MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
**Title:** Construction and Properties of Costas Arrays

**Authors:** Solomon W. Golomb and Herbert Taylor

**Type of Report:** Final Progress Report

**Period Covered:** 1 July, 1980 - 30 Sept., '83

**Performing Organization:** Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089-0272

**Contract or Grant Number:** N0014-80-C-0745

**Performing Organization NAME AND ADDRESS:**

Department of Electrical Engineering
University of Southern California
Los Angeles, CA 90089-0272

**Report Date:** November 30, 1983

**Number of Pages:** 59 + ii

**Security Classification:** Unclassified

**Distribution Statement:** Unrestricted

**Abstract:**

A Costas array is an nXn permutation matrix which, when regarded as a frequency hopping pattern (n frequencies vs. n time intervals) has an optimum ambiguity function, i.e., at most one coincidence for each shift in both time and frequency. Several systematic infinite families of constructions for Costas arrays have been found, all involving primitive roots in finite fields. A summary of the known constructions is...
presented for all $n \leq 360$. The smallest case for which no construction has yet been found is $n = 32$. The total number of distinct Costas arrays has been enumerated for $n \leq 12$, and all the individual Costas arrays are illustrated for $n \leq 8$. These arrays are useful as frequency hopping patterns for radar and sonar signals, and as patterns for achieving two-dimensional alignment and synchronization.
CONSTRUCTIONS AND PROPERTIES
OF COSTAS ARRAYS

by

Solomon W. Golomb
and
Herbert Taylor

CSI-83-10-01

This document has been approved for public release and sale; its distribution is unlimited.

Communication Sciences Institute
University of Southern California
July 1980 - October 1983

This research was supported in part by the Office of Naval Research, United States Navy, under Contract No. N00014-80-C-0745.
# Table of Contents

1. Introduction

2. Systematic Methods of Construction
   a. The Welch Construction
   b. The Lempel Construction
      Taylor variant
   c. Golomb Construction
      Golomb variant
      Taylor variant
   d. Adding a corner dot to \( W \)
   e. Table of results up to \( n = 360 \)

3. Costas Arrays with Special Properties
   a. Periodic Constructions
   b. Non-attacking Queens
   c. Shearing
   d. Honeycomb Arrays (non-attacking bee-rooks)
   e. Non-attacking Kings
   f. Symmetric Arrays

4. \( C(n) \) and \( c(n) \): The Number of Costas Arrays
   Pictures of all Costas Arrays up to \( 8 \times 8 \)

5. Unsolved Problems

REFERENCES

APPENDIX I SOME BASIC POLYNOMIAL ALGEBRA OVER FINITE FIELDS

APPENDIX II ALGEBRAIC EXCLUSIONS AND TERMINAL CASES
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a.1.</td>
<td>$W_1$ with $p = 43, n = 42$</td>
<td>7</td>
</tr>
<tr>
<td>2.b.1.</td>
<td>$L_2$ with $q = 27, n = 25$</td>
<td>8</td>
</tr>
<tr>
<td>2.b.2.</td>
<td>$T_4$ with $q = 59, n = 55$</td>
<td>10</td>
</tr>
<tr>
<td>2.c.1.</td>
<td>$G_3$ with $q = 27, n = 24$</td>
<td>11</td>
</tr>
<tr>
<td>2.c.2.</td>
<td>$G_4$ with $q = 32, n = 28$</td>
<td>13</td>
</tr>
<tr>
<td>2.c.3.</td>
<td>$G_5$ with $q = 149, n = 144$</td>
<td>14</td>
</tr>
<tr>
<td>2.c.4.</td>
<td>$T_0$ with $q = 47 = n$</td>
<td>15</td>
</tr>
<tr>
<td>2.d.1.</td>
<td>Sporadic corner dot added, $p = 19 = n$</td>
<td>21</td>
</tr>
<tr>
<td>2.d.2.</td>
<td>Corner dot added to $W_1, p = 31 = n$</td>
<td>18</td>
</tr>
<tr>
<td>2.e.1.</td>
<td>Table of known constructions up to $n = 360$</td>
<td>19-23</td>
</tr>
<tr>
<td>3.b.1.</td>
<td>Nine nonattacking Queens on a 10x10 board</td>
<td>25</td>
</tr>
<tr>
<td>3.b.2.</td>
<td>Queen attack in Lempel construction</td>
<td>27</td>
</tr>
<tr>
<td>3.c.1.</td>
<td>An example of shearing</td>
<td>28</td>
</tr>
<tr>
<td>3.c.2.</td>
<td>A cycle of twelve by shearing</td>
<td>29</td>
</tr>
<tr>
<td>3.c.3.</td>
<td>Shear-compression</td>
<td>30</td>
</tr>
<tr>
<td>3.d.1.</td>
<td>The first six honeycomb arrays</td>
<td>32</td>
</tr>
<tr>
<td>3.d.2.</td>
<td>Honeycomb array with $r = 7$</td>
<td>35</td>
</tr>
<tr>
<td>3.d.3.</td>
<td>Honeycomb array with $r = 10$</td>
<td>36</td>
</tr>
<tr>
<td>3.d.4.</td>
<td>Honeycomb array with $r = 13$</td>
<td>37-38</td>
</tr>
<tr>
<td>3.e.1.</td>
<td>Non-attacking Kings for $n \leq 8$</td>
<td>39</td>
</tr>
<tr>
<td>3.f.1.</td>
<td>Symmetric Golomb type</td>
<td>41</td>
</tr>
<tr>
<td>3.f.2.</td>
<td>Symmetric with main diagonal empty</td>
<td>42</td>
</tr>
<tr>
<td>4.1.</td>
<td>Pictures of the Costas arrays from 1x1 to 8x8</td>
<td>45-48</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Radar and sonar signals are used to determine both the distance (also called range) of a target from the observer, and the velocity (also called range rate) at which the target is either approaching or receding from the observer. The range is proportional to the round-trip delay time (or time shift) of the signal, and the velocity is proportional to the doppler (or frequency shift) of the signal.

In a frequency hopping radar or sonar system, the signal consists of one or more frequencies being chosen from a set \( \{f_1, f_2, \ldots, f_m\} \) of available frequencies, for transmission at each of a set \( \{t_1, t_2, \ldots, t_n\} \) of consecutive time intervals. For modelling purposes, it is reasonable to consider the situation in which \( m = n \), and where a different one of \( n \) equally spaced frequencies \( \{f_1, f_2, \ldots, f_n\} \) is transmitted during each of the \( n \) equal duration time intervals \( \{t_1, t_2, \ldots, t_n\} \). Such a signal is conveniently represented by an \( n \times n \) permutation matrix \( A \), where the \( n \) rows correspond to the \( n \) frequencies, the \( n \) columns correspond to the \( n \) time intervals, and the entry \( a_{ij} \) equals 1 if and only if frequency \( f_i \) is transmitted in time interval \( t_j \). (Otherwise, \( a_{ij} = 0 \).)

When this signal is reflected from the target and received back by the observer, it is shifted in both time and frequency, and from the amounts of these shifts, both range and velocity are determined. The observer determines the amounts of these shifts by comparing all shifts (in both time and frequency) of a replica of the transmitted signal with the actual received signal, and noting for which combination
of time shift and frequency shift the coincidence is greatest. This may be thought of as counting the number of coincidences between 1's in the matrix $A = (a_{ij})$ with 1's in a shifted version $A^*$ of $A$, in which all entries have been shifted $r$ units to the right ($r$ is negative if there is a shift to the left), and $s$ units upward ($s$ is negative if the shift is downward).

The number of such coincidences, $C(r,s)$, is the (unnormalized) autocorrelation between $A$ and $A^*$, and clearly satisfies the following conditions:

$$C(0,0) = n$$
$$C(r,s) = 0 \text{ if } |r| > n \text{ or if } |s| > n.$$  
$$0 \leq C(r,s) < n \text{ except when } r = s = 0.$$  

(This conforms to the assumption that the signal is 0 outside the intervals $f_1 \leq f \leq f_n$ and $t_1 \leq t \leq t_n$. If the sequence of frequencies is to be repeated periodically in time, a singly periodic correlation function can be defined accordingly. In this context, periodicity in frequency does not appear to be a useful notion.)

In the real world, the returning signal is always noisy. The two-dimensional autocorrelation function $C(r,s)$, called the ambiguity function in the radar and sonar literature, should be thought of as the total "coincidence" between the actual returning noisy signal and the shift of the ideal transmitted signal by $r$ units in time and $s$ units in frequency. It is useful to think of the signal matrix $A = (a_{ij})$ as a two-dimensional template of $n^2$ cells, which is opaque at the $n^2 - n$ cells where $a_{ij} = 0$, and transparent at the $n$ cells where $a_{ij} = 1$. The total signal energy behind these $n$ windows is summed (via a double integral in time and frequency) to give the value of $C(r,s)$ when the template is shifted $r$ units on the time axis and $s$ units on the frequency axis.

Among the $2^{n^2}$ matrices of 0's and 1's of order $n$, there are only $n!$ permutation matrices, and some of these are better than others as signal patterns for radar and
sonar. For example, the $n \times n$ identity matrix $I_n$ can be shifted one unit up and one unit left, and will then produce $n-1$ coincidences with the original matrix. For large values of $n$ and a noisy environment, the signal pattern $I_n$ would be almost guaranteed to produce spurious targets, shifted an equal number of units in both time and frequency from the real target.

At a minimum, there is a shift of $A = (a_{ij})$ which will make any of the $n$ 1's land on any of the $n-1$ remaining 1's, so we know that

$$\min_{\text{all "codes"}} \max_{(r,s) \neq (0,0)} C(r,s) > 1,$$

where $C(r,s)$ is the ideal ambiguity function of the permutation matrix itself. This led J.P. Costas [1] to look for those $n \times n$ permutation matrices for which

$$\max_{(r,s) \neq (0,0)} C(r,s) = 1,$$

as the best possible case. By computer-aided search, he found examples of such matrices for all $n \leq 12$, but was unable to find an example for $n = 13$, and was tempted to conclude that these patterns "die out" beyond $n = 12$.

In subsequent papers ([2], [3]), permutation matrices which satisfy (1) have been called either constellations or Costas arrays. They are now known to exist for all $n \leq 31$ and for arbitrarily large values of $n$ related to the occurrence of prime numbers and prime powers. It is conjectured that Costas arrays exist for all positive integers $n$.

In this article, a survey of all that is currently known about Costas arrays is presented. In addition to earlier systematic algebraic methods of construction by Welch [2], Lempel [2], and Golomb [3], new algebraic constructions by Golomb and Taylor are described, along with a sporadic method of Taylor which succeeds in filling in some of the gaps (e.g. at $n = 19$, the first case where no systematic construction is known).
It is convenient to represent the $n \times n$ permutation matrix corresponding to a Costas array, $A = (a_{i,j})$, on an $n \times n$ grid, with a dot in the middle of cell $(i,j)$ if and only if $a_{i,j} = 1$. The Costas condition then says that the $\frac{n^2-n}{2}$ lines connecting pairs of distinct dots are all different as vectors; that is, no two of these lines are equal in both length and slope.

In [3], Golomb advanced four conjectures concerning primitive roots in finite fields. Two of these, Conjectures A and D, have direct bearing on the success of certain methods for constructing Costas arrays. O. Moreno [4] has recently proved Conjecture D for all fields of characteristic 2; and as observed by A. Odlyzko, the methods of M. Szalay [5], and J. Johnson [9], can be extended to show that Conjecture A holds with at most a finite number of exceptions. Conjecture A is stated on page 9 of this article, and Conjecture D on page 40.

Costas arrays which satisfy additional constraints, involving either single or double periodicity, or symmetry, or additional separation requirements on the 1's in the permutation matrix, are considered in this article. A lower bound on the cross-correlation between any two Costas arrays of order $n$ is obtained. This has obvious applicability to the case of multiple signals in the same environment. Finally, it should be mentioned that frequency hop patterns such as the ones considered here are also useful in spread-spectrum communication systems, where the objective may be to achieve either jamming resistance, or low probability of intercept (L.P.I.), or frequency diversity for a selectively fading channel.
2. SYSTEMATIC METHODS OF CONSTRUCTION

The finite field with \( q \) elements, denoted \( \text{GF}(q) \), exists when and only when \( q \) is a power of a prime. Detailed proofs (in order of increasing complexity) that the Welch, Lempel, and Golomb construction methods produce Costas arrays, are contained in [3]. These proofs depend on the arithmetic of finite fields, and particularly on two properties of all primitive elements in finite fields.

The element \( a \) in \( \text{GF}(q) \) is called \textit{primitive} if the successive powers of \( a \) (i.e., \( a, a^2, a^3, \ldots, a^{q-1} = 1 \)) run through all the non-zero elements of \( \text{GF}(q) \). For primitive \( a \) the two essential facts are:

1. For every non-zero element \( x \) in \( \text{GF}(q) \) there is an integer \( i \) such that \( a^i = x \).
2. \( a^i = a^k \) in \( \text{GF}(q) \) if and only if \( i \equiv k \pmod{q-1} \).

Equivalently, corresponding to each non-zero \( x \) belonging to \( \text{GF}(q) \), there is the uniquely determined "logarithm of \( x \) to the base \( a \)" which looks like an ordinary whole number, and belongs to the cyclic group of integers with respect to addition modulo \( q-1 \). That is, if \( a^i = x \), then \( \log_a x = i \).

The only information needed to construct a Costas array by any of these methods is a "log table" for \( \text{GF}(q) \), consisting of a list of ordered pairs of the form \( (x, \log_a x) = (a^j, j) \), for \( j \) running through \( 0, 1, 2, \ldots, q-2 \), and corresponding \( a^j \) taking on all the field values except 0.

a. The Welch Construction

For every prime \( p > 2 \), the Welch construction yields an \( n \times n \) Costas array \( W_1 \) with \( n = p-1 \), and a Costas array \( W_2 \) with \( n = p-2 \). For certain primes, it also yields a Costas array \( W_3 \) with \( n = p-3 \).

This construction requires a log table for \( \text{GF}(p) \) where \( p \) is an odd prime, and the base \( a \) is a primitive element of \( \text{GF}(p) \). (For prime \( p \), \( \text{GF}(p) \) is simply the field
of integers modulo \( p \).)

**W**\(_1\): \( (n = p-1) \) The \( n \times n \) matrix plots the log. That is, with columns numbered \( j = 0,1,2,\ldots,p-2 \), and rows numbered \( i = 1,2,\ldots,p-1 \), we put a dot in position \((i,j)\) if and only if \( i = a^j \).

**W**\(_2\): \( (n = p-2) \) This is obtained from **W**\(_1\) by deleting the dot at \((1,0)\), along with the top row and left column.

**W**\(_3\): \( (n = p-3) \) This works only when 2 is primitive in \( \text{GF}(p) \). Using \( a = 2 \), **W**\(_1\) has dots at both \((1,0)\) and \((2,1)\). **W**\(_3\) is the result of deleting these two dots, along with the two top rows, and the two left columns.

Figure 2.a.1. illustrates **W**\(_1\) with \( n = 42 \). Removing the top row and left column from the figure illustrates **W**\(_2\) with \( n = 41 \).

b. **The Lempel Construction**

This uses a log table for \( \text{GF}(q) \) where \( q \) can be any power \( p^k \) of any prime \( p \), and the "logarithmic base" \( a \) is a primitive element of \( \text{GF}(q) \).

**L**\(_2\): \( (n = q-2) \) The \( n \times n \) matrix has columns numbered \( j = 1,2,\ldots,q-2 \) and rows \( i = 1,2,\ldots,q-2 \). We put a dot in position \((i,j)\) if and only if \( a^i + a^j = 1 \).

**L**\(_3\): \( (n = q-3) \) This works only when 2 is primitive in \( \text{GF}(q) \), where \( q \) is an odd prime. Using \( a = 2^{-1} = \frac{1}{2} \) will mean that \( a^1 + a^1 = 1 \), and hence that the dot at position \((1,1)\) can be deleted from **L**\(_2\) along with the entire top row and left column.

Figure 2.b.1. illustrates **L**\(_2\) with \( n = 25 \), that is with \( q = 27 \).
$W_1$ with $p = 43$, $n = 42$

Figure 2.a.1
L₂ with q = 27, n = 25

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   |   |   |   |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

A log table for GF(27)

Figure 2.b.1
Taylor variant to the Lempel construction:

\[ T_4: \quad (n = q-4) \] This works only when the primitive \( \alpha \) in \( \text{GF}(q) \) satisfies \( \alpha^2 + \alpha^1 = 1 \).

Then the dots at \((1,2)\) and \((2,1)\) can both be deleted simultaneously from \( L_2 \), along with the two top rows and the two left columns.

Figure 2.b.2. shows an example of \( T_4 \) with \( n = 55 \), corresponding to \( q = 59 \).

Note: When \( q = p^k \) with \( p \) prime and \( k > 1 \), \( \text{GF}(q) \) is not the ring of integers modulo \( q \). Rather, it can be represented as a \( k \)-dimensional vector space over \( \text{GF}(p) \).

c. Golomb Construction

This construction uses two log tables for \( \text{GF}(q) \), where the two bases \( \alpha \) and \( \beta \) are both primitive elements in \( \text{GF}(q) \), and \( q \) can be any power of any prime.

\[ G_2: \quad (n = q-2) \] The \( n \times n \) matrix has columns numbered \( j = 1,2,...,q-2 \), and rows \( i = 1,2,...,q-2 \). We put a dot in position \((i,j)\) if and only if \( \alpha^i + \beta^j = 1 \).

\[ G_3: \quad (n = q-3) \] If \( \alpha^1 + \beta^1 = 1 \), (that is, \( \alpha + \beta = 1 \)), then there is a dot at position \((1,1)\) which can be deleted from \( G_2 \), along with the top row and left column. Conjecture A (reference [3]) asserts that it is always possible to find primitive \( \alpha \) and \( \beta \) in \( \text{GF}(q) \) with \( \alpha + \beta = 1 \).

Figure 2.c.1. illustrates \( G_3 \) with \( n = 24 \), that is with \( q = 27 \).

\[ G_4: \quad (n = q-4) \] This works only when \( q = 2^k \), and \( \alpha + \beta = 1 \), in the field \( \text{GF}(q) \). Here the basic arithmetic is modulo 2, so that \( \alpha^1 + \beta^1 = 1 \) implies \( \alpha^2 + \beta^2 = 1 \).

Then the dots at \((1,1)\) and \((2,2)\) can both be deleted from \( G_2 \), along with the two top rows and the two left columns.
$T_4$ with $q = 59, n = 55$

Figure 2.b.2
$G_3$ with $q = 27$, $n = 24$

Figure 2.c.1
Figure 2.c.2. illustrates $G_4$ with $n = 28$, $q = 32$.

**Golomb Variant:**

$G^*_4$: ($n = q-4$) This works only when the primitive elements $\alpha$ and $\beta$ satisfy $\alpha + \beta = 1$ and $\alpha^2 + \beta^{-1} = 1$ in $\text{GF}(q)$. Since $-1 = q-2$ in the arithmetic of the logarithms (exponents), there will be a deletable dot at $(2, q-2)$ after deleting the dot at $(1,1)$ from $G_2$.

$G^*_5$: ($n = q-5$) This construction always follows $G^*_4$. When $\alpha + \beta = 1$ and $\alpha^2 + \beta^{-1} = 1$, then necessarily also $\alpha^{-1} + \beta^2 = 1$ in $\text{GF}(q)$. Thus, after $(1,1)$ and $(2, -1)$ are deleted, along with their respective rows and columns, there will be another deletable dot at $(-1,2)$.

Figure 2.c.3. illustrates $G^*_5$ with $n = 144$, $q = 149$.

**Taylor variant to the Golomb construction:**

$T_1$: ($n = q-1$) Add a corner dot at one of $(0,0)$ or $(0, q-1)$ or $(q-1, 0)$ or $(q-1, q-1)$. This is possible when $q \neq 2^k$ and the conditions at one of the corners do not prevent it.

$T_0$: ($n = q$) Add two corner dots at $(0,0)$ and $(q-1,q-1)$, or at $(0,q-1)$ and $(q-1,0)$. This is possible when $q \equiv -1 \pmod{6}$ and when not prevented by the condition (Appendix II) on the two corners. Figure 2.c.4 illustrates $T_0$ with $n = q = 47$.

d. **Adding a Corner Dot to $W_1$**

The Welch construction $W_1$ is singly periodic, and hence there is a chance that one of the $(p-1) \times (p-1)$ windows for one of the primitive roots may allow the addition of a corner dot. In fact the only examples of Costas arrays we have for $n = 19$ and
A log table for $GF(32)$

Figure 2.6.2
$G^*_5$ with $q = 149$, $n = 144$

Figure 2.c.3
Figure 2.c.4

$T_0$ with $q = 47$, $n = 47$
n = 31 were found as instances of this sporadic occurrence. Figure 2.d.1. and Figure 2.d.2. exhibit them.

e. **Table of known constructions**

Up to n = 360, Figure 2.e.1. tabulates for each n which constructions, if any, are known to exist.
Corner dot added to $W_1$, $p = 19 = n$

Figure 2.d.1
Corner dot added to $W_1$, $p = 31 = n$

Figure 2.d.2
<table>
<thead>
<tr>
<th>n</th>
<th>T_0, W_0, W_1, W_2, L_1, L_2, T_1, G_1, G_2, G_3, G_4, G_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><img src="image" alt="Table" /></td>
</tr>
<tr>
<td>42</td>
<td><img src="image" alt="Table" /></td>
</tr>
</tbody>
</table>

Table of known constructions up to \( n = 360 \)

Figure 2.e.1
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>168</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>169</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>170</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>171</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>172</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>173</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>174</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>175</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>176</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>177</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>178</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>179</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>180</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>181</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>182</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>183</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>184</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>185</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>186</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>187</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>188</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>189</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>190</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>191</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>192</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>193</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>194</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>195</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>196</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>197</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>198</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>199</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>201</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>202</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>203</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>204</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>205</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>206</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>207</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>208</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>209</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>$T_0$</td>
<td>$W_0$</td>
<td>$W_1$</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. COSTAS ARRAYS WITH SPECIAL PROPERTIES

a. Periodic Constructions

Repeating the 2×2 Costas Array in both directions over the entire plane gives a doubly periodic checker-board pattern with a Costas Array in every 2×2 window. For any n > 2, however, there does not exist a doubly periodic pattern with a Costas Array in every n×n window. (A proof of this result is given in [11].) The nearest approximation to such a pattern is given by the extended Welch construction, as follows.

Let p be an odd prime, with primitive root α. Put a dot in position (i,j) iff \( i \equiv \alpha^j \pmod{p} \). The resulting infinite integer matrix of dots and blanks has the property that in every p×p window there are p dots with no repeated vector difference. (Each p×p window fails to be a Costas Array by having one empty row and one row with two dots.)

Singly periodic patterns, (p-1)×\( \infty \), exist which have a Costas Array in every (p-1)×(p-1) window, where the windows are only left-right shifted. The only known examples are those arising from the extended Welch construction, but the possibility of other examples has not been entirely ruled out.

b. Non-attacking Queens

For n > 1 we have found no example of a Costas Array consisting of non-attacking Queens. It would even be interesting to find a Costas Array for n > 10 having only one occurrence of a Queen attack. (Another sort of near miss is shown in Figure 3.b.1.)

If an application could be satisfied with "semi-Queens", then we already have an infinite supply from the Lempel construction. A "semi-Queen" would attack its row and
Nine non-attacking Queens on a 10×10 board, with distinct differences

Figure 3.b.1
column but only the diagonal parallel to the main diagonal. Symmetry prohibits two
dots in any line parallel to but off of the main diagonal, because reflection would
repeat their difference vector. In the Lempel construction with \( q \) any power of an
odd prime, there will be exactly one solution to \( \alpha^x + \alpha^x = 1 \), for each primitive \( \alpha \),
and hence exactly one dot on the main diagonal. With \( q \) a power of two, there will
be no solution to \( \alpha^x + \alpha^x = 1 \), and hence no dot on the main diagonal.

It may be useful to note that we can describe exactly which Queen attacks do
occur in the Lempel construction. Each dot at \((i,j)\) attacks the dot at \((j,i)\), and
no others. This is illustrated in Fig. 3.b.2 with \( \text{GF}(3^3) \).

c. Shearing

Distinctness of differences will be preserved by any nonsingular linear
transformation, such as multiplying by a complex number, or applying the matrix

\[
\begin{bmatrix}
1 & a \\
0 & 1
\end{bmatrix}
\]

to shear the integer lattice. There are a few Costas Arrays which shear by
\[
\begin{bmatrix}
1 & -1 \\
0 & 1
\end{bmatrix}
\]
into other Costas Arrays. Figure 3.c.1 shows the Lempel construction for
\( \text{GF}(11) \) with \( \alpha = -3 \) sheared into what appears to be a 90° rotation of itself.

To be shearable by \[
\begin{bmatrix}
1 & -1 \\
0 & 1
\end{bmatrix}
\]
into another Costas Array, the array needs to have
one dot in each of \( n \) consecutive lines parallel to the main diagonal, since these
lines will become columns after shearing. Rows remain rows, and columns become
lines at right angles to the main diagonal, so that the figure could be sheared
again by \[
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
\]
to produce yet another Costas array. The array of Fig. 3.c.1 goes
through a cycle of four different patterns, as do all but one of the known shearable
arrays for \( n > 1 \). "But one" refers to the array of Figure 3.c.2 which, sheared
alternately by \[
\begin{bmatrix}
1 & -1 \\
0 & 1
\end{bmatrix}
\]
(horizontal) and \[
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
\]
(vertical), goes through a remarkable cycle of twelve patterns.
Attacking Queens in the Lempel construction

Figure 3.b.2
An example of shearing

Figure 3.c.1
A cycle of twelve by shearing

Figure 3.c.2
Shear-compression

Figure 3.c.3
d. **Honeycomb Arrays** (non-attacking bee-Rooks)

Shear-compression by $\begin{bmatrix} 3/2 & -1/2 \\ 0 & 1 \end{bmatrix}$ will convert the square grid (Gaussian integers) into the triangular grid (Eisenstein integers), or square cells into hexagonal cells. When it happens on an $n \times n$ board that $n$ non-attacking semi-Queens occupy $n$ consecutive lines parallel to the main diagonal, then we can delete the unoccupied diagonal lines and apply shear-compression to convert the board into a "honeycomb array" with $n$ lines parallel to each of the three pairs of opposite sides. The semi-queens get converted into $n$ non-attacking "bee-Rooks". The pattern of Figure 3.c.1 becomes a honeycomb array with non-attacking bee-Rooks, as illustrated in Figure 3.c.3.

On the honeycomb board having $n$ parallel lines we have a quick proof that the maximum number of non-attacking bee-Rooks is $n$. If there were more than $n$ bee-Rooks on the board, then at least one line would contain at least two bee-Rooks attacking each other.

The number of empty cells attacked by a bee-Rook placed in the middle of the board is larger than the number attacked by one near the edge. This happens because in the conversion from square to honeycomb we deleted some diagonal lines. Now on the honeycomb board some elementary counting problems become non-trivial.

Let us define a "bee-Duke" on the board with hexagonal cells as a piece which can move to any one of the six adjacent cells. (This is the natural analog to the Duke defined in [14]. ((The "Duke" also appears in *Winning Ways*, and in R.A. Epstein's *Theory of Games and Statistical Logic*.) ) The distance between two cells in the hexagonal Lee metric is then defined as the minimum number of bee-Duke moves needed to go from one cell to the other. In terms of this metric a "Lee-sphere of radius $r" consists of a center cell together with all the cells at distance $\leq r$ from the center. For all the known honeycomb arrays, with $n$ non-attacking bee-Rooks on a board having $n$ lines parallel to each of the three pairs of opposite sides, the honeycomb board is in fact a Lee sphere, but we have not proved that this must always be the case.
All honeycomb arrays that exist with radius ≤ 4

Figure 3.d.1
Computing six or seven terms and looking in Neil Sloane's Handbook of Integer Sequences [15] has led us from honeycomb arrays to some old questions which are not well-known today.

The CUBAN PRIMES of Cunningham [13] show up when we simply count the number of cells on a honeycomb board when it is a Lee sphere of radius \( r \). The number is always a difference of two consecutive cubes, \((r+1)^3-r^3\), and often prime: whether infinitely often or not is an old question, still unanswered.

The ZERO SUM ARRAYS of Bennett and Potts [12] arrive at the problem of counting the number \( N(r) \) of configurations of \( n = 2r+1 \) non-attacking bee-Rooks on a honeycomb board which is a Lee sphere of radius \( r \). On a square \( n \times n \) board with \( n \) non-attacking rooks the corresponding number of configurations would be simply \( n! \), but on the honeycomb board it is not so simple. With the aid of a computer they found answers up to \( r = 7 \), as tabulated below. Let \( \eta(r) \) be the number of configurations inequivalent under the dihedral group of symmetries of the hexagon.

<table>
<thead>
<tr>
<th>( r )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N(r) )</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>28</td>
<td>244</td>
<td>2544</td>
<td>35600</td>
<td>659632</td>
</tr>
<tr>
<td>( \eta(r) )</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>29</td>
<td>224</td>
<td>3012</td>
<td>55200</td>
</tr>
</tbody>
</table>

Counting HONEYCOMB ARRAYS presents a new problem with the requirement that all differences be distinct among \( 2r+1 \) non-attacking bee-Rooks on a honeycomb board of radius \( r \).

Let \( H(r) \) = the total number of honeycomb arrays of radius \( r \).

Let \( h(r) \) = the number of honeycomb arrays of radius \( r \) inequivalent under the dihedral group of symmetries of the hexagon.

The next table exhibits the full extent of our knowledge about \( H(r) \) and \( h(r) \).
The first six honeycomb arrays are pictured in Figure 3.d.1. The only ones known for radii 7, 10, and 13 are pictured in Figures 3.d.2, 3.d.3, and 3.d.4, respectively. The example with radius 22 is used in section 2 to illustrate the \( T_0 \) construction for the prime number 47 (Figure 2.c.4).

e. Non-attacking Kings

Another special property is that every pair of dots be separated by a distance \( \geq 3 \) in the Lee metric of coding theory. This makes the Costas Array a configuration of non-attacking chess kings. There are only five of these for \( n \leq 8 \), shown in Figure 3.e.1.

In the Costas Arrays derived from the Welch construction (for \( p \geq 7 \)) at least one pair of attacking Kings will always appear, as a consequence of the following fact about odd prime fields: For any primitive root \( \alpha \) in \( \text{GF}(p) \) there exists exactly one \( j \) such that \( \alpha^{j+1} - \alpha^j = 1 \).

To obtain a Costas Array of non-attacking Kings by systematic construction we can use the "\( T_4 \) variant," that is, a Lempel type construction where some primitive \( \alpha \) in \( \text{GF}(q) \) satisfies \( \alpha^2 + \alpha^{-1} = 1 \). With no Queen attack parallel to the main diagonal in any Lempel type array, as mentioned in b., \textit{a fortiori} there will be no King attack in the \( T_4 \) variant after removing the rows and columns containing (1,2) and (2,1).
A honeycomb array with $r = 7$

Figure 3.d.2
A honeycomb array with $r = 10$

Figure 3.d.3
A honeycomb array with $r = 13$

Figure 3.d.4
A honeycomb array with \( r = 13 \)

Figure 3.d.4
Costas arrays with non-attacking Kings, for \( n \leq 8 \)

Figure 3.e.1
Symmetric Arrays

In all examples of the Lempel type, \( a^i + a^j = 1 \) implies that both \((i,j)\) and \((j,i)\) are dots in the array, whence these arrays are always symmetric. The reduced arrays with \( q - 3 \) in the \( L_3 \) case or \( q - 4 \) in the \( L_4 \) case are also symmetric, since the dot or pair of dots deleted were from \((1,1)\), or, respectively, from both \((1,2)\) and \((2,1)\) simultaneously.

The Golomb type constructions give symmetric arrays in every case where \( q = p^{2k} \) is an even power of a prime. If \( \alpha \) is any primitive root, then \( \alpha^{p^k} = \beta \) will also be a primitive root, and if \( \alpha^i + \beta^j = 1 \) it follows that \( (\alpha^{i+p^k j})^p = \alpha^p \alpha^i = \beta^i \beta^j = 1 \). A dot goes at \((i,j)\) iff a dot goes at \((j,i)\), so the array is symmetric. One of these is illustrated in Figure 3.f.1. In Conjecture D of [3], Golomb conjectured that \( \text{GF}(p^{2k}) \) can always be generated over \( \text{GF}(p^k) \) by finding a primitive quadratic of trace 1, \( f(x) = x^2 - x + g \), over \( \text{GF}(p^k) \). The roots \( \alpha \) and \( \beta \) of \( f(x) \) will then be primitive in \( \text{GF}(p^{2k}) \) with \( \alpha + \beta = 1 \), and \( \alpha \beta = g \) will be primitive in \( \text{GF}(p^k) \). (See the Theorem in p. 54, in Appendix I.) In [4], Moreno has proved this conjecture when \( p = 2 \), for all values of \( k \).

An even more special \( n \times n \) Costas Array is one which is symmetric and has the main diagonal empty. Of course \( n \) must be even. These are given systematically by \( L_2 \) when \( q \) is a power of 2, and by \( L_3 \) when 2 is a primitive root of an odd prime \( p \). In Fig. 3.f.2, the exhibit of all such arrays for \( n \leq 8 \) includes one \( 8 \times 8 \) example which is not given by any known systematic symmetric construction. It is not known whether any of these special arrays exist for \( n = 12 \).
Example of $G_2$ when $q = p^{2k}$ and $\alpha^p = \beta$

Figure 3.f.1
Symmetric with main diagonal empty

Figure 3.f.2
4. **C(n) AND c(n): THE NUMBER OF COSTAS ARRAYS**

Let \(C(n)\) = the total number of \(n\times n\) Costas arrays.

Let \(c(n)\) = the number of \(n\times n\) Costas arrays inequivalent under the dihedral group of symmetries of the square.

We can prove that the limit superior (\(\lim\sup\)) of \(C(n)\) is infinite because the Welch construction guarantees \(C(n) > 2n\) when \(n+1\) is an odd prime.

On the other hand we have no actual proof that \(C(32)\) is not zero, or that \(C(n)\) is not zero infinitely often. (That is, we cannot show \(\lim\inf C(n) > 0\).)

The exact values of \(C(7)\), \(C(8)\), \(C(9)\), and \(C(10)\) were first brought to our attention by Richard Games and Michael Chao, who found them by computer in the summer of 1983 at the Mitre Corp. All values of \(C(n)\) for \(n \leq 12\) were first found by John P. Costas of the General Electric Company. The currently known values of \(C(n)\) and \(c(n)\) are as follows.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c(n))</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>17</td>
<td>30</td>
<td>60</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(C(n))</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td>40</td>
<td>116</td>
<td>200</td>
<td>444</td>
<td>760</td>
<td>2160</td>
<td>4368</td>
<td>7852</td>
</tr>
<tr>
<td>(\frac{C(n)}{n!})</td>
<td>1</td>
<td>.66</td>
<td>.5</td>
<td>.33</td>
<td>.16</td>
<td>.039</td>
<td>.011</td>
<td>.002</td>
<td>.0006</td>
<td>.00011</td>
<td>.000016</td>
<td></td>
</tr>
</tbody>
</table>

The value \(C(7) = 200\) corrects an error in [2].

It is worth noting how rapidly \(\frac{C(n)}{n!}\) is approaching zero, since it represents the probability that a randomly chosen \(n\times n\) permutation matrix will be a Costas array. If the growth rate \(C(n+1) \leq 3\cdot C(n)\) persists, it will make this probability less than \(10^{-21}\) when \(n = 32\).
Up to $n = 8$ the pictures in Figure 4.1 exhibit one representative of each of the $c(n)$ equivalence classes. (Two arrays are equivalent under the dihedral group of the square if one can be transformed into the other by any combination of rigid rotations and reflections.)
Costas arrays from 1×1 to 8×8

Figure 4.1
Figure 4.1
5. UNSOLVED PROBLEMS

Is \( C(n) \) asymptotic to some well-behaved function of \( n \)? In the following list of conjectures, proof or disproof of any of those marked OPEN would constitute significant progress on this question. (Of these, we believe question 5 may be the easiest to settle.)

-1. \( C(n) \geq 1 \) is true for infinitely many \( n \). PROVED TRUE

0. \( C(n) > 1 \) is true for all \( n > N \), for some positive integer \( N \). OPEN

1. \( C(n) > 1 \) for all \( n > 1 \). OPEN

2. \( C(n) \) is monotonic increasing. OPEN

3. \( \limsup C(n) = \infty \). That is, \( C(n) \) has an infinite subsequence which is unbounded above. PROVED TRUE

4. \( \frac{C(n)}{n!} \) is monotonic decreasing. OPEN

5. \( \frac{C(n)}{n!} \to 0 \) as \( n \to \infty \). OPEN

6. \( \frac{C(n)}{n!} \) goes monotonically to 0 as \( n \to \infty \). OPEN

7. \( \frac{C(n)}{C(n)} \to 8 \) as \( n \to \infty \). OPEN

The next three are simply existence questions.

8. Do any other singly periodic Costas arrays exist besides the ones given by the Welch construction?
(The conjectured answer to question 8 might have been YES before it turned out to be NO for \( n \leq 16 \), and NO for all odd \( n \).)

9. Do honeycomb arrays exist for infinitely many \( n \)?

10. Do any \( n \times n \) Costas arrays exist (for \( n > 1 \)) which are configurations of non-attacking queens?

For (9.) we conjecture YES, and for (10.) NOT SO SURE.
REFERENCES


APPENDIX I.  SOME BASIC POLYNOMIAL ALGEBRA OVER FINITE FIELDS

Lemma 1.  (Fermat's "Little" Theorem)

For every element \( a \in \text{GF}(q) \), \( a^q = a \) in \( \text{GF}(q) \).

Proof.  i) \( 0^q = 0 \).

ii) The non-zero elements of \( \text{GF}(q) \) form a group of order \( q-1 \) under multiplication.  Hence \( a^{q-1} = 1 \) for all \( a \neq 0 \) in \( \text{GF}(q) \).

Thus \( a^q = a \) for all \( a \in \text{GF}(q) \).  ■

Lemma 2.  Let \( f(x) = a_0x^n+a_1x^{n-1}+a_2x^{n-2}+\ldots+a_{n-1}x+a_n \) be a polynomial over \( \text{GF}(q) \).

(That is, \( a_i \in \text{GF}(q) \) for \( i = 0,1,2,\ldots,n \).)  Then \( (f(x^{1/q}))^q = f(x) \).

Proof.  If there is a field \( \text{GF}(q) \) of \( q \) elements, then \( q = p^k \) for some prime \( p \) and some positive integer \( k \), and the additive structure of \( \text{GF}(q) \) is that of \( k \)-dimensional vectors modulo \( p \).  It is easily shown that the binomial coefficient \( \binom{q}{r} \) satisfies \( \binom{q}{r} \equiv 0 \pmod{p} \) for all \( r, 1 \leq r \leq q-1 \).  Hence, over \( \text{GF}(q) \),

\[
\binom{q}{r} = \binom{q}{r}^q = u^qv^q.
\]

Then \( f(x)^q = (a_0x^n)^q+(a_1x^{n-1})^q+(a_2x^{n-2})^q+\ldots+(a_{n-1})^q+(a_n)^q = f(x^q) \) over \( \text{GF}(q) \), where we have used \( a_i^q = a_i \) from Lemma 1.  From \( f(x)^q = f(x^q) \), the result immediately follows.  ■

Lemma 3.  Let \( f(x) = (x-\alpha)(x-\beta) \) be the factorization in \( \text{GF}(q^2) \) of the quadratic polynomial \( f(x) = x^2+Ax+B \) which is irreducible over \( \text{GF}(q) \).  Then \( \alpha = \beta^q \) and \( \beta = \alpha^q \).

Proof.  By Lemma 2, \( f(x^q) = f(x)^q = (x-\alpha)^q(x-\beta)^q = (x^q-\alpha^q)(x^q-\beta^q) \).  Thus \( f(x) = f(x^{1/q})^q = (x-\alpha^q)(x-\beta^q) \), and the roots \( \alpha^q, \beta^q \) of \( f(x) \) must be the same (in some order) as \( \alpha, \beta \).  But if \( \alpha^q = \alpha \) (and \( \beta^q = \beta \)) then \( \alpha \) (as well as \( \beta \)) is a root of \( x^q-x = 0 \), which, as an equation of degree \( q \), has at most \( q \) roots in \( \text{GF}(q^2) \).  By Lemma 1, all \( q \) elements of \( \text{GF}(q) \) are roots of \( x^q-x = 0 \), so that
α (and β) are already in GF(q), and f(x) would factor over GF(q) into linear factors (x−α) and (x−β), contradicting the hypothesis that f(x) is irreducible over GF(q). Hence $\alpha^q = \beta$ and $\beta^q = \alpha$. ■

**Theorem.** If $f(x) = x^2 - x + g$ is an irreducible polynomial over GF(q) whose roots are primitive elements of GF($q^2$), then g is a primitive element of GF(q).

**Proof.** Write $f(x) = (x-\alpha)(x-\beta)$ with $\alpha, \beta \in$ GF($q^2$). By Lemma 3, $\beta = \alpha^q$. Then $g = \alpha \beta = \alpha^{q+1}$. Let r be the smallest positive exponent such that $g^r = 1$. If $r < q-1$, then $r(q+1) < (q-1)(q+1) = q^2 - 1$, and we have $1 = g^r = \alpha^{r(q+1)}$, contradicting the assumption that $\alpha$ is a primitive element of GF($q^2$). ■

**Corollary.** The roots of $f(x) = x^2 - x - 1$ over GF(q) fail to be primitive elements of GF($q^2$) unless either $q = 2$ or $q = 3$.

**Proof.** If $f(x)$ is reducible over GF(q), its roots are in GF(q), and cannot be primitive in GF($q^2$). If $f(x)$ is irreducible over GF(q), then the Theorem applies, and $-1$ must be a primitive element of GF(q). Since $(-1)^2 = 1$, we find $q-1 \leq 2$, so that $q \leq 3$. Thus GF(2) and GF(3) are the only candidates. It turns out that $f(x) = x^2 - x - 1$ is primitive over GF(2) and over GF(3). ■

**Exercises.**

1. Let $f(x) = (x-a_1)(x-a_2)...(x-a_k)$ be the factorization, in GF($q^k$), of the polynomial $f(x)$ which is irreducible of degree $k$ over GF(q). Then the set of roots, $\{a_1, a_2, a_3, ..., a_k\}$, is the same set as $\{a_1^q, a_1^{q^2}, ..., a_1^{q^{k-1}}\}$.

2. Suppose $f(x) = (x-a_1)(x-a_2)...(x-a_k)$ is an irreducible polynomial of degree $k$ over GF(q). Show that all the roots $a_1, a_2, ..., a_k$ have the same primitivity $t$, as elements of GF($q^k$). That is, $a_i^t = 1$ for $i = 1, 2, ..., k$, while $a_i^s \neq 1$ for $1 < s < t$. Moreover, $t$ is an integer factor of $q^k - 1$, and is not an integer factor of $q^m - 1$, for any $m \in \{1, 2, ..., k-1\}$.
APPENDIX II. ALGEBRAIC EXCLUSIONS AND TERMINAL CASES

a. Conditions Which Prevent Adding a Corner Dot to a Golomb Construction

Adding a dot at (0,0) or (0,q-1) or (q-1,0) or (q-1,q-1) is prevented if and only if the $G_2$ construction contain dots at $(a,b)$, $(x,y)$, and $(a+x,b+y)$. In this case, a dot cannot be added in the same quadrant as the midpoint between $(a,b)$ and $(x,y)$.

When $a + b = 1$ and $a + b = 1$, we have $a + a + b + b = 0$ and $a + a + b + b = 0$.

Let $k$ be the number (coprime to $q-1$) such that $\beta = \alpha^k$. Then we have $a - x = a \frac{q-1}{2} b + (b - y)$, which holds if and only if $\frac{q-1}{2} = (kb-a)-(ky-x)$.

These conditions give us the following tests.

TEST(0,0): A dot cannot be added at (0,0) if and only if there exist dots $(x,y)$ and $(a,b)$ in $G_2$ such that:
1. $\frac{q-1}{2} = (kb-a)-(ky-x)$
2. $a + x < q-1$
3. $b + y < q-1$

TEST(0,q-1): A dot cannot be added at (0,q-1) if and only if there exist dots $(x,y)$ and $(a,b)$ in $G_2$ such that:
1. $\frac{q-1}{2} = (kb-a)-(ky-x)$
2. $a + x < q-1$
3. $b + y > q-1$

TEST(q-1,0): A dot cannot be added at (q-1,0) if and only if there exist dots $(x,y)$ and $(a,b)$ in $G_2$ such that:
1. $\frac{q-1}{2} = (kb-a)-(ky-x)$
2. $a + x > q-1$
3. $b + y < q-1$
TEST(q-1,q-1): A dot cannot be added at (q-1,q-1) if and only if there exist dots (x,y) and (a,b) in \( G_2 \) such that:

1. \( \frac{q-1}{2} = (kb-a)-(ky-x) \)
2. \( a+x > q-1 \)
3. \( b+y > q-1 \)

b.1 \( T_1 \) never works for \( q = 2^k > 4 \)

Proof: Whenever \( \alpha^i \beta^j = 1 \), the simplified binomial theorem over \( GF(2^k) \) tells us that \( \alpha^{2i} \beta^{2j} = 1 \). Having dots at \((i,j)\) and \((2i,2j)\) prevents adding a corner dot in the quadrant that contains \((i,j)\). For \( n = 6 \) all the \( G_2 \) constructions have dots in all four quadrants by inspection. For \( n = 2m > 6 \), having dots in all quadrants is a property of all \( n \times n \) Costas arrays, as a consequence of the fact that for \( m > 3 \) any two \( m \times m \) Costas arrays must have a difference in common. (This fact is proved in [11].)

b.2 \( T_0 \) never works when \( q = 3^k \)

Proof: There will be a dot at the exact center of the \((q-2) \times (q-2)\) array because

\[
\frac{q-1}{2} = \frac{q-1}{2} = -1, \text{ and in } GF(3^k), (-1)+(-1) = 1.
\]

Therefore we cannot add dots at both \((0,0)\) and \((q-1,q-1)\), nor at both \((0,q-1)\) and \((q-1,0)\).

b.3 \( T_0 \) never works when \( q \equiv 1 \pmod{6} \)

Proof: Let us write \( q = 6m+1 \), and let \( \alpha \) and \( \beta \) be primitive in \( GF(q) \). We have

\[
\alpha^{3m} = \beta^{3m} = \alpha^{-3m} = \beta^{-3m} = -1, \text{ while } \alpha^m \neq -1 \neq \beta^m.
\]

We see that \( \alpha^m, \alpha^{-m}, \beta^m, \beta^{-m} \) are all primitive sixth roots of unity; that is, roots of \( x^2 - x + 1 = 0 \). Therefore either

\[
\alpha^m + \beta^m = 1 \text{ and } \alpha^{-m} + \beta^{-m} = 1, \text{ or else } \alpha^m + \beta^{-m} = 1 \text{ and } \alpha^{-m} + \beta^m = 1.
\]

(The two distinct primitive sixth roots of unity sum to 1.) In either case, we cannot add dots at both
(0,0) and (q-1,q-1), nor at both (0,q-1) and (q-1,0). 

**Corollary to b.3**

The proof of b.3 shows that the $G_2$ construction will not yield a Honeycomb array when $q \equiv 1 \pmod{6}$.

**b.4** A $G_2$ construction will never contain two diagonally opposite corner dots, if $q > 7$

**Proof**: If $a^1 + b^1 = 1$ and $a^{-1} + b^{-1} = 1$, then $a^{-1} + \frac{1}{1-a} = 1$, and $a^2 - a + 1 = 0$. If $a^1 + y^{-1} = 1$ and $a^{-1} + y = 1$ we can take $\beta = y^{-1}$ and again we find $a^2 - a + 1 = 0$. Thus in either case $a$ is a root of $a^6 - 1 = 0$. With a primitive in $GF(q)$ and $a^6 = 1$ we conclude that $GF(q)$ has at most 7 elements. 

**b.5** If a $G_2$ construction over $GF(q)$ has dots at (1,3), (3,1), and (2,-1), then $q = 8$

**Proof**: Starting with $a^3 + b = 1$ and $a^2 + b^{-1} = 1$, we have $\beta \cdot \beta^{-1} = 1 = (1-a^2)(1-a^3) = 1-a^2-a^3+a$. Thus $a^3 = a+1$, whence $a+b = 0$. Now using $a+b^3 = 1$, $a^3 + b = 1$, and $a = -b$ we deduce that $-1 = 1$, which means that $q = 2^k$ and $a = \beta$. When $a$ is primitive in $GF(q) = GF(2^k)$, $a^3 = a+1$ implies that $a^7 = 1$, and $q = 8$. 

**b.6** If a $G_2$ construction has dots at (1,1), (2,3), and (3,2), over $GF(q)$, then $q = 5$

**Proof**: With $a+b = 1$ and $a^2 + b^3 = 1$, we have $(1-b)^2 + b^3 = 1 = 1-2b+b^2 + b^3$, and therefore $b^2 + b - 2 = 0 = (b-1)(b+2)$. Since $\beta$ is primitive, $\beta \neq 1$, so that $\beta = -2$ and $a = 3$. At this point we have also gained the information that $q$ must be prime, because one of its primitive roots is an integer.
Now using \( a^3 + \beta^2 = 1 \) we find that \( \alpha = -2 \) and \( \beta = 3 \), so \( -2 = 3 \). Thus \( 5 = 0 \) in \( \text{GF}(q) \), and we conclude that \( q = 5 \). 

\[ \text{b.7 If a G}_2 \text{ construction has dots at (1,2), (2,3), and (3,1) over GF(q), then } q = 5 \]

**Proof:** With \( \alpha + \beta^2 = 1 \) and \( \alpha^2 + \beta^3 = 1 \) we have \( \beta^3 - \beta^2 = \alpha - \alpha^2 \) and \( \beta^2 = 1 - \alpha \). Then \( \beta^2(\beta-1) = \alpha(1-\alpha) = \alpha \beta^2 \), and therefore \( \beta - 1 = \alpha \). This tells us that \( \alpha^2 = -1 \), so \( \alpha^4 = 1 \), and hence \( q = 5 \).

\[ \text{b.8 For } q > 9, T_4 \text{ never works unless } q \text{ is a prime whose last digit is } 1 \text{ or } 9 \]

**Proof:** Suppose \( q = p^k \) with \( k \geq 2 \), and suppose \( \alpha^2 + \alpha = 1 \) where \( \alpha \) is primitive in \( \text{GF}(p^k) \). Under these conditions \( \alpha^P \neq \alpha \).

Using the simplified binomial theorem, we have \( (\alpha^2 + \alpha)^P = 1^P = 1 = (\alpha^P)^2 + \alpha P \).

Thus, \( \alpha \) and \( \alpha^P \) are the two roots of the quadratic \( x^2 + x - 1 = (x - \alpha)(x - \alpha^P) = x^2 - (\alpha + \alpha^P)x + \alpha^P + 1 \).

We conclude that \( \alpha^P + 1 = -1 \).

In the special case \( p = 2 \) this can only happen when \( k = 2 \), so that \( q = 4 \).

For an odd prime \( p \), \( \alpha^P + 1 = -1 \) implies that \( \frac{p^k - 1}{2} = p + 1 \), which is only possible when \( k = 2 \) and \( p = 3 \), that is, when \( q = 9 \).

For \( q > 9 \) we know that \( T_4 \) cannot work with \( k \geq 2 \) because \( \alpha \) cannot then be primitive. We shall see that in some prime fields, \( T_4 \) is prevented by the nonexistence of \( \alpha \).

The quadratic formula tells us that for prime \( p > 2 \), \( x^2 + x - 1 = 0 \) has a solution \( x = \frac{-1 + \sqrt{5}}{2} \) in \( \text{GF}(p) \) if and only if \( y^2 = 5 \) has a solution \( y \) in \( \text{GF}(p) \). According to the Law of Quadratic Reciprocity, 5 is a quadratic residue of \( p > 2 \) if and only if \( p \) is a quadratic residue of 5. Thus except for \( p = 5 \), solutions to \( y^2 = 5 \) exist in \( \text{GF}(p) \) if and only if \( p \equiv 1(\text{mod } 5) \) or \( p \equiv 4(\text{mod } 5) \); that is, the last digit of \( p \) is either 1 or 9.
Comment

Checking whether $T_4$ works is made easier by b.3. When $p$ is a prime ending in 1 or 9 we will find $y$ in $\text{GF}(p)$ such that $y^2 = 5$ by looking in the log table. Then let $\alpha = \frac{-1+y}{2}$ and $\gamma = \frac{-1-y}{2}$ so that $\alpha^2 + \alpha = 1$ and $\gamma^2 + \gamma = 1$. To see if $T_4$ works it remains only to check whether one or both of $\alpha$ and $\gamma$ is primitive.

b.9 $G_5$ and $G_4$ work if and only if $T_4$ works and $q \equiv 1 \pmod{4}$

Proof: $G_5$ and $G_4$ work if and only if there exist primitive elements $\alpha, \beta$ in $\text{GF}(q)$ such that $\alpha + \beta = 1$ and $\alpha^2 + \beta^{-1} = 1$.

Given such $\alpha, \beta$ we deduce that $\beta^{-1} = (1-\alpha^2)(1-\alpha) = 1-\alpha^2 - \alpha + \alpha^3 = 1$, and hence that $\alpha^2 = \alpha+1$, $\alpha = -\beta^{-1}$, and $\alpha^{-2} + \alpha^{-1} = 1$. The primitivity of $\alpha^{-1}$ tells us that $T_4$ works. The primitivity of both $\beta^{-1}$ and $-\beta^{-1}$ tells us that $q \equiv 1 \pmod{4}$.

Conversely, assuming $T_4$ works and $q \equiv 1 \pmod{4}$, we have primitive $\gamma$ such that $\gamma^2 + \gamma = 1$. Also, $\gamma^{-1}$ primitive and $q \equiv 1 \pmod{4}$ implies that $-\gamma$ is primitive. Thus taking $\alpha = -\gamma$ and $\beta = \gamma^{-1}$ we have primitive $\alpha, \beta$ such that $\alpha^2 + \beta^{-1} = 1$ and $\alpha + \beta = 1$. $\blacksquare$