Bifurcation and Stability Theory with Application to Problems of Combustion and Flame Propagation

AUTHOR(s)

B. J. Matkowsky

PERFORMING ORGANIZATION NAME AND ADDRESS

Northwestern University
633 Clark St.
Evanston, IL 60201

CONTROLLING OFFICE NAME AND ADDRESS

U.S. Army Research Office
Post Office Box 12211
Research Triangle Park, NC 27709

MONITORING AGENCY NAME AND ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)

NA

REPORT DATE

10-30-83

NUMBER OF PAGES

9

DISTRIBUTION STATEMENT (OF THIS REPORT)

Approved for public release; distribution unlimited

DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)

NA

SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)

Bifurcation, stability combustion; transition from laminar to turbulent flame propagation

ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)

We have carried out a research program in Bifurcation and Stability Theory with applications to Combustion and Flame Propagation, in which we determined both qualitative and quantitative behavior of solutions of these problems. In particular we obtained results on the transition from laminar to turbulent combustion. In our study we derived various simplified models from the general equations governing combustion, which were more amenable to mathematical analysis. The methods of bifurcation and stability were then employed on the resulting models.
Bifurcation and Stability Theory with Application to Problems of Combustion and Flame Propagation

FINAL REPORT

Bernard J. Matkowsky
October 30, 1983

U.S. Army Research Office

DAAG-29-79-C-0183
(DAAG-29-77-G-0222)

Approved for Public Release
Distribution Unlimited
We have carried out a research program in Bifurcation and Stability Theory with applications to Combustion and Flame Propagation, in which we determined both qualitative and quantitative behavior of solutions of these problems. In particular, we obtained results on the transition from laminar to turbulent combustion. In our study we derived various simplified models from the general equations governing combustion, which were more amenable to mathematical analysis. The methods of bifurcation and stability theory were then employed on the resulting models. A list of all the papers published, is appended. In addition a list of scientific personnel participating in the research program is appended.
LIST OF SCIENTIFIC PERSONNEL

Principal Investigator — Prof. B. J. Matkowsky

Associate Investigators — Prof. T. Erneux
 Prof. A. van Harten
 Prof. A. K. Kapila
 Prof. M. Matalon
 Prof. G. I. Sivashinsky

Student — D. O. Olagunju — received Ph.D.
 Thesis title — "Bifurcation and Stability of Propagating Oscillatory Flames"
LIST OF PUBLICATIONS ON A.R.O. GRANT

"Flames in Fluids: Their Interaction and Stability, accepted for publication, Combustion Science and Technology (with M. Matalon).

"Nonlinear Stability and Bifurcation in the Transition from Laminar to Turbulent Flame Propagation," accepted for publication, Combustion Science and Technology (with S. B. Margolis).

"Thermal Activation From the Fluxoid and the Voltage States of DC-Squids," accepted for publication J. Applied Physics (with E. Ben-Jacob, D. J. Bergman, Y. Imry and Z. Schuss).

END

FILMED

1-84

DTIC