DOMESTIC SWINE IN PHYSIOLOGICAL RESEARCH VI EFFECT OF

SPLENIC ERYTHROCYTE... (U) LETTERMAN ARMY INST OF

RESEARCH PRESIDIO OF SAN FRANCISCO CA

UNCLASSIFIED J P HANNON ET AL. NOV 83 LAIR-161 F/G 6/16 NL
INSTITUTE REPORT NO. 161

DOMESTIC SWINE IN PHYSIOLOGICAL RESEARCH
VI. Effect of Splenic Erythrocyte Sequestration on Blood Volume Measurements in Conscious Immature Pigs

JOHN P. HANNON, PhD
CAROL A. BOSSONE, BS, SP5
and
WILLIAM G. RODKEY, DVM, MAJ VC

DIVISION OF COMBAT CASUALTY CARE
and
DIVISION OF RESEARCH SUPPORT

NOVEMBER 1983

LETTERMAN ARMY INSTITUTE OF RESEARCH
PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129

84 01 09 059
Domestic Swine in Physiological Research. VI. Effect of Splenic Erythrocyte Sequestration on Blood Volume Measurements in Conscious Immature Pigs—Hannon, Bossone, Rodkey

Reproduction of this document in whole or in part is prohibited except with the permission of the Commander, Letterman Army Institute of Research, Presidio of San Francisco, California 94129. However, the Defense Technical Information Center is authorized to reproduce the document for United States Government purposes.

Destroy this report when it is no longer needed. Do not return it to the originator.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

In conducting the research described in this report, the investigation adhered to the "Guide for the Care and Use of Laboratory Animals," as promulgated by the Committee on Revision of the Guide for Laboratory Animal Facilities and Care, Institute of Laboratory Animal Resources, National Research Council.

This material has been reviewed by Letterman Army Institute of Research and there is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. (AR 360-5)

This document has been approved for public release and sale; its distribution is unlimited.
DOMESTIC SWINE IN PHYSIOLOGICAL RESEARCH

VI. Effect of Splenic Erythrocyte Sequestration and Blood Volume Measurements in Conscious Immature Pigs

<table>
<thead>
<tr>
<th>Title</th>
<th>Type of Report & Period Covered</th>
<th>Performing Org. Report Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM6010</td>
<td>Interim May-Oct 1983</td>
<td>Division of Combat Casualty Care Prog E1 61102A, Task BA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lettman Army Institute of Research Project 3M161102BS10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presidio of San Francisco, CA 94129 Work Unit 236</td>
</tr>
</tbody>
</table>

Authors: John P. Hannon, PhD
Carol A. Bossone, BS
William C. Rodkey, DVM

Controlling Office Name and Address:
US Army Medical Research & Development Command
Pt. Detrick, Frederick, MD 21701

Report Date: November 1983

Number of Pages: 31

Distribution Statement: This document has been approved for public release and sale; its distribution is unlimited.

Security Classification: Unclassified

Key Words: Erythrocyte Volume; Blood Volume; Spleen; Swine

Abstract: see reverse

Notes:

- Unclassified
- Declassification/Downgrading Schedule

DD Form 1473 Edition of 1 Nov 85 is Obsolete

Security Classification of This Page: Unclassified
When estimated by the dilution of 51Cr-labelled erythrocytes under near-basal conditions, immature splenectomized pigs ($N=20$) had a circulating erythrocyte volume of 17.8±1.64 (S.D.) ml/kg. At an assumed body to large vessel hematocrit (BH:LH) ratio of 1.0 plasma volume was 42.8±2.69 ml/kg and blood volume 60.6±3.30 ml/kg. At an assumed BH:LH ratio of 0.9 plasma volume was 49.6±3.12 ml/kg and blood volume was 67.3±3.67 ml/kg. Sham-operated pigs ($N=20$) had a circulating erythrocyte volume of 16.2±1.94 ml/kg, and at a BH:LH ratio of 1.0 a plasma volume was 44.4±2.96 and a blood volume was 60.5±3.78 ml/kg; at BH:LH ratio of 0.9 plasma volume was 51.1±3.42 ml/kg and blood volume was 67.2±4.12 ml/kg. Kinetic analysis of early 51Cr loss from the circulating blood of the sham-operated pigs indicated a splenic erythrocyte sequestration of 4.51±0.89 ml/kg and a t-1/2 of 9.76±1.95 minutes for splenic erythrocyte turnover. Epinephrine injection (0.025 mC/kg) caused rapid mobilization of splenic erythrocytes in sham-operated pigs ($N=6$) with a hematocrit rise from 0.27±0.01 to 0.35±0.02. Similar results were obtained in sham-operated pigs ($N=9$) subjected to physical restraint. Collectively, these measurements indicated that the porcine spleen, under near-basal conditions, sequestered 20-25 percent of the total body erythrocyte volume. Volume estimates in splenectomized pigs ($N=7$) based on simultaneous dilutions of 51Cr-labelled erythrocytes and 125I-labelled bovine albumin gave circulating erythrocyte, plasma and blood volumes of 18.4±2.46, 60.7±4.01 and 79.0±5.51 ml/kg, respectively, and a BH:LH ratio of 0.756±0.029. The latter value, it was concluded, reflected overestimation of plasma volume by the 125I-labelled albumin procedure.
ABSTRACT

When estimated by the dilution of 51Cr-labelled erythrocytes under near-basal conditions, immature splenectomized pigs ($N=20$) had a circulating erythrocyte volume of 17.8 ± 1.64 (S.D.) ml/kg. At an assumed body to large vessel hematocrit (BH:LH) ratio of 1.0 plasma volume was 42.8 ± 2.69 ml/kg and blood volume 60.6 ± 3.50 ml/kg. At an assumed BH:LH ratio of 0.9 plasma volume was 49.6 ± 3.12 ml/kg and blood volume was 67.3 ± 3.67 ml/kg. Sham-operated pigs ($N=20$) had a circulating erythrocyte volume of 16.2 ± 1.39 ml/kg, and at a BH:LH ratio of 1.0 a plasma volume was 44.4 ± 2.96 and a blood volume was 60.5 ± 3.78 ml/kg; at BH:LH ratio of 0.9 plasma volume was 51.1 ± 3.42 ml/kg and blood volume was 67.2 ± 4.12 ml/kg. Kinetic analysis of early 51Cr loss from the circulating blood of the sham-operated pigs indicated a splenic erythrocyte sequestration of 4.51 ± 0.89 ml/kg and a $t-1/2$ of 9.76 ± 1.93 minutes for splenic erythrocyte turnover. Epinephrine injection (0.025 mg/kg) caused rapid mobilization of splenic erythrocytes in sham-operated pigs ($N=6$) with a hematocrit rise from 0.27 ± 0.01 to 0.35 ± 0.02. Similar results were obtained in sham-operated pigs ($N=9$) subjected to physical restraint. Collectively, these measurements indicated that the porcine spleen, under near-basal conditions, sequestered 20-25 percent of the total body erythrocyte volume. Volume estimates in splenectomized pigs ($N=7$), based on simultaneous dilutions of 51Cr-labelled erythrocytes and 125I-labelled bovine albumin gave circulating erythrocyte, plasma and blood volumes of 18.4 ± 2.46, 60.7 ± 4.01 and 79.0 ± 3.51 ml/kg, respectively, and a BH:LH ratio of 0.756 ± 0.029. The latter value, 125I was concluded, reflected overestimation of plasma volume by the 125I-labelled albumin procedure.

Key Words: erythrocyte volume, blood volume, spleen, swine.
PREFACE

Previous Institute Reports, Letterman Army Institute of Research, on Domestic Swine in Physiological Research have included the following titles:

II. Electrolyte Values for Arterial Serum from Young Anesthetized Pigs Maintained under Steady-State Ventilatory Conditions. Report No. 92, May 1981

III. Blood Gas and Acid-Base Values for Arterial Blood from Young Anesthetized Pigs Maintained under Steady-State Conditions. Report No. 113, February 1982

IV. A Blood Acid-Base Curve Nomogram for Immature Pigs. Report No. 137, February 1983

V. Construction of Acid-Base Alignment Nomograms to Estimate Buffer Base and Base Excess Concentrations in Arterial Blood from Immature Pigs. Report No. 144, April 1983

ACKNOWLEDGMENTS

The authors would like to express their appreciation to Dr. John D. O'Benar of Letterman Army Institute of Research, Dr. Charles Wade of the Clinical Investigation Service at Letterman Army Medical Center and Dr. Robert W. Phillips of the Department of Physiology and Biophysics at Colorado State University for reviewing the scientific and technical content of this report. The authors also sincerely appreciate the many editorial and format suggestions offered by Lottie B. Applewhite and the unnumerable hours spent by Dora A. Lewis in typing, proofreading, and assembling the report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>METHODS</td>
<td>2</td>
</tr>
<tr>
<td>Experiment 1: Determination of Circulating and Total Body Erythrocyte Volume</td>
<td>3</td>
</tr>
<tr>
<td>Experiment 2: Measurement of Splenic Erythrocyte Mobilization</td>
<td>5</td>
</tr>
<tr>
<td>Experiment 3: Simultaneous Determination of Circulating Erythrocyte and Plasma Volumes</td>
<td>6</td>
</tr>
<tr>
<td>RESULTS</td>
<td>7</td>
</tr>
<tr>
<td>Experiment 1: Circulating and Total Body Erythrocyte Volume</td>
<td>7</td>
</tr>
<tr>
<td>Experiment 2: Splenic Erythrocyte Mobilization</td>
<td>10</td>
</tr>
<tr>
<td>Experiment 3: Simultaneous Erythrocyte and Plasma Volume Measurements</td>
<td>13</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>14</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>19</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>20</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>21</td>
</tr>
<tr>
<td>OFFICIAL DISTRIBUTION LIST</td>
<td>24</td>
</tr>
</tbody>
</table>
DOMESTIC SWINE IN PHYSIOLOGICAL RESEARCH
VI. EFFECT OF SPLENIC ERYTHROCYTE SEQUESTRATION ON BLOOD VOLUME
MEASUREMENTS IN CONSCIOUS IMMATURE PIGS

Reports on porcine blood volume measurement show a wide range of values for supposedly normal animals. Much of this variability is attributable to differences in body size, an effect first reported in 1951 by Hansard et al (1). In a limited number of animals these investigators (1) showed by means of 32P-labelled erythrocyte dilution that blood volume per kilogram decreased as body weight increased. At one extreme, in 10-kg pigs, a value of 74 ml/kg was obtained while at the other extreme, in 344-kg pigs, a value of 45 ml/kg was obtained (1). Similar size-related decrements in porcine blood volume have been reported subsequently by a number of others. The available data, through 1972, have been assembled and reviewed by Steinhardt et al (2). Regression equations predicting blood volume as a function of body weight have been reported by von Engelhardt (3).

Decrement in blood volume with increasing body size are largely attributable to increases in the fat fraction of total body mass (4-6). However, widely divergent values have been reported also for plasma and erythrocyte volumes in pigs of similar body weight (2). Some of this divergency appears due to the particular indicator dilution procedure that was used in the volume estimates. Procedures based on the dilution of Evans Blue or radiodine-labelled serum albumin produce generally higher volume estimates than procedures based on the dilution of 32P- or 51Cr-labelled erythrocytes. Additional variability, in the case of albumin labels, may be caused by the use of different techniques to correct for transcapillary albumin losses following indicator injection.

One variable that has been largely ignored in porcine blood volume measurements is potential sequestration, or discharge, of erythrocytes from the spleen during the measurement period. The porcine spleen is a contractile organ (7,8) which can release large numbers of erythrocytes and markedly elevate hematocrit levels when stimulated by epinephrine (7,8) or exercise (8). Steinhardt and his coworkers (8-11) have attempted to measure the impact of such splenic erythrocyte mobilization on porcine blood volume estimated by Evans Blue dilution. These attempts, however, have been less than satisfactory because the measurements did not address potential alterations in transcapillary indicator loss. In the dog at least, splenic sequestration or discharge of erythrocytes has a major effect on blood volume (12,13).
In the study described here erythrocyte storage capacity of the porcine spleen was assessed by kinetic analysis of \(^{51}\text{Cr}\)-labelled erythrocyte dilution following intraarterial injection into conscious pigs. Storage capacity also was assessed by changes in circulating erythrocyte volume subsequent to physical restraint of the animal and by hematocrit changes subsequent to epinephrine injection. In addition, blood volume characteristics were compared in sham-operated and splenectomized pigs. Finally, vascular volumes based on the dilution of \(^{51}\text{Cr}\)-labelled erythrocytes were compared to those based on the dilution of \(^{125}\text{I}\)-labelled bovine serum albumin.

METHODS

Fifty-seven immature Yorkshire pigs, both barrows and gilts, were obtained from a commercial breeder (J.G. Boswell Co., Corcoran, CA) and were maintained in a common indoor holding area at Letterman Army Institute of Research until utilized for study, usually within two to four weeks after arrival. They were fed a commercial ration (Purina Pig Chow, Ralston Purina Co., St Louis, Mo) and water ad libitum. The pigs were 2 to 3 months old and weighed (mean \(\pm\) S.D.) 22.6 \(\pm\) 2.21 kg when the studies were conducted.

After an overnight fast, each pig received a pre-anesthetic intramuscular injection of 2.2 mg/kg atropine sulfate 2.2 mg/kg ketamine HCl, and 2.2 mg/kg xylazine. Halothane anesthesia was induced by face mask and maintained with an endotracheal catheter. A celiotomy was performed and, in 31 animals, the spleen was removed according to standard techniques with double ligation of all vascular pedicles. All celiotomies were closed with two layers of non-absorbable surgical suture. The remaining 26 animals were sham operated, that is, abdominal incisions were made, then closed immediately.

The left carotid artery of each pig was exposed and a 1.27-mm ID \(\times\) 2.03-mm OD polyvinylidene catheter (Type S-54 HL Tygon, Milton Plastics and Synthetics, Akron, OH) was inserted to the level of the aorta and secured by ligatures around the carotid artery. The free end of the catheter was tunneled beneath the skin and exited on the dorsal surface of the neck. The exteriorized portion was fitted with a 17-gauge Intramedic\textregistered Luer\textregistered Stub Adapter (Clay Adams, Parsippany, N.J.) and capped with an Argyle\textregistered Intermittent Infusion Plug (Brunswick Co., St Louis, Mo). Following wound closure the catheter was filled through the infusion plug with heparin (1000 units/ml). The catheter exit site was protected by a 5-cm \(\times\) 10-cm Velcro\textregistered (Velcro USA, New York, NY) patch sutured to the skin; a 2-cm \(\times\) 7.5-cm hole was cut in the patch portion next to the skin to allow catheter access.

After a 7- to 10-day recovery period each pig, after an overnight fast, was brought into a quiet laboratory in a portable transport cage.
and given a variety of fabric bedding material. After 15 to 30 minutes of rooting and bedding rearrangement, most animals voluntarily assumed a recumbent position. When so positioned, the intermittent infusion plug was removed and the stub adapter was connected to a 12-inch pressure monitoring/injection line (Cobe Laboratories, Lakewood, Co). The latter had been previously fitted with a plastic three-way stopcock (Pharmaseal, Inc., Toa Alta, Puerto Rico) and filled with heparinized saline (10 units/ml). The entire system was then cleansed by withdrawing 10 ml of fluid (blood plus heparinized saline) followed by flushing with fresh heparinized saline. After 15 to 30 minutes of additional voluntary recumbent rest, the experiment was started. Three experiments were conducted.

Experiment 1: Determination of Circulating and Total Body Erythrocyte Volume

Eight splenectomized and 8 sham-operated pigs were used to ascertain time-related changes in concentration of arterially injected 51Cr-tagged erythrocytes. Twenty-five milliliters of blood were withdrawn from each animal and mixed with 4 ml of ACD solution and approximately 50 uCi Na$_2$CrO$_4$. After standing for 30 minutes at room temperature, with occasional mixing, the blood was centrifuged at 4°C and 2500 g for 10 minutes, and the plasma was discarded. The erythrocytes were then washed twice by resuspension in cold isotonic saline followed by centrifugation. After the last wash, the erythrocytes were thoroughly mixed with 10 ml of cold saline, preparatory to injection into the pig; final volume, including erythrocytes, was approximately 13 ml. A calibrated syringe was used to inject 10 ml of the mixture rapidly into the pig. This maneuver was accomplished by means of a rubber injection bulb and pressure monitoring line attached to the carotid catheter. The injectate was flushed in with 20 ml of saline, the entire procedure required about 10 seconds. In vivo dilution of 51Cr-tagged erythrocytes was determined in blood samples (3 ml) taken at 1-minute intervals over the first 10 minutes, and at 15, 20, 30, 45, 60, 90, 120 and 150 minutes after injection. To assure the acquisition of fresh circulating blood, sample removal was immediately preceded by a 15-second period of continuous blood withdrawal from the catheter at a rate of 1 ml/sec. After sample removal, this blood was returned to the animal, and the catheter was filled with a minimal volume, about 1 ml, of heparinized saline (10 units/ml).

A Packard Auto-gamma counter, Model 5986, (Packard Instrument Co, Downers Grove, Ill), with an energy window set at 276 to 366 keV, was used to count 51Cr-tagged erythrocyte activity. A 1-ml aliquot of each blood sample and triplicate 0.2-ml aliquots of the erythrocyte-saline injected dose were transferred to 12 x 75 mm disposable test
tubes and diluted with water to 2.0 ml preparatory to counting. Positive displacement micropipettes (Scientific Manufacturing Industries, Emeryville, CA) were used for transfers of the blood sample and injected dose. The hematocrit of each blood sample was determined with a Lourdes microhematocrit centrifuge (Vernitron Medical Products, Inc., Carlstadt, NJ), and the \(^{51}\)Cr activity per milliliter of erythrocytes, corrected for trapped plasma, was calculated.

The foregoing data were supplemented by similar data collected from an additional 12 splenectomized and 12 sham-operated pigs to describe porcine population characteristics for circulating erythrocyte volume, total body erythrocyte volume, splenic (in the case of sham-operated pigs) erythrocyte volume, circulating plasma volume, circulating blood volume, and the kinetic characteristics of splenic erythrocyte exchange with the systemic circulation. The dilution of \(^{51}\)Cr-tagged erythrocytes in these additional pigs was measured at 5, 10, 15, 20, 30, 45, 60, and 90 minutes after injection. In splenectomized pigs, the injected dose was divided by the average \(^{51}\)Cr CPM/ml of erythrocytes to obtain the circulating and total body erythrocyte volumes.

Determinations of circulating and total body erythrocyte volume in sham-operated pigs was complicated by splenic sequestration of \(^{51}\)Cr-tagged erythrocytes. Such sequestration and release of untagged previously stored erythrocytes caused a rapid decline in the circulating dilution values. This decline showed first-order kinetics with an asymptotic value being approached 30 to 150 minutes after injection. The general equation describing dilution of \(^{51}\)Cr-tagged erythrocytes in these animals would be:

\[
A_t = A_m + a_0 e^{-kt}
\]

where \(A_t\) equals \(^{51}\)Cr activity at any time \(t\) after injection, \(A_m\) equals the asymptotic value for complete mixing of \(^{51}\)Cr-tagged erythrocytes in the total body erythrocyte volume, \(a_0\) is the zero-time intercept and \(k\) is the rate constant for the fraction of circulating erythrocytes entering or leaving the spleen per unit time. A least-squares-regression procedure, employing iterations of \(A_m\) estimates, is used to calculate \(a_0\) and \(k\). Thus, an approximate \(A_m\) value is chosen, for example the \(^{51}\)Cr-tagged erythrocyte CPM observed 30 minutes after injection, and this value is subtracted from all of the values recorded previously. The resultant differences are entered into Equation 1 along with their respective \(t\) values, and \(a_0\), \(k\), the correlation coefficient, \(r\), and the variance are calculated. This procedure is repeated with revised estimates of \(A_m\) until maximum \(r\) and minimum variance values are obtained. At this point the injected dose divided by \(A_m\) would equal the total body erythrocyte volume. The injected dose divided by \(A_m + a_0\) would equal the circulating erythrocyte volume, and the difference between total body and
circulating erythrocyte volumes would equal the volume of erythrocytes sequestered in the spleen. In addition, the value can be used to determine the half-time of splenic erythrocyte turnover. Calculation of A_m, A_0, and k values can be a time-consuming procedure when done by hand, but fortunately readily available computer programs expedite the task.

In both sham-operated and splenectomized pigs arterial hematocrit values were used to estimate circulating plasma and blood volumes. Two procedures were used. In one, equality of arterial and total body hematocrit values was assumed. Thus,

$$PV = EV \frac{1 - (0.97)(Hct)}{(0.97)(Hct)}$$

where PV and EV represent circulating plasma and erythrocyte volumes, respectively, Hct represents the arterial hematocrit and 0.97 is a correction factor for trapped plasma. In the second procedure, the total body hematocrit value was assumed to be 90 percent of the arterial hematocrit value. Thus,

$$PV = EV \left[1 - (0.9)(0.97)(Hct)\right]$$

With either procedure, the sum of circulating erythrocyte and plasma volumes was used to estimate circulating blood volume.

Experiment 2: Measurement of Splenic Erythrocyte Mobilization

Two procedures were used to assess porcine capacity for circulatory mobilization of erythrocytes sequestered in the spleen. In one, control values for hematocrit, and circulating erythrocyte, plasma and blood volumes were measured with 51Cr-tagged erythrocytes in 8 splenectomized and 8 sham-operated pigs under conditions of voluntary recumbent rest. These measurements were obtained during the course of the Experiment One. Immediately after the last blood sample was withdrawn in the first experiment the recumbent pig was grabbed by the front legs, raised to a vertical position and placed on its buttocks. This led to considerable agitation and struggle on the part of the animal, but it was physically restrained in such a position for one minute. Then, an additional 3-ml blood sample was withdrawn for hematocrit determination, and 51Cr counting, from which the changes in circulating erythrocyte, plasma and blood volumes, relative to earlier control values, were calculated; body to venous hematocrit ratios of 0.9 and 1.0 were assumed.

In the other procedure, a series of 4 control hematocrit values were determined at 5 minute intervals in 4 splenectomized and 6 sham-operated pigs not used in the other experiments. Again, the pigs
remained in a voluntary recumbent position while control blood samples were obtained. After the last sample was removed the pig was injected intraarterially with 0.5 ml of epinephrine (1 mg/ml), and blood samples for hematocrit determination were taken at 2.5, 5, 10, 20, 40, and 80 minutes after injection. Epinephrine caused an immediate arousal of the animal, but in all instances recumbency was resumed after 10 or 15 minutes. The changes in hematocrit following epinephrine were used as an index of splenic erythrocyte mobilization.

Experiment 3: Simultaneous Determination of Circulating Erythrocyte and Plasma Volumes

The erythrocyte volume of 7 splenectomized pigs was estimated by the dilution of 51Cr-tagged erythrocytes, as in Experiment One. In addition, plasma volume was estimated simultaneously by the dilution of 125I-tagged bovine serum albumin. In the latter instance, approximately 10 uCi of 125I-albumin was diluted in 15 ml of the animal's plasma and 10 ml was injected through the carotid artery catheter and flushed in with 20 ml of saline. The entire procedure required about 10 seconds. Samples for erythrocyte 51Cr and plasma 125I counting were withdrawn, as in Experiment One, at 1-minute intervals for the first 10 minutes, and at 15, 20, 30, 45, 60, 90, 120 and 150 minutes after injection. Plasma was collected following sample centrifugation and 1-ml aliquots, obtained with a positive displacement pipette, were counted in the Model 5986, Packard Autogamma counter, at an energy window of 18 to 80 KEV. Radioactivity in the injected dose was determined by triplicate counts of 0.2-ml aliquots obtained with a positive displacement micropipette. A semilogarithmic, least-squares extrapolation of plasma 125I concentration between 30 and 150 minutes after injection was used to calculate the zero-time plasma 125I dilution and this value in turn was used to calculate plasma volume. Blood volume was calculated as the sum of 51Cr-determined erythrocyte and 125I-determined plasma volumes. Blood volume so measured was divided into 51Cr-determined erythrocyte volume to obtain the total body hematocrit value, and then this value was divided by the arterial hematocrit to obtain the total body to large vessel hematocrit ratio. Finally, the arterial hematocrit value and an assumed total body to large vessel ratio of 1.0 were used to calculate plasma and blood volumes from 51Cr-determined erythrocyte volume, and erythrocyte and blood volume from 125I-determined plasma volume.

Accuracy of the pipettes used in this study was assessed gravimetrically first with distilled water and subsequently with blood. In the latter instance, blood density was first obtained by weighing exactly 100 ml in a volumetric flask and using the same blood to determine the blood weight, and calculated volume, delivered by the
0.2-ml and 1.0-ml positive displacement pipettes and the 10 ml calibrated injection syringes.

In addition, hematocrit values used in the calculation of erythrocyte and plasma volumes were corrected for trapped plasma, as determined by a procedure similar to that reported by Baker (14). Briefly, an accurate, gravimetrically measured volume (30 to 70 ml) of porcine blood was placed in a beaker along with an accurately measured dose of \({\text{I}}^{125} \)-bovine albumin or \(\text{Na}_2\text{SO}_4 \). The blood and isotope were gently, but thoroughly, mixed for 10 minutes with a magnetic stirrer, at the end of which 5 or more microhematocrit capillary tubes were filled and centrifuged at 12,000 \(g \) for 5 minutes. The remaining blood was centrifuged at 2,000 \(g \) for 10 minutes, plasma was collected and the activity of \({\text{I}}^{125} \)-bovine albumin or \(\text{Na}_2\text{SO}_4 \) was determined in 5 or more 1-ml plasma aliquots. Average isotope dilution was used to calculate the beaker plasma volume, and, by difference from the original beaker blood volume, the beaker erythrocyte volume and hematocrit. Finally, the difference between beaker hematocrit and the slightly lower average capillary tube hematocrit was used to calculate the plasma fraction trapped in the erythrocyte column packed by the microhematocrit centrifuge.

RESULTS

As indicated in Table 1, a high degree of volume measurement accuracy was obtained with the positive displacement pipettes and injection syringes. No significant differences were observed between the volume of water and blood delivered by each type of the pipette or syringe.

Trapped plasma contained in the packed erythrocyte column following microhematocrit centrifugation ranged from 1.2 to 5.0\% (Table 2). There was no significant difference between the percentage estimated by \({\text{I}}^{125} \) dilution and the percentage estimated by \(\text{Na}_2\text{SO}_4 \) dilution. The composite average was 2.8 \(\pm \) 1.26\% (mean \(\pm \) S.D.).

Experiment 1: Circulating and Total Body Erythrocyte Volume

Figure 1 shows the normalized dilution characteristics of \({\text{Cr}}^{51} \)-tagged erythrocytes over the first 45 minutes after injection in sham-operated and splenectomized pigs; the data were normalized by assigning a value of 100 to the extrapolated zero-time dilution value. Beyond 45 minutes, values in the splenectomized pigs showed no statistically significant change from those obtained several minutes after injection. Values obtained 1 or 2 minutes after injection tended to be higher than those recorded subsequently. These apparent elevations, and suggestions of cycling over the first 10 minutes after injection, may have been due to recirculation of blood through vascular circuits close to the point of injection and sampling.
Table 1. Measurement accuracy of 0.2 and 1.0 ml positive displacement sample transfer pipettes and 10.0 ml calibrated injection syringes

<table>
<thead>
<tr>
<th>Trial</th>
<th>H₂O</th>
<th>Blood</th>
<th>H₂O</th>
<th>Blood</th>
<th>H₂O</th>
<th>Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1989</td>
<td>0.2000</td>
<td>0.9951</td>
<td>0.9993</td>
<td>9.9915</td>
<td>9.9906</td>
</tr>
<tr>
<td>2</td>
<td>0.1996</td>
<td>0.1968</td>
<td>1.0040</td>
<td>1.0035</td>
<td>10.0078</td>
<td>10.0253</td>
</tr>
<tr>
<td>3</td>
<td>0.2002</td>
<td>0.1974</td>
<td>0.9964</td>
<td>1.0004</td>
<td>10.0041</td>
<td>9.9990</td>
</tr>
<tr>
<td>4</td>
<td>0.1994</td>
<td>0.1999</td>
<td>0.9978</td>
<td>0.9930</td>
<td>9.9935</td>
<td>9.9836</td>
</tr>
<tr>
<td>5</td>
<td>0.1993</td>
<td>0.1993</td>
<td>1.0048</td>
<td>0.9966</td>
<td>9.9985</td>
<td>10.0070</td>
</tr>
<tr>
<td>Mean</td>
<td>0.1995</td>
<td>0.1987</td>
<td>0.9996</td>
<td>0.9986</td>
<td>9.9991</td>
<td>10.0011</td>
</tr>
<tr>
<td>S.D.</td>
<td>±0.00048</td>
<td>±0.00066</td>
<td>±0.00200</td>
<td>±0.00174</td>
<td>±0.00308</td>
<td>±0.00722</td>
</tr>
</tbody>
</table>

* Each trial value, in ml, represents the average of triplicate measurements of distilled water or blood. Replacement 0.2 and 1.0 plastic tips and different 10 ml syringes were used for each trial.

Table 2. Trapped plasma (T.P.) as determined by the ¹²⁵I-albumin or Na₂³⁵SO₄ contained in the erythrocyte column packed by rohematocrit centrifugation

<table>
<thead>
<tr>
<th>Trial</th>
<th>Hct</th>
<th>T.P. (%)</th>
<th>Hct</th>
<th>T.P. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.22</td>
<td>3.2</td>
<td>0.26</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>0.28</td>
<td>2.7</td>
<td>0.35</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>0.29</td>
<td>2.3</td>
<td>0.30</td>
<td>4.7</td>
</tr>
<tr>
<td>4</td>
<td>0.30</td>
<td>1.2</td>
<td>0.28</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>0.30</td>
<td>2.1</td>
<td>0.35</td>
<td>4.1</td>
</tr>
<tr>
<td>6</td>
<td>0.29</td>
<td>5.0</td>
<td>0.29</td>
<td>3.4</td>
</tr>
<tr>
<td>Mean</td>
<td>0.28</td>
<td>2.7</td>
<td>0.30</td>
<td>2.9</td>
</tr>
<tr>
<td>S.D.</td>
<td>±0.030</td>
<td>±1.28</td>
<td>±0.028</td>
<td>±1.35</td>
</tr>
</tbody>
</table>

* Blood from separate pigs (N=12) was used in each trial.
Figure 1. Alterations in the concentration of 51Cr-tagged erythrocytes as a function of time after injection. Upper horizontal line indicates average value in splenectomized pigs (N=8). Lower horizontal line indicates asymptotic value reflecting complete body mixing in sham-operated pigs (N=8); open circles indicated points calculated by the indicated regression equation. Ordinate values are normalized such that concentration at $t=0$ is assigned a value of 100.
Splenectomized pigs had slightly but significantly higher hematocrit values and circulating erythrocyte volumes and slightly lower circulating plasma volumes compared to the values found in sham-operated pigs (Table 3). Total circulating blood volume was essentially equal in both groups. Sham-operated pigs had a calculated splenic erythrocyte volume of 4.51 ± 0.89 (S.D.) ml/kg which represented about 22% of the total body erythrocyte volume.

Table 3. Blood volume characteristics of sham-operated and splenectomized pigs as estimated by 51Cr-labelled erythrocytes

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Sham-operated Pigs</th>
<th>Splenectomized Pigs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 20</td>
<td>N = 20</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>0.267 ± 0.0153</td>
<td>0.293 ± 0.022*</td>
</tr>
<tr>
<td>Circ Erythro</td>
<td>16.16 ± 1.386</td>
<td>17.76 ± 1.644*</td>
</tr>
<tr>
<td>Total Erythro Vol</td>
<td>20.67 ± 1.658</td>
<td>17.76 ± 1.644*</td>
</tr>
<tr>
<td>Splenic Erythro Vol</td>
<td>4.51 ± 0.894</td>
<td>0</td>
</tr>
<tr>
<td>Circ Plasma Vol (A)</td>
<td>44.33 ± 2.964</td>
<td>42.85 ± 2.694*</td>
</tr>
<tr>
<td>Circ Plasma Vol (B)</td>
<td>51.09 ± 3.416</td>
<td>49.59 ± 3.118*</td>
</tr>
<tr>
<td>Circ Blood Vol (A)</td>
<td>60.48 ± 3.776</td>
<td>60.60 ± 3.301</td>
</tr>
<tr>
<td>Circ Blood Vol (B)</td>
<td>67.24 ± 4.198</td>
<td>67.34 ± 3.668</td>
</tr>
</tbody>
</table>

All volume measurements expressed as mean ml/kg ± S.D.
Volume calculations after (A) assume a total body to large vessel hematocrit ratio of 1, after (B) a ratio of 0.9.

*Significant (P<0.05) difference between groups.

Because of this splenic component, total body erythrocyte volume was significantly greater in sham-operated than in splenectomized pigs. The average $t/2$ value for splenic red cell turnover in 20 pigs was 9.76 ± 1.93 minutes. Application of regression Equation 1 for 51Cr-labelled erythrocyte concentration in individual pigs showed that values of a_0, as anticipated, varied in direct proportion to the injected dose and t. More specifically a_0, on the average, equaled $0.213A_m$.
The following average equation, therefore, reflected the population characteristics of the sham-operated immature domestic pigs used in this study:

$$A_t = A_0(1 + 0.213e^{-0.739t})$$ \[4\]

Experiment 2: Splenic Erythrocyte Mobilization

Table 4 summarizes the effects of 1-minute of physical restraint, subsequent to a control period of recumbent rest, on the circulating blood volume and related variables of sham-operated and splenectomized pigs. In both groups, physical restraint was associated with a significant increase in hematocrit, but the effect was significantly (by analysis of variance) more pronounced in the sham-operated animals. This difference, reflecting splenic erythrocyte mobilization, caused the sham-operated animals to have elevated circulating erythrocyte volumes following physical restraint. In both groups restraint led to comparable decrements in calculated circulating plasma volume which in the splenectomized pigs led to a significant decrease in calculated blood volume. Physical restraint had no effect on the blood volume of sham-operated pigs; the decrement in plasma volume was offset by splenic erythrocyte mobilization.

Table 4. Effects of physical restraint on the blood volume characteristics of sham-operated and splenectomized pigs

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Sham-Operated Pigs</th>
<th>Splenectomized Pigs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Restrained</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>0.269±0.078</td>
<td>0.347±0.013*</td>
</tr>
<tr>
<td>51Cr/ml Erythro</td>
<td>17.2±3.54</td>
<td>17.1±3.42</td>
</tr>
<tr>
<td>Circ Erythro Vol</td>
<td>16.3±0.88</td>
<td>21.1±1.70*</td>
</tr>
<tr>
<td>Circ Plasma Vol(A)</td>
<td>44.1±2.68</td>
<td>39.7±0.86*</td>
</tr>
<tr>
<td>Circ Plasma Vol(B)</td>
<td>51.0±3.10</td>
<td>48.5±1.00*</td>
</tr>
<tr>
<td>Circ Blood Vol(A)</td>
<td>60.4±3.34</td>
<td>60.8±3.81</td>
</tr>
<tr>
<td>Circ Blood Vol(B)</td>
<td>67.3±3.72</td>
<td>67.6±4.24</td>
</tr>
</tbody>
</table>

All measurements expressed as mean ml/kg ± S.D. for 8 sham-operated and 8 splenectomized pigs. 51Cr C.P.M. expressed in thousands. Volume calculations after (A) assume a total body to large vessel hematocrit ratio of 1.0, after (B) a ratio of 0.9.

*Indicates a significant (P<0.05) difference between control and restrained values.
Similar hematocrit effects were observed when resting sham-operated and splenectomized pigs received intraarterial injections of epinephrine (Fig 2). No attempt was made to assess the effects of epinephrine on vascular volumes because the rate and extent of splenic erythrocyte storage during the recovery phase could not be estimated in the sham-operated pigs. Nevertheless, the hematocrit increments observed immediately after injection were nearly identical to those observed after physical restraint.

![Hematocrit vs Time](image)

Figure 2. Effect of a 0.5 ml, 1:1000 dilution epinephrine injection (arrow) on the hematocrit of splenectomized (N=4) and sham-operated (N=6) conscious pigs.

Experiment 3: Simultaneous Erythrocyte and Plasma Volume Measurements

Attempts to measure circulating plasma volume by the dilution of \(^{125}I \) labelled bovine albumin dilution were complicated by disappearance of the label from the circulation. Kinetic evaluation of this disappearance revealed two components, suggesting at least two pools of albumin dilution (Fig 3). The larger pool which became apparent about 20 minutes after injection had a \(t_{1/2} \) of 6.26 hours; the smaller pool which became apparent about 2 minutes after injection had a \(t_{1/2} \) of 4.87 minutes. Plasma volume estimates were based on least-squares extrapolation of the larger pool to zero time as indicated in Figure 3. The blood volume characteristics of splenectomized pigs as estimated by the dilution of \(^{51}Cr\)-labelled erythrocytes and \(^{125}I\)-labelled albumin are summarized in Table 5. These data show that
Alterations in the plasma concentration 125I-tagged albumin as a function of time in conscious splenectomized pigs ($N=7$). Ordinate values expressed as the natural logarithm of the normalized 125I activity, a value of 100 being assigned to the activity recorded 10 minutes after injection.

$A_t = 9.306^{-0.141} + 99.5^{-0.0081}$
125I-tagged albumin dilution gives a significantly greater plasma, eryth., and blood volume than 51Cr-tagged erythrocyte dilution. As would be expected, blood volume determinations based on the two radiolabels were intermediate to those obtained by either label alone. The average body hematocrit was considerably lower than the arterial hematocrit, the ratio of the two being 0.756 ± 0.029.

Table 5. Porcine blood volume characteristics as estimated by the dilution of 51Cr-labelled erythrocytes and 125I-labelled plasma albumin

<table>
<thead>
<tr>
<th>Measurement</th>
<th>51Cr-Erythro. Dilution</th>
<th>125I-Albumin Dilution</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocyte Volume</td>
<td>18.4±2.46</td>
<td>27.0±3.62</td>
<td>8.6*</td>
</tr>
<tr>
<td>Plasma Volume</td>
<td>41.3±3.33</td>
<td>60.7±4.04</td>
<td>19.4*</td>
</tr>
<tr>
<td>Blood Volume</td>
<td>59.7±3.43</td>
<td>87.7±4.46</td>
<td>28.0*</td>
</tr>
<tr>
<td>51Cr/125I Blood Volume</td>
<td></td>
<td>79.0±3.51</td>
<td></td>
</tr>
<tr>
<td>Body Hematocrit</td>
<td>0.233±0.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial Hematocrit</td>
<td>0.306±0.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body/Arterial Hct Ratio</td>
<td>0.756±0.029</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indicated values represent the mean ml/kg ± S.D. for 7 animals

*Significant (P<0.05) difference.

DISCUSSION

The results of this study show that the spleen of the intact, near-basal pig sequesters 20 to 25 percent of the total body erythrocyte volume. Under these conditions, the turnover of sequestered splenic erythrocytes averages about 7 percent per minute. Under conditions other than basal, however, splenic contraction can cause a rapid transfer of stored cells to the circulating blood. In the present experiments, such erythrocyte mobilization was observed following the intraarterial injection of epinephrine or following a brief period of physical restraint which, presumably, led to endogenous catecholamine release. Splenic contraction and erythrocyte release, as evidenced by increased venous hematocrit levels, has been studied extensively by Steinhardt and his coworkers (2,6,10,11) in domestic pigs subjected to treadmill exercise or to intravenous epinephrine injections. Epinephrine-induced splenic contraction in minipigs has also been investigated by Wachtel and McCahan (7).
Interpretational difficulties are encountered when the results of these studies are compared to those recorded here, largely because experimental conditions associated with data collection were not equivalent. For instance, Steinhardt et al (8) investigated the hematocrit responses of intact and splenectomized pigs intravenously injected with epinephrine (0.008 mg/kg) while the animals were restrained in a lateral recumbent position. Not only was their dosage of epinephrine lower than that used in the present study (about 0.025 mg/kg) but also their use of physical restraint could have produced elevated control hematocrit values. Either of these factors could explain the lower epinephrine-induced hematocrit increments reported by Steinhardt et al (8), relative to those observed here.

Failure to recognize, or adequately account for, the erythrocyte storage and autotransfusion functions of the porcine spleen also would seem to be a major factor contributing to the wide variations in the hematocrit values and circulating erythrocyte volumes reported for normal pigs. In animals of the same general body size as those used in the present study, normal hematocrit values range from about 0.30 to about 0.39 (15-18). In all of these reports (15-18), hematocrits were measured in venous blood samples obtained by vena cava puncture while the animals were being physically restrained. They are substantially higher than those recorded here for arterial blood taken from pigs under near-basal conditions but are similar to those obtained after one minute of physical restraint. Splenectomy also induces a slight elevation in resting hematocrit level, as seen in Tables 3 and 4, and in data reported by Steinhardt et al (8) and by Wachtel and McCahan (7). These increments may be due to splenic contraction during the course of the splenectomy procedure itself. In support of this contention, arterial and splenic venous hematocrit values measured in 10 pigs during the early stages of spleen removal averaged 0.28±0.024 and 0.50±0.110, respectively. Alternatively, the splenectomized pigs may have responded to the lack of erythrocyte reserves by increased erythropoietic activity.

In the intact pig, splenic blood flow and erythrocyte sequestration can lead to overestimated values for circulating erythrocyte volume when the measurements are based on the dilution of labelled erythrocytes. Thus, following injection, the spleen acts as a "sink" sequestering the injected cells and replacing them, via splenic venous outflow, with endogenous unlabelled cells. This process leads to a rapid decline in labelled erythrocyte concentration shortly after injection but continues for an hour or more before the ratio of labelled to unlabelled cells becomes equal in the circulating blood and spleen. The sequestration-dilution effect seen here in pigs (Figure 1) has been observed also in dogs (13,19) and cats (20). Unless appropriate corrections are made, it will lead to an apparent increase in calculated volume of circulating erythrocytes as a function of time after injection. One-time measurement of label dilution, therefore, usually produces an erroneous over-estimation of
circulating erythrocyte volume, the magnitude being dependent upon the
time after injection at which dilution is determined. Extrapolation
of dilution values to zero time will minimize or eliminate such
errors, but only if the extrapolation procedure is based on a two-
compartment model which segregates total body erythrocyte volume into
circulating and splenic components. Extrapolation is rarely, if ever,
attempted, possibly because of the difficulties encountered in
obtaining an adequate series of dilution samples shortly after
labelled erythrocyte injection. Inadequate or no correction for
splenic erythrocyte sequestration may have compromised measurement
accuracy in many studies (1,4,5,21-27) in which circulating
erthrocyte volume of swine was determined by the dilution of labelled
cells. Accordingly, reported values for pigs of comparable size
invariably exceed the circulating values, but approximate the total
body values seen here in conscious near-basal pigs. In some
instances (5,21,22) splenic discharge of sequestered erythrocytes,
induced by the use of physical restraint during the course of
measurement, could have elevated the values.

Indicator loss, in this instance to the interstitial fluid, can
also present problems when circulating plasma volume is estimated by
the dilution of serum albumin labelled with radioisotopes or T-1824
dye. Some (2,8-11,24,25,28,29) but not all (1,6,21-23,26,27,30-32) of
the investigators who have used these labels in swine have based their
volume estimates on the extrapolation of dilution values to zero time,
as was done in the present study with 125I-labelled bovine serum
albumin. With albumin labels, one-time dilution samples do not appear
to alter seriously the magnitude of plasma volume estimates, provided
they are taken within 10 or 15 minutes after injection. The
radioisotope concentration in such samples (Figure 3) approximates the
extrapolated zero-time values. Either procedure, therefore, yields
about the same plasma volume value, and in pigs of comparable size
reported values (24,25,28) approximate those observed here.

The present study does raise serious questions about the validity
of plasma volume measurements based on the dilution of labelled
albumin. Plasma volumes so obtained were markedly greater than those
based on labelled erythrocyte dilution and large vessel hematocrit.
The plasma volume estimates, furthermore, produced elevated values for
circulating erythrocyte and blood volume when the latter are
calculated on the basis of large vessel hematocrits. In this respect,
similar values have been obtained by others in pigs of equivalent
size (23-25,28). These elevated plasma volume values also produced
elevated blood volume values when the erythrocyte component of blood
volume was determined simultaneously by the dilution of cells labelled
with 51Cr. The elevated plasma volume values, however, led to a
calculated total body hematocrit which was considerably lower than
arterial hematocrit. In the present experiment with splenectomized
pigs, the ratio of the two averaged 0.756—a value slightly greater
than those reported in 6-week-old pigs by Talbot and Swenson (24) and
lower than the values for newborn pigs by Deavers et al (26) and
Linderkamp et al (27) and for newborn to 12-week-old pigs by Setiabudi
et al (25). Autotransfusion of splenic erythrocytes, and a resultant
increase in the erythrocyte volume component, may have been
responsible for the higher ratio values reported by some of these
workers (25).

Total body to large vessel hematocrit ratios below 1.0 are
commonly attributed to relative plasma excess in small vessels,
including arterioles, capillaries, and venules (12,14,32). Indeed,
direct estimation of small vessel hematocrits has yielded values
ranging down to 0.1 or lower (33). In humans and dogs such reduced
values in small vessels potentially could account for total body to
large vessel hematocrit ratios of about 0.9, a commonly calculated
value (12,32). In pigs, however, the ratio observed here does not
seem compatible with this explanation. Thus, the contributions of
small and large vessel hematocrits to total body hematocrit can be
expressed by the following equation:

$$H_B = H_S + H_L (1 - V_S)$$ [5]

where H_B, H_S, and H_L are the total body, average small vessel, and
large vessel hematocrits, respectively, and V_S is the small vessel
fraction of total blood volume. When H_L and H_B are measured, as in
the present experiment with splenectomized pigs, a curve relating
to various values of H_S can be constructed. Figure 4 shows the
results of such an effort in which the H_L and H_B values recorded here
in pigs are compared to commonly reported H_L and H_B values for
humans (32). In pigs, but not in humans, these curves show that one
would have to assume unreasonably large values for V_S to account for
observed H_L and H_B values. For example, if the average H_S is assumed
to be 0.1 (Fig. 4), then V_S would be 0.125, a reasonable value, in
humans but 0.36, an unreasonable value, in pigs. In fact, if the
average porcine small vessel hematocrit is assumed to be zero, small
vessels would account for 24 percent of the circulating blood volume.
In view of these calculations, it seems reasonable to conclude that
porcine plasma volume was overestimated by the 125I-dilution procedure
used in this study. Alternatively, circulating erythrocyte volume may
have been underestimated by the dilution of 51Cr-labelled
erthrocytes. This alternative seems highly unlikely since it would
imply labelled-erythrocyte sequestration somewhere in the
splenectomized pig. Decreasing label concentration following
injection, which was not observed in this experiment, should have been
seen if the labelled erythrocytes were so sequestered.

What could account for the overestimation of porcine plasma
volume with the 125I dilution procedure? Errors in isotope counting
or sample volume measurement do not seem likely.
Interrelationship of average small vessel hematocrit (H_s) to average small vessel fraction (V_s) of total blood volume as estimated by rearrangement of the equation (5).

![Diagram showing the relationship between H_s and V_s.]

<table>
<thead>
<tr>
<th></th>
<th>H_L</th>
<th>H_S</th>
<th>H_S/H_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swine</td>
<td>0.308</td>
<td>0.233</td>
<td>0.756</td>
</tr>
<tr>
<td>Human</td>
<td>0.45</td>
<td>0.405</td>
<td>0.90</td>
</tr>
</tbody>
</table>
Accuracy evaluations of both procedures showed potential errors should not exceed 1 percent. Furthermore, the same sampling pipettes and the same type of calibrated injection syringe were used in the 51Cr and 125I procedures. Potential errors, therefore, would have had an equal effect on both procedures. Contamination of radiiodine-labelled albumin with inorganic 125I, which would rapidly leave the circulation following injection, could account for a small fraction of the overestimation of plasma volume. Determinations of the inorganic iodine fraction following precipitation of the albumin fraction with cold trichloroacetic acid or following separation with a molecular sieve showed that 95 percent or more of the 125I was bound to albumin. Transcapillary loss of the inorganic fraction may have contributed to the early, more rapid decrease in plasma 125I concentration seen here, but other investigators (34,35) have attributed this effect to delayed mixing of the albumin-labelled fraction. The most likely explanation for the overestimation of plasma volume would be a rapid early loss of radiiodinated albumin during the first minute or two after injection. Direct evidence for such a loss in dogs has been presented by Vidt and Saperstein (36), who concluded that circulating plasma includes a fraction which extends beyond the anatomical boundaries of capillary beds. The implications of, and support for, this concept in terms of microcirculatory hydrodynamics has been elegantly discussed by Howe and Sheaffer (37).

CONCLUSIONS

- Under near-basal conditions the porcine spleen sequesters 20 to 25 percent of total body erythrocytes.

- Splenically sequestered erythrocytes are rapidly discharged into the circulating blood following intravascular epinephrine injection or physical restraint of the animal. Both procedures lead to a marked increase in large vessel hematocrit.

- Kinetic analysis of 51Cr-labelled erythrocyte dilution following intravascular injection provides an accurate procedure for estimating circulating, total body, and splenic erythrocyte volumes. Simultaneous hematocrit measurements allow estimation of circulating plasma and blood volumes.

- Plasma, erythrocyte, and blood volume estimates based on the dilution of 125I-labelled bovine albumin markedly exceed those based on 51Cr-labelled erythrocyte dilution.

- Low values for the total body to large vessel ratio in pigs indicates overestimation of plasma volume by the 125I-labelled albumin procedure.
RECOMMENDATIONS

* Experiments should be conducted to determine the factor(s) responsible for overestimation of porcine plasma volume when procedures based on the dilution of plasma albumin are used.

* The relationships of total body mass and lean body mass to circulating erythrocyte, plasma and blood volumes of swine should be investigated.

* Alterations, if any, in splenic erythrocyte storage capacity as a function of body size should be determined.
REFERENCES

OFFICIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>US Army Medical Research and Development Command</td>
<td>SGRD-RMS/Mrs. Madigan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fort Detrick, Frederick MD 21701</td>
</tr>
<tr>
<td></td>
<td>Defense Technical Information Center</td>
<td>Cameron Station, Alexandria VA 22314</td>
</tr>
<tr>
<td></td>
<td>Director of Defense Research and Engineering</td>
<td>Assistant Director, Environmental and Life Sciences, Washington DC 20301</td>
</tr>
<tr>
<td></td>
<td>The Surgeon General</td>
<td>DASG-TLO, Washington DC 20314</td>
</tr>
<tr>
<td></td>
<td>HQ DA (DASG-ZXA)</td>
<td>WASH DC 20310</td>
</tr>
<tr>
<td></td>
<td>Commandant</td>
<td>Academy of Health Sciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: HSHA-CDM, Fort Sam Houston TX 78234</td>
</tr>
<tr>
<td></td>
<td>Assistant Dean</td>
<td>Institute and Research Support, Uniformed Services University of Health Sciences, 6917 Arlington Road, Bethesda MD 20014</td>
</tr>
<tr>
<td></td>
<td>Commander</td>
<td>US Army Environmental Hygiene Agency, Aberdeen Proving Ground MD 21070</td>
</tr>
<tr>
<td></td>
<td>US Army Research Office</td>
<td>ATTN: Chemical and Biological Sciences Division, P.O. Box 1221, Research Triangle Park NC 27709</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biological Sciences Division, Office of Naval Research, Arlington VA 22217</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Director of Life Sciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USAF Office of Scientific Research (AFSC), Bolling AFB, Washington DC 20332</td>
</tr>
<tr>
<td></td>
<td>Director</td>
<td>Walter Reed Army Institute of Research, Washington DC 20307</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick MD 21701</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US Army Research Institute of Environmental Medicine, Natick MA 01760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US Army Institute of Surgical Research, Brooke Army Medical Center, Fort Sam Houston TX 78234</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US Army Research Institute of Chemical Defense, Aberdeen Proving Ground, Edgewood Arsenal MD 21010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Medical Research Institute, National Naval Medical Center, Bethesda MD 20014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USAF School of Aerospace Medicine, Aerospace Medical Division, Brooks Air Force Base TX 78235</td>
</tr>
</tbody>
</table>