Title: Collisional Ionization as a Nonlocalized Process and the Breakdown of the Franck-Condon Approximation

Authors: Kai-Shue Lam and Thomas F. George

Performing Organization: Department of Chemistry, University of Rochester, Rochester, NY 14627

Contract or Grant Number: AFOSR-82-0046

Report Date: 1983

Number of Pages: 5

DISTRIBUTION STATEMENT: This document has been approved for public release; its distribution is unlimited.

Supplementary Notes: Journal of Physical Chemistry, Volume 87, Number 15, 1983, pages 2799-2803.

KEY WORDS: Collisonal Ionization, Nonlocality, Breakdown of Franck-Condon Approximation, Semiclassical Theory, Penning Ionization, He* + Ar

ABSTRACT: It is demonstrated by a model computation based on a semiclassical theory that in collisional ionization the Franck-Condon approximation, equivalent to the assumption that the ionization event takes place locally, does not always apply.
Collisional Ionization as a Nonlocalized Process and the Breakdown of the Franck-Condon Approximation

Kai-Shue Lam* and Thomas F. George

Department of Chemistry, University of Rochester, Rochester, New York 14627 (Received: August 20, 1962; In Final Form: October 11, 1962)

It is demonstrated by a model computation based on a semiclassical theory that in collisional ionization the Franck-Condon approximation, equivalent to the assumption that the ionization event takes place locally, does not always apply.

I. Introduction

We consider collisional ionization processes of the type

\[A^+ + B \rightarrow A + B^+ + e^- \]

usually referred to as Penning ionization.\(^1\) The conceptual picture most often used in the description of such processes hinges on the Franck-Condon (FC) or quasiclassical approximation: namely, an electron of energy \(e\) can only be emitted at the particular internuclear distance \(r\) where

\[W_a(r) = W_b(r) \] \hspace{1cm} (1)

\(W_a(R)\) and \(W_b(R)\) being the potential energy curves correlating to \(A^+ + B\) and \(A + B^+\), respectively. This picture of localized transitions, while intuitively appealing and generally useful, has never been directly verified. Indeed, many previous approaches\(^2\) to the problem of Penning ionization have preferred to adopt it as the starting point of their formulations. In this work we report on a model computation based on the He + Ar system which demonstrates explicitly the failure of the localized-transitions picture. Although this example by no means rules out the possibility (or explicitly made use of the basis set of the computation based on the He + Ar system which demonstrated explicitly the failure of the localized-transitions picture), it is perhaps useful to recall the origin of the Franck-Condon approximation, equivalent to the assumption that the ionization event takes place locally, does not always apply.

\[I = \int \text{d}r \int \text{d}R' V^*(R) V(R) \psi(R') \psi(R) \] \hspace{1cm} (2)

where

\[E_0' = E - \epsilon \] \hspace{1cm} (3)

\[\psi(R') \psi(R) \] \hspace{1cm} (4)

\[W_a(r) = W_b(r) \] \hspace{1cm} (1)

and \(V(R)\) represents the bound-continuum coupling parametrized by the electronic energy \(\epsilon\) (defined in eq 5).

Equation 3 clearly indicates the nonlocality of the potential. This potential, however, can be localized with the help of the FC approximation.\(^6\) It consists of the following: in the integration over \(\epsilon\) in eq 3, only those values of \(\epsilon\) are considered important for the \(R'\) integration at which the product \(\psi(R') \psi(R)\) is slowly varying. If the wave functions \(\psi_{12}\) are regarded as WKB wave functions, and also if \(V(R)\) is assumed to be slowly varying, the stationary-phase approximation, together with eq 4, would immediately lead to the FC resonance condition eq 1. Thus, in the \(\epsilon\) integral, \(\epsilon\) can be regarded as a function of \(R\) (given by eq 1) in the product \(V_{12}(R) V(R)\). By virtue of the completeness of the set \(\{\psi(E,R)\}\) the rest of the integral leads to the delta function \(\delta(R - R')\) and localization is finally achieved through the \(R'\) integration. It therefore appears that any theory which employs a width factor \(\Gamma(R) = \text{Re} \langle \psi(R)||V(R)||\psi(R) \rangle\) in a complex potential has already implicitly (or explicitly) made use of the FC approximation: in that a differential-integral equation (involving a nonlocal potential) has been reduced to a differential equation (involving only a local, though complex, potential).

Our approach is to avoid using the basis set of the electronic Hamiltonian \(H_{el}\) leading to eq 2 and thus bypass using the FC approach in its early stage. Instead, a basis set consisting of eigenfunctions of \(H_{el}\) (the adiabatic representation) is chosen, with the result that a simpler equation consisting of nonlocality only for \(\epsilon\) (eq 24) is obtained. This equation is simpler in the sense that the kernel \(K(\epsilon,\epsilon')\) of the time-independent Schrödinger equation is separable. We have shown previously\(^11\) that this important feature allows eq 24 to be recast in the form of an integral equation of a relatively simple type, thus permitting a solution without introducing any localization approximation a priori. Interesting as it is, we will, however, not pursue this path here. Our rationale in that work is the following: having established a formalism in which a localization approximation is not incorporated in the first place, we have the option of carrying it through with or without making that approximation at some later stage, and make a comparison. This will be done via a perturbative solution of eq 24. Our purpose, then, is to investigate whether a localization condition (either of the form of eq 1 or of some other general form \(\epsilon = \epsilon(R)\)) will suffice for the solution of eq 24.

Our computation is based on a general semiclassical theory of collisional ionization developed earlier,\(^11\) which treats explicitly the nonlocalization of the transitions between \(W_a\) and \(W_b\). In section II, the relevant parts of this theory will be briefly reviewed (more complete derivations...
of equations presented therein can be found in ref 11. Section III will deal with the model computation and its results; and finally, in section IV, we will discuss some pertinent problems for future investigations.

II. Theory

A diabatic basis set \(|\phi_d(t), \Phi_s(t), \alpha_s \rangle\) corresponding to \(W_1\) and \(W_2\) are assumed such that the following conditions are satisfied:

\[
\begin{align*}
(\phi_d(t) | H | \phi_d(t), \alpha_s) &= V_1(t) \\
(\phi_s(t), \alpha_s | H | \phi_s(t), \alpha_s) &= (W_1 + \alpha) \delta_{\alpha_1} \\
(\phi_d(t) | H | \phi_s(t)) &= W_2(t) \\
(\phi_d(t) | \phi_s(t), \alpha_s) &= 0 \\
(\phi_d(t) | \phi_s(t), \alpha_s) &= 0
\end{align*}
\]

with \(H\) being the total Hamiltonian involving electronic coordinates. Equation 5 defines the bound-continuum configuration-interaction coupling \(V_1(t)\), while eq 6 implies that there are no couplings between the different continuum states. (The quantization volume of the system will eventually be allowed to approach infinity so that the discrete indices will become continuum ones.) Equations 8 and 9 specify the condition of the absence of "velocity" \(\frac{d\alpha}{dt}\) or nonadiabatic couplings.

As discussed in ref 11, eq 5-9 are simply taken to constitute the "model" of the present theory, and questions concerning the explicit construction of the diabatic states or even their existence will not be dealt with here. The present theory also makes use of classical trajectories for the \(A-B\) relative motion (with intermolecular coordinate trajectory \(R(t)\)), so that \(V_1, W_1,\) and \(W_2\) all become explicit functions of time, as they appear in eq 5-7.

We now choose an adiabatic representation \(|\phi(t)\rangle\) in which nonadiabatic couplings do not vanish, but which comprise the exact eigenstates of \(H\):

\[
H|\phi(t)\rangle = (W_1 + \alpha)|\phi(t)\rangle
\]

These can be expanded in terms of the diabatic set:

\[
|\phi(t)\rangle = \beta_s(t)|\phi_s(t)\rangle + \phi_d(t, \alpha_s) + \sum_{\alpha_s} \tilde{\chi}_s(t, \alpha) |\phi_d(t), \alpha_s\rangle
\]

It can then readily be deduced that

\[
\begin{align*}
\tilde{\chi}_s(t) &= \frac{-\beta_s(t) V_1^\ast(t)}{\epsilon - \epsilon - i\alpha^*} \\
\beta_s(t) &= \frac{W_1(t) - \epsilon - i\Gamma_s(t)}{W_1(t) - \epsilon - i\Gamma_s(t)}
\end{align*}
\]

with the instantaneous level width given by

\[
\Gamma_s(t) = \frac{\epsilon}{\pi |\phi_s(t)|^2}
\]

where \(\epsilon\) is the energy density of continuum states and \(W_1 - \epsilon - i\Gamma_s\). Now \(|\phi(t)\rangle\) represents Franck-Condon "stationary" states, so that "wave packets" including the effects of nonadiabatic transitions between the \(|\phi(t)\rangle\) can be constructed:

\[
|\psi(t)\rangle = \sum_\alpha \gamma_\alpha(t) \exp\left[\frac{-i}{\hbar} \int_0^t dt' \left[W_1(t') + \alpha \right] \right] |\phi(t)\rangle
\]

The time-dependent Schrödinger equation then yields the equation of motion for \(\gamma_\alpha(t)\):

\[
\dot{\gamma}_\alpha(t) = -\sum_\lambda \gamma_\lambda(t) \left(\langle \phi_\lambda, \phi_\alpha \rangle e^{-i W(t') \frac{\hbar}{2}} \right)
\]

The initial condition is given by

\[
|\psi(0)\rangle = |\phi_s(0)\rangle
\]

which implies

\[
\gamma_s(0) = \beta_s^\ast(0)
\]

The transition probability for the ionization process is given by

\[
\lim_{t \rightarrow \infty} |S(t)|^2 = \gamma_s(t) \left[1 + \frac{3\Gamma_s^2(t)}{(W_1(t) - \epsilon)^2 + \Gamma_s^2(t)} \right]
\]

There is one such quantity \(S_i(L)\) for each partial wave characterized by the orbital angular momentum quantum number \(L\) of the \(A-B\) relative motion. The total differential ionization cross section (with respect to electronic energy \(\epsilon\)), \(d\sigma/d\epsilon\), is then given by

\[
d\sigma/d\epsilon = (\pi \alpha_E/\hbar^2) \sum_{L=0}^{\infty} |S_i(L)|^2
\]

where

\[
K_0^2 = 2\mu E_i/\hbar^2
\]

with \(\mu\) being the reduced mass and \(E_i\) the total collision energy of the system.

If we now make the assumption that the time variation of \(\Gamma_s\) is insignificant, i.e.

\[
|\Gamma_s| \ll |W_1|
\]

Equation 16, on passing to the continuum limit in the energy variable \(\epsilon\), can be shown to be equivalent to the following differential-integral equation for \(\gamma_s\):

\[
\gamma_s(t) + i\Gamma_s W_1(t) \frac{d\gamma_s(t)}{dt} = \frac{W_1(t) - \epsilon - i\Gamma_s}{(W_1(t) - \epsilon - i\Gamma_s)^2} \int_0^t dt' \gamma_s(t') V_1(t') e^{i W_1(t')} \frac{d\gamma_s(t)}{dt}
\]

We note that the separability of the kernel in the above equation permits it to be recast as an integral equation—a Volterra equation of the second kind. We will here, however, pursue a perturbative solution based on the assumption

\[
\gamma_s(t) \sim \beta_s^\ast(t)
\]

which is to be used in the right-hand side of eq 24. Since \(\beta_s^\ast(t)\) is a known quantity (eq 13), eq 24 reduces to a first-order ordinary differential equation. Provided that for the collision times \(t\) of interest

\[
t \ll \hbar/2\Gamma_s
\]

the solution to this differential equation is given approximately by

\[
\gamma_s(t) \approx \gamma_s(0) + \frac{i}{2(\pi \hbar)^{1/2}} \int_0^t dt' \frac{W_1(t') e^{i W_1(t') \Delta \epsilon} \Delta \epsilon}{\Gamma_s} \frac{1}{(W_1(t') - \epsilon - i\Gamma_s)^2}
\]

The integral is of a form such that the stationary-phase approximation is likely to be applicable for its evaluation. This approximation would be exact in the strict classical limit \(\hbar \rightarrow 0\), and in a great variety of collision problems...
III. Model System and Results

We apply eq 27 to the He*\(^{2}S\) + Ar Penning ionization system using the following model potential curves (all values are given in atomic units): \(^{6}\)

\[
W_{1}(R) = V_{1}(R) - E_{0} = 0.149
\]

\[
W_{2}(R) = V_{2}(R) - E_{0} = -1.51
\]

\[
V_{i}(R) = A_{i} e^{-\alpha R} - \delta_{i}(R) \phi_{i}(R)
\]

\[
\delta_{i}(R) = C_{i} R^{4} + C_{i} / R^{4}
\]

\[
\phi_{i}(R) = [1 + \exp(-(R - R_{0j}) / b)]^{-1} [1 + \beta \exp(R - R_{0j} / b)]^{-1}
\]

The advantage of the stationary-phase approximation when valid, is that the result allows a very simple model as simple as possible, in particular, as the validity of localization does not depend on the nature of \(\Gamma_{j}\).

These potential curves are shown in Figure 1 (drawn to scale). The interaction configuration coupling strength \(\Gamma_{j}\), is taken to have a constant value:

\[
\Gamma_{j} = 1.056 \times 10^{-6}
\]

This assumption of constant coupling strength may be somewhat unrealistic as \(\Gamma_{j}\) is usually taken\(^{12}\) to have an exponential dependence on \(R\). It is adopted here to render the model as simple as possible, in particular, as the validity of localization does not depend on the nature of \(\Gamma_{j}\).

Computations are made for \(d\phi_{i} / d\alpha\) (roth partial wave) for a range of values of \(\epsilon\) between 0.155 and 0.19 au according to eq 21 and 27. For a particular value of \(\epsilon\), the classical trajectory is obtained by propagation on the potential curve \(W_{2}(R)\), using Hamilton’s equations of motion. The choice of the potential surface follows as a consequence of eq 10. The initial kinetic energy \(E_{i}\) for the trajectory corresponding to a given \(\epsilon\) is then given by

\[
E_{i} = E_{f} + E_{0} - \epsilon
\]

where \(E_{i}\) is the actual initial kinetic energy with respect to the potential curve \(W_{2}(R)\). For the present computations this is chosen to be

\[
E_{i} = 0.061
\]

The reduced mass of the He–Ar system used here is given by

\[
\mu = 6631.406
\]

Propagation is initiated at the internuclear distance \(R = 20.0\) in the approaching phase and carried out until \(R \sim 20.0\) in the separating phase. Results are obtained for (i)
the direct numerical trapezoidal quadrature of eq 27, in
which case the time step size for the propagation is de-
creased until the integrated values become convergent, and
(ii) the stationary-phase case using eq 28, in which case
the time step size is taken to be 10 au. (The total time
required for the above-specified trajectory is \(\sim 1.3 \times 10^5\).)

Figure 2 shows the results for \(W_{21}\) and \(W_{21}\) as a function of
time for \(\epsilon = 0.19\) au and propagation stepsize \(\Delta t = 10\)
au.

In Figure 3, the results are presented for \(\partial^2 W L / \partial \epsilon^2\) (\(\epsilon = 0.155\) to 0.19 au) using the two methods of
computation—direct numerical quadrature and station-
ary-phase approximation. These results demonstrate
the discrepancy between the two methods, indicating
the failure of the stationary-phase approximation, and
consequently invalidating the picture of localized in-
teractions. It is, however, interesting to note the quali-
tative resemblance between the two sets of results.

IV. Discussion

The main conclusion to be drawn from this work is that
the Franck–Condon approximation (in the sense stated in
the introduction) cannot be applied indiscriminately to
bound-continuum problems, such as Penning ionization.
This implies that the convenient picture of localized
transitions in configuration space does not necessarily hold
in molecular collisions involving a continuum of energy
eigenstates. We should note, however, that, even though
strict localization (at a discrete configuration) has been
invalidated "roughly" localization may still hold because of
the factor \((\epsilon - W_{21} - i\Gamma')\) occurring in the integrand of
eq 27. But then the degree of localization is much harder
to specify than in the stationary-phase case. The strongest
statement one can make is that, since \(\epsilon - W_{21} - i\Gamma'\) \(\sim 0\)
roughly corresponds to the Franck–Condon condition eq
1, the ionizing transition rate peaks at the Franck–Condon
points. The extent of the actual "spread" of the transition
region remains quite indefinite. Hence, the Franck–Con-
don approximation, though still useful as a crude estimate
of the general vicinity of the transition region, cannot be
used as a basic premise justifying strict localization in
collision theory. Moreover, in cases where the station-
ary-phase approximation does apply, strict localization
obtains, and, as shown in section II, the Franck–Condon
approximation will predict erroneous localization points.

Our model for the theory has been chosen to illustrate,
under the most simplifying assumptions possible, the in-
adequacy of the Franck–Condon approximation. As a
consequence, some compromise to reality has been made.
One such is the assumption of the constancy of \(\Gamma\) with
respect to \(R\). Since the validity (or lack of it) of the
Franck–Condon approximation should not depend on the
detailed nature of \(\Gamma\), this assumption has been made in
the interest of arriving at the relatively simple form for
the differential–integral equation of motion (eq 24) and
the subsequent result eq 27. These would require modi-
fication if the time (or spatial) variation of \(\Gamma\) becomes
important. Hence, further work including this effect
should prove worthwhile in order to bring the model closer
to reality, although the major conclusion is not expected
to be changed.

Another worthwhile direction of further investigations
would be the nonperturbative treatment of eq 24 via the
solution of an integral equation (as mentioned in section
II), or the carrying out of the perturbative solution to
higher orders. It must be pointed out that we have not
attempted here to delineate rigorously the general criteria
of validity for the perturbative treatment used. This
problem would also appear to warrant further work.

With regard to the physical characteristics of the
problem, a natural extension is to include the spin and
propagation direction of the emitted electrons as observ-
able. This would entail enlargement of the continuum
basis set to include these degrees of freedom, and also some
detailed studies of the spin- and direction-dependent configuration-interaction coupling strengths. Finally, it is interesting to point out that, when these extra degrees of freedom are included, the problem becomes formally identical with that of molecular fluorescence in a collision context, in which the photon frequency ω, wave vector direction k, and polarization direction \hat{t} correspond to s, \hat{k} (electronic momentum unit vector), and \hat{S} (electronic spin unit vector) in the problem of collisional ionization.

Acknowledgment. This work was supported in part by the National Science Foundation under Grant CHE-8022874 and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Grant AFOSR-82-0046. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon. T.F.G. acknowledges the Camille and Henry Dreyfus Foundation for a Teacher-Scholar Award (1975-84).