THEORETICAL ASPECTS OF LASER-INDUCED PERIODIC SURFACE STRUCTURE FORMATION

ROCHESTER UNIV NY DEPT OF CHEMISTRY M HUTCHINSON ET AL. NOV 83

UNCLASSIFIED ROCHESTER/DC/83-TR-43 N00014-80-C-0472 F/G 7/4 NL
Theoretical Aspects of Laser-Induced Periodic Surface Structure Formation

Michael Hutchinson, Kee-Tung Lee, William C. Murphy, A. C. Beri and Thomas F. George

Department of Chemistry
University of Rochester
Rochester, New York 14627

Office of Naval Research
Chemistry Program Code 472
Arlington, Virginia 22217

November 1983

PERIODIC SURFACE STRUCTURE FORMATION
LASER-INDUCED
THEORETICAL STUDY
MAXWELL'S EQUATIONS

SMOOTH SURFACE GRATINGS
ROUGH SURFACE GRATINGS
MULTILAYERED GRATINGS
SQUARE-WELL SILVER GRATINGS

Laser-induced periodic pattern formation has been observed on a variety of substances. In particular, low-power lasers have been used to deposit a pattern on a metal surface. For a relatively smooth surface grating, this pattern can be explained in terms of a perturbative solution of Maxwell's equations. However, as the surface grating is enhanced by this initial deposition, the perturbation solution breaks down. An alternate non-perturbative solution of Maxwell's equations for such rough surfaces is considered here. Moreover, other possible mechanisms that may assist pattern formation are discussed, such as field-enhanced evaporation and surface migration.
Theoretical Aspects of Laser-Induced Periodic Surface Structure Formation

by

Michael Hutchinson, Ki-Tung Lee, William C. Murphy, A. C. Beri and Thomas F. George

Prepared for Publication in Laser-Controlled Chemical Processing of Surfaces, ed. by A. W. Johnson and D. J. Ehrlich (Elsevier, New York)

Department of Chemistry
University of Rochester
Rochester, New York 14627

November 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
THEORETICAL ASPECTS OF LASER-INDUCED
PERIODIC SURFACE STRUCTURE FORMATION

MICHAEL HUTCHINSON, KI-TUNG LEE, WILLIAM C. MURPHY,
A. C. BERI AND THOMAS F. GEORGE
Department of Chemistry, University of Rochester
Rochester, New York 14627

ABSTRACT
Laser-induced periodic pattern formation has been observed on a variety of substances. In particular, low-power lasers have been used to deposit a pattern on a metal surface. For a relatively smooth surface grating, this pattern can be explained in terms of a perturbative solution of Maxwell's equations. However, as the surface grating is enhanced by this initial deposition, the perturbation solution breaks down. An alternate non-perturbative solution of Maxwell's equations for such rough surfaces is considered here. Moreover, other possible mechanisms that may assist pattern formation are discussed, such as field-enhanced evaporation and surface migration.

INTRODUCTION
Over the past several years, a number of researchers [1-17] have observed periodic patterns developing on the surfaces of solids that were exposed to laser radiation. These patterns have been seen on various metals, insulators, and both doped and pure semiconductors. Most of these experiments were carried out with Nd:YAG or Nd:glass lasers tuned to wavelengths between 1.0 \(\mu m \) and 10.0 \(\mu m \). To obtain these patterns, laser power densities of between 10 MW/cm\(^2\) and 1 GW/cm\(^2\) were employed. Above this range, surface melting would occur, while below this level, no discernible surface pattern was observed.

This laser-induced periodic surface structure has several characteristics. First, the surface pattern consists of a number of parallel grooves running perpendicular to the \(\vec{E} \) field of the incident laser. Second, Oron and Sorensen [8] demonstrated that the underlying surface lattice has no effect on the shape of the laser-induced surface structure. On the other hand, Isenor [6] has shown that the existence of scratches on the surface can have a significant effect on the final surface structure. In fact, if the surface is randomly scratched, no periodic surface structure will form. Both Brueck and Ehrlich [12] and van Driel and his colleagues [13] have also observed the development of a weaker secondary pattern parallel to the incident \(\vec{E} \) field. With this secondary structure, the surface takes on a scalloped appearance. Finally, these surface patterns produce large drops in the reflectivity of several metals [3-4].

Most of the work so far has considered laser-induced periodic structures on surfaces that already had a certain composition. Needless to say, this necessitates large laser power densities (greater than 10 MW/cm\(^2\)) in order to provide sufficient energy for the surface atoms to rearrange. However, Brueck and Ehrlich [12] showed that only a modest amount of laser power (less than 10 W/cm\(^2\)) is needed to establish the periodic surface structure when the constituent atoms are deposited from the gas phase. In particular, they showed that Cd, Zn and Al in organometallic compounds could be photochemically deposited on Si or SiO\(_2\) substrates in ordered arrays.
To understand these observations and resolve any difficulties, one must consider how this laser-induced periodic surface structure is produced. There have been three attempts to explain these effects. First, since many metals have a plasma frequency around the frequency of the incident laser radiation, surface plasmons will be excited [11-12]. These plasmons will couple with the electromagnetic field to form a surface polariton. Since this polariton produces maxima and minima in the E field of the surface, the surface atoms will rearrange themselves to minimize their energy in this E field. Second, Maracas et al [7] have observed that the periodic surface structure can be considered a standing wave. This wave would have a velocity very close to that of a longitudinal acoustic phonon of the substrate. Thus, the surface pattern may well be a phonon excited by the laser that was "frozen" in place by the cooling of the lattice. Finally, van Driel and his associates [15] have proposed an extensive theory based on the small inhomogeneities that exist in the surface layer. This initial surface roughness will interact with the incident laser beam to produce a dipole moment in the surface layer (a "radiation remnant"). The field generated by this dipole layer can interfere with the refracted beam in the substrate below the surface. This interference will lead to inhomogeneous energy absorption and thus the redistribution of the surface atoms.

In the following section, the theory of the surface enhanced E field produced by relatively smooth surfaces and the resultant pattern formation will be viewed. The inapplicability of this approach to rough gratings will be demonstrated. To overcome this limitation, a non-perturbative solution of Maxwell's equations will be discussed. Finally, our results will be presented along with suggested improvements.

THEORY OF SMOOTH GRATINGS

Incident radiation converted to surface plasmon excitations via surface roughness has been investigated extensively in the past decade [18]. The classical method of Rayleigh [19] has often been used to solve the problem of weak scattering [20]. Brueck and Ehrlich [12] also adapted this formalism to describe the phenomena of laser-induced pattern formation. Here, we will briefly outline the theory of Brueck and Ehrlich and discuss its validation and limitation.

Let a light wave of frequency ω represented by an electric field $E_{\text{inc}}(\mathbf{r},t) = E_1 e^{ik_0 z} e^{-i\omega t}$ be incident on the metal surface at a normal angle, on the xz-plane. If we express the surface roughness in terms of a Fourier expansion,

$$z = \xi(x,y) = \sum_g u_g e^{i \mathbf{g} \cdot \mathbf{R}}$$

and assume that each amplitude u_g is small compared to the wavelength of the incident light, then taking the dielectric function as a step function,

$$\varepsilon(\omega) = \varepsilon(\omega) \theta(z - \xi) + \theta(\xi - z),$$

we can write down the solutions of the Maxwell's equations separately for the two media. In particular, for $g^2 > \omega^2/c^2$ and $z > \xi$, we have

$$\mathbf{E} = \mathbf{E}_1 e^{ik_0 z} + \mathbf{E}_r e^{i \mathbf{k}_r z} + \mathbf{E}_{sp} e^{i \mathbf{g} \cdot \mathbf{R}} e^{-k_g z},$$

where $k_g^2 = g^2 - \omega^2/c^2$. By imposing the boundary conditions, i.e., the local
tangential components of the electric and magnetic fields have to be continu-
ous across the actual surface $z = \xi(x,y)$, we can express the reflected
and surface plasmon fields, \vec{E}_r and \vec{E}_{sp} respectively, in terms of \vec{E}_1 by
writing

$$e^{ik_0\xi} = (1 + ik_0\xi)$$

and assuming $g\xi << 1$ in the continuity equations. If we consider only the
p-wave scattering, i.e., the light polarized in the x-direction, the
expression of Brueck and Ehrlich for \vec{E}_p can then be easily obtained. If we
assume a linear relationship between the film growth rate and the local
intensity,

$$\frac{dT}{dt} = I(x) = |\vec{E}_p|,$$

then the suggested equation of the grating depth u_g is obtained by assuming
a spatial profile of $T(x) = T_0 + u\cos(gx)$, and neglecting the $|\vec{E}_{sp}|^2$ term.

The foregoing theory was developed under the assumption that the sur-
face roughness is small, $g\xi << 1$. However, as more metal is deposited, the
roughness increases. In the perturbative theory of Brueck and Ehrlich, \vec{E}_p
is proportional to the roughness u. Therefore, the first consequence of increased roughness is that $|\vec{E}_{sp}|^2$ can no longer be neglected. This point
may already be reached when the grating is only a few layers deep. Moreover,
the damping of \vec{E}_{sp} can no longer be measured from the mean surface. An
increase in roughness can lead to sufficient enhancement of \vec{E}_{sp} that localized
evaporation of metal atoms could play an important role. Transfer of large
amounts of energy to the metal-carbon bond, such as in the deposition of Cd
on Si due to the dissociation of gaseous Cd(CH$_3$)$_2$, may also induce sufficient
translational motion along the surface so that adsorption does not occur at
the dissociation site. Such dissociation under several possibly physisorbed
organometallic layers could lead to trapping of the organic radical in the
vicinity of the surface. This "cage" effect could lead to the reformation
of the organic metal bond. Finally, the effect of surface roughness on the
dielectric function might be important. Such increases of surface area
could substantially alter the magnitude of this function, which in turn
could enhance the rate of pattern formation.

GENERALIZATION TO ROUGH GRATINGS

The foregoing considerations lead us to conclude that an explanation of
depth pattern formation requires a non-perturbative treatment of plasmon
formation, and at the present time a numerical solution of Maxwell's equations
seems inevitable. Recently [21] there has appeared a solution of the problem
of a square-well metallic grating in an applied electromagnetic field
(FIG. 1b). Such a solution is restricted to explaining the most qualitative
features of sinusoidal grating formation. We have established a general
formulation of the problem which is capable in principle of handling gratings'
of any shape or depth.

In the H polarization, Maxwell's equations can be written as [22]

$$\frac{\partial^2 H_x}{\partial z^2} + \frac{\partial^2 H_y}{\partial x^2} + c(x)k_0^2 H_z = \frac{\partial H_x}{\partial z} \frac{\partial}{\partial x} [\ln c(x)]$$

where H is the component of the magnetic field H in the direction perpen-
dicular to the lattice vector of the grating (FIG. 1). For square-well
gratings, H_y is separable.
\[H_y(x,y) = Z(z)X(x), \] (8)

and Eq. (7) can be written as two coupled first-order differential equations:

\[\frac{3Z^2}{3z} = \Lambda^2 Z \] (9a)

\[\frac{3^2X - \lambda}{3x} \left[\ln e(x) \right] \frac{3X + [e(x)k_o^2 - \Lambda^2]X = 0. \] (9b)

When the applied radiation is incident normal to the grating, it is found that \(\Lambda \) is the solution of the equation

\[1 - \cos(\Omega d/2) \cos(\Phi d/2) + 1/2(\alpha \beta + \beta \alpha) \sin(\beta d/2) \sin(\Phi d/2) = 0, \] (10)

where \(d \) is the period of the grating, \(\epsilon \) is the dielectric constant of the grating, \(\alpha = (k_o^2 - \Lambda^2)^{1/2} \) and \(\beta = (e \alpha^2 - \Lambda^2)^{1/2} \).

The problem to be considered (FIG. 1c) is that of a multilayered grating. In each layer the grating is periodic, and the general solution to Eq. (9) for the \(n \)-th layer may be written as

\[\psi_n = \frac{1}{\ell \eta \epsilon(x)} [A_n e^{i\eta \eta z} + B_n e^{-i\eta \eta z}], \] (11)

where the coefficients \(A \) and \(B \) are to be determined by the boundary conditions between layers, and \(A_n \) is the \(\ell \)-th solution to Eq. (10) for the \(n \)-th layer.

By applying the boundary condition of continuity of \(H_y \) and \(\frac{\partial H_y}{\partial z} \) between layers, we can establish the recursion relations for \(A \) and \(B \):

\[A_n = E_{n,n-1} A_{n-1} + F_{n,n-1} B_{n-1} \] (12a)

\[B_n = C_{n,n-1} A_{n-1} + D_{n,n-1} B_{n-1}, \] (12b)

where the matrices \(C, D, E, F \) are determined by the periodic structure of each layer. Furthermore, we can establish boundary conditions between the top two layers and the two lowest layers. In the topmost (infinite) layer, the eigensolution is written as [21]

\[\psi^I = e^{-ik_o z} + \sum_{n=\infty}^{\infty} R_n e^{ik_o [\gamma_n x + (1 - \gamma_n^2)^{1/2} z]]. \] (13)

In the lowest (infinite layer) we have

\[\psi^\infty = \sum_{n=\infty}^{\infty} L_n e^{ik_o [\gamma_n x - (\epsilon - \gamma_n^2)^{1/2} z]], \] (14)

where \(\gamma_n = \frac{n \lambda}{d} \).

It is now possible to establish

\[A_1 = a \hat{D} + b \hat{R}, \] (15a)

\[B_1 = b \hat{D} + a \hat{R}, \] (15b)

where \(\hat{D} \) is a unit vector. In addition,
\[\hat{A}_N = L \hat{B}_N, \]
\[\text{where } N \text{ labels the penultimate (finite) layer, and the matrix } L \text{ is determined by the parameters which characterize that layer. However, by applying the recursion relations of Eq. (12), it is possible to establish} \]
\[\hat{A}_N = J_1 \hat{b} + J_2 \hat{r} \quad \text{(17a)} \]
\[\hat{B}_N = k_1 \hat{b} + k_2 \hat{r} \quad \text{(17b)} \]

Rearranging (16) and (17) gives
\[\hat{r} = (J_2 - L k_2)^{-1} (L k_1 - J_1) \hat{b}, \]
\[\text{and by employing Eq. (12) once more we arrive finally at a matrix equation for the vectors } \hat{A}_M \text{ and } \hat{B}_M. \]
\[\begin{pmatrix} \hat{A}_M \\ \hat{B}_M \end{pmatrix} = \begin{pmatrix} E_{n,n-1} & F_{n,n-1} \\ C_{n,n-1} & D_{n,n-1} \end{pmatrix} \begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} \hat{R} \\ \hat{R} \end{pmatrix}. \]

RESULT AND DISCUSSION

We have made a preliminary calculation for a square-well silver grating. The field intensity \(|E(z,x)|^2\) is averaged over x at each of two values of z (z = 0 and z = -h), and the ratio \(R = |E(z = -h)|^2 / |E(z = 0)|^2\) is plotted as a function of the well-depth (roughness parameter) h (FIG. 2). R is thus the ratio of intensity in the "peak" region of the grating to that in the "well" region. For very shallow gratings (h < 0.5 nm), or about two monolayers) it is seen that \(|E(z = 0)|^2 > |E(z = -h)|^2\), which supports the perturbation description of Brueck and Ehrlich. This would explain how a particular grating establishes itself out of the "noise" of microscopic roughness. It also explains why the establishment of such a grating for low-power lasers requires the photodissociation of an organometallic compound and does not occur in the presence of metal vapor alone. However, at a certain depth (around 0.5 nm) \(|E(z = -h)|^2\) begins to increase very rapidly. It seems here that the grating structure will only continue to reinforce itself by a mechanism other than photodeposition. Such a mechanism might be photodeposition of the grating itself, whereby the trough regions are "excavated" by the field. Finally, we note that as h + \(\infty\), \(|E(z = -h)|^2 \rightarrow 0\). This is consistent with an upper unit to the growth of the grating. Work is currently underway to determine whether these qualitative trends are consistent also with sinusoidal gratings.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Army Research Office, the Office of Naval Research and the Air Force Office of Scientific Research (AFSC) under Grant No. AFOSR-82-0046. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon. TFG acknowledges the Camille and Henry Dreyfus Foundation for a Teacher-Scholar Award (1975-84) and the John Simon Guggenheim Memorial Foundation for a Fellowship (1983-84).
REFERENCES

18. For a comprehensive review, see A. A. Maradudin, in Surface Polaritons, ed. by V. M. Agranovich and D. L. Mills (North-Holland, Amsterdam, 1982), pp. 405-510.

FIG. 1.

(a) Sinusoidal grating. The hatched area represents the metal.

(b) Square-well grating showing a separation into three layers, one of which is periodic in the x-direction, and two of which are uniform.

(c) Generalization of the square-well grating in which there are three periodic layers.
FIG. 2. Log-log plot of the ratio $R = \frac{|E(z = -h)|^2}{|E(z = 0)|^2}$ against the grating depth h, for a silver grating with $d = 1050$ nm and $\lambda = 700$ nm. The horizontal line corresponds to $R = 1$. Above the line the intensity is greatest in the region of the well ($z = -h$); below the line the intensity is greatest in the region of the peaks ($z = 0$) of the grating. Clearly the latter condition pertains for very smooth gratings ($h \to 0$) and also for very rough gratings ($h \to \infty$).
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>Naval Ocean Systems Center</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 413</td>
<td>Attn: Mr. Joe McCartney</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td>San Diego, California 92152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONR Pasadena Detachment</td>
<td>Naval Weapons Center</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. J. Marcus</td>
<td>Attn: Dr. A. B. Amster, Chemistry Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td>China Lake, California 93555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasadena, California 91106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>Port Hueneme, California 93401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>Dean William Tolles</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>Naval Postgraduate School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>Monterey, California 93940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Fred Saalfeld</td>
<td>Scientific Advisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Commandant of the Marine Corps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>(Code RD-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td>Washington, D.C. 20380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
<td>Naval Ship Research and Development Center</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Attn: CRD-AA-IP</td>
<td>Attn: Dr. G. Bosmajian, Applied Chemistry Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. O. Box 12211</td>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park, N.C. 27709</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Vincent Schaper</td>
<td>Mr. John Boyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTNSRDC Code 2803</td>
<td>Materials Branch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21402</td>
<td>Naval Ship Engineering Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>Mr. A. M. Anzalone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td>Administrative Librarian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td>PLASTEC/ARRADCOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td>Bldg 3401</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dover, New Jersey 07801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Department</td>
<td>Institution</td>
<td>City, State/Zip</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Dr. G. A. Somorjai</td>
<td>Department of Chemistry</td>
<td>University of California</td>
<td>Berkeley, CA 94720</td>
</tr>
<tr>
<td>Dr. J. Murday</td>
<td>Naval Research Laboratory</td>
<td>Surface Chemistry Division (6170)</td>
<td>Washington, D.C. 20375</td>
</tr>
<tr>
<td>Dr. J. B. Hudson</td>
<td>Materials Division</td>
<td>Rensselaer Polytechnic Institute</td>
<td>Troy, NY 12181</td>
</tr>
<tr>
<td>Dr. Theodore E. Madey</td>
<td>Surface Chemistry Section</td>
<td>Department of Commerce</td>
<td>National Bureau of Standards</td>
</tr>
<tr>
<td>Dr. J. M. White</td>
<td>Department of Chemistry</td>
<td>University of Texas</td>
<td>Austin, TX 78712</td>
</tr>
<tr>
<td>Dr. Keith H. Johnson</td>
<td>Department of Metallurgy and</td>
<td>Massachusetts Institute of Technology</td>
<td>Cambridge, MA 02139</td>
</tr>
<tr>
<td>Dr. J. E. Demuth</td>
<td>IBM Corporation</td>
<td>Thomas J. Watson Research Center</td>
<td>Yorktown Heights, NY 10598</td>
</tr>
<tr>
<td>Dr. C. P. Flynn</td>
<td>Department of Physics</td>
<td>University of Illinois</td>
<td>Urbana, IL 61801</td>
</tr>
<tr>
<td>Dr. W. Kohn</td>
<td>Department of Physics</td>
<td>University of California (San Diego)</td>
<td>La Jolla, CA 92037</td>
</tr>
<tr>
<td>Dr. R. L. Park</td>
<td>Director, Center of Materials</td>
<td>University of Maryland</td>
<td>College Park, MD 20742</td>
</tr>
<tr>
<td>Dr. W. T. Peria</td>
<td>Electrical Engineering Department</td>
<td>University of Minnesota</td>
<td>Minneapolis, MN 55455</td>
</tr>
<tr>
<td>Dr. Chia-wei Woo</td>
<td>Department of Physics</td>
<td>Northwestern University</td>
<td>Evanston, IL 60201</td>
</tr>
<tr>
<td>Dr. Robert M. Hexter</td>
<td>Department of Chemistry</td>
<td>University of Minnesota</td>
<td>Minneapolis, MN 55455</td>
</tr>
<tr>
<td>Dr. R. P. Van Duyne</td>
<td>Chemistry Department</td>
<td>Northwestern University</td>
<td>Evanston, IL 60201</td>
</tr>
<tr>
<td>Dr. S. Sibener</td>
<td>Department of Chemistry</td>
<td>James Franck Institute</td>
<td>Chicago, IL 60637</td>
</tr>
<tr>
<td>Dr. M. G. Lagally</td>
<td>Department of Metallurgical and</td>
<td>University of Wisconsin</td>
<td>Madison, WI 53706</td>
</tr>
<tr>
<td>No. Copies</td>
<td>No. Copies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637 | Dr. K. G. Spears
Chemistry Department
Northwestern University
Evanston, Illinois 60201 |
| 1 | 1 |
| Dr. R. G. Wallis
Department of Physics
University of California, Irvine
Irvine, California 92664 | Dr. R. W. Plummer
University of Pennsylvania
Department of Physics
Philadelphia, Pennsylvania 19104 |
| 1 | 1 |
| Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052 | Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106 |
| 1 | 1 |
| Dr. P. Hansma
Physics Department
University of California, Santa Barbara
Santa Barbara, California 93106 | Professor D. Hercules
University of Pittsburgh
Chemistry Department
Pittsburgh, Pennsylvania 15260 |
| 1 | 1 |
| Dr. J. C. Hemminger
Chemistry Department
University of California, Irvine
Irvine, California 92717 | Professor N. Winograd
The Pennsylvania State University
Department of Chemistry
University Park, Pennsylvania 16802 |
| 1 | 1 |
| Dr. Martin Fleischmann
Department of Chemistry
Southampton University
Southampton S09 5NH
Hampshire, England | Professor T. F. George
The University of Rochester
Chemistry Department
Rochester, New York 14627 |
| 1 | 1 |
| Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P. O. Box 218
Yorktown Heights, New York 10598 | Professor Dudley R. Herschbach
Harvard College
Office for Research Contracts
1350 Massachusetts Avenue
Cambridge, Massachusetts 02138 |
| 1 | 1 |
| Dr. J. A. Gardner
Department of Physics
Oregon State University
Corvallis, Oregon 97331 | Professor Horia Metiu
University of California, Santa Barbara
Chemistry Department
Santa Barbara, California 93106 |
| 1 | 1 |
| Dr. G. D. Stein
Mechanical Engineering Department
Northwestern University
Evanston, Illinois 60201 | Professor A. Steckl
Rensselaer Polytechnic Institute
Department of Electrical and Systems Engineering
Integrated Circuits Laboratories
Troy, New York 12181 |
<p>| 1 | 1 |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Location</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. John T. Yates</td>
<td>Department of Chemistry, University of Pittsburgh, Pennsylvania 15260</td>
<td>1</td>
</tr>
<tr>
<td>Professor G. H. Morrison</td>
<td>Department of Chemistry, Cornell University, Ithaca, New York 14853</td>
<td>1</td>
</tr>
<tr>
<td>Captain Lee Myers</td>
<td>AFOSR/NC, Bolling AFB, Washington, D.C. 20332</td>
<td>1</td>
</tr>
<tr>
<td>Dr. David Squire</td>
<td>Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709</td>
<td>1</td>
</tr>
<tr>
<td>Professor Ronald Hoffman</td>
<td>Department of Chemistry, Cornell University, Ithaca, New York 14853</td>
<td>1</td>
</tr>
</tbody>
</table>