FOR Ed=1 TO Term
2150 Pr$=N$(Ed)
2160 Po1=POS(Pr$,"S1{"&VAL$(D)"
2170 IF Po1=0 THEN 2210
2180 Po2=Po1+POS(Pr$[Po1],")")
2190 Pr$[Po1, Po2]="Var"
2200 GOTO 2190
2210 PRINT #1;VAL$(S1+Ln)=" &Pr$"
2220 Ln=Ln+1
2230 NEXT Ed
2240 PRINT #1;VAL$(S1+Ln)=" &St1$"
2250 Ln=Ln+1
2260 NEXT B
2270 PRINT #1;VAL$(S1+Ln)=" GOTO 5500"
2280 \text{Ln}=\text{Ln}+1
2290 \text{St}=\text{St}$
2300 \text{NEXT D}
2310 \text{PRINT PAGE}
2320 \text{INPUT "$\text{DO YOU WANT TO DO THE REGRESSION ON ALL SUBFILES?"},S$
2330 \text{GOSUB Check}
2340 \text{IF Check}=\text{I} \text{THEN} 2360
2350 \text{IF UPC$(S[1],1J)="Y" \text{THEN} 2560
2360 \text{INPUT "$\text{HOW MANY SUBFILES DO YOU WANT INCLUDED IN THE REGRESSION?"},Fx
2370 \text{GOSUB Check}
2380 \text{IF Check}=\text{I} \text{THEN} 2360
2390 \text{IF UPC$(S[1],1J)="Y" \text{THEN} 2560
2400 \text{PRINT PAGE;"*** WARNING - NUMBER OF SUBFILES EXCEEDED ***"}
2410 \text{BEEP}
2420 \text{GOTO 2400}
2430 \text{FOR R}=1 \text{TO Fx}
2440 \text{DISP "$\text{INPUT SUBFILE #"};A;" FOR THE REGRESSION.";
2450 \text{INPUT "",SI(A)
2460 \text{IF (SI(A)>0) \text{AND} (SI(A)<=Nsub) \text{AND} (FRRCT(SI(A))=0) \text{THEN} 2530
2470 \text{BEEP}
2480 \text{PRINT PAGE;"*** IMPROPER SUBFILE NUMBER ***"
2490 \text{GOTO 2470}
2500 \text{FOR R}=1 \text{TO Nsub}
2510 \text{S1(R)=R}
2520 \text{NEXT R}
2530 \text{PRINT PAGE,LIN(8),TAB(25):PHRS((19.)"REGRESSION IN PROGRESS":CHPR$u28>
2540 \text{GOTO 2610}
2550 \text{FOR P}=1 \text{TO Nsub}
2560 \text{S1(R)=R}
2570 \text{NEXT P}
2580 \text{NEXT Mat}
2590 \text{PRINT PAGE,LIN(8),TAB(25);CHR$(129);"REGRESSION IN PROGRESS":CHR$(128)
2600 \text{GOTO 2610}
2610 \text{IF S1(H)=S \text{THEN} 2520
2620 \text{FOR Test}=First+1 \text{TO Last}
2630 \text{IF Rb(Test,First)>Ab(Large,First) \text{THEN} Large=Test
2640 \text{NEXT Test}
2650 \text{IF Large=First \text{THEN} GOTO 2750
2660 \text{FOR Switch}=First \text{TO Last+1}
2670 \text{Save}=Ab(First,Switch)
2680 \text{Ab(First,Switch)=Ab(Large,Switch)
2690 \text{Ab(Large,Switch)=Save
2700 \text{NEXT Switch}
2710 \text{FOR Diag}=First+1 \text{TO Last}
2720 \text{Ratio=Rb(Diag,First)/Rb(First,First)
2730 \text{FOR Zero}=First \text{TO Last+1}
2740 \text{Ab(Diag,Zero)=Ab(Diag,Zero)-Ratio*Ab(First,Zero)
2750 \text{NEXT Zero}
2760 \text{NEXT Diag}
2770 \text{NEXT Mat}
2780 \text{FOR Solve=Last \text{TO 1 \text{STEP -1}}
2790 \text{Ab(Solve,Last)=Ab(Solve,Last)/Ab(Solve,Solve)
2800 \text{IF Solve=1 \text{THEN} GOTO 2890
2810 \text{FOR Solve=Solve-1 \text{TO 1 \text{STEP -1}}
2820 \text{Ab(Solve,Solve)=Ab(Solve,Last)+Ab(Solve,Solve)
2830 \text{Ab(Solve,Last)=Ab(Solve,Last)-Ab(Solve,Solve)
2840 \text{NEXT Solve
2850 \text{NEXT Diag}
2860 \text{NEXT Mat}
2870 \text{FOR A}=2 \text{TO Nt}
2880 \text{PRINT USING "#,K";"Fx=\text{a}\";V$(1)
2890 \text{FOR A}=2 \text{TO Nt}
2900 \text{PRINT USING "#,K";"+\";CHR$(96+A);"\";V$(A)
2950 NEXT A
2960 PRINT
2970 FOR A=1 TO Nt
2980 PRINT TAB(3);CHR$(96+A);"=";Ab(A,Nt+1)
2990 NEXT A
3000 FOR A=1 TO Term
3010 PRINT Liri(1);M$(A)
3020 NEXT A
3030 INPUT "DO YOU WANT A PLOT?",S$
3040 GOSUB Check
3050 IF Check=1 THEN 3030
3060 IF UPC$(S$(1,1))="Y" THEN LOAD "PLOTS:T15"
3070 PRINT PAGE
3080 DISP "RETURNING TO MAIN PROGRAM"
3090 LOAD "AUTOST:T15",Restart
3100 IF
3110 1: PARENTHESES CHECKING ROUTINE
3120 Parenth: P=0
3130 Left_count=Right_count=Pos=Po=0
3140 Po=POS(Test$,"(")
3150 IF Po=0 THEN Left pas
3160 Test$(Po,Po)="*
3170 Left_count=Left_count+1
3180 GOTO 3140
3190 Left pas: Pos=POS(Test$,")")
3200 IF Pos=0 THEN Right pas
3210 Test$(Pos,Pos)="*
3220 Right_count=Right_count+1
3230 GOTO Left pas
3240 Right pas: IF Left_count=Right_count THEN RETURN
3250 P=1
3260 IF Left_count>Right_count THEN DISP Left_count
3270 IF Left_count<Right_count THEN DISP Right_count
3280 PRINT PAGE;"IMPROPER RESPONSE - TRY AGAIN."
3290 RETURN
3300 !
3310 CHECKS YES AND NO RESPONSES
3320 Check: Check=0
3330 PRINT PAGE
3340 IF UPC$(S$(1,1))="Y" OR UPC$(S$(1,1))="N" THEN RETURN
3350 Check=1
3360 PRINT PAGE;"*** IMPROPER RESPONSE - TRY AGAIN."
3370 RETURN
3380 !
3390 SUB Build(Select,Var,Fx,$(1),N$(1))
3400 OPTION BASE 1
3410 CON X$(.),V$(.),Nsub$(.),Ab$(.),INTEGER Dep,Subf$(.),Nsub,Nobs,Hv,Nt
3420 ON Select GOTO Builder,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A19,A20
3430 Builder: !
REDIM X(Nobs,Nv)
DIM Sub(20)

INPUT "DO YOU WANT ALL SUBFILES LISTED?",S#
IF (UPC$(S$[1,1])="Y") OR (UPC$(S$[1,1])="N") THEN 91
BEEP
PRINT PAGE;"*** IMPROPER RESPONSE - TRY AGAIN ***
GOTO 50

INPUT "DO YOU WANT A HARD COPY (H) OR A CRT DISPLAY (C)?",T$
IF (UPC$(T$[1,1])="H") OR (UPC$(T$[1,1])="C") THEN 96
BEEP
PRINT PAGE;"*** IMPROPER RESPONSE, PLEASE TRY AGAIN ***
GOTO 91

IF UPC$(T$[1,1])="C" THEN 101
PRINT PAGE

IF UPC$(S$[1,1])="Y" THEN 280
Nss=0
NEXT A
340 FOR A=1 TO Nss
PRINT LIN(3);"SUBFILE: ",Nsub#A
350 PRINT LIN(1)
360 FOR I=1 TO Nv
370 Jj=0
380 FOR I=1 TO Nv
390 Jj=Jj+1
400 IF Jj<=5 THEN GOTO 430
410 Jj=1
420 PRINT USING 460;
430 PRINT USING 450;"VAR#"%;VAL$(I$
440 NEXT I$
450 IMAGE ",,X,Y,6A
460 IMAGE /
470 PRINT USING 460
480 PRINT " OBS ";Obs
490 Obs=0
500 FOR B=Subf(Sub(A))+1 TO Subf(Sub(A)+1)
510 Obs=Obs+B
520 PRINT LIN(1)
530 PRINT Obs
540 FOR I=1 TO Nv
550 Jj=Jj+1
560 IF Jj<=5 THEN GOTO 600
570 Jj=1
580 PRINT USING 460
590 PRINT USING 460;X(B,I$
610 NEXT I$
620 NEXT B
630 NEXT A
631 PRINT LIN(2)
640 GOTO 120
10 REM --> PROGRAM PLOTS
20 OPTION BASE 1
30 COM X(500,20),V$(20)(150),Nsub$(20)(10),Ab(20,21),INTEGER Dep,Sub$(20),Nsubb,Nobs,Nt,NS$(20)(150),Term
32 REDIM X(Nobs,Nv)
40 DIM Gxmnx(20),Gxmxn(20),Gymx(20),Gymnx(20),SL(20),Eq(500),Xla$(150),Yla[160]
60 INTEGER Nfile(20)
70 PRINT PAGE,TAB(25);CHR$(129);"NOTES ON PLOTTING:";CHR$(128)
80 PRINT "This program will plot the data and the regression function using any"
90 PRINT "variable as the independent variable except the dependent variable."
100 PRINT "The function can be plotted using a line and setting all variables"
110 PRINT "to a constant except the independent and dependent variables. Multiple lines"
120 PRINT "can be drawn in this manner with the option of changing any of the constants."
130 PRINT "Another option is to plot corresponding data points that insert all variables."
140 PRINT "from each data point into the equation."
150 PRINT "Any combination of subfiles can be plotted."
160 LINK "BUFFER:T15",2340,170
170 GCLEAR
180 EXIT GRAPHICS
190 DEG
200 INPUT "INDEPENDENT VARIABLE?",Ind
210 IF Ind(>Dep THEN 240
220 PRINT PAGE,LINE(7);"THAT IS THE DEPENDENT VARIABLE."
221 GOTO 200
230 GOTO 200
240 PRINT PAGE
250 INPUT "PLOT THE COMPLETE DATA SET?",$f
260 GOSUB Check
270 IF Check=1 THEN 250
280 IF UPC$(S$tI,1J)="N" THEN 390
290 Sbsts=Nsub
300 MAT SEARCH X(*,Ind),MIN;Xmn
310 MAT SEARCH X(*,Ind),MAX;Xmx
320 MAT SEARCH X(*,Dep),MIN;Ymn
330 MAT SEARCH X(*,Dep),MAX;Ymx
340 FOR A=1 TO Nsub
350 Nfile(A)=A
360 NEXT A
370 GOTO 650
380 INPUT "HOW MANY SUB FILES?",Sbsts
390 IF (Sbsts<0) AND (Sbsts=Nsub) AND (FRACT(Sbsts)=0) THEN 430
400 PRINT PAGE;"*** IMPROPER NUMBER OF SUBFILES ***"
410 BEEP
420 GOTO 380
430 PRINT PAGE
440 REDIM Gxmnx(Sbsts),Gxmxn(Sbsts),Gymx(Sbsts),Gymnx(Sbsts)
450 FOR A=1 TO Sbsts
1%
2 S60 INPUT "NUMBER OF SUBFILE?", Nfile(A)
3 IF (Nfile(A)>0) AND (Nfile(A)<Hsub) AND (FRACT(Nfile(A))=0) THEN 510
4 BEEP
5 PRINT PAGE;"+++ IMPROPER SUBFILE NUMBER +++"
6 GOTO 460
7
8 PRINT PAGE
9 Gxmnx(A)=Gxmnx(A)=X(Subf(Nfile(A))+1,Ind)
10 Gymnx(A)=Gymnx(A)=X(Subf(Nfile(A))+1,Dep)
11 FOR B=Subf(Nfile(A))+1 TO Subf(Nfile(A)+1)
12 IF X(B,Ind)>Gxmnx(A) THEN Gxmnx(A)=X(B,Ind)
13 IF X(B,Ind)<Gxmnx(A) THEN Gxmnx(A)=X(B,Ind)
14 IF X(B,Dep)>Gymnx(A) THEN Gymnx(A)=X(B,Dep)
15 IF X(B,Dep)<Gymnx(A) THEN Gymnx(A)=X(B,Dep)
16 NEXT B
17
18 NEXT A
19 MAT SEARCH Gxmnx,MAX;Xmx
20 MAT SEARCH Gymnx,MIN;Xmn
21 MAT SEARCH Gxmnx,MIDDLE;Ymn
22 PRINT PAGE;"X-MIN = "DROUND(Xmn,3);" XMAX = "DROUND(Xmx,3)
23 PRINT PAGE;"Y-MIN = "DROUND(Ymn,3);" YMAX = "DROUND(Ymx,3)
24 INPUT "INPUT GRAPH LIMITS FOR X-MIN AND X-MAX.",Gxmn,Gxm
25 INPUT "INPUT GRAPH LIMITS FOR Y-MIN AND Y-MAX.",Gymn,Gymx
26 PRINT PAGE
27 LIMIT 0,184.47,0,149.8
28 LOCATE 15,120,15,95
29 CSIZE 3.38
30 SCALE Gxmn,Gxm,Gyn,Gymx
31 FRAME
32 DISP "HANG ON A MINUTE"
33 Xtic=(Gxm-Gxmn)/10
34 Ytic=(Gymx-Gymn)/10
35 AXES Xtic,Ytic,Gxmn,Gymn
36 LORG 8
37 LDIR 90
38 FOR A=Gxmn TO Gxm STEP Xtic
39 MOVE A,Gymn
40 LABEL DROUND(A,3)
41 NEXT A
42 X-axis LABEL",Xlas
43 DISP "HANG ON A MINUTE"
44 LDIR 0
45 FOR A=Gymn TO Gymx STEP Ytic
46 MOVE Gxmn,A
47 LABEL DROUND(A,3)
48 NEXT A
49 LORG 6
50 MOVE (Gxm+Gxmn)/2,Gymn-(Gymx-Gymn)/2
51 LABEL Xlas
52 INPUT "Y-AXIS LABEL",Ylas
53 MOVE Gxmn-(Gxmn-Gxmn)/2,(Gymx+Gymn)/2
54 LORG 4
55 LDIR 90
56 LABEL Ylas
57 LORG 5
58 INPUT "DO YOU WANT AN EQUATION LINE(1) OR CORRESPONDING DATA POINTS?",3
59 IF (S=0) OR (S=1) THEN 1060
60 BEEP
61 PRINT PAGE;"+++ IMPROPER RESPONSE - TRY AGAIN +++"
62 GOTO 1010
63 PRINT PAGE
64 Slct=Ind+1
65 IF Slct=Ind THEN 1430
66 Pass=0
67 IF Pass<0 THEN 1120
68 GOTO 1370
69 INPUT "DO YOU WANT THE SAME PARAMETERS?",3
70 GOSUB Check
71 IF Check=1 THEN 1120
72
1150 IF UPC$(S$(1,1))="Y" THEN 1430
1160 INPUT "HOW MANY PARAMETERS DO YOU WANT TO CHANGE?", S
1170 IF (S>9) AND (S<=Nu) AND (FRACT(S)=0) THEN 1210
1180 PRINT PAGE; "*** IMPROPER NUMBER OF PARAMETERS ***"
1190 BEEP
1200 GOTO 1160
1210 PRINT PAGE
1220 FOR A=1 TO S
1230 INPUT "WHAT VARIABLE NUMBER?", Vnn
1240 IF (Vnn>0) AND (Vnn<=Nu) AND (FRACT(Vnn)=0) THEN 1280
1250 BEEP
1260 PRINT PAGE; "*,* IMPROPER VARIABLE NUMBER *,*"
1270 GOTO 1230
1280 PRINT PAGE
1290 IF (Vnn<>Dap) AND (Vnn<>Ind) THEN 1320
1300 PRINT PAGE, LIN(7); "THAT IS EITHER THE INDEPENDENT OR THE DEPENDENT VARIABLE."
1310 GOTO 1230
1320 PRINT PAGE
1330 DISP "WHAT VALUE DO YOU WANT FOR VARIABLE #","; Vnn;
1340 INPUT "", S1(Vnn)
1350 NEXT A
1360 GOTO 1420
1370 FOR A=1 TO Nu
1380 IF (A=Ind) OR (A=Dep) THEN 1410
1390 DISP "WHAT VALUE DO YOU WANT FOR VARIABLE #","; A;
1400 INPUT "", S1(A)
1410 NEXT A
1420 Pass=1
1430 GRAPHICS
1440 Variance=Nbcount=0
1450 FOR A=1 TO Sbsts
1460 FOR B=Subf(Nfile(A))+1 TO Subf(Nfile(A)+1)
1470 Nbcount=Nbcount+1
1480 MOVE X(B,Ind), X(B,Dep)
1490 LABEL "*"
1500 Var=X(B,Ind)
1510 FOR C=1 TO Nu
1520 IF (C=Dep) OR (C=Ind) THEN 1540
1530 S1(C)=X(B,C)
1540 NEXT C
1550 CALL Build(S1ct, Var, Fx, S1(*))
1560 Variance=Variance+(Fx-X(B,Dep))^3
1570 IF S<0 THEN 1600
1580 MOVE Var,Fx
1590 NEXT A
1600 NEXT B
1610 NEXT A
1620 IF S>0 THEN 1710
1630 LORG 2
1640 MOVE Gxmn+Xtic/3, Gymx-Ytic/3
1650 CSIZE 2.7
1660 LDIV 0
1670 LABEL "0 = CALCULATED"
1680 MOVE Gxmn+Xtic/3, Gymx-3/4*Ytic
1690 LABEL "* = DATA"
1700 GOTO 1840
1710 FOR A=Gxmn TO Gxmx STEP (Gxmx-Gxmn)/50
1720 Var=A
1730 CALL Build(S1ct, Var, Fx, S1(*))
1740 IF A=Gxmn THEN MOVE Var,Fx
1750 PLOT Var,Fx
1760 NEXT A
1770 PAUSE
1780 EXIT GRAPHICS
1790 INPUT "ANOTHER LINE?", S
1800 GOSUB Check
1810 IF Check=1 THEN 1790
1820 IF UPC$(S$(1,1))="Y" THEN 1120
33
1830 GOTO 1850
1840 PAUSE
1850 INPUT "DO YOU WANT A HARD COPY?", S$
1860 GOSUB Check
1870 IF Check=1 THEN 1850
1880 IF UPC$(S$[1,1])="N" THEN 2050
1890 PRINTER IS 0
1900 PRINT PAGE
1910 DUMP GRAPHICS
1920 Eq$="Fx=a*"&V$(1)
1930 FOR A=2 TO Nt
1940 Eq$=Eq$&"+"&CHR(9t9 'R')&"*"&V$(A)
1950 NEXT A
1960 PRINT Eq$
1970 FOR A=1 TO Nt
1980 PRINT CHR$(A+96)&"="&VRL"Thb(A,Nt+1')
1990 NEXT A
2000 FOR 8-1 TO Term
2010 PRINT LIN(1);M$(A)
2020 NEXT A
2030 PRINT LIN(1);"Goodness-of-fit is ";ROUND(Variance/Nbcount,-3)
2040 PRINTER IS 16
2050 GOSUB Check
2060 IF Check=1 THEN 2050
2070 IF UPC$(S$[1,1])="Y" THEN 170
2080 PRINT PAGE
2090 GCLEAR
2100 EXIT GRAPHICS
2110 INPUT "ANOTHER REGRESSION?", S$
2120 GOSUB Check
2130 IF Check=1 THEN 2120
2140 IF UPC$(S$[1,1])="Y" THEN DISP "GOING TO REGRESSION PROGRAM."
2150 IF UPC$(S$[1,1])="N" THEN LOAD "RES:TI5"
2160 DISP "RETURNING TO MAIN PROGRAM"
2170 LOAD "AUTOST:TI5", Restart
2180 I
2190 ! CHECKS YES AND NO RESPONSES
2200 Check: Check=0
2210 PRINT PAGE
2220 IF (UPC$(S$[1,1])="Y") OR (UPC$(S$[1,1])="N") THEN 2270
2230 BEEP
2240 Check=1
2250 PRINT PAGE; "*** IMPROPER RESPONSE - TRY AGAIN ***"
2260 RETURN
2270 SUB Build(Slct,Var,Fx,S$(*))
2280 OPTION BASE 1
2290 CON X(*)\,V$(*),Nsub$(*),Ab(*),INTEGER Dep,Subf(*),Nsub,Nobs,Nv,It,Nn:.-,7e
2300 ON Slct GOTO Builder, A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A19,A20
2310 Builder:" REM -- PROGRAM EDIT
2320 OPTION BASE 1
2330 CON X<500,20>,V$<160>,Nsub$<20><10>,Ab<20,21>,INTEGER Dep,Subf<20>,Nsub,Nobs,Nv,It,Nn:.-,7e
2340 REDIM X<500,Nv> 40 Menu: PRINT PAGE, LIN(3); "SELECT AN EDITOR FUNCTION:"
2350 PRINT LIN(1);" 1) CHANGE AN OBSERVATION."
2360 PRINT LIN(1);" 2) CHANGE A SET OF OBSERVATIONS."
PRINT LIN(1);" 3) ADD A SUBFILE."
90 PRINT LIN(1);" 4) ADD AN OBSERVATION."
100 PRINT LIN(1);" 5) DELETE AN OBSERVATION."
110 PRINT LIN(1);" 6) MERGE A DATA FILE."
120 PRINT LIN(1);" 7) QUIT THE EDITOR."
130 IF (EF<0) AND (EF<8) AND (FRACT(EF)<0) THEN 130
140 BEEP
150 PRINT PAGE;"*** IMPROPER RESPONSE ***"
160 INPUT ";EF"
170 GOTO Menu
180 PRINT PAGE
190 ON EF GOTO 200,Chgset,Add,Addo,Delete,Merge,Quit
200 !
210 INPUT "DO YOU WANT SUBFILE ADDRESSING (0) OR ABSOLUTE ADDRESSING (1)?",S
220 IF (S=0) OR (S=1) THEN 260
230 BEEP
240 PRINT PAGE;"*** IMPROPER RESPONSE ***"
250 GOTO 210
260 PRINT PAGE
270 IF S=1 THEN Absol
280 INPUT "WHICH SUBFILE #?",Sn
290 IF (Sn>0) AND (Sn<=Nsub) AND (FRACT(Sn)=0) THEN 330
300 BEEP
310 PRINT PAGE;"*** SUBFILE NUMBER NOT DEFINED ***"
320 GOTO 280
330 PRINT PAGE
340 DISP "WHICH OBSERVATION IN SUBFILE ";Nsub$(Sn);
350 INPUT Subn
360 IF (Subn>0) AND (Subn<=Subf$+Subf$-Subf$) AND (FRACT(Subn)=0) THEN 400
370 BEEP
380 PRINT PAGE;"*** SUBFILE OBSERVATION ADDRESS OUT OF RANGE ***"
390 GOTO 340
400 PRINT PAGE
410 INPUT "WHICH VARIABLE #",Vn
420 IF (Vn>0) AND (Vn<=Nv) AND (FRACT(Vn)=0) THEN 460
430 BEEP
440 PRINT PAGE;"*** IMPROPER VARIABLE NUMBER ***"
450 GOTO 410
460 PRINT PAGE
470 DISP "OLD VALUE = ";X(Subf$+Subn,Vn);" NEW VALUE";
480 INPUT ";A
490 PRINT USING 510;"OBS#:";Subn," IN SUBFILE ";Nsub$(Sn)," OLD VALUE:";Sub
500 X(Subf$+Subn,Vn)=A
510 IMAGE 5A,4D,13A,5A,12A,5D.5D,12A,5D.5D
520 PRINT "ANOTHER VALUE?",S#
530 GOSUB Check
540 IF Check=1 THEN 520
550 IF UPC$(S#$[1,1])="Y" THEN 340
560 INPUT "ANOTHER SUBFILE?",S#
570 GOSUB Check
580 IF Check=1 THEN 560
590 IF UPC$(S#$[1,1])="Y" THEN 280
600 GOTO Menu
610 Absol: INPUT "WHICH ABSOLUTE OBSERVATION NUMBER?",Ob
620 IF (Ob>0) AND (Ob<=Nobs) AND (FRACT(Ob)=0) THEN 660
630 PRINT PAGE;"*** IMPROPER OBSERVATION NUMBER ***"
640 BEEP
650 GOTO Absol
660 PRINT PAGE
670 INPUT "WHICH VARIABLE NUMBER?",Vn
680 IF (Vn>0) AND (Vn<=Nv) AND (FRACT(Vn)=0) THEN 720
690 BEEP
700 PRINT PAGE;"*** IMPROPER VARIABLE NUMBER ***"
710 GOTO 670
720 PRINT PAGE
730 DISP "OLD VALUE ";X(Ob,Vn);" NEW VALUE = ";
740 INPUT A
750 PRINT USING 760; "OBS #:", Ob, " OLD VALUE: ", X(Ob, Vn), " NEW VALUE: ", A
760 IMAGE 6A, 4B, 12A, 5D, 5D, 12A, 5D, 5D
770 X(Ob, Vn) = A
780 INPUT "CHANGE ANOTHER OBSERVATION?", S$
790 GOSUB Check
800 IF Check=1 THEN 780
810 IF UPC$(S$[1, 1])="Y" THEN Absol
820 GOTO Menu
830 Chget: ! PRINT PAGE
840 INPUT " WHICH SUBFILE #?", Sn
850 IF (Sn>0) AND (Sn<=Nsub) AND (FRACT/5n)=0 THEN 890
860 BEEP
870 PRINT PAGE; " ***SUBFILE NUMBER NOT DEFINED ***
880 GOTO 840
890 PRINT PAGE
900 PRINT " WHICH SET OF OBSERVATIONS IN SUBFILE "; Nsub; Sn
910 INPUT Subn
920 IF (Subn>0) AND (Subn<=Subf(Sn+1)-Subf(Sn)) AND (FRACT/5ubn)=0 THEN 150
930 BEEP
940 PRINT PAGE; " ***SUBFILE OBSERVATION ADDRESS OUT OF RANGE ***
950 GOTO 900
960 PRINT PAGE
970 PRINT " OLD VALUES FOR OBSERVATION "; Subn
980 PRINT LIN(2)
990 Jj=0
1000 FOR A=1 TO Nv
1010 Jj=Jj+1
1020 IF Jj<=5 THEN GOTO 1050
1030 Jj=1
1040 PRINT USING 1060
1050 PRINT USING 1070; X(Subf(Sn)+Subn, A)
1060 IMAGE /
1070 IMAGE #, 5X, 5D, 4D
1080 NEXT A
1090 NEXT A
1100 PRINT " ENTER NEW VALUES FOR OBSERVATION "; Subn
1110 PRINT LIN(2)
1120 MAT INPUT Aa
1130 FOR A=1 TO Nv
1140 X(Subf(Sn)+Subn, A) = Aa(A)
1150 NEXT A
1160 INPUT " ANOTHER SET OF OBSERVATIONS? ", S$
1170 GOSUB Check
1180 IF Check=1 THEN 1160
1190 IF UPC$(S$[1, 1])="Y" THEN 900
1200 GOTO Menu
1210 Add: ! PRINT PAGE
1220 IF Nsub+1>=20 THEN 1270
1230 BEEP
1240 DISP " *** MAXIMUM NUMBER OF SUBFILES EXCEEDED ***
1250 WAIT 3000
1260 GOTO Menu
1270 INPUT " NUMBER OF OBSERVATIONS IN SUBFILE? ", Nobs
1280 IF Nobs+Nsub<500 THEN 1320
1290 PRINT PAGE; " *** MAXIMUM NUMBER OF OBSERVATIONS EXCEEDED ***
1300 BEEP
1310 GOTO 1270
1320 PRINT PAGE
1330 Hobs=Nobs+Nsub
1340 Nsub=Nsub+1
1350 INPUT " SUBFILE NAME < 5 CHARACTERS OR LESS > ", Subf(Nsub)
1360 Subf(Nsub+1)=Hobs
1370 FOR A=1 TO Nv
1380 FOR B=1 TO Nv
1390 DISP " OBSERVATION #: "; A; " VARIABLE #: "; B; " IS ";
1400 INPUT X(Nobs+No+A, B)
1410 NEXT B
1420 NEXT A
1430 INPUT "ANOTHER SUBFILE?", S$
1440 GOSUB Check
1450 IF Check=1 THEN 1430
1460 IF UPC$(S$[1,1])="Y" THEN 1020
1470 GOTO Menu
1480 Add:
1490 INPUT "DO YOU WANT TO ADD AN OBSERVATION?", S$
1500 BEEP
1510 DISP "*** MAXIMUM NUMBER OF OBSERVATIONS EXCEEDED ***"
1520 WAIT 3000
1530 GOTO Menu
1540 INPUT "DO YOU WANT SUBFILE ADDRESSING (0) OR ABSOLUTE ADDRESSING :1", S
1550 IF (S=0) OR (S=1) THEN 1590
1560 BEEP
1570 PRINT PAGE;"*** IMPROPER RESPONSE ***"
1580 GOTO 1540
1590 PRINT PAGE
1600 IF S=0 THEN Suba
1610 INPUT "WHICH ABSOLUTE OBSERVATION NUMBER?", N
1620 IF (N>0) AND (N<Nsub) AND (FRACT(N)=0) THEN 1660
1630 BEEP
1640 PRINT PAGE;"*** IMPROPER OBSERVATION NUMBER ***"
1650 GOTO 1610
1660 PRINT PAGE
1670 FOR A=1 TO Nv
1680 FOR B=Nobs TO N STEP -1
1690 X(B+1,A)=X(B,A)
1700 NEXT B
1710 NEXT A
1720 FOR A=1 TO Nsub+1
1730 DISP "INPUT VARIABLE #";A;" FOR OBSERVATION #";N;
1740 INPUT "", X(N,A)
1750 NEXT A
1760 FOR A=1 TO Nsub+1
1770 IF NC=Subf(A) THEN Subf(A)=Subf(A)+1
1780 NEXT A
1790 Nobs=Nobs+1
1800 INPUT "ANOTHER OBSERVATION?", S$
1810 GOSUB Check
1820 IF Check=1 THEN 1900
1830 IF UPC$(S$[1,1])="Y" THEN 1610
1840 GOTO Menu
1850 Suba: INPUT "WHAT SUBFILE # DO YOU WANT TO ADD AN OBSERVATION TO?", Sun
1860 IF (Sun>0) AND (Sun<Nsub) AND (FRACT(Sun)=0) THEN 1900
1870 PRINT PAGE;"*** IMPROPER SUBFILE NUMBER ***"
1880 BEEP
1890 GOTO Suba
1900 PRINT PAGE
1910 INPUT "WHAT OBSERVATION NUMBER DO YOU WANT TO ADD?", Obnum
1920 IF Nobs+1<=500 THEN 1960
1930 BEEP
1940 PRINT PAGE;"*** MAXIMUM NUMBER OF OBSERVATIONS EXCEEDED ***"
1950 GOTO Menu
1960 PRINT PAGE
1970 IF (Obnum>0) AND (Obnum:=Subf(Sun)+1)=Subf(Sun)+1 AND (FRACT(Obnum)=0) THEN 1910
1980 BEEP
1990 PRINT PAGE;"*** IMPROPER OBSERVATION NUMBER FOR THIS SUBFILE ***"
2000 GOTO 1910
2010 PRINT PAGE
2020 FOR A=Nobs TO Subf(Sun)+Obnum STEP -1
2030 FOR B=1 TO Nv
2040 X(A+1,B)=X(A,B)
2050 NEXT B
2060 NEXT A
2070 FOR A=1 TO Nu
DISP "SUBFILE "; Nsub$(Sn);" Observation "; Obnum; " Variable "; A;" IS ";
2080 INPUT X< (Obnum+Subf< Sn),A>
2100 NEXT A
2110 Nobs=Nobs+1
2120 FOR A=Sun+1 TO Nsub+1
2130 Subf< A>=Subf< A>+1
2140 NEXT A
2150 INPUT "ANOTHER ADDITION TO THIS SUBFILE?", $.;
2160 GOSUB Check
2170 IF Check=1 THEN 2150
2180 INPUT "ANOTHER ADDITION TO ANOTHER SUBFILE?", $.;
2190 GOSUB Check
2200 IF Check=1 THEN 2200
2210 IF UDC$(S$[1, I)="N" THEN 2200
2220 INPUT ANOTHER ADDITION TO THIS SUBFILE?",$.;
2230 GOSUB Check
2240 IF Check=1 THEN 2240
2250 IF UDC$(S$(1, I)="Y" THEN Suba
2260 GOTO Menu
2270 Delete:! INPUT "DO YOU WANT TO DELETE AN OBSERVATION?", S$;
2280 INPUT "DO YOU WANT ABSOLUTE ADDRESSING 0 OR SUBFILE ADDRESSING 1 " ;
2290 IF (S=0) OR (S=1) THEN 2310
2300 BEEP
2310 PRINT PAGE;"*** IMPROPER RESPONSE ***
2320 INPUT " ABSOLUTE OBSERVATION NUMBER ";On
2330 FOR A=1 TO Nv
2340 PRINT "VARIABLE ";A;" = ";X<On, A>
2350 NEXT A
2360 INPUT "DELETE ANOTHER OBSERVATION?", S$
2370 GOSUB Check
2380 IF Check=1 THEN 2370
2390 IF UDC$(S$[1, I)="N" THEN Abort
2400 IF A=On TO Nobs
2410 FOR B=1 TO Nv
2420 X< A,B>=X< A+1, B>
2430 NEXT B
2440 NEXT A
2450 FOR A=1 TO Nsub+1
2460 INPUT "SUBFILE NUMBER OF DELETED OBSERVATION?", Sn
2470 IF (Sn>A) AND (Sn<=Nsub) AND (FRACT<Sn>)=O) THEN 2650
2480 BEEP
2490 INPUT OBSERVATION NUMBER IN SUBFILE?", On
2500 FOR A=1 TO Nv
2510 PRINT "VARIABLE ";A;" IS ";X<On+Subf< Sn,A>
2520 NEXT A
2530 GOTO Subdel
2540 INPUT "SUBFILE NUMBER OF DELETED OBSERVATION?", Sn
2550 IF (Sn>A) AND (Sn<=Nsub) AND (FRACT<Sn>)=O) THEN 2650
2560 BEEP
2570 INPUT OBSERVATION NUMBER IN SUBFILE?", On
2580 FOR A=1 TO Nv
2590 PRINT "VARIABLE ";A;" IS ";X<On+Subf< Sn,A>
2600 NEXT A
38
2750 INPUT "DELETE?", S
2760 GOSUB Check
2770 IF Check=1 THEN 2750
2780 IF UPC$(S$(1,1))="N" THEN Obor
2790 FOR A=Subf(Sn)+On TO Nobs
2800 FOR B=1 TO Nv
2810 X(A,B)=X(A+1,B)
2820 NEXT B
2830 NEXT A
2840 NEXT A
2850 FOR A=1 TO Nsub+1
2860 IF Subf(A)>Subf(Sn)+On THEN Subf(A)=Subf(A)-1
2870 Nobs=Nobs-1
2880 Obor: INPUT "ANOTHER DELETION FROM THIS SUBFILE?", S
2890 GOSUB Check
2900 IF Check=1 THEN Obor
2910 IF UPC$(S$(1,1))="Y" THEN 2660
2920 INPUT "ANOTHER DELETION FROM ANOTHER SUBFILE?", S
2930 GOSUB Check
2940 IF Check=1 THEN 2920
2950 IF UPC$(S$(1,1))="Y" THEN Subdel
2960 GOTO Menu
2970 Merge: INPUT "FILE NAME?", Filn$:
2980 ON ERROR GOTO Undefined
2990 ASSIGN #1 TO Filn$
3000 READ #1; Nv2, Nobs2, Nsub2
3010 IF Nobs2+Nobs<=500 THEN 3060
3020 BEEP
3030 DISP "*** MAXIMUM NUMBER OF OBSERVATIONS EXCEEDED ***"
3040 WAIT 2000
3050 GOTO Menu
3060 IF Nsub2+Nsub<=20 THEN 3110
3070 BEEP
3080 DISP "*** MAXIMUM NUMBER OF SUBFILES EXCEEDED ***"
3090 WAIT 2000
3100 GOTO Menu
3110 IF Nv2=Nv THEN 3160
3120 BEEP
3130 DISP "*** VARIABLE NUMBER MISMATCH BETWEEN MERGED FILES ***"
3140 WAIT 2000
3150 GOTO Menu
3160 FOR A=1 TO Nsub2
3170 READ #1; Nsub$(A+Nsub)
3180 NEXT A
3190 READ #1; A
3200 FOR A=2 TO Nsub2+1
3210 READ #1; Subf(A+Nsub)
3220 Subf(A+Nsub)=Subf(A+Nsub)+Subf(Nsub+1)
3230 NEXT A
3240 FOR A=1 TO Nobs2
3250 FOR B=1 TO 20
3260 READ #1; X(A+Nobs,B)
3270 NEXT B
3280 NEXT A
3290 Nsub=Nsub+Nsub2
3300 Nobs=Nobs+Nobs2
3310 OFF ERROR
3320 GOTO Menu
3330 Undefined: IF ERRN=56 THEN 3380
3340 BEEP
3350 DISP ERRM$
3360 PAUSE
3370 GOTO Menu
3380 BEEP
3390 PRINT PAGE; "FILENAME IS UNDEFINED ***"
3400 GOTO Merge
3410 Quit:
3420 PRINT PAGE
3430 DISP "RETURNING TO MAIN PROGRAM"
3440 LOAD "AUTOST", Restart
3450 '!
3460 ! CHECKS YES AND NO RESPONSES
3470 Check: Check=0
3480 PRINT PAGE
3490 IF UPC$(S$[1,1])="Y" OR UPC$(S$[1,1])="N" THEN 3530
3500 BEEP
3510 PRINT PAGE; "*** IMPROPER RESPONSE - TRY AGAIN ---"
3520 Check=1
3530 RETURN
APPENDIX B: HEWLETT-PACKARD USERS MANUALS

