AN ASSESSMENT OF RECENT RESULTS ON PSEUDO-STATIONARY
OBlique-SHOCK-WAVe R.: (U) TORONTO UNIV DOWNSVIEW
(ONTARIO) INST FOR AEROSPACE STUDIES M SHIROUZU ET AL.
UNCLASSIFIED NOV 82 UTIAS-264 AFOSR-TR-83-0924 F/G 20/4 NL
AN ASSESSMENT OF RECENT RESULTS ON PSEUDO-STATIONARY OBLIQUE-SHOCK-WAVE REFLECTIONS

by

M. Shirouzu and I. I. Glass

November, 1982

UTIAS Report No. 264
CN ISSN 0082-5255
Title: AN ASSESSMENT OF RECENT RESULTS ON PSEUDO-STATIONARY OBLIQUE-SHOCK-WAVE REFLECTIONS

Abstract:

The assumptions and criteria used in existing analyses in determining the regions and transition lines of pseudo-stationary oblique-shock-wave reflections have been re-examined in order to improve the agreement between experiments and computed data for regular (RR), single-Mach (SMR), complex-Mach (CMR) and double-Mach reflection (DMR). It is shown that the relaxation lengths for vibration and dissociation determine whether frozen or equilibrium gas transition lines are applicable. For example, at an initial temperature of 300 K and a pressure of 15 torr...
(where much previous work was done) an equilibrium gas analysis would not be required for shock Mach numbers $M < 9$ in N_2, $M < 6$ in O_2, $M < 8$ in air and $M < 3$ in CO_2. Yet the available experimental data in N_2, CO_2 and very recent results for air, which are based on the criterion (consistent with relaxation lengths) of angle δ, between the incident and reflected shock wave, do not conclusively support the frozen or equilibrium gas calculations for N_2 and air. It does support CO_2 as an equilibrium gas contrary to a previous conclusion of agreement with $\gamma = 1.29$. A new additional and necessary criterion for the transition from single to complex Mach reflection improves the agreement between analysis and experiment and is consistent with the requirements of the relaxation length and the angle δ. However, it now appears that a more accurate criterion is required for the boundary line between CMR and DMR.

A more detailed examination of the boundary-layer-displacement slope at the point of regular reflection appears to eliminate the so-called von Neumann paradox, and explains the persistence of regular reflection below the transition line for the occurrence of Mach reflection. It is also shown that at the triple point the Mach stem can vary from being perpendicular to the wedge surface in actual experiments by as much as -3.10° to 7.5°. Consequently, calculations of the triple-point-trajectory angle α on the basis that the stem is perpendicular is not always well founded. It is verified that at lower shock Mach numbers M and large wedge angles θ, the experimental evidence shows that the transition lines for SMR \rightarrow CMR and CMR \rightarrow DMR converge at a point on the RR \rightarrow MR line, contrary to a previous simplified analysis.
AN ASSESSMENT OF RECENT RESULTS
ON PSEUDO-STATIONARY OBLIQUE-SHOCK-WAVE REFLECTIONS

by

M. Shirouzu and I. I. Glass

Submitted July, 1982

November, 1982

UTIAS Report No. 264
CN ISSN 0082-5255

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFOSR)
NOTICE OF TRANSMITTAL TO DTIC
This technical report has been reviewed and is approved for public release IAW APR 190-12.
Distribution is unlimited.
MATTHEW J. KERPER
Chief, Technical Information Division
Acknowledgements

We appreciate the assistance received from Bob Deschambault in making available recent extensive UTIAS experimental data for this assessment. His data will be reported on separately.

One of us (M. Shirouzu) is grateful to the National Aerospace Laboratory, Tokyo, Japan, for making possible my research leave.

The financial assistance received from the Canadian Natural Sciences and Engineering Research Council, the U.S. Air Force under grant AFOSR 82-0096, and the U.S. Army Research Office is acknowledged with thanks.

We are pleased to thank Mrs. W. Dillon for the careful and attractive typing of our report, and Mrs. L. Quintero and Mrs. I. Krauze for their fine drafting.
Summary

The assumptions and criteria used in existing analyses in determining the regions and transition lines of pseudo-stationary oblique-shock-wave reflections have been re-examined in order to improve the agreement between experiments and computed data for regular (RR), single-Mach (SMR), complex-Mach (CMR) and double-Mach reflection (DMR).

It is shown that the relaxation lengths for vibration and dissociation determine whether frozen or equilibrium gas transition lines are applicable. For example, at an initial temperature of 300 K and a pressure of 15 torr (where much previous work was done) an equilibrium-gas analysis would not be required for shock Mach numbers $M_s < 9$ in N_2, $M_s < 6$ in O_2, $M_s < 8$ in air and $M_s < 3$ in CO_2.

Yet, the available experimental data in N_2, CO_2 and very recent results for air, which are based on the criterion (consistent with relaxation lengths) of the angle ϕ, between the incident and reflected shock wave, do not conclusively support the frozen or equilibrium gas calculations for N_2 and air. It does support CO_2 as an equilibrium gas contrary to a previous conclusion of agreement with $\gamma = 1.29$.

A new additional and necessary criterion for the transition from single to complex Mach reflection improves the agreement between analysis and experiment and is consistent with the requirements of the relaxation length and the angle ϕ. However, it now appears that a more accurate criterion is required for the boundary line between CMR and DMR.

A more detailed examination of the boundary-layer-displacement slope at the point of regular reflection appears to eliminate the so-called von Neumann paradox, and explains the persistence of regular reflection below the transition line for the occurrence of Mach reflection.

It is also shown that at the triple point the Mach stem can vary from being perpendicular to the wedge surface in actual experiments by as much as -3.0° to 7.5°. Consequently, calculations of the triple-point-trajectory angle χ on the basis that the stem is perpendicular is not always well founded.

It is verified that at lower shock Mach numbers M_s and large wedge angles θ_w, the experimental evidence shows that the transition lines for SMR ≠ CMR and CMR ≠ DMR converge at a point on the RR ≠ RR line, contrary to a previous simplified analysis.
Contents

Acknowledgements ii
Summary iii
Notation v
1. INTRODUCTION 1
2. ANALYSES 2
 2.1 Method of Calculations 2
 2.2 Role of Relaxation Lengths 2
3. RESULTS AND DISCUSSIONS 5
 3.1 Comparison of Experimental and Calculated Results for δ 4
 3.2 Effect of Variation of Mach-Stem Angle at Triple Point from being Perpendicular to Wedge Surface 6
 3.3 A New Additional Criterion for Transition from SMR to CMR 6
 3.4 Persistence of Regular Reflection (RR) into the Region of Mach Reflection (MR) – von Neumann’s Paradox 8
4. CONCLUSIONS 9
REFERENCES 9
TABLES
FIGURES
APPENDIX A: COMMENT ON PERFECT CO2
APPENDIX B: THREE-SHOCK THEORY
APPENDIX C: EFFECT OF SLIPSTREAM THICKNESS
APPENDIX D: COMMENT ON TRANSITION CRITERION FOR CMR TO DMR
APPENDIX E: SOME FUTURE STUDIES
<table>
<thead>
<tr>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>argon</td>
</tr>
<tr>
<td>CMR</td>
<td>complex Mach reflection</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>Cₚ</td>
<td>specific heat at constant pressure</td>
</tr>
<tr>
<td>Cᵥ</td>
<td>specific heat at constant volume</td>
</tr>
<tr>
<td>DMR</td>
<td>double Mach reflection</td>
</tr>
<tr>
<td>Eₜᵥib</td>
<td>energy of vibrational modes</td>
</tr>
<tr>
<td>h</td>
<td>specific enthalpy</td>
</tr>
<tr>
<td>I</td>
<td>incident shock wave</td>
</tr>
<tr>
<td>K</td>
<td>kink</td>
</tr>
<tr>
<td>L</td>
<td>distance from wedge corner to incident shock wave along horizontal line</td>
</tr>
<tr>
<td>L₁</td>
<td>distance from wedge corner to kink or second triple point along horizontal line</td>
</tr>
<tr>
<td>M</td>
<td>Mach number</td>
</tr>
<tr>
<td>M, M'</td>
<td>Mach stems</td>
</tr>
<tr>
<td>Mₛ</td>
<td>Mach reflection</td>
</tr>
<tr>
<td>Mₛ¹T</td>
<td>incident shock wave Mach number</td>
</tr>
<tr>
<td>M₂K</td>
<td>flow Mach number in region 2 relative to kink</td>
</tr>
<tr>
<td>M₂T</td>
<td>flow Mach number in region 2 relative to triple point</td>
</tr>
<tr>
<td>NR</td>
<td>no reflection</td>
</tr>
<tr>
<td>N₂</td>
<td>nitrogen</td>
</tr>
<tr>
<td>O₂</td>
<td>oxygen</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
</tr>
<tr>
<td>P</td>
<td>gas constant</td>
</tr>
<tr>
<td>R</td>
<td>reflected shock waves</td>
</tr>
<tr>
<td>R, R'</td>
<td>regular reflection</td>
</tr>
<tr>
<td>RR</td>
<td>slipstreams</td>
</tr>
<tr>
<td>S, S'</td>
<td>single Mach reflection</td>
</tr>
<tr>
<td>S₁MR</td>
<td>temperature</td>
</tr>
<tr>
<td>T</td>
<td>triple points</td>
</tr>
<tr>
<td>T, T'</td>
<td>flow velocity</td>
</tr>
<tr>
<td>u</td>
<td>velocity of incident shock wave relative to laboratory frame</td>
</tr>
</tbody>
</table>
INTRODUCTION

When a planar shock wave collides with a sharp compressive corner, four different types of reflection take place as a result of the shock-wave reflection and the deflection of the shock-induced flow (Refs. 1–4). The four types are called regular reflection (RR), single-Mach reflection (SMR), complex-Mach reflection (CMR), and double-Mach reflection (DMR). The latter three reflections as a group are called Mach reflection (MR). The two types, RR and SMR, which occur also in steady supersonic flows were first noticed by E. Mach in 1878 (Ref. 5). Much later, CMR and DMR were discovered by Smith (Ref. 6) in 1945 and White (Ref. 7) in 1951, respectively, while working in shock-tube flows. The four types are illustrated schematically in Fig. 1.

The simplest type of reflection, RR, is characterized by two shock waves, an incident shock wave, I, and a reflected shock wave, R, and their point of intersection, P, on the surface of the wedge. Depending on the wedge angle ϕ_0 and the incident shock Mach number M_s, the intersection point of the two shock waves, P, detaches from the wedge surface and gives rise to MR. In MR a new shock-wave system appears including Mach stem M, triple point T, and slipstream (or contact surface) S. In SMR the curvature of the reflected shock wave is smooth. In CMR a kink K appears in the reflected shock wave with a narrow region of curvature reversal. In order for the kink to exist, a band of compression waves must converge in the region behind the reflected shock wave at the kink. This band is usually too weak to be seen in actual interferograms. In DMR the band of compression waves converges to a second Mach stem M\textprime, the kink becomes a second triple point T\textprime and a second slipstream appears.

Several criteria have been proposed to define the transition between RR and MR. von Neumann (Ref. 8) proposed the detachment criterion, where transition takes place (see Fig. 2) when the wedge angle ϕ_0 is decreased to a point where it forces δ_2 to exceed the maximum deflection angle δ_{2m} (Ref. 9). This criterion is sometimes called the von Neumann criterion. A mechanical-equilibrium criterion was proposed by Henderson and Lott (Ref. 10) on the basis that transition can only occur smoothly without discontinuous changes in pressure. This criterion can be formulated as $\delta_1 - \delta_2 = \phi_3 = 0^\circ$. These criteria can best be illustrated by using pressure-deflection (p, δ) shock polars as shown in Fig. 3. The reflected-shock polar R corresponds to transition according to the detachment criterion. The state behind the reflected shock wave jumps from point A, which corresponds to a RR state, to point B, which corresponds to a MR state. Consequently, there is a pressure jump during the transition. The polar R' corresponds to transition according to the mechanical-equilibrium criterion. The state behind the reflected shock wave comes along the p/p_0 axis from below as the wedge angle decreases in the RR region. At point C the transition takes place and RR turns smoothly into MR. After the transition, the state behind the reflected shock wave goes along the strong-shock portion of the shock wave to the right. Further details are given in Ref. 1. These criteria can be expressed in another way as follows. The detachment criterion is the limit for the two-shock theory to have solutions and the mechanical-equilibrium criterion is the limit for the three-shock theory to have solutions. In other words, the mechanical-equilibrium criterion corresponds to $\phi < 0^\circ$; the mechanical-equilibrium criterion in stationary supersonic flows. One more criterion was suggested by Hornung et al (Ref. 11). Their criterion is called the sonic criterion because the transition takes place when the sonic point D (where the flow behind the reflected shock wave is sonic) on the reflected shock wave R'' coincides with the p/p_0 axis, as shown in Fig. 3. This criterion, however, gives a transition point which is too close to the point of detachment that it cannot be resolved experimentally.

The first precise transition-boundary map in a (M_s-N_{ω}) or (M_s-O_{ω}) plane based on the two-shock theory, the three-shock theory and the transition criteria described above was given by Ben-Dor and Glass for N_2 and Ar (Refs. 1, 2). Ando and Glass also gave a transition-boundary map for CO_2 (Ref. 13). Ben-Dor and Glass originally suggested, from a comparison between experiments and calculations in the transition-boundary maps that in the range of their data N_2 should be treated as an equil- librium gas and Ar as a frozen gas ($\gamma = 1.667$). Ando and Glass, on the other hand, concluded that a fictitious perfect-gas model with $\gamma = 1.290$ for CO_2 is the most appropriate for that gas. Although the transition-boundary maps provide very useful information for practical applications, it must be concluded that no apparent agreement with experiments is accidental. In reality, only transition boundaries based on a frozen flow ($\gamma = 1.667$ for Ar and $\gamma = 1.40$ for N_2, O_2, air and CO_2) and equilibrium flow are consistent with relaxation length concepts. The actual experimental data does not agree with either model in transition-boundary maps. Consequently, it must be concluded that better criteria for the SMR # CMR and CMR # DMR transitions must be found, which would hold for all gases tested to date.

A much better and fundamental assessment can now be given, whether a flow is in equilibrium or not, through the appropriate relaxation length as represented by the angle ϕ between the incident and reflected waves rather than by the secondary standard deviation ω or ω_2 model. The good point in this is the conclusion by Ando and Glass (Ref. 13) that the fictitious perfect-gas ($\gamma = 1.290$) model for the M_s-N_{ω} plot is the one that agrees best for CO_2 over the range $1 < M_s < 10$. However, a detailed examination of ϕ over this range shows that the flow is in vibrational equilibrium because the vibrational relaxation lengths for N_2, 3 are all too small (< 1 mm). On the other hand, for Ar, N_2, O_2 and air, this shock-tube data, by and large, can be considered as consistent with perfect-gas (frozen) states. The above leaves little doubt that even more precise SMR # CMR and CMR # DMR criteria are still required. A new necessary (but not sufficient) condition for SMR # CMR transition is presented which improves the agreement with experiment and is consistent with relaxation lengths. It is also shown that the experimental data (Refs. 13–16) do not agree with the CMR # DMR transition line at lower M_s and large ω. In fact, the two lines merge where the SMR # CMR transition line cuts the RR MR line. Basically, this agrees with the fact that the distance between the two triple points T and T' does not remain constant but vanishes at the point of
intersection of the foregoing three transition lines.

For nonstationary shock reflections, experimental results show that transition occurs in accordance with the detachment criterion. Experiments also show that RR persists beyond the limit of the detachment criterion. This persistence has been called the von Neumann paradox. Hornung et al. (Ref. 11) suggest that it may be explained in terms of the displacement thickness of the boundary layer on the wedge surface. Ben-Dor et al. (Ref. 12) showed that a persistent hysteresis loop exists in the RR * MR transition in experiments which depend on whether \(\omega_0 \) is increased or decreased for a given \(M_i \). The reason for this persistence is still unclear and will be discussed in Section 3.4. Once RR terminates, three different types of Mach reflection can occur in nonstationary flows. White (Ref. 7) noticed that CMR and DMR will occur when the flow behind the reflected shock wave becomes supersonic in a frame of reference attached to the triple point \(T \) (i.e., \(M_{2T} < 1 \), Fig. 2). Henderson and Lozzi (Ref. 10) suggest that a band of compression waves must exist in a CMR and these compression waves converge to a shock wave, the second Mach stem, to form a DMR when \(M_{2K} > 1 \). The criteria for transition from SMR to CMR and from CMR to DMR, respectively, are taken as \(M_{2T} > 1 \) and \(M_{2K} > 1 \).

It is now also quite certain that the von Neumann paradox can be explained on the basis of the viscous boundary-layer-displacement thickness at the reflection point \(P \) of RR.

Some useful discussions on the effect of Mach-stem curvature and its influence on calculating precise values of the triple-point-trajectory angle are given.

Comments are also presented in the appendices on the nature of the solutions of the three-shock theory, the effect of slipstream thickness and the transition CMR * DMR.

2. ANALYSES

2.1 Method of Calculations

The basic equations and assumptions used in the present calculations are the same as those used by Ben-Dor (Ref. 3) unless, in some cases, the assumptions and boundary conditions are changed to evaluate their effects on the solutions. The method employed for the calculations is briefly described below.

The phenomena are assumed to be pseudo-stationary and all the velocities in the equations below are those relative to a reference frame attached to a point which moves with a constant velocity. The reference point is the reflection point \(P \), in RR, and the triple point \(T \), in MR, respectively (see Fig. 2). Each region which is divided by shock waves and a slipstream is designated by \(0 \) to \(3 \), as shown in Fig. 2. The physical quantities on both sides of each shock wave in the vicinity of the reference point satisfy the following equations:

Conservation of tangential velocity:

\[
\rho_i u_i \tan \theta_i = \rho_j u_j \tan (\theta_j - \theta_i)
\]

Continuity:

\[
\rho_i u_i \sin \theta_i = \rho_j u_j \sin (\theta_j - \theta_i)
\]

Normal momentum:

\[
p_i u_i^2 \sin^2 \theta_i = p_j u_j^2 \sin^2 (\theta_j - \theta_i)
\]

Energy:

\[
h_i + \frac{1}{2} u_i^2 \sin^2 \theta_i = h_j + \frac{1}{2} u_j^2 \sin^2 (\theta_j - \theta_i)
\]

where \(i \) and \(j \) are the upstream and downstream values, respectively.

In the case of regular reflection, or the two-shock theory, two sets of equations for \(i = 0 \), \(j = 1 \) and \(i = 1 \), \(j = 2 \) are solved under the boundary condition \(\theta_1 = \theta_2 \). This means that the direction of the flow behind the reflected shock wave is along the wedge surface. The physical validity of the boundary condition will be discussed later in Section 3.4. In the case of Mach reflection, or the three-shock theory, three sets of equations for \(i = 0 \), \(j = 1 \); \(i = 1 \), \(j = 2 \); and \(i = 0 \), \(j = 3 \) (\(i \) is called \(\theta_i \) in this case) are solved under the boundary conditions \(\theta_3 = \theta_1 - \theta_2 \) and \(\theta_2 = \theta_3 \), which mean that the flows are parallel and the pressures are identical on both sides of the slipstream. In the case of MR, it is also assumed that the Mach stem is perpendicular to the wedge surface, which is reasonable but not precise experimentally. This assumption will be discussed in Section 3.2. The boundary conditions \(\theta_3 = \theta_1 - \theta_2 \) is also discussed in Appendix C. The computer program used to solve these sets of equations for obtaining the transition boundaries in the \((M_2 - \theta_2) \) or \((M_3 - \theta_3) \) planes is shown in Ref. 30.

2.2 Role of Relaxation Lengths

When a shock wave is propagated through a gas, the translational degrees and rotational degrees of freedom of the gas molecules are excited to the new state of equilibrium of some new mean-free-paths, which is the thickness of a shock wave. The other internal degrees of freedom, however, take a longer time to reach equilibrium. In analyses of gasdynamic phenomena including shock waves, the role of relaxation lengths is very important. That is, if the relaxation length of an internal degree of freedom is much longer than a characteristic length of the phenomenon, the internal degree of freedom can be treated as frozen at the initial state. If an internal degree of freedom whose relaxation length is considerably shorter than a characteristic length of the phenomenon it can be assumed to be in equilibrium immediately behind the shock wave. The gas is in nonequilibrium when the relaxation length and the characteristic length are in between the two extreme cases of frozen and equilibrium flow.

In the problem of oblique-shock-wave reflections, the flow Mach number at the second triple point is used as a criterion for the transition from CMR to DMR. Therefore, the distance between the first triple point \(T \) and the second triple point \(T' \) (Fig. 1) can be considered as a characteristic length since the state at the second triple point depends on the relaxation process which begins at the incident shock wave. Consider the
angle \(\delta \) (Fig. 10), which is the angle between the incident shock wave and the reflected shock wave. If the latter is curved then a tangential line is drawn at the triple point in order to measure \(\delta \). In this case, the length of the portion of the reflected shock wave required to draw a tangential line may be considered as another characteristic length. Define a practical resolved length on a photograph. (Practical means that it is different from the usual resolution determined from the ability to separate two close points.) The practical resolved length depends on whether the photograph is an interferogram, schlieren record or a shadowgram, and generally it is harder to see the exact position or direction of a shock wave on an interferogram than on a schlieren record or a shadowgram. It is reasonable to choose 1 mm as a practical resolved length on an interferogram under the conditions of the experiments in the present study.

Strictly, it is not possible to determine one single characteristic length for all phenomena of shock-wave reflections. The measurement of an angle has its characteristic length, which may be the shortest one, and the criterion for transition in the internal Mach number from CMR and DMR has another characteristic length, which may be the longest one in the present discussion. The two characteristic lengths differ by a factor of about 10 in a typical case. If the relaxation length has an intermediate value between these two characteristic lengths, the phenomena cannot be analysed by the simplified method used in the present report, which assumes the internal degrees of freedom as being either in equilibrium or frozen. It is reasonable to assume that the solution of this case lies between the two extreme cases.

The characteristic lengths have an uncertainty factor of about 10. It should be recalled that the relaxation process itself does not have a precise length for it takes a considerably longer distance than the relaxation length [defined as \((1 - 1/e)\) of the final value] to reach the final equilibrium state. This does not mean that an analysis based on relaxation length is uncertain. As discussed later in this section, the relaxation lengths vary easily by a factor of \(10^3 \sim 10^7\) between \(M_s = 2\) and \(M_s = 10\) under the same initial conditions, which is much greater than the uncertainty of the characteristic length and the relaxation process. In the discussions which follow, a characteristic length of 1 mm is chosen. This is essential as the most quantitative discussion in the present report is based on the values of various angles. Since the relaxation process has a finite length, it is true that the angle must be that of the frozen-gas case in the infinitesimal vicinity of the intersection point of two shock waves. It is not possible, however, to measure the angle so close to the intersection point. In an actual measurement, at least 1 mm of a shock wave is required to measure an angle. Consequently, the 6 and other angles measured are those between a tangential line in a 1 mm region when the shock wave is curved. Consequently, whether or not an actual transition of an internal degree of freedom from the frozen to the equilibrium state takes place in some finite region over the transition Mach number, is determined from the condition, whether or not its relaxation length is longer than this characteristic length.

In the present report, the frozen and equilibrium-gas assumptions are defined as follows. The frozen-gas assumption means that only the translational and rotational degrees of freedom are excited to their equilibrium values and that the internal degrees of freedom are all frozen at their initial states. That is, \(\gamma = 1.667\) for Ar and \(\gamma = 1.40\) for \(N_2\), \(O_2\) and also for \(CO\) (see Appendix A). As discussed later in this section, the internal degrees of freedom of the gases considered, other than the vibrational degrees, can be assumed as frozen at their initial states in the range of the experiments, except for high Mach numbers for \(CO\), since the relaxation lengths of the internal degrees are much longer than the defined characteristic length of the phenomena. Therefore, in this analysis only vibrational excitation is the additional internal degree of freedom required for the calculation of equilibrium-gas properties, as compared with those for a frozen gas. A fictitious perfect-gas case, which has a constant \(\gamma\) of 1.29 for \(CO\), is also computed, even though it has no physical significance (see Appendix A). Nevertheless, the agreement of the \(CO\) data (experimental and numerical) in the \((M_2-M_1)/s\) or \((M_2-M_0)/s\) planes is excellent by accident and indicates the need for better criteria for SMR \(\neq\) CMR and CMR \(\neq\) DMR transition lines.

Figure 4 shows the vibrational relaxation length of \(CO\) (Ref. 17) in region 1 (the region behind the incident shock wave) at the initial conditions \(P_0 = 15\) torr and \(T_0 = 300\ K\). The pressure, temperature and flow velocity in region 1 which are based on the frozen-gas assumption \((\gamma = 1.40)\) are used in the calculation of the relaxation lengths. The relaxation length is 1 mm at \(M_s = 3\). Therefore, \(CO\) is considered to change its behaviour from a frozen gas to an equilibrium gas in a certain region at \(M_s = 3\). Ando (Ref. 14) discussed the vibrational relaxation of \(CO\) in his paper. He misinterpreted, however, the pressure behind a shock wave as an initial pressure when referring to the experimental results of Gaydon and Hurle, for example. Consequently, he obtained extremely correct results and concluded that the vibrational degrees of freedom of \(CO\) are frozen at their initial states under the conditions of his experiments.

Figure 5 shows an interferogram for \(CO\), at \(M_s = 2.04\), \(P_0 = 50\) torr and \(T_0 = 297.3\ K\) taken by Ando (Ref. 14). A relaxation process behind the incident shock wave can be seen clearly. The vibrational relaxation length at \(M_s = 2.04\) is predicted to be about 4 mm according to Fig. 4. If the difference in the initial pressures between the case shown in the interferogram and in Fig. 4 (which are 50 torr and 15 torr, respectively) is taken into account, the relaxation length in the case of the interferogram is predicted to be about 1.3 mm. The relaxation length behind the incident shock wave in Fig. 5 is measured as 1.7 mm, which is in quite good agreement with the prediction.

The dissociational relaxation length of \(CO\), for the same initial conditions as Fig. 4 is about 70 times longer than its vibrational relaxation length and is about 2 mm at \(M_s = 10\) (Ref. 17). There might be some effect of dissociational excitation near \(M_s = 10\) on the transition boundaries and these would have to be included for initial conditions in calculating the boundaries.
Figure 6 shows the vibrational relaxation length of \(N_2 \) (Refs. 18, 19). The initial conditions are the same as Fig. 4 and the calculation of \(p_1, T_1 \) and \(u_1 \) are based on a frozen-gas assumption \((\gamma = 1.4)\). Although there are two experimental curves, it is probable that at Mach numbers \(M_2 \approx 10 \) the vibrational excitation affects the flow phenomena.

Figure 7 shows an interferogram of \(N_2 \) taken by Ben-Dor (Ref. 4) at \(M_2 = 8.06 \), which is the highest Mach number in his \(N_2 \) experiments. The initial pressure is 5.1 torr and temperature is 298.2 K. A relaxation process is seen behind the incident shock wave. (It is easier to see if a tangent line is drawn along a fringe.)

The dissociational relaxation length in the case of \(N_2 \) is much longer than its vibrational relaxation length like other gases. The dissociational relaxation length under the initial conditions of Fig. 6 is about 200 mm, even at \(M_2 = 15 \) (Ref. 20). Therefore, the dissociation of \(N_2 \) can be neglected in the range of experiments referred to in the present report.

Figure 8 shows the vibrational relaxation length of \(O_2 \) (Refs. 18, 19). The initial conditions and the calculation of \(p_1, T_1, u_1 \) are the same as those in the case of \(N_2 \). The vibrational relaxation length is 1 mm at about \(M_2 = 6 \sim 6.5 \) from both references. The experiments referred to in the present report are not for pure \(O_2 \), but air. The vibrational relaxation length of \(O_2 \) in air may have different values from those shown in Fig. 8, as the collisions with \(N_2 \) molecules are more frequent than with \(O_2 \). However, it is reasonable to use the value for pure \(O_2 \), since \(N_2 \) is considered to have similar collision properties to \(O_2 \).

Figure 9 shows an interferogram of a double-Mach reflection in air at \(M_2 = 8.7 \), \(p_0 = 30.75 \) torr and \(T_0 = 299 \) K taken by Deschambault (Ref. 21). It shows a clear relaxation process behind the incident shock wave. The relaxation length is not measured since it is difficult to determine the precise point in a finite interferogram at which the density has approached the equilibrium value by \(1/e \) from the frozen value. The relaxation process seen in this interferogram is interpreted as that of \(N_2 \) because the relaxation length of \(N_2 \) at the conditions of this interferogram is predicted to be about 2 mm, from Fig. 6, which is in agreement with the relaxation length seen in the interferogram. No interferogram was available showing the relaxation process in \(O_2 \), which occurs at a lower Mach number than that in \(N_2 \). This is considered due to the fact that the concentration of \(O_2 \) in air is only 20%, so that the density change due to the relaxation of \(O_2 \) is probably too small to be seen in an interferogram.

The dissociational relaxation length of \(O_2 \) at \(M_2 = 10 \), under conditions of Fig. 8, is about 30 mm (Ref. 20). Consequently, the dissociation of \(O_2 \) can be neglected.

In the case of Ar, since Ar is a nonatomic gas, there is neither vibrational excitation nor dissociation. Therefore, Ar can be treated as a frozen gas unless electronic excitation and ionization begin to take place. In the range of experiments referred to in the present report, electronic excitation and ionization can be neglected and Ar can be treated as a frozen gas.

A summary of the discussions in this section and Section 3.1 are given in Table 1.

3. RESULTS AND DISCUSSIONS

3.1 Comparison of Experimental and Calculated Results for \(\delta \)

As expected, the calculated results based on the frozen-gas model differ from the equilibrium-gas model. By comparing an experimental result with the frozen or equilibrium-gas model for a given flow property, we can determine which model is valid. It is important to choose a basic quantity for comparison in order to avoid the effects of other assumptions used in the calculations. From a practical point, the chosen property should be measured easily and accurately. Needless to say, the conclusions from a comparison of models must be consistent with the discussion on relaxation lengths.

The angle \(\delta \) was chosen for this purpose. As shown in Fig. 10, it is the angle between the incident and reflected shock waves. The comparison of \(\delta \) is essentially equivalent to the comparison of \(\omega' \), which is the angle between the incident shock wave and the triple-point-trajectory path at angle \(\chi \) (Fig. 10). The comparisons are identical if an experimental result is compared with a calculated result which has the same value of \(\omega' \) (since \(\delta + 90^\circ = \omega' + \chi^\circ \)). The use of \(\delta \) or \(\omega' \) obtained experimentally is not identical, if compared to a calculated result which has the same value of \(\omega' \) as that of the experiment, as done in the previous papers (since \(\delta + 90^\circ = \omega' + \chi^\circ \)). A knowledge of \(\chi \) is then required and at present there is no precise way of calculating it. This will be discussed further. A comparison of \(\delta \) has some advantages over \(\omega' \) when comparing results, for \(\delta \) is a monotonic function of \(\omega' \) at fixed \(M_2 \). However, \(\omega' \) has a minimum point at a certain \(\omega' \) for some part of the Mach number range (Ref. 23). Also, since \(\delta \) will be used as a new criterion for transition between SMR and CMR (Section 3.3), it is necessary to check the agreement between measured values of \(\delta \) and the calculated results.

The important difference between the present and previous comparisons (Refs. 14, 23) is that, in the present comparison, the experimental values of \(\delta \) are compared with calculated results for the same \(\omega' \), instead of \(\omega' \). It is because the two incident wave angles of a Mach reflection, \(\omega_0 \) and \(\omega_2 \), together with \(\omega_2 \) show that the wave system can be derived from \(\delta \) and \(\chi \), respectively (\(\omega_0 = 90^\circ - \omega' \), \(\omega_2 = 90^\circ - \delta \)). In the latter, the Mach stem is assumed perpendicular to the wedge surface at the triple point, which is not valid experimentally, as described in Section 3.2. However, \(\omega' \) and \(\chi \) (or \(\omega_0 \) and \(\omega_2 \)) are not independent of each other. The three-shock theory allows us to choose only one parameter from \(\omega' \), \(\chi \) and \(\omega' \) besides \(M_2 \). Therefore, \(\omega' \) should be chosen as the parameter since it has a valid relation with \(\delta \), while \(\chi \) or \(\omega_0 \) have only an assumed Mach-stem perpendicularity relation with \(\omega_2 \) or both \(\omega_2 \) and \(\omega_0 \), respectively. Therefore, comparison with a calculation having the same \(\omega_0 \) as the experiment is not suitable until an accurate prediction of \(\chi \) is found. Consequently, if we compare the results of an experiment with a
calculation having the same value of γ means, effectively, that we are comparing γ from two different trajectory directions. Comparisons using both ways are shown in Figs. 11 and 12, for the case of CO.

It is important to note that the experiments which have different pressures have different relaxation lengths even at fixed M_s and T_0. In addition, factors such as the magnification factor of the photograph, the direction and spacing fringes in finite-fringe interferograms and a residual initial fringe in infinite-fringe interferograms should be considered in the reduction of experimental data.

Figure 11 shows the experimental results for γ' in CO$_2$ (Ref. 14) plotted in the (γ'-M_s) plane. The number beside each experimental point shows the value of γ' measured by Ando. The values of γ' determined from the given T_s and M_s. The solid lines and the broken lines are the calculated γ' for frozen ($\gamma' = 1.40$) and equilibrium CO$_2$, respectively. Also a perfect-gas case ($\gamma' = 1.29$) is shown by dotted lines. The experimental results show quite good agreement with the calculated results based on the equilibrium-gas assumption for the entire Mach number and γ' ranges in which experimental data were obtained. At low Mach numbers, the difference between the calculated results of each gas model becomes so small that it is of the same order as the experimental error. This result is consistent with the conclusion in Section 2.2, that CO$_2$ begins to change its behaviour from a frozen gas ($\gamma' = 1.40$) to an equilibrium gas at about $M_s = 3$ for $T_0 = 300$ K.

Gvozdova et al. (Ref. 16) compared their experimental results of CO$_2$ with their analysis in the γ'-0$_s, 0$ plane (according to their notation, γ' and 0_s are equal to our γ' and 0, respectively). They concluded that the imperfect gas, including vibrational excitation, showed good agreement. It is consistent with the present result although their experiments were done at only one Mach number (they quote a shock-wave velocity of 1600 m/s).

Figure 12 shows a plot using γ' rather than γ' for the equilibrium and perfect-gas models. The frozen-gas case ($\gamma' = 1.40$) was omitted as it gave results in poor agreement with experiments. The agreement is not as good as obtained in Fig. 11. This illustrates the additional errors caused by γ' when using γ' rather than γ'.

Ando (Ref. 14) compared his experimental data (replotted on Fig. 11) with several models ranging from a fictitious perfect gas ($\gamma' = 1.29$) to complete equilibrium in vibration and dissociation for γ'.

Since he compared his experimental data with his calculated results for the same γ', rather than γ with the equilibrium solution up to $M_s = 9$. However, at $\gamma' = 35^\circ$, agreement is best with the frozen line up to $M_s = 9$. The equilibrium lines are also favoured for $4 = M_s < 6$ at $\gamma' = 35^\circ$ and 45°. Consequently, the experimental results for air again do not show as a clear-cut experimental decision between the frozen and equilibrium-gas cases.

Figure 13 shows a similar plot for N_s of Ben-Dor's data (Ref. 4) in the (γ'-M_s) plane. The number beside each experimental point shows the value of γ' measured by Ben-Dor. In this case (as for N_r, Fig. 15) the values of γ' had to be measured from the photographs in his report, since neither the values of γ' nor N_s were listed. The calculated results are shown for a frozen gas ($\gamma' = 1.4$) (solid lines) and a vibrationally equi-
ilibrium gas (broken lines) for each fixed γ'. Here the agreement is not as clear-cut as in CO. The experimental points lie closer to the equilibrium lines for $\gamma' < 30^\circ$ and closer to the frozen N_s for $\gamma' = 30^\circ$.

Ando (Ref. 22) remeasured the values of γ' for N_r from Ben-Dor's original photographs and obtained values different from those shown in Ben-Dor's paper. All values but one obtained by Ando for γ' have the same values, or greater, than those by Ben-Dor. The greatest difference was 1.5°. Ando's measurements are shown separately in Fig. 14. The experimental results in Fig. 14 exhibit the same general features as in Fig. 13. It is worth noting that the error in the measurements is of the same order as the difference between the frozen and equilibrium-gas cases. Consequently, a clear conclusion cannot be drawn from this comparison. However, the results do not contradict the previous discussions on relaxation lengths. Therefore, N_r can be treated as a frozen gas ($\gamma' = 1.40$) except at high Mach numbers, $M_s = 10$. However, in the case of CO$_2$, the error in the measurements does not play as important a role since the differences between the frozen and equilibrium-gas calculations are larger than the experimental error and points to the validity of CO$_2$ being in equilibrium for $M_s = 3$.

Figure 15 shows the (M_s-γ') plot for Ar derived from Ben-Dor's data (Ref. 4). As Ar is not excited over the given M_s range only the frozen-gas ($\gamma' = 1.667$) results are shown as solid lines for each fixed γ'. Good agreement is obtained with experimental results, although the experimental γ's are slightly larger than the calculated results at higher γ'

Figure 16 shows the (M_s-γ') diagram based on the experiments of Beschambault (Ref. 21), in air. The solid and broken lines are the calculated results for fixed γ' for air as a frozen ($\gamma' = 1.4$) and equilibrium gas, respectively. The experimental results do not show any clear-cut picture. For example, at $\gamma' = 25^\circ$, the agreement favours the equilibrium solution up to $M_s = 9$. Whereas, at $\gamma' = 35^\circ$, agreement is best with the frozen line up to $M_s = 9$. The equilibrium lines are also favoured for $4 = M_s < 6$ at $\gamma' = 35^\circ$ and 45°. Consequently, the experimental results for air again do not show as a clear-cut experimental decision between the frozen and equilibrium-gas cases in N_r and γ'. Quantitatively accurate measurements are required since the differences between the two models are not as large as in CO$_2$.

It should be noted that the angle θ' was calculated on the basis of conditions in state 1. However, state 2 is also involved. Conditions in state 2 depend on the wedge angle γ' and it is
possible, for example, for state 1 to be frozen and for states 2 and 3 to be in equilibrium. Consequently, the present computer program will have to be modified and the \((M_s-x)\) plots will have to be corrected at a future date. Better agreement may result.

3.2 Effect of Variation of Mach-Stem Angle at Triple Point from being Perpendicular to Wedge Surface

The available analytical results for the triple-point-trajectory angle \(\chi\) as a function of \(\omega_w\) and \(M_s\) are not sufficiently accurate. For example, Ando (Ref. 14) compared his predictions of \(\chi\) with the experimental results [see Appendix B, Fig. 8(a)–(e)] in Ref. 14. The experimental data did not agree with his predictions based on various models of CO\(_2\) excitation. The fictitious perfect-gas model \((\gamma = 1.29)\) accidentally agreed best with the experimental data, and is inconsistent with the concepts of relaxation lengths. This inconsistency and fortuitous agreement can be partly attributed to the assumption that the Mach stem is perpendicular to the wedge surface as described below.

In the three-shock theory, the effective wedge angle \(\omega_w\) plays an important role. That is, once a value of \(\omega_w\) is given at a fixed \(M_s\), the directions of the reflected shock wave and the Mach stem are determined along with the flow variables from the solution of the three-shock theory. In this sequence, a value of the actual wedge angle \(\omega_w\) is obtained if the Mach stem at the triple point is assumed perpendicular to the wedge surface. In other words, assumptions other than the perpendicular condition would give other values for \(\omega_w\). This means that \(\omega_w\) is a function of \(\omega_w\) including the assumption concerning the orientation of the Mach stem to the wedge surface. Therefore, the value of \(\chi\) is also affected by the orientation of the Mach stem. In all previous calculations of the three-shock theory (Refs. 1, 2, 13, 23), the Mach stem was assumed perpendicular to the wedge surface although discrepancies were observed experimentally owing to the lack of a better one. This assumption is satisfied exactly at the foot of the Mach stem to meet the boundary condition that flows on both sides of the Mach stem must be along the wedge surface (neglecting the effects of the viscous boundary layer). It would also be valid at the triple point if the Mach stem were perfectly straight.

Experimentally, however, the Mach stem generally is curved and the angle \(\chi\) between the Mach stem at the triple point and the line perpendicular to the wedge (see Fig. 10) has been found from present experiments to have a concave and convex distribution between 3° and 7.5°, respectively. Figure 17 shows an example of a Mach stem in CO\(_2\) which is not perpendicular to the wedge surface. The angle \(\chi\) in this case is 7.5°. Calculations using these values instead of \(\chi = 0°\) give different results for \(\chi\). The results, taking into account the effects of \(\chi\), were obtained graphically in order to save computer time. Therefore, the results were not obtained for all experimental cases and are given in round numbers in most cases. Table 2 shows the measured values of \(\chi\) from existing photographs (Refs. 14, 4) and the calculated values of \(\chi\) which are consistent with values of both \(\omega_w\) and \(\chi\) (and consequently with \(\omega_w\)). The calculated values are given for the frozen, perfect equilibrium-gas cases. The experimental results for \(\omega_w\) less than 20° are not compared with calculations since for the small wedge angles an error of 0.5° in \(\chi\) corresponds to more than an error of 3° in \(\omega_w\). Therefore, the accuracy of the comparison is poor.

In the case of CO\(_2\), the equilibrium-gas case showed better agreement with experiments, contrary to the comparison based on the assumption of \(\gamma = 0°\). Calculations based on the \(\gamma = 0°\) assumption agrees best with the perfect \((\gamma = 1.29)\) case. However, there are still non-negligible discrepancies between the calculated and experimental values of \(\omega_w\). In the case of \(\text{N}_2\), the equilibrium-gas case showed rather good agreement with experiments, which seems inconsistent with the discussion on relaxation lengths. In the case of \(\text{Ar}\), the discrepancies between the calculated and experimental values are smaller than those of \(\text{N}_2\) or CO\(_2\). This is due to the fact that \(\phi = 0°\) for Ar. The discrepancies which remain even if the effect of \(\chi\) is taken into account are considered to arise from other factors. For example, the displacement thickness of the slipstream between regions 2 and 3 violates one of the boundary conditions of the three-shock theory, and is discussed in Appendix C. Unfortunately, it does not minimize the discrepancies.

It should be noted that the value of \(\omega_w\) has a significant effect on the solutions, especially on \(\omega_w\), when they are described as functions of \(\omega_w\). It means that discussions arising from a comparison of experimental results with solutions of the three-shock theory (which includes the assumption that \(\gamma = 0°\)) are no longer accurate if they are made by comparing the results which have the same value of \(\omega_w\). However, the assumption that \(\gamma = 0°\) does not affect the comparisons if the experimental results are compared with analysis based on the same value of \(\omega_w\). As noted previously, \(\omega_w\) affects the values of \(\omega_w\), whereas solutions based on \(\omega_w\) are independent of \(\omega_w\). Therefore, the transition boundaries, except for RR \(\neq\) MR, are more accurate in the \((M_s-x)\) plane than in the \((M_s-\omega_w)\) plane as long as the available predictions of \(\omega_w\) remain imprecise. However, the \((M_s-\omega_w)\) plane suffers from the limitations that the transition boundary lines are too close together, especially at higher \(M_s\), and it is more difficult to differentiate between the frozen and equilibrium-gas boundaries as well as to determine if experiment and analysis of the various regions are in agreement. In addition, the \((M_s-\omega_w)\) plane has a multi-valued portion near the RR \(\neq\) MR boundary as described in Section 3.4. A precise analytical determination of \(\omega_w\) is therefore a much needed future requirement.

3.3 A New Additional Criterion for Transition from SMR to CMR

In the previous sections, it was concluded that CO\(_2\) behaves as a gas in equilibrium except at low Mach numbers. As shown in Fig. 18 there are significant discrepancies between the experimental data of the three types of RR and the calculated transition boundaries based on an equilibrium-gas assumption. These discrepancies are considered as arising from inappropriate transition criteria. The criteria RR \(\neq\) MR and RR \(\neq\) RR are necessary conditions for the transitions. The existence of other necessary conditions for the transition from SMR to CMR may push the boundary line into the CMR.
region and the CMR to DMR line into the DMR region. This would improve the agreement significantly.

Complex-Mach reflection has been characterized by the existence of a band of compression waves at the kink behind the reflected shock wave whether it can be seen in an interferogram or not (Refs. 10, 16). The condition for the existence of a band of compression waves may be related to the angle \(\phi \) between the incident shock wave I and the reflected shock wave R at the triple point T (Fig. 10), as follows.

Experimental results (Ref. 24) have shown that the ratio between the distance from the wedge corner to the kink along the horizontal line \(\delta \) and the distance from the wedge corner to the incident shock wave along the horizontal line \(\iota \) is equal to the ratio between the flow velocity behind the incident shock wave (in the laboratory frame) \(u_1 \) and the incident shock-wave velocity \(u_\theta \), except for wedge angles near the RR boundary. That is, \(\delta/\iota = u_1/u_\theta \). (See Fig. 19a.) In other words, the kink is moving with the flow velocity in region I as far as the horizontal component is concerned. Therefore, it is seen that the flow velocity in region I relative to the kink has only a vertical component. This means that the flow moves downward (or parallel to the incident shock wave) as seen from a frame of reference attached to the kink (Fig. 19b).

If we call the incident angles and the densities behind the reflected shock wave on either side of the kink as \(\iota K, \phi K, i_1, \phi_1 \), as illustrated in Fig. 19e, then the existence of a band of compression waves is equivalent to the relation of \(\phi K -90^\circ \) and \(\phi_1 -90^\circ \). Because the flow variables upstream on either side of the kink are the same. This means that the closer to \(90^\circ \) to the shock front that the incident streamlines are, the stronger the shock wave, and consequently the greater the density change across the wave. There are four possible geometrical inclinations for the reflected shock wave on either side of the kink as illustrated in Fig. 19d. (It must be remembered that a configuration which has a convex angle to the upstream flow direction cannot maintain a sharp corner like a kink. Only configurations A and B of the four satisfy the condition \(\phi K -90^\circ \), \(\phi_1 -90^\circ \), and in both A and B the angle \(\phi \) is greater than \(90^\circ \). Therefore, \(90^\circ \) is considered a necessary condition for the existence of a band of compression waves, which is required for the transition to CMR. (It is only a necessary condition because configuration C, which does not satisfy the condition \(\phi K -90^\circ \), \(\phi_1 -90^\circ \), also has \(\phi -90^\circ \).

Figure 20 shows a plot of the experimental values of \(\delta \) with shock Mach number \(M_0 \) for the various types of reflections for \(N_2 \), Ar, CO\(_2\), and air. All experimental CMR but one in CO\(_2\) lie below the \(\delta = 90^\circ \) line, which means that they satisfy the condition \(\delta = 90^\circ \). This provides good evidence that \(\delta = 90^\circ \) is a necessary condition. It must be pointed out that results in Fig. 20 do not include any calculation or assumptions. They show only the experimental relation between the CMR boundary line and \(\delta \). It means that this is a direct comparison between the new necessary condition and the experimental data.

As mentioned, the new condition for transition \(\delta = 90^\circ \) is only a necessary condition. Therefore, the condition \(M_2T > 1 \) remains along with the new condition. The transition takes place when both of these two conditions are satisfied. Consequently, the term "new criterion" quoted below includes both necessary conditions, and the criterion \(M_2T > 1 \) is the former criterion.

Figure 21 shows a transition boundary plot for equilibrium CO\(_2\) in the \((M_2-\delta\)) plane with emphasis on the SMR \& CMR transition. The solid line shows the new criterion and the broken line shows the former criterion \(M_2T = 1 \). One of the two SMR points which was calculated in the CMR region of the former criterion now lies in the SMR region of the new criterion.

Figure 22 shows a similar transition boundary plot in the \((M_2-\delta\)) plane of frozen \(N_2 \) and air emphasizing the SMR \& CMR transition. The solid line and the broken line show the transition boundaries between SMR and CMR based on the new criterion and the former criterion, respectively. Most of the SMR points which were previously in the CMR region now fall into the SMR region of the new criterion. The experimental distribution of SMR and CMR show very good agreement with the new criterion line except for two points in air at \(M_0 = 8 \). This tendency is consistent with the discussion on vibrational relaxation lengths for \(O_2 \) and \(N_2 \). Figure 23 shows the calculated transition boundary lines of the new criterion for frozen (solid line) and equilibrium air (broken line). It can be seen clearly in Fig. 23 that the experimental boundary of air between SMR and CMR approaches the equilibrium-air line at high Mach numbers.

Figure 24 shows the calculated lines for \(M_2 = 1 \) and \(\delta = 90^\circ \) for Ar. In this case, the \(\delta = 90^\circ \) line lies below the \(M_2T = 1 \) line for \(M_0 = 6 \) and slightly above for \(M_0 = 6 \). The addition of the condition \(\delta = 90^\circ \) makes little difference since the region above both lines satisfies both necessary conditions and therefore the line which lies above is the new transition line, which is close to the \(M_2T = 1 \) line in this case.

It can be concluded that the new criterion, composed of conditions \(M_2T = 1 \) and \(\delta = 90^\circ \), gives a transition boundary line between SMR and CMR which agrees with the distribution of experimental points for all gases tested using calculations consistent with \(\delta \) and relaxation lengths.

There are also discrepancies in the transition boundaries between CMR and DMR. In the case of CO\(_2\), for example, as shown in Fig. 18, the equilibrium-gas assumption gives a CMR \& DMR transition boundary line which is not in good agreement with the experimental result if the boundary line is based on the criterion \(M_2K < 1 \). Results for other gases also have discrepancies. Perhaps an additional necessary criterion is required in the case of the transition from CMR to DMR. However, no additional criterion (\(M_2K < 1 \)) has been found so far. Some comments on this problem are given in Appendix D.

It should also be noted that the CMR \& DMR transition line is based on the assumption that the distance (\(L - \delta \)) between the two triple points T and T' (see Fig. 19a) remains finite. As noted above, this is a reasonable assumption for the gases investigated as long as \(\delta < 40^\circ \) and \(M_0 < 2 \).
That is, beyond this region it is found experimentally that the second triple point \(T \) approaches and merges with the first triple point \(T \) (Refs. 13, 15). Consequently, the CMR \(\neq \) DMR line approaches and becomes the incident shock line of the RR \(\neq \) MR boundary at point \(P \), as illustrated in Fig. 25. No analytical solution has been found for this behaviour. It can be seen that an experimentally drawn line in this region results in much better agreement with the remaining data in the CMR and DMR region.

3.4 Persistence of Regular Reflection (RR) into the Region of Mach Reflection (MR) - von Neumann's Paradox

Experimental results show that RR persists beyond the RR \(\neq \) MR boundary of the detachment criterion. Figure 26 shows the persistence of RR in the case of \(CO_2 \). In this figure, the experimental points are plotted in the \((M_3 - \omega_3) \) plane instead of the \((M_2 - \omega_2) \) plane since it has a multi-valued portion near the RR \(\neq \) MR boundary. (At the RR boundary the MR region, \(\omega \) has a finite value. Therefore, \(\omega_3 = \omega_2 \) has a larger value than \(\omega_4 \) at the boundary. On the other hand, \(\omega_4 \) is equal to \(\omega_5 \) in the RR region. Consequently, the RR \(\neq \) MR boundary corresponds to two separate lines (\(\omega_4 \) and \(\omega_5 \) = \(\omega_6 \)) in the \((M_2 - \omega_2) \) plane. A point between these two lines in the \((M_2 - \omega_2) \) plane corresponds to two physical points, one in RR and the other in MR.) Therefore, a discussion on the persistence of RR is best made in the \((M_3 - \omega_3) \) plane, unlike the boundaries in the MR region which are best described in the \((M_3 - \omega_3) \) plane (see Section 3.2). This inconsistency can be removed in the future if an accurate prediction of \(\gamma \) can be found, then the \((M_2 - \omega_2) \) plane could be used throughout. As can be seen in Fig. 26, RR persists down to \(\omega_4 = 42^\circ \) at \(M_3 = 7.2 \). The persistence depends on \(M_3 \) and the data points are well below the boundary of the detachment criterion. However, the experimental boundary is not unique. In \(2 < M_3 < 3 \), DMR points were obtained at \(\omega_4 = 48^\circ \) in Ref. 26. In Ref. 22, RR points were again obtained at a lower wedge angle of \(\omega_4 = 47^\circ \). This fact suggests that the extent of the persistence depends on factors other than \(M_3 \) and \(\omega_4 \). Figure 27 shows the persistence of RR in the case of \(CO_2 \). No unique experimental boundary exists in this case also, despite the fact that the persistence is very apparent.

Hornung et al (Ref. 11) suggest that the persistence of RR could be explained in terms of the viscous boundary layer which develops behind the reflection point \(P \) (Fig. 28) on the wedge surface. In the viscous boundary layer produced after the passage of the reflection point, the flow has progressively lower velocities (and is zero at the wall) than the flow in the free stream in a laboratory frame. However, the flow in the boundary layer has higher velocities than the flow outside in a reference frame attached to the reflection point. This corresponds to the fact that the wedge surface is moving with a velocity equal and opposite to the incident shock speed from the reflection point \(P \). As a result, the displacement thickness of the boundary layer has a negative value (see Fig. 28). Therefore, the deflection angle through the reflected shock wave is less than required without the boundary layer. The displacement angle \(\omega_4 \), or the angle between the flow affected by the boundary layer and the actual wedge surface, enables RR to persist to lower wedge angles because the point at which the deflected angle through the reflected shock wave increases to the maximum deflection angle and \(\omega_4 \) is now lower than that without the displacement angle. It should be pointed out that the calculation of the DMR \(\neq \) CMR line at the RR \(\neq \) MR boundary at point \(P \) is equal to the difference in the transition wedge angle caused by the boundary-layer effect. In fact, the reflected shock wave has a larger inclination than that of the displacement effect. The fact that the displacement effect lowers the transition wedge angle and also the wedge angle in front of the incident shock wave is still equal to the actual wedge angle \(\omega_4 \). Since the reflected shock wave is of the weak family of the two possible solutions, the angle \(\omega \) is smaller than the one without a boundary layer. Hornung et al (Ref. 11) mentioned that the opposite was observed experimentally. However, the present analysis of previous experiments gives a smaller \(\omega \) than obtained from a calculation without the boundary-layer displacement effect, as expected.

The angle \(\omega \) is a very good indicator of the boundary-layer displacement. Figure 29 shows a \((M_3 - \omega_3) \) plot for \(CO_2 \) experiments (Refs. 14, 22) compared with calculated displacement angles. There are no analytical solutions of \(\omega \) above the lines corresponding to the RR \(\neq \) MR transition boundaries (for each \(\omega_4 \)). The experimental \(\omega \) are smaller than those for \(\omega_4 = 0^\circ \). The differences from the calculated line \(\omega_4 = 0^\circ \) are larger when the wedge angle is lower, in other words, closer to the MR region. This agrees qualitatively with the analytical fact that the effect of the boundary-layer-displacement angle on \(\omega \) becomes smaller at higher wedge angles. The experimental results agree with a displacement angle of \(\omega_4 = -1^\circ - 2^\circ \). A quantitative discussion of this value is given subsequently. Figure 30 shows similar experimental results for air and \(N_2 \). For simplicity, only experimental points of \(\omega_4 = 50^\circ \) are plotted and compared with calculations. In the case of air, the comparison is complicated because air and \(N_2 \) changes from a frozen to an equilibrium gas at an intermediate Mach number. (The reason why the frozen line \(\omega_4 = 0^\circ \) does not exist at high Mach number is that \(\omega_4 = 50^\circ \) with \(\omega_4 = 0^\circ \) (frozen) is in the MR region.) At lower Mach numbers, the experimental results agree approximately with the calculation for a frozen gas with \(\omega_4 = -1^\circ \) at higher \(M_3 \), for the tendency also, to approach the equilibrium lines. Experimental points for other \(\omega_4 \) are compared with the \(\omega_4 = -1^\circ \) case for frozen and equilibrium air in Fig. 31. Other \(\omega_4 \) show a behaviour similar to the case of \(\omega_4 = 50^\circ \). Figure 32 shows the results for Air. The two available experimental points agree with the calculation of \(\omega_4 = -2.0^\circ \).

For a complete analysis, the displacement angles must be based on boundary-layer theory (Ref. 29). It is not possible to obtain a unique displacement angle even if the initial pressure is given. The displacement thickness itself can be calculated and is shown in Table 3 for the case of air. The displacement thickness is proportional to \(\sqrt{x} \), which means that the slope of the displacement thickness, which is proportional to \(1/\sqrt{x} \), becomes infinite in the limit as \(x \to 0 \). In other words, arbitrary angles can be obtained by choosing a distance from the reflection point in which the mean slope is calculated. Here we face a problem similar to the choice of a characteristic length in Section 2.2. An appropriate distance should be chosen as the distance for calculating a mean slope. It is
reasonable to choose 1 mm as the distance, similar
to the case of the relaxation length. The mean
slopes for 1 mm are given in Table 3 for the RR vs MR
boundary in air. The angles lie between -1° and
-2° and are in agreement with the present
comparison.

The RR vs MR transition boundary lines with
several boundary-layer-displacement angles \(\delta_d \) are
compared with the experimental persistence of RR
in Figs. 2b and 27 for \(\text{CO}_2 \) and air, respectively.
In the case of \(\text{CO}_2 \), a displacement angle of -1°
changes the transition boundary by about 0.5°. All
experimental RR are above the equilibrium-gas case
of \(\delta_d = -2° \). At about \(M_s = 2 \), which is in the
region where \(\text{CO}_2 \) could be a frozen gas, RR persist
below \(\delta_d = -4° \) of the frozen-gas case and they
seem to correspond to about \(\delta_d = -5° \). The transi-
tion from RR to MR is dominated by the flow at the
reflection point. Although it is meaningless to
assume that the flow properties in the infinit-
simal vicinity of the reflection point determines
the reflection phenomena, the region which domi-
nates the phenomena is considered to be much less
than 1 mm, which is the characteristic length
chosen in the discussion on relaxation lengths.
Consequently, the Mach number at which vibrational-
excitation effects begin to take place in the
transition must have a different value, which is
larger than that for a change in the angle \(\omega' \).
Since the size of the region which dominates the
reflection phenomena is not known, no further
quantitative comparison is possible. The variation
of pressures must be taken into account in this
discussion, even in the frozen-gas case, since the
thickness of the boundary layer depends on the
pressure or Reynolds number. Figure 27 shows the
same comparison for air. Since air behaves as a
frozen gas in the region shown in Fig. 27, only
the frozen-gas cases are shown. Regular reflection
(RR) persists down to the transition line of \(\delta_d = -2° \)
at lower Mach numbers and \(\delta_d = -4° \) at higher Mach
numbers. A further quantitative analysis is not
possible for the reasons already given for \(\text{CO}_2 \).

Detailed calculations of the flow quantities
in the various states generated by pseudo-stationary
oblique-shock-wave reflections in tabular form, for
the convenience of the researcher, can be found in
Ref. 30.

4. CONCLUSIONS

The recent results on pseudo-stationary oblique-
shock-wave reflections were assessed based on
criteria associated with molecular relaxation
lengths, the basic angle \(\delta \) between the incident
shock wave and the reflected shock wave and
transition boundaries in the \((M_s, \delta) \) plane.

The following conclusions apply in the range
1 < \(M_s < 10 \); at Mach numbers lower than 3, \(\text{CO}_2 \)
behaves as a frozen gas (\(\gamma = 1.40 \)) and as an
equilibrium gas with vibrational excitation for
\(M_s > 3 \); nitrogen and air are frozen (\(\gamma = 1.40 \))
below \(M_s = 6 \approx 9 \), depending on the initial pressure;
argon is frozen in the present Mach number range.
Dissociation and ionization can be neglected
(except for \(\text{CO}_2 \) at lower pressures) up to \(M_s = 10 \).

The curvature of the Mach stem affects the
triple-point-trajectory angle \(\chi \) significantly.
This discrepancy accounts for most of the inaccu-
racies of predicting \(\chi \). There are, however, still
non-negligible discrepancies between the experi-
mentally-measured \(\chi \) and the calculated \(\chi \) even if
the effect of Mach-stem curvature is taken into
account.

The condition that the angle between the
incident shock wave and the reflected shock wave
is greater than 90° is an additional necessary
condition for the transition from SMR to CMR.
The addition of the new criterion improves the agree-
ment between analysis and experiments.

The persistence of RR is explained in terms of
the induced viscous boundary layer on the wedge
surface. The measured reflected-wave angles \(\omega' \)
agree with the calculated values which take into
account the boundary-layer-displacement effect.
The value of the boundary-layer-displacement angle
\(\delta_d \) necessary to explain the persistence of RR
is reasonable compared with the calculation of
\(\omega' \). Rigorous quantitative predictions are
difficult owing to the uncertainty in calculating
the boundary-layer-displacement angle.

Large discrepancies at the CMR vs DMR boundary
between calculated and experimental results remain.
In addition, the experimental results show that the
CMR vs DMR line and the SMR vs CMR line merge at
the RR line due to the merging of the two triple
points in DMR. An analytical prediction for this
effect is not available. Analytical predictions
for Mach-stem curvature and its relation to the
triple-point-trajectory angle \(\chi \) at low shock Mach
numbers are also required.

REFERENCES

1. Ben-Dor, G., Glass, I. I., "Domains and
Boundaries of Non-Stationary Oblique Shock-
Wave Reflections. 1. Diatomic Gas", J. Fluid

2. Ben-Dor, G., Glass, I. I., "Domains and
Boundaries of Non-Stationary Oblique Shock-
Wave Reflection. 2. Monatomic Gas", J. Fluid

3. Ben-Dor, G., "Regions and Transitions of
Non-Stationary Oblique Shock-Wave Diffractions
in Perfect and Imperfect Gases", UTIAS Report

4. Ben-Dor, G., "Nonstationary Oblique-Shock-Wave
Reflections in Nitrogen and Argon: Experimental

1228.

6. Smith, L. G., "Photographic Investigation of
the Reflection of Plane Shocks in Air", OSR Rep.
No. 6271, 1945.

7. White, D. R., "An Experimental Survey of the
11-10, Dept. of Physics, Princeton University,
1951.

22. Ando, S., Private Communication.

Table 1

Range of experimental pressure and shock Mach number where gases can be treated as frozen or equilibrium for oblique-shock-wave reflections

<table>
<thead>
<tr>
<th>Gas</th>
<th>Frozen</th>
<th>Equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>$M_s < 3^*$</td>
<td>$M_s > 3^*$</td>
</tr>
<tr>
<td>N₂</td>
<td>$M_s < 9^*$</td>
<td>$M_s > 9^*$</td>
</tr>
<tr>
<td>Air</td>
<td>$M_s < 6^{**}$</td>
<td>$M_s > 6^{**}$</td>
</tr>
<tr>
<td>Ar</td>
<td>Whole range</td>
<td>--</td>
</tr>
</tbody>
</table>

*at $P_0 = 15$ torr

**at $P_0 = 50$ torr

Table 2

Comparison of calculated and experimental values of ϵ
(experimental values are measured from Ref. 14, 4)

<table>
<thead>
<tr>
<th>Gas</th>
<th>θ_w (deg)</th>
<th>M_s (deg)</th>
<th>ϵ (exp) (deg)</th>
<th>ϵ (cal) (deg)</th>
<th>ϵ (Equilibrium) (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>20.3</td>
<td>4.72</td>
<td>7.5</td>
<td>-0.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>20.3</td>
<td>6.0</td>
<td>6.5</td>
<td>-1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>20.3</td>
<td>10.18</td>
<td>4.5</td>
<td>-0.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>1.78</td>
<td>-1.0</td>
<td>-5.5</td>
<td>-3.0</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>2.50</td>
<td>4.0</td>
<td>-2.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>3.47</td>
<td>5.5</td>
<td>0.0</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>4.05</td>
<td>4.0</td>
<td>-0.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>8.16</td>
<td>6.5</td>
<td>-1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>30.1</td>
<td>2.04</td>
<td>2.0</td>
<td>-3.0</td>
<td>-1.0</td>
</tr>
<tr>
<td></td>
<td>30.1</td>
<td>3.44</td>
<td>4.5</td>
<td>0.0</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>30.1</td>
<td>6.32</td>
<td>6.0</td>
<td>-0.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>30.1</td>
<td>8.30</td>
<td>7.0</td>
<td>0.0</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>30.1</td>
<td>9.77</td>
<td>6.5</td>
<td>-2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>N₂</td>
<td>20</td>
<td>1.93</td>
<td>0.0</td>
<td>-5.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.74</td>
<td>2.0</td>
<td>1.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.81</td>
<td>5.0</td>
<td>2.5</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.87</td>
<td>4.0</td>
<td>2.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.97</td>
<td>0.0</td>
<td>-1.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.68</td>
<td>2.0</td>
<td>1.5</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.93</td>
<td>3.0</td>
<td>1.5</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7.97</td>
<td>4.0</td>
<td>0.5</td>
<td>--</td>
</tr>
<tr>
<td>Ar</td>
<td>20</td>
<td>2.00</td>
<td>-2.0</td>
<td>-2.5</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.40</td>
<td>0.5</td>
<td>0.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.20</td>
<td>0.0</td>
<td>-0.5</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.76</td>
<td>0.5</td>
<td>0.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.03</td>
<td>-2.5</td>
<td>-2.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.51</td>
<td>0.5</td>
<td>0.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.36</td>
<td>0.0</td>
<td>0.5</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>8.01</td>
<td>1.0</td>
<td>0.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>2.05</td>
<td>0.0</td>
<td>1.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>5.28</td>
<td>0.5</td>
<td>-1.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6.02</td>
<td>1.0</td>
<td>-1.0</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 3
Boundary-layer-displacement thickness δ^* and boundary-layer-displacement angle θ_d
on wedge surface
(frozen air at RR Z MR boundary, $p_0 = 15$ torr, $T_0 = 300$ K, based on Ref. 29)

<table>
<thead>
<tr>
<th>M_s</th>
<th>δ^*/\sqrt{x} cm$^{-1}$</th>
<th>θ_d (mean value over 1 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>-5.83×10^{-3}</td>
<td>-1.06</td>
</tr>
<tr>
<td>1.4</td>
<td>-6.74×10^{-3}</td>
<td>-1.22</td>
</tr>
<tr>
<td>1.6</td>
<td>-6.82×10^{-3}</td>
<td>-1.24</td>
</tr>
<tr>
<td>1.8</td>
<td>-6.94×10^{-3}</td>
<td>-1.26</td>
</tr>
<tr>
<td>2.0</td>
<td>-6.90×10^{-3}</td>
<td>-1.25</td>
</tr>
<tr>
<td>2.5</td>
<td>-6.79×10^{-3}</td>
<td>-1.25</td>
</tr>
<tr>
<td>5.0</td>
<td>-6.85×10^{-3}</td>
<td>-1.24</td>
</tr>
<tr>
<td>4.0</td>
<td>-7.10×10^{-3}</td>
<td>-0.29</td>
</tr>
<tr>
<td>5.0</td>
<td>-7.55×10^{-3}</td>
<td>-1.37</td>
</tr>
<tr>
<td>7.0</td>
<td>-8.41×10^{-3}</td>
<td>-1.52</td>
</tr>
<tr>
<td>10.0</td>
<td>-9.84×10^{-3}</td>
<td>-1.78</td>
</tr>
</tbody>
</table>
FIG. 1 FOUR TYPES OF OBLIQUE-SHOCK-WAVE REFLECTION IN PSEUDO-STATIONARY FLOWS (SCHEMATIC).

-____ SHOCK WAVE; ------ SLIPSTREAM; --------- WALL OR WEDGE;
 I - INCIDENT SHOCK WAVE; R, R' - REFLECTED SHOCK WAVE;
 S, S' - SLIPSTREAM; M, M' - MACH STEM; P - REFLECTION POINT;
 T - TRIPLE POINT; K - KINK; T' - SECOND TRIPLE POINT.
Fig. 2 Regular and Mach Reflections in Stationary Coordinates with Respect to Points P and T, Respectively.

0, 1, 2, 3 - Regions; I - Incident Shock Wave; R - Reflected Shock Wave; M - Mach Stem; P - Reflection Point; T - Triple Point; \(\theta \) - Deflection Angle; \(\phi \) - Wave Angle; \(\theta_{1} \) - Wedge; + - Flow Direction; ------ Slipstream; - - Direction of Triple-Point Path.
FIG. 3 SHOCK-POLAR ILLUSTRATING RR ⊕ MR TRANSITION BASED ON THREE DIFFERENT CRITERIA.

I - INCIDENT SHOCK WAVE; R, R', R'' - REFLECTED SHOCK WAVE AT RR ⊕ MR TRANSITION (R - DETACHMENT CRITERION AT A + B; R' - MECHANICAL-EQUILIBRIUM CRITERION AT C; R'' - SONIC CRITERION AT D - E); A, B, C, D, E - STATES BEHIND REFLECTED SHOCK WAVE AT RR ⊕ MR TRANSITION (A - RR STATE OF DETACHMENT CRITERION; B - MR STATE OF DETACHMENT CRITERION; C - RR AND MR STATE OF MECHANICAL-EQUILIBRIUM CRITERION; D - RR STATE OF SONIC CRITERION; E - MR STATE OF SONIC CRITERION).
FIG. 4 VIBRATIONAL RELAXATION LENGTHS BEHIND SHOCK WAVES IN CO₂.
INITIAL CONDITIONS: \(p_0 = 15 \) TORR, \(T_0 = 300 \) K (REF. 17).
FOR HIGHER OR LOWER INITIAL Pressures AT 300 K THE RELAXATION LENGTHS ARE PROPORTIONATELY DECREASED OR INCREASED, RESPECTIVELY.
FIG. 5 SINGLE-MACH REFLECTION IN CO$_2$ SHOWING VIBRATIONAL RELAXATION PROCESS BEHIND INCIDENT SHOCK WAVE (FINITE-FRINGE INTERFEROGRAM). $\theta_w = 50^\circ$, $M_s = 2.04$, $p_o = 50$ TORR, $T_o = 297.5$ K (REF. 14).
FIG. 6 VIBRATIONAL RELAXATION LENGTHS BEHIND SHOCK WAVES IN N_2.
INITIAL CONDITIONS: $P_0 = 15$ TORR, $T_0 = 300$ K (REFS. 18, 19).
FIG. 7 DOUBLE-MACH REFLECTION IN N₂. SHOWING VIBRATIONAL RELAXATION
PROCESS BEHIND INCIDENT SHOCK WAVE (ORIENTATION OF FRINGES
NOT AS EFFECTIVE AS IN FIG. ...)

$\gamma = 26$, $\gamma = 8.00$, p. 5 10 TORR, $T_0 = 298.2$ K (REF. 4).
FIG. 8 VIBRATIONAL RELAXATION LENGTHS BEHIND SHOCK WAVES IN O₂.
INITIAL CONDITIONS: \(p_o = 15 \) TORR, \(T_o = 300 \) K (REFS. 18, 19).
FIG. 9 DOUBLE-MACH REFLECTION IN AIR SHOWING VIBRATIONAL RELAXATION PROCESS BEHIND INCIDENT SHOCK WAVE (INFINITE-FRINGE INTERFEROGRAM).

$\theta = 27^\circ$, $N = 8.7$, $P_0 = 50.75$ TORR, $T_0 = 299$ K (REF. 2).
FIG. 10
DEFINITION OF SOME ANGLES IN MACH REFLECTION.
FIG. 11 VARIATION OF ANGLE δ VS SHOCK-MACH NUMBER AT FIXED θ'_w FOR CO$_2$.
$T_0 = 300$ K, $P_0 = 15$ TORR, $-$ FROZEN CO$_2$ ($\gamma = 1.40$),
$-$ $-$ EQUILIBRIUM CO$_2$, $-$ $-$ PERFECT CO$_2$ ($\gamma = 1.29$),
$+$ EXPERIMENTAL DATA FOR θ'_w (REF. 14).
FIG. 12 VARIATION OF ANGLE δ VS SHOCK-MACH NUMBER AT FIXED θ_w (INSTEAD OF $\theta'_{w})$ FOR CO$_2$.

$T_0 = 300$ K, $P_0 = 15$ TORR, ——— EQUILIBRIUM CO$_2$, ———— PERFECT CO$_2$ ($\gamma = 1.29$). EXPERIMENTS: $\circ - \theta_w = 10^\circ$, $\triangle - \theta_w = 20^\circ$,
$\times - \theta_w = 30^\circ$, $\square - \theta_w = 40^\circ$ (REF. 14).
FIG. 13 VARIATION OF ANGLE δ VS SHOCK-MACH NUMBER AT FIXED θ_w^* FOR N_2.
$T_0 = 300$ K, $p_0 = 15$ TORR, --- FROZEN N_2 ($\gamma = 1.4$),
--- EQUILIBRIUM N_2, + EXPERIMENTAL DATA FOR θ_w^* (θ_w MEASURED
BY BEN-DOR, REF. 4).
FIG. 14 VARIATION OF ANGLE δ VS SHOCK-MACH NUMBER AT FIXED θ_w FOR N$_2$.
To = 300 K, p_0 = 15 TORR, ——— FROZEN N$_2$ ($\gamma = 1.4$),
— — — EQUILIBRIUM N$_2$, + EXPERIMENTAL DATA FOR θ_w (θ_w MEASURED
BY ANDO, REF. 22).
FIG. 15 VARIATION OF ANGLE δ VS SHOCK-MACH NUMBER AT FIXED θ'_w FOR Ar. --- FROZEN Ar ($\gamma = 1.667$), + EXPERIMENTAL DATA FOR θ'_w (REF. 4).
FIG. 16 VARIATION OF ANGLE δ VS SHOCK-MACH NUMBER AT FIXED θ_w FOR AIR.
$T_0 = 300$ K, $P_0 = 15$ TORR, ——— FROZEN AIR ($\gamma = 1.40$),
——— EQUILIBRIUM AIR, + EXPERIMENTAL DATA FOR θ_w (REF. 21).
FIG. 17 EXAMPLE WHERE ENTIRE MACH STEM IS NOT PERPENDICULAR TO WEDGE SURFACE. $\theta_w = 20^\circ$, $M_s = 4.72$, $p_o = 14.5$ TORR, $T_o = .297.7$ K, CO$_2$ (REF. 14)
FIG. 18 COMPARISON OF EQUILIBRIUM-GAS TRANSITION BOUNDARIES WITH EXPERIMENTAL RESULTS FOR CO$_2$. EXPERIMENTS: o - RR, Λ - SMR, v - CMR, c - DMR (REF. 14).
FIG. 19(a) SCHEMATIC DIAGRAM ILLUSTRATING ASSUMPTION OF POSITION OF KINK OR SECOND TRIPLE POINT AND FIRST TRIPLE POINT.

FIG. 19(b) SCHEMATIC DIAGRAM ILLUSTRATING FLOW DIRECTION IN REGION 1 RELATIVE TO KINK.
FIG. 19(c) DEFINITIONS OF ϕ_{1k}, ϕ_{1k}', ρ_2 AND ρ_2'.

FIG. 19(d) FOUR POSSIBLE GEOMETRIC CONFIGURATIONS OF REFLECTED SHOCK WAVE.
FIG. 20 EXPERIMENTAL RELATIONS BETWEEN δ AND TYPE OF REFLECTION.

N_2 (REF. 4), Ar (REF. 4), CO_2 (REF. 14), AIR (REF. 21),
Δ - SMR, \triangledown - CMR, \Box - DMR.
FIG. 21 SMR + CMR TRANSITION BOUNDARIES OF "NEW" AND "FORMER" CRITERIA FOR EQUILIBRIUM CO$_2$.

--- NEW CRITERION, --- FORMER CRITERION. EXPERIMENTS:
Δ - SMR, \triangledown - CMR (REF. 14).
FIG. 22 SMR + CMR TRANSITION BOUNDARIES OF "NEW" AND "FORMER" CRITERIA FOR FROZEN N₂ AND AIR (γ = 1.40).

--- NEW CRITERION, --- FORMER CRITERION. EXPERIMENTS:
N₂: △ - SMR, ▽ - CMR (REF. 4); AIR: △ - SMR, ▽ - CMR (REF. 21).
FIG. 23 COMPARISON BETWEEN FROZEN AND EQUILIBRIUM AIR OF SMR + CMR TRANSITION BOUNDARIES OF NEW CRITERION.

- FROZEN AIR, - EQUILIBRIUM AIR. EXPERIMENTS:

△ - SMR, ▽ - CMR (REF. 21).
FIG. 24 $M_{2T} = 1$ LINE AND $\delta = 90^\circ$ LINE OF FROZEN ARGON.

$M_{2T} = 1$, $\delta = 90^\circ$. EXPERIMENTS: \triangle - SMR,
\triangledown - CMR (REF. 4).
FIG. 25 EXPERIMENTAL CONVERGENCE OF CMR + DMR BOUNDARY WITH SMR + CMR BOUNDARY AT RR + MR BOUNDARY FOR CO₂.
CALCULATED BOUNDARY: — FROZEN CO₂, — EQUILIBRIUM CO₂.
EXPERIMENTAL POINTS: ○ - RR, △ - SMR, ▽ - CMR, □ - DMR (REF. 26)
● - RR, △ - SMR, ▽ - CMR, ■ - DMR (REF. 14)
★ - RR, △ - SMR, ▽ - CMR, ■ - DMR (REF. 22)
—- — EXPERIMENTAL BOUNDARY BETWEEN CMR AND DMR.
Fig. 26 Comparison of experimental results with calculated RR and MR boundaries for several values of boundary-layer-displacement angle θ_d for CO$_2$.

- Frozen CO$_2$ ($\gamma = 1.40$),
- Perfect CO$_2$ ($\gamma = 1.29$),
- Equilibrium CO$_2$.

Experimental points:
- RR, △ - SMR, ▽ - CMR, □ - DMR (Ref. 26)
- RR, △ - SMR, ▽ - CMR, □ - DMR (Ref. 14)
- RR, △ - SMR, ▽ - CMR, □ - DMR (Ref. 22)
- RR, △ - SMR, ▽ - CMR, □ - DMR (Ref. 25)
FIG. 27 COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED RR + MR BOUNDARIES WITH M_s FOR SEVERAL VALUES OF THE BOUNDARY-LAYER-DISPLACEMENT ANGLE θ_d FOR AIR.

- --- FROZEN AIR, - - - - EQUILIBRIUM AIR.
EXPERIMENTS: \rightarrow REGION WHERE RR OBTAINED, \longrightarrow REGION WHERE MR OBTAINED (ARROWS ARE USED INSTEAD OF NUMEROUS POINTS FOR CLARITY).

- a - REF. 6, b - REF. 27, c - REF. 28.
- o - RR, △ - MR (REF. 21), ▲ - MR (REF. 15).
FIG. 28
BOUNDARY-LAYER DISPLACEMENT EFFECT BEHIND REFLECTION POINT P.

I - INCIDENT SHOCK WAVE; R - REFLECTED SHOCK WAVE; \(\theta_d \) - DISPLACEMENT ANGLE; \(\theta_d' \) - REFLECTED WAVE ANGLE.

(0) (1) (2)
FIG. 29 COMPARISON OF EXPERIMENTAL REFLECTED-WAVE ANGLE ω' WITH CALCULATIONS OF SEVERAL BOUNDARY-LAYER-DISPLACEMENT ANGLES θ_d FOR EQUILIBRIUM CO$_2$.

$\theta_d = 0^\circ$, $\theta_d = -1^\circ$, $\theta_d = -2^\circ$, $T_0 = 300$ K,

$p_0 = 15$ TORR. EXPERIMENTAL DATA: $\nabla - \theta_w = 45^\circ$, $\Box - \theta_w = 47^\circ$,

$\circ - \theta_w = 50.5^\circ$, $\triangle - \theta_w = 60.1^\circ$ (REFS. 14, 22).
FIG. 30 COMPARISON OF REFLECTED-WAVE ANGLE ω' WITH CALCULATIONS FOR SEVERAL BOUNDARY-LAYER-DISPLACEMENT ANGLES θ_d FOR AIR AND N_2 AT $\theta_w = 50^\circ$.

FROZEN AIR ($\gamma = 1.4$), -- -- EQUILIBRIUM AIR, $T_0 = 300$ K, $P_0 = 15$ TORR,
EXPERIMENTAL DATA: ▲ - AIR (REF. 21), Δ - N_2 (REF. 4).
FIG. 31 COMPARISON OF EXPERIMENTAL REFLECTED ANGLE \(\omega' \) WITH CALCULATIONS OF BOUNDARY-LAYER-DISPLACEMENT ANGLE \(\theta_d = -1^\circ \) FOR AIR AND \(N_2 \).

——— FROZEN AIR, ——— EQUILIBRIUM AIR, \(T_0 = 300 \, K, p_0 = 15 \, \text{Torr} \).

EXPERIMENTAL DATA:
AIR:
+ - \(\theta_w = 45^\circ \), ■ - \(\theta_w = 47^\circ \), ▼ - \(\theta_w = 49^\circ \),
 ▲ - \(\theta_w = 50^\circ \), ● - \(\theta_w = 60^\circ \) (REF. 21),

\(N_2 \):
△ - \(\theta_w = 50^\circ \), ○ - \(\theta_w = 60^\circ \) (REF. 4).
FIG. 32 COMPARISON OF EXPERIMENTAL REFLECTED WAVE ANGLE ω' WITH CALCULATIONS WITH SEVERAL BOUNDARY-LAYER-DISPLACEMENT ANGLES θ_d AT $\theta_w = 60^\circ$ FOR Ar.
\circ - EXPERIMENTAL DATA (REF. 4).
APPENDIX A

COMMENT ON CO_2

The term perfect CO_2 was used previously in Refs. 13 and 14 to indicate a gas with a constant value of $\gamma = 1.29$ independent of temperature. However, from the following discussion, CO_2 with a constant $\gamma = 1.29$ has no physical validity. At room temperature, the vibrational modes of CO_2 are partly excited. The doubly-degenerate bending modes, which have a characteristic temperature of 960.2 K, are excited to 14% of their full excitation and have a contribution of 0.9R to C_v. The other stretching modes contribute 0.7R to C_v. Consequently, along with contributions from the translational modes and rotational modes $C_v = 3.47R$ at room temperature, or $\gamma = C_p/C_v = 1.29$ at room temperature. However, behind a shock wave the translational and rotational temperatures immediately jump to the Rankine-Hugoniot temperature T_{lf}. Since the vibrational energy is too slow to participate, it remains frozen on either side of the shock front and the temperature T_{lf} can be computed using $\gamma = 1.4$ (Ref. 31). After a period (relaxation time) the vibrational modes are activated and shared in the energy through equipartition. The final equilibrium temperature $T_{lf} = T_{lf}$ for CO_2 with $\gamma = 1.29$ has no physical basis. However, it is sometimes used in engineering applications to give an approximate answer for shock waves in CO_2 with vibrational excitation. The error becomes increasingly worse with rising shock Mach number (Ref. 31).

APPENDIX B

THREE-SHOCK THEORY

The three-shock theory provides a simple and effective analysis of oblique-shock-wave reflections. Even so, it includes some aspects which are physically unreasonable or inconsistent with experimental results. They are described below.

B.1 Behaviour of γ as $M_s = 1$

The values of γ at fixed θ_w are approximately constant at high shock Mach numbers M_s, both experimentally and analytically. As M_s decreases, the values of γ increase except for large θ_w. Experimentally, γ has maximum values near $M_s = 2$ and decreases for other M_s. The calculated results of γ from the three-shock theory, however, do not have maxima for different θ_w but continue to increase as $M_s > 1$, as shown in Fig. A-1.

Ben-Dor (Ref. 3) proposed an alternative method to obtain γ at small wedge angles ($\theta_w < 4^\circ$) which does give maxima and may agree with experiment despite his failure to obtain solutions of the three-shock theory for small θ_w and low M_s. His method is to assume that θ_w at small θ_w coincides with the value at no reflection (NR) boundary θ_w^{NR} and $\gamma = \gamma^{NR}$ at small wedge angles. Despite that his method gives a reasonable approximation to experiment results and is useful from an engineering point of view, he gave no physical explanation that θ_w at small θ_w coincides with the NR boundary. His method does not give the necessary dependency of γ ($= \gamma^{NR}$) for different θ_w. Since his suggestion is outside the three-shock theory realm, being only an assumption, it does not provide any clue for improving the three-shock theory or an alternative theory for the calculation of γ. The tendency to increase γ as $M_s > 1$ is not considered realistic, not only because it does not agree with experimental results, but it also yields a no-solution region in the $(M_s-\theta_w)$ plane, as described in Appendix B.2.

The reason why the three-shock theory fails to give reasonable solutions at low Mach numbers may be as follows. The reflected shock wave is composed of two parts, one is a reflected shock wave emanating from the triple point and the other is a bow shock wave caused by the interaction of the incident flow with the flow deflected by the wedge. The two shock waves intersect at the kink or the second triple point in CMR or UNR, respectively. In SMR, the two shock waves blend smoothly so that an intersection point cannot be seen. The three-shock theory gives the position of only one of the two shock waves, which is the one emanating from the triple point. The actual shape of the entire reflected shock wave is considered to be determined by the two shock waves mentioned above and their interaction. At low Mach numbers, both the reflected shock wave from the triple point and the bow shock wave are weak. The former, however, is considered to become weaker more rapidly than the latter. Therefore, the position of the whole reflected shock wave is controlled by the bow shock wave rather than the reflected shock wave from the triple point. In the limit as the shock Mach number of the bow shock wave approaches 1 (Mach wave), or $\gamma = 0^\circ$, the bow shock will intersect the incident shock wave at a point $\gamma = \gamma^{NR}$, which is at a lower γ than the limit of solution of the three-shock theory.

The reason is illustrated in Fig. A-2. Point 0 in Fig. A-2 was at the wedge corner when the incident shock wave collided with the wedge corner and it moves with the flow in region 1. Therefore, the flow in region 1 has a direction TO relative to T and the bow shock wave in the vicinity of T is normal to the flow. Since the bow wave is a Mach wave, the flow velocity in region 1 relative to the bow wave, or T, is sonic. If T is at γ^{NR}, the flow Mach number in region 1 is also 1.0 according to the criterion of the NR boundary. It means that
T, which is the intersection point of the bow shock wave and incident shock wave in the limit of bow-shock Mach number $\gamma > 1$, is at γ_{NR}. Therefore, it is reasonable to assume that, at low incident Mach numbers and small wedge angles, the intersection point of the extension of the bow shock wave and the incident shock wave is nearer a point for which it has γ_{NR}. Consequently, if the shape of the reflected shock wave is dominated by the bow shock wave, the bow shock wave will pull down the position of the reflected shock wave emanating from the triple point and eventually the position of the triple point itself is also pulled down from the position given by the solution of the three-shock theory. This results in a smaller γ, than given by the solution of the three-shock theory.

It can be concluded that the three-shock theory is inadequate when the shock wave emanating from the triple point does not have a dominant effect on the whole shape of the reflected shock wave. In the region near the RR z MR boundary, experimental results show that the position of the kink γ/z is no longer equal to the ratio between the flow velocity behind the incident shock wave and the velocity of the incident shock wave γ_1/γ_{sw}. This is also considered to be caused by the bow shock wave. Therefore, calculations which take into account the effects of the bow shock wave are necessary as $\gamma_0 > 1$.

B.2 No-Solution Region in the $(M_0-\gamma_0)$ Plane

The regions in the $(M_0-\gamma_0)$ plane have an additional region, compared with those in the $(M_0-\gamma)$ plane, namely a no-solution (NR) region. The flow Mach number behind the incident shock wave relative to the triple point must be $M_0 > 1$ for the existence of a reflected shock wave at the triple point. At a fixed M_0, M_0 decreases with decreasing γ_0 and at a certain γ_0, $M_0 = 1$. No reflected shock wave can exist beyond this point. The line $M_0 = 1$ is the boundary of the NR region.

It was thought that there are no solutions of the three-shock theory in the region just above the boundary of the NR region. In other words, it was assumed that the NR boundary line corresponds to the line $\gamma_0 = 0^\circ$. At higher Mach numbers $M_0 > 4$, the line $\gamma_0 = 0^\circ$ (strictly, the line which is the limit of $\gamma_0 = 0^\circ$) coincides with the NR boundary line within the error of calculations. At lower Mach numbers, however, the line $\gamma_0 = 0^\circ$ separates from the boundary of the NR region. Consequently, there arises a region between the $\gamma_0 = 0^\circ$ line and the boundary of the NR region in which no three-shock-theory solution exists (that is, no physically-realistic solution can exist even if solutions with negative γ_0 are possible). The non-solution region for a gas with constant $\gamma = 1.4$ is shown in Fig. A-3.

Experimentally, many points exist in this non-solution region. Consequently, the theory is inadequate in this region. The existence of the no-solution region corresponds to the fact that M_2T continues to increase as $M_0 \rightarrow 1$, as described in Appendix B.1.

Since the existence of this no-solution region is associated with the problem in Appendix B.1, the resolution of this unrealistic region might be possible in an analysis which takes into account the effect of the bow shock, as described in Appendix B.1.

B.3 Existence of Another CMR Region

Another strange result due to the three-shock theory is that it indicates the existence of another CMR region near the NR boundary. In this section, the usual transition criterion between SMR and CMR, $M_2T \geq 1$, is adopted. When viewing the variation of M_2T with γ at a fixed $M_0 = 1.8$ (Fig. A-4) for a gas with constant $\gamma = 1.4$, for example, M_2T is 1.081 at $\gamma = 45^\circ$. It means that the point P at $M_0 = 1.8$ and $\gamma = 45^\circ$ lies in a CMR region. The value of M_2T decreases as γ decreases. M_2T is sonic at $\gamma = 39.32^\circ$ and then enters the SMR region. The decreasing value of M_2T is due to two causes. One is that M_2T decreases with decreasing γ, and the other is that γ approaches 90° with decreasing γ. The angle γ becomes 90° at about $\gamma = 13^\circ$ and keeps increasing with decreasing γ to values greater than 90°. An increase in γ at 90° has an effect to increase M_2T contrary to $\gamma < 90^\circ$. At a certain γ, this effect overrides the decreasing effect due to the decrease of M_2T, and M_2T begins to increase. Eventually, M_2T becomes sonic again at about $\gamma = 3^\circ$. At wedge angles below this value of γ, M_2T is greater than 1, which means that it is in another CMR region according to the usual criterion.

This CMR region in the case of a gas with constant $\gamma = 1.4$ is shown in Fig. A-5. This CMR region is not realistic because the validity of the solutions of the three-shock theory is in doubt in the region of small γ and low M_0, as described in Appendices B.1 and B.2. This additional CMR region does not appear when the new condition $\gamma > 90^\circ$ (see Section 3.3) is added to the criterion because γ in this region is well below 90°.

APPENDIX C

EFFECT OF SLIPSTREAM THICKNESS

Only the flow direction and pressure are identical in regions 2 and 3 separated by the slipstream but not the other physical quantities. Consequently, a thermal and velocity layer results, not unlike a shear or boundary layer. It can be seen from Figs. 5 and A-10 (and other photographs in Refs. 1, 3, 4, 13 and 14) that this is an ideal way of generating a shear layer through wave interactions. The layer is
However, behind a shock wave the translational and rotational modes and rotational modes $C_v = 0.9R$ at room temperature, the vibrational modes of CO_2 are partly excited. The doubly-degenerate bending modes, which have a characteristic temperature of $960.2K$, are excited to 0.14 of their full excitation and have a contribution of $0.9R$ to C_v. The other two stretching modes contribute $0.7R$ to C_v. Consequently, assigning contributions from the translational modes and rotational modes $C_v = 3.47R$ at room temperature, or $y = C_p/C_v = 1.29$ at room temperature. However, behind a shock wave the translational and rotational temperatures immediately jump to the Rankine-Hugoniot temperature T_{rf}. Since the vibrational energy is too slow to participate, it remains frozen on either side of the shock front and the temperature T_{rf} can be computed using $y = 1.4$ (Ref. 31). After a period (relaxation time) the vibrational modes are activated and share in the energy through equipartition. The final equilibrium temperature $T_{eq} < T_{rf}$. Perfect CO_2 with $y = 1.29$ has no physical basis. However, it is sometimes used in engineering applications to give an approximate answer for shock waves in CO_2 with vibrational excitation. The error becomes increasingly worse with rising shock Mach number (Ref. 31).

APPENDIX A

COMMENT ON PERFECT CO$_2$

The term perfect CO_2 was used previously in Refs. 13 and 14 to indicate a gas with a constant value of $y = 1.29$ independent of temperature. However, from the following discussion, CO_2 with a constant $y = 1.29$ has no physical validity. At room temperature, the vibrational modes of CO_2 are partly excited. The doubly-degenerate bending modes, which have a characteristic temperature of $960.2K$, are excited to 0.14 of their full excitation and have a contribution of $0.9R$ to C_v. The other two stretching modes contribute $0.7R$ to C_v. Consequently, assigning contributions from the translational modes and rotational modes $C_v = 3.47R$ at room temperature, or $y = C_p/C_v = 1.29$ at room temperature. However, behind a shock wave the translational and rotational temperatures immediately jump to the Rankine-Hugoniot temperature T_{rf}. Since the vibrational energy is too slow to participate, it remains frozen on either side of the shock front and the temperature T_{rf} can be computed using $y = 1.4$ (Ref. 31). After a period (relaxation time) the vibrational modes are activated and share in the energy through equipartition. The final equilibrium temperature $T_{eq} < T_{rf}$. Perfect CO_2 with $y = 1.29$ has no physical basis. However, it is sometimes used in engineering applications to give an approximate answer for shock waves in CO_2 with vibrational excitation. The error becomes increasingly worse with rising shock Mach number (Ref. 31).

APPENDIX B

THREE-SHOCK THEORY

The three-shock theory provides a simple and effective analysis of oblique-shock-wave reflections. Even so, it includes some aspects which are physically unreasonable or inconsistent with experimental results. They are described below.

B.1 Behaviour of ω as $M_s > 1$

The values of ω at fixed ω_{w} are approximately constant at high shock Mach number M_s, both experimentally and analytically. As M_s decreases, the values of ω increase except for large ω_{w}. Experimentally, ω has maximum values near $M_s = 2$ and decreases for other M_s. The calculated results of ω from the three-shock theory, however, do not have maxima for different ω_{w} but continue to increase as $M_s > 1$, as shown in Fig. A-1.

Ben-Dor (Ref. 3) proposed an alternative method to obtain ω at small wedge angles ($\omega_{w} < 4^\circ$) which does give maxima and may agree with experiment despite his failure to obtain solutions of the three-shock theory for small ω_{w} and low M_s. His method is to assume that ω at small ω_{w} coincides with the value at the no-reflection (NR) boundary ω_{nr} and ω_{nr} at small wedge angles. Despite that his method gives a reasonable approximation to experimental results and is useful from an engineering point of view, he gave no physical explanation that ω at small ω_{w} coincides with the NR boundary. His method does not give the necessary dependence of $\omega_{w} = \omega_{nr}$ for different ω_{w}. Since his suggestion is outside the three-shock theory realm, being only an assumption, it does not provide any clue for improving the three-shock theory or an alternative theory for the calculation of ω. The tendency to increase ω as $M_s > 1$ is not considered realistic, not only because it does not agree with experimental results, but it also yields a no-solution region in the (M_s, ω_{w}) plane, as described in Appendix B.2.

The reason why the three-shock theory fails to give reasonable solutions at low Mach numbers may be as follows. The reflected shock wave is composed of two parts, one is a reflected shock wave emanating from the triple point and the other is a bow shock wave caused by the interaction of the incident flow with the bow deflected by the wedge. The two shock waves intersect at the kink or the second triple point in OMNR or OMNR, respectively. In SMR, the two shock waves blend smoothly so that an intersection point cannot be seen. The three-shock theory gives the position of only one of the two shock waves, which is the one emanating from the triple point. The actual shape of the entire reflected shock wave is considered to be determined by the two shock waves mentioned above and their interaction. At low Mach numbers, both the reflected shock wave from the triple point and the bow shock wave are weak. The former, however, is considered to become weaker more rapidly than the latter. Therefore, the position of the whole reflected shock wave is controlled by the bow shock wave rather than the reflected shock wave from the triple point. In the limit as the shock Mach number of the bow shock wave approaches 1 (Mach wave), or $\omega_{w} = 0^\circ$, the bow shock will intersect the incident shock wave at a point $\omega_{w} = \omega_{nr}$, which is at a lower ω_{w} than the limit of solution of the three-shock theory.

The reason is illustrated in Fig. A-2. Point 0 in Fig. A-2 was at the wedge corner when the incident shock wave collided with the wedge corner and it moves with the flow in region 1. Therefore, the flow in region 1 has a direction θ relative to T and the bow shock wave in the vicinity of T is normal to the flow. Since the bow wave is a Mach wave, the flow velocity in region 1 relative to the bow wave, or T, is sonic. If T is at ω_{nr}, the flow Mach number in region 1 is also 1.0 according to the criterion of the NR boundary. It means that
laminar near its point of generation, the triple point, and further on it becomes turbulent and thicker. The thickness of the slipstream between the two flows violates one of the boundary conditions of the three-shock theory that the two flows are parallel. In this appendix, the actual displacement thickness of the slipstream between regions 2 and 3 is not estimated. Only the effect of an assumed displacement angle, which is the slope of the displacement thickness at the triple point on χ is estimated in order to evaluate whether or not this effect can explain the remaining discrepancies of χ between the experiments and the analytical predictions.

Figure A-6 shows a comparison of calculated results with and without displacement angles of 1° and 2°. The gas is equilibrium CO_2 at $M_2 = 5$. Since the figure shows the relation between ν_w and β_w, the difference between the value along the longitudinal and transverse axis is the value of χ. A displacement angle of 2° can change the value of χ less than 1°, except at small wedge angles ($\theta_w < 10^\circ$). This is insufficient to explain the discrepancy in χ (which is about 2° in a typical case at $M_2 = 6$ and $\theta_w = 20^\circ$) because a displacement angle of 6° is necessary to explain the discrepancy and it is not likely to happen. It should be pointed out here, however, that the effect of the displacement angle is not negligibly small at small wedge angles. The displacement angle should be taken into account in calculations at small wedge angles regardless whether use is made of the three-shock theory which takes into account the effect of the bow shock wave, as suggested in Appendix B.1.

APPENDIX D

COMMENT ON TRANSITION CRITERION FOR CMR TO DMR

The discrepancy between the calculated CMR ≠ DMR boundary and experiment is not as simple as for the SMR ≠ CMR boundary. In the case of CO_2 shown in Fig. 18, the calculated boundary fails to account for many CMR points which lie in the DMR region. That is, the CMR ≠ DMR boundary line must be shifted upward to account for the experimental results, whereas in the case of Ar shown in Fig. A-7, the reverse occurs and the CMR ≠ DMR line has to be shifted downward. However, for N_2 and air, which are shown in Figs. A-8 and A-9, respectively, the experimental distributions agree well with the calculated boundaries (except at lower N_2 and large θ_w when the two triple points approach and coincide on the RR boundary line). All calculations were done in accordance with the discussion on relaxation lengths, that is, CO_2 as an equilibrium gas and Ar, N_2 and air as a frozen gas. These discrepancies are considered due to at least two causes. One is related to the classification of the experimental results and the other is due to the inappropriate transition criterion.

Experimentally, the distinction between CMR and DMR is made by whether or not there is another shock wave at the second triple point. It is difficult, however, to see a weak and short shock wave in an interferogram. Consequently, the classification sometimes depends on the observers. For example, the interferogram of Ar shown in Fig. A-10 was classified as a DMR by Ben-Dor (Ref. 4) and the one of CO_2 shown in Fig. A-11 was classified as a CMR by Ando (Ref. 14). There seems, however, no essential difference between these two interferograms, or one can, with greater assurance, classify them just in reverse, that is, Fig. A-10 as a CMR and Fig. A-11 as a DMR. If so, the experimental boundary of Ar may move towards the DMR region and that of CO_2 towards the CMR region.

From the point of the criterion, a criticism described below can be offered. At a flow Mach number just over unity, a shock wave, if it is formed, must be normal to the flow direction, otherwise the Mach number of the normal component of the flow is less than 1 and no shock wave could be formed. As mentioned in Section 3.3, the flow comes right above (parallel to the incident shock-wave front), looked at from the reference frame attached to the second triple point. In the region where the transition from CMR to DMR takes place, the angle θ is larger than 90° (see Fig. 20). Therefore, the flow will be deflected toward the second triple point T' while passing through the reflected shock wave. As a result, the second Mach stem M' must lie below the horizontal line toward the Mach stem M (see Fig. A-12). The shadowgraph shown in Fig. 17 is just inside the DMR region. The direction of the flow after the deflection through the reflected shock wave, looked at from the second triple point, is calculated at an angle of about 5° toward the second triple point from the vertical line. Therefore, the second Mach stem should lie 5° below the horizontal line toward the Mach stem. Experimentally, however, the second Mach stem lies along the horizontal line, or it seems to have an opposite inclination in the vicinity of the second triple point. The second Mach stem seems to be formed as an extension of the bow shock wave rather than as a shock wave normal to the flow in region 2 at the very beginning of its formation. This difference is, however, too small to explain the whole discrepancy between the experiments and the calculated boundary, especially in the case of CO_2. It gives only a clue to other necessary conditions for the transition lines which may exist.
There are still many aspects to be studied experimentally and analytically in the area of oblique-shock-wave reflections. Some of these are summarized in this appendix in order to assist in the continuation of the study of oblique-shock-wave reflections.

(a) Experimental persistence of RR beyond the transition boundary.

More experiments are required prior to further analyses. Although the persistence of RR beyond the transition boundary of the detachment criterion itself is an apparent experimental fact, some experimental results seem inconsistent with each other. That is, both RR and MR are obtained in the same region of the \((M_s-\delta_w)\) plane from the results of different experiments (see Section 3.4). This might be due to unknown factors such as a difference in initial pressure and its effects on the boundary-layer-displacement angle \(\delta_g\). A knowledge of the exact position of the experimental transition boundary and its dependence on controlled initial conditions are required for further analyses of this problem. The experimental data are required not only at the boundary but also above and below the boundary to obtain information on the behavior of quantities such as \(\gamma^*\) (in RR) and \(\chi\) (in MR) when approaching the RR \(\neq\) MR boundary line.

(b) Convergence of the SMR \(\neq\) CMR and CMR \(\neq\) DMR boundaries at the RR \(\neq\) MR boundary.

Experimental results show that the CMR \(\neq\) DMR boundary approaches the SMR \(\neq\) CMR boundary near the RR boundary and they eventually converge at the RR \(\neq\) MR boundary (see Fig. 25). This corresponds to the experimental fact that \(\gamma^*\) approaches \(0\) and \(\delta_w\) becomes near to the RR \(\neq\) MR boundary. There is no analytical prediction of the position of the second triple point except for an empirical assumption that \(\gamma^*/L\) is equal to the ratio between the velocity of the flow behind the incident shock wave and the incident shock wave velocity \(U_{1s}/U_{3s}\). An analytical method to predict the position of the second triple point, especially near the RR boundary, is required. Experiments are also required since few data are available aside from the existing values of \(\gamma^*/L\) in this region.

(c) Prediction of the direction of the Mach-stem curvature.

As described in Section 3.3, the Mach stem at the triple point is not perpendicular to the wedge surface experimentally. This is because the Mach stem has curvature. This discrepancy affects the analytical solutions, especially the value of \(\gamma\). For accurate analyses, the direction of the Mach stem at the triple point must be predicted. A semi-empirical formulation will be helpful until a better solution is obtained, which requires solving the two-dimensional flow field itself without numerically smearing the shock fronts.

(d) Effect of the bow shock wave on the position of the triple point.

As described in Appendix B.1, the three-shock theory fails to predict \(\gamma^*\) at low \(M_s\) and small \(\delta_w\). This is believed to be due to the effect of the bow shock wave (see Appendix B.1). An analytical method to predict the strength of the bow shock wave and its effect on the position of the triple point is required.

(e) Transition boundaries in the MR region.

There is experimental imprecision in the transition boundaries for the types of MR. The imprecision in the classification between SMR and CMR arises from the definition of CMR itself. In the case between CMR and DMR, however, an interferogram (which responds to changes in \(\gamma\) unlike schlieren to \(dU/dx\) and shadowgraph to \(d^2U/dx^2\)) contributes to the uncertainty of the experimental transition line. A shock wave is easier to distinguish in a shadow or schlieren photograph rather than in an interferogram (as noted above). It is true that an interferogram includes more quantitative information than a shadowgraph. Even so, experiments using shadowgraphs are often required to give precise configurations which determine the positions of the experimental transition boundaries, especially between CMR and DMR. Consequently, more than one optical method of flow visualization should be used.
FIG. A-1 TRIPLE-POINT-TRAJECTORY ANGLE χ VS INCIDENT SHOCK MACH NUMBER M_s.
FROZEN GAS, $\gamma = 1.40$.

TRIPLE-POINT-TRAJECTORY ANGLE

SHOCK MACH NUMBER M_s
FIG. A-2 SCHEMATIC DIAGRAM SHOWING THAT TRIPLE POINT T SHOULD BE AT θ_{WR} WHEN $\theta_w = 0^\circ$.

I - INCIDENT SHOCK WAVE, R - REFLECTED SHOCK WAVE, M - MACH STEM, T - TRIPLE POINT, O - CENTRE OF REFLECTED SHOCK WAVE.
FIG. A-3 NO-SOLUTION REGION IN (M_s-θ_w') PLANE FOR A FROZEN GAS $\gamma = 1.40$.
FIG. A-4 VARIATION OF M_{2T} WITH θ_w AT FIXED $M_s = 1.80$ FOR FROZEN GAS
$\gamma = 1.4$.
FIG. A-5 EXISTENCE OF ANOTHER CMR REGION FOR A FROZEN GAS $\gamma = 1.40$.

θ'_w deg

EFFECTIVE WEDGE ANGLE

SHOCK MACH NUMBER M_s

RR

DMR

CMR

SMR

CMR

No Solution

Another CMR

$M_s = 1$

$\gamma = 0$

NR
FIG. A-6 EFFECT OF SLIPSTREAM DISPLACEMENT ANGLE FOR EQUILIBRIUM CO$_2$
AT M_s = 5.0.

- - - - - - - DISPLACEMENT ANGLE 0°,
- - - - - - - DISPLACEMENT ANGLE 1°,
- - - - - - - DISPLACEMENT ANGLE 2°.
FIG. A-7 COMPARISON OF CALCULATED CMR DMR TRANSITION BOUNDARY WITH EXPERIMENTAL RESULTS FOR Ar.
EXPERIMENTS: o - RR, △ - SMR, ▽ - CMR, □ - DMR (REF. 4).
FIG. A-8 COMPARISON OF CALCULATED CMR + DMR TRANSITION BOUNDARY WITH EXPERIMENTAL RESULTS FOR N_2.
EXPERIMENTS: o - RR, Δ - SMR, ∇ - CMR, \Box - DMR (REF. 4).
FIG. A-9 COMPARISON OF CALCULATED CMR + DMR TRANSITION BOUNDARY WITH EXPERIMENTAL RESULTS FOR AIR.
EXPERIMENTS: o - RR, △ - SMR, ▽ - CMR, □ - DMR (REF. 21).
FIG. A-11 AN EXAMPLE CLASSIFIED AS A CMR BY ANDO (REF. 14).
\[\theta_w = 10^\circ, M_s = 9.21, p_o = 5.1 \text{ TORR}, T_o = 296.9 \text{ K}. \]
FIG. A-12 SCHEMATIC DIAGRAM ILLUSTRATING THE DIRECTION OF SECOND MACH STEM AT ITS VERY FIRST APPEARANCE.

- SHOCK WAVE, -- SLIPSTREAM, ➔ FLOW DIRECTION (RELATIVE TO T'), - - - HORIZONTAL LINE, I - INCIDENT SHOCK WAVE, R, R' - REFLECTED SHOCK WAVE, M - MACH STEM, M' - SECOND MACH STEM, T - TRIPLE POINT, T' - SECOND TRIPLE POINT, S - SLIPSTREAM, S' - SECOND SLIPSTREAM.
AN ASSESSMENT OF RECENT RESULTS ON PSEUDO-STATIONARY OBLIQUE-SHOCK-WAVE REFLECTIONS

Shirou, M., Glass, I. I.

The assumptions and criteria used in existing analyses in determining the regions and transition lines of pseudo-stationary oblique-shock-wave reflections have been re-examined in order to improve the agreement between experiments and computed data for regular (RR), single-Mach (SRM), complex-Mach (CMR) and double-Mach reflection (DMR). It is shown that the relaxation lengths for vibration and dissociation determine whether frozen or equilibrium gas transition lines are applicable. For example, at an initial temperature of 300 K and a pressure of 15 torr (where much previous work was done) an equilibrium gas analysis would not be required for shock Mach numbers $M_s < 6$ in N_2, $M_s < 8$ in O_2, and $M_s < 6$ in CO. Yet, the available experimental data in N_2, CO, and very recent results for air, which are based on the criterion (consistent with relaxation lengths) of the angle θ_i, between the incident and reflected shock wave, do not conclusively support the frozen or equilibrium gas calculations for N_2 and air. It does support CO, as an equilibrium gas contrary to a previous conclusion of agreement with $\gamma = 1.29$. A new additional and necessary criterion for the transition from single to complex Mach reflection improves the agreement between analysis and experiment and is consistent with the requirements of the relaxation length and the angle θ_i. However, it now appears that a more accurate criterion is required for the boundary layer between CO and DMR. A more detailed examination of the boundary-layer-displacement slope at the point of regular reflection appears to eliminate the so-called von Neumann paradox, and explains the persistence of regular gas transition recombination. The transition line for the occurrence of Mach reflection is also shown that at the triple point the Mach stem can vary from being perpendicular to the wedge surface in actual experiments by as much as -3.10° to 7.5°. Consequently, calculations of the triple-point-trajectory angle Ψ on the basis that the stem is perpendicular is not always well founded. It is verified that at lower shock Mach numbers M_s and large wedge angles γ, the experimental evidence shows that the transition lines for SRM # CMR and CMR # DMR converge at a point on the RR # CMR line, contrary to a previous simplified analysis.

Available copies of this report are limited. Return this card to UTIAS, if you require a copy.