OBSERVATION OF MAGNETIC FIELDS IN LASER-PRODUCED PLASMA USING THE ZEEMAN EFFECT
NAVY RESEARCH LAB
WASHINGTON DC E A MCLEAN ET AL. 30 SEP 83 NRL-MR-5161
Title: Observation of Magnetic Fields in Laser-Produced Plasma Using the Zeeman Effect

Authors: E. A. McLean, J. A. Stamper, C. K. Manka,* H. R. Griem,** D. W. Droemer,* and B. H. Ripin

Performing Organization Name and Address: Naval Research Laboratory, Washington, DC 20375

Controlling Office Name and Address: U.S. Department of Energy, Washington, DC 20545

Report Date: September 30, 1983

Number of Pages: 29

Distribution Statement: Approved for public release; distribution unlimited.

Summary:

Self-generated magnetic fields were observed for the first time using the Zeeman effect. Emission from the CV 1s23s3p^2 1s2p^3P (2270.9 Å) was used for the measurement. At a laser irradiance of \(\approx 5 \times 10^{12} \text{ W/cm}^2 \), the magnetic field increased from 100 kG to 200 kG when the focal spot was changed from a flat-topped distribution to a ring pattern, which caused higher density gradients. A Faraday rotation measurement at \(\approx 200 \text{ kG} \) agreed with the Zeeman effect measurement. Opacity effects in the plasma enhanced the sensitivity of the Zeeman measurement.
CONTENTS

I. INTRODUCTION .. 1

II. SPECTRAL LINE BROADENING EFFECTS .. 2
 A. General Considerations ... 2
 B. Opacity Corrections ... 4

III. EXPERIMENT ... 6

IV. RESULTS AND ANALYSIS ... 8
 A. General .. 8
 B. Experiments with a Ring-Shaped Laser Focal Spot .. 10
 1. Error Analysis .. 11
 C. Experiments with a Flat-topped Focal Spot (Mask Removed from Laser Beam) .. 11

V. DISCUSSION AND CONCLUSIONS .. 14

ACKNOWLEDGMENTS .. 14

APPENDIX - Theory and Calculation of Zeeman Effect
for Intermediate Fields .. 15

REFERENCES ... 18
OBSERVATION OF MAGNETIC FIELDS IN LASER-PRODUCED PLASMA USING THE ZEEMAN EFFECT

I. INTRODUCTION

It has been known for some time that a large magnetic field1 is generated when energetic laser pulses irradiate solid targets. These fields can result from thermoelectric and pressure effects that are present in these laser-generated plasmas, and are a strong function of temperature and pressure gradients within the plasma. Knowledge of these fields is important in studies of laser fusion and inter-streaming plasma instabilities due to their effect on thermal transport,2 absorption, and other processes that occur in these plasmas. For example, recently Forslund and Brackbill3 have predicted that these large magnetic fields will grossly alter the transport of hot electrons, energy and ions in CO\textsubscript{2} laser-target interactions.A

A variety of techniques to measure the magnetic fields have already been used, such as small probe coils,4 Faraday rotation,5,6 and the imprint on magnetic tape.7 However, this paper describes the first application of the Zeeman effect to measure these self-generated magnetic fields in laser-plasmas, and the first observations in the range of 100-300 kG. Those fields are produced by laser irradiances in the range of 10^{12}-10^{14} W/cm2 and are important in laser ablation studies.

Although magnetic probe coils were first used to measure magnetic fields in laser-irradiated solid targets, they can only be deployed at distances down to a few mm from the target surface (due to the fact that the plasma severely damages the probe) and consequently could only measure fields of a few kilogauss. Also, the magnetic probes perturb the plasma. On the other hand, optical measurements such as Faraday rotation and Zeeman effect do not perturb the plasma and have the ability to measure the magnetic fields at much higher densities. Stamper et al.5 and Raven, Willi and Rumsby6 have used Faraday rotation to measure the magnetic fields in laser-produced plasmas at laser irradiances of 10^{15}-10^{16} W/cm2 and have reported fields of 1-2 megagauss (MG). In those measurements, density gradients limited the distance that the probing light beam could penetrate the plasma to values greater than 100 μm from the target surface.

A comparison of the advantages and disadvantages of Faraday rotation and Zeeman splitting to measure magnetic fields will now be given. Faraday rotation (1) requires an external, polarized light source, (2) also time resolution (typically less than 1 nsec) if the external light source is of short duration, (3) gives information that is the integral of the product of magnetic field and electron density along the optical path of the probe beam, and (4) gives good spatial resolution transverse to the probe beam. On the other hand, Zeeman effect, which produces the splitting and broadening of spectral lines emitted by the plasma, (1) is a passive diagnostic, (2) allows time-resolved measurements (typically a few nsec) to be made, (3) gives the average magnetic field (but not the electron density) along the line of sight, (4) gives moderate spatial resolution of the magnetic field, and (5) with the proper choice of a spectral line allows observations to a higher density region of the plasma than would the Faraday rotation method. Unfortunately, the Zeeman splitting technique requires considerable effort to analyze the spectral line shape, since other broadening mechanisms such as thermal Doppler and Stark broadening as well as instrumental broadening and Doppler shifts due to mass motion are also present.

Peacock and Norton8 had used the Zeeman effect to measure megagauss magnetic fields in a plasma focus device. For these measurements they chose the helium-like CV $1s2s^2S_1-1s2p^2P_{2,1,0}$ multiplet spectral lines which were emitted from their plasma. We have chosen the same multiplet with spectral lines for $J = 2$ at 2270.9 Å, $J = 1$ at 2277.9 Å, and $J = 0$ at 2277.3 Å for the Zeeman splitting measurements described in this report. Reasons for the choice of this multiplet are (1) it is relatively

insensitive to Stark broadening, since the line is a transition from energy states with low principal quantum numbers, (2) observations could be made in the quartz UV where standard polarization sensitive optics can be used, (3) the spectral line comes from a relatively high temperature (≈100 eV) region of the plasma where one expects the magnetic field to be present, and (4) calculation of Zeeman splitting in the intermediate magnetic field region was tractable. LS coupling could be assumed in our calculations of the transition from weak field (anomalous Zeeman effect) to strong field effect (Paschen-Back effect).

Irons, McWhirter and Peacock10 did extensive spectroscopic investigations of the C4+ ions produced by the laser irradiation of polyethylene foils. In these studies, they showed that C4+ ions can be seen up to a centimeter from the target surface, and further, they noted that although the ions primarily are emitted perpendicular to the target surface, there is a radial velocity component (several times smaller than the axial component) parallel to the target surface. Also, Herbst and Grun11 in a recent study using a novel tracer-dot technique have shown that the fluid flow of ablated plasma from planar target curves away from the target normal with appreciable radial velocity component.

Further, it is shown in this report that when absorption of the spectral line occurs in conjunction with the Zeeman effect, it is possible to measure smaller magnetic fields at a given wavelength resolution than could be measured without absorption.12 In this study, magnetic fields were measured with field strengths of 200 kilogauss (kG) and below.

II. SPECTRAL LINE BROADENING EFFECTS

A. General Considerations

According to Zeeman effect theory,13 when a plasma is in a magnetic field, the light emitted perpendicular to the magnetic field lines is linearly polarized with one set of components polarized parallel to the magnetic field (\(\pi\)-components) and the other set of components polarized perpendicular to the magnetic field (\(\sigma\)-components). In this experiment observations will be made perpendicular (as near as possible) to the azimuthal magnetic field lines; by using polarizers the profiles of the spectral lines containing the \(\pi\)-components can be separated from those containing the \(\sigma\)-components. To obtain a measurement of the magnetic field using Zeeman splitting one must address also the other processes that lead to the broadening or wavelength shifting of the spectral lines. Generally, it is necessary to have the width of the Zeeman splitting comparable to or greater than the net broadening from these other processes.

Since the plasma emitting the CV multiplet is a high density, hot plasma one has to consider the broadening of the spectral lines by Stark and thermal Doppler effects. To estimate the broadening of lines by Stark effect, we have used interferometric measurements14 made under similar conditions to get an estimate of the electron density and then used the following relation for the broadening caused by inelastic and superelastic collisions:15

\[\delta\lambda_S = \frac{(10^{-8})}{2\pi c} \left(\frac{4}{3} \right) q_e N_e. \]

Here \(\delta\lambda_S\) is the full width at half-intensity in \(\AA\), \(\lambda\) is the wavelength of the line in \(\AA\), \(c\) is the velocity of light, \(q_e\) is the excitation rate for the transition 1s2s\(^2\)S \(\rightarrow\) 1s2p\(^2\)P (10\(^{-5}\) cm\(^2\)s\(^{-1}\)\() which was calculated by Blaha,16 and \(N_e\) is the electron density in cm\(^{-3}\). The excitation rate is a weak function of temperature and is found to be dominated by electron collisions. (Should the electron temperature be lower by a factor of 2, the Stark width would increase by no more than 20 percent.) At the time and position of observation in our experiment, the electron density is estimated to be between 10\(^{17}\)-10\(^{20}\) cm\(^{-3}\). Using these values in Eq. (1), the full width at half-intensity of the Stark broadened line lies between 0.18 and 1.8 \(\AA\) at an electron temperature of 100 eV.
The thermal Doppler broadening of the spectral lines can be estimated if the ion energies are known. The electron temperature is estimated to be between 80-100 eV, which is the temperature range for maximum emission of the CV lines.16 and the ion temperature should approximate the electron temperature when the electron densities are this high. The following equation can then be used to calculate the width of a spectral line from thermal Doppler broadening:17

$$\delta \lambda_D = 7.16 \times 10^{-2} \lambda (T/M)^{1/2},$$ \hspace{1cm} (2)

where $\delta \lambda_D$ is the full width at half-intensity in Å, T is the ion temperature in keV, λ is the wavelength of the spectral line in Å, and M is the atomic weight. For an estimated ion temperature of 80-100 eV, the thermal width of the CV 2270.9 Å line would fall between 0.44 Å and 0.5 Å. Also, if the instrumental width is known, an estimate of the Stark-Doppler width of the line can be made from the π-profile, which is only weakly sensitive to the magnetic field strength. This estimate, including a correction for opacity effects (described later in this paper), gave a Stark-Doppler width for these conditions of 0.6 Å, which falls between the values derived from the estimated N_e and T_i given above.

In addition to the thermal Doppler width of the spectral line, there is an actual shift of the wavelength of the line due to mass motion. This is due to the radial motion of the plasma plume away from the laser axis. These velocities are about 35% of the axial velocities. Normally, in an optically thin plasma this would give a wavelength shift both to the red and to the blue since the expansion occurs both toward and away from the observer. However, as will be explained later in this report, only the blue-shifted emission is seen because the red-shifted emission has to pass through the dense central region of the plasma plume and is almost completely absorbed. The wavelength shift was measured to be 1.4 Å to the blue. Using the Doppler formula,

$$\frac{\Delta \lambda}{\lambda} = v/c,$$ \hspace{1cm} (3)

we find that the mean radial velocity is 1.4-1.8 $\times 10^7$ cm/sec, which is consistent with other measurements.11 This causes little problem in the interpretation of the data, because all of the lines measured have a constant wavelength shift, which can simply be subtracted from the data.

The instrumental width of the spectrograph was determined by scanning a very narrow spectral line from a Geissler-tube light source. It was found that the spectral line shape was a Gaussian with the full width at half-intensity corresponding to the widths of the entrance and exit slits of the monochromator. Two slit widths, 200 and 100 μm, were used in this study, giving instrumental widths of 1.5 Å and 0.75 Å, respectively. Having some confidence in the shape of the broadened spectral lines, it is now possible to use this data to calculate the shapes of the multiplet for different values of the magnetic field.

First, it is necessary to calculate positions and intensities of the π and σ components of the CV multiplet for the range of magnetic fields that we are considering, i.e., 0-1 MG. Since we are in the intermediate magnetic field strength regime, the weak-field approximation cannot be used and a more detailed calculation must be done. This calculation is described in the Appendix. A typical Zeeman pattern for $B = 0.5$ MG is shown in Fig. 1. The scale along the abscissa is in wave numbers and 0 is located at the center of the $J = 2$ ($^3S_1 - ^3P_2$) line (2270.9 Å). The π components are plotted above the abscissa and the σ components are plotted below the abscissa. Both the position and the relative intensity of each component can be determined from this plot. Immediately, it is noted that there is appreciable asymmetry compared with the weak-field anomalous Zeeman splitting patterns, e.g., note the difference in the π intensities of the $M = 1$ and $M = -1$ components on the two sides of the $J = 2$ line.

From these calculated Zeeman intensity patterns of the components, a calculation can be done which will give the expected shape of the multiplet as viewed in the two polarizations, π and σ. (See Fig. 2.) To do this a small computer code was written in which each individual component of the Zeeman pattern is broadened by the net amount of Stark, thermal Doppler and instrumental broadening (but without opacity effects), and then the individual contributions of all components are added.
B. Opacity Corrections

The observed shapes and ratios of the σ to π line intensities suggested that opacity effects were important. It is well known that the absorption coefficient of a spectral line is strongly dependent on the line shape, and at zero magnetic field is a maximum at the center of the spectral line. Thus, the absorption coefficient at the line center will be different for the π and σ profiles in the presence of a magnetic field. This is because the π components peak at the same wavelength as the spectral line at zero magnetic field, whereas the σ components have a dip at the center of the line. When the opacity of the plasma is appreciable, the π components will therefore suffer more absorption than the σ components. This will change the total intensity of the line so that the magnetic field effects become observable at relatively low fields, i.e., even when differences in the optically thin line shapes are still obscured by instrumental broadening. Indeed, the relative amplitudes of the π and σ profiles can be inverted.

Opacity effects in the experiment within the annular emitting region were modelled by setting the opacity of the emitting region (k_1, l) equal to $C_1 I_1(\lambda)$, where $I_1(\lambda)$ is the total thin-line intensity or line shape. Opacity effects in the cooler, outer region were similarly modelled by setting the opacity of the outer region equal to $C_2 I_2(\lambda)$. The coefficients C_1 and C_2 are adjustable parameters. Since, in the code, the total intensity $I_1(\lambda)$ of all components is separately normalized to unity for the π and σ components, opacity effects will only become dominant when the coefficients are much greater than one. The relation giving the emitted intensity of the line with opacity effects included is,

$$I_\lambda(\lambda) = \frac{1}{C_1} \left[1 - \exp \left(-C_1 I_1(\lambda) \right) \right] \exp \left(-C_2 I_2(\lambda) \right).$$

It was found in matching the data, that the coefficient C_1 for the emitting region was not large compared to one. Also, the opacity correction factor $1 - \exp \left(-C_1 I_1(\lambda) \right)$ for the emitting region was normalized (by dividing by C_1) so that the optically thin intensity $I_1(\lambda)$ is recovered in the limit of small C_1. However, a large value of $C_2 (-5)$ was required to match the data; the correction factor $\exp \left(-C_2 I_2(\lambda) \right)$ is the fraction of light transmitted through the cooler absorbing (outer) region. Note that when both regions are optically thin (both C_1, C_2 small), the optically thin emission $I_1(\lambda)$ is recovered. The opacity effect is included in the analysis before the instrument function is convolved with $I_\lambda(\lambda)$ to get $I'_\lambda(\lambda)$, which can then be directly compared with the observed line profiles.
Fig. 2 — Calculated broadened lines including Zeeman splitting of the CV multiplet as a function of magnetic field strength in the range 0-1000 kG. The π profile lines are plotted above the abscissa and the σ profile below the abscissa. Thermal and Stark broadening (1.6 Å) and instrument broadening (0.75 Å) are included in the calculation.
III. EXPERIMENT

In this experiment, a pulsed Nd:phosphate glass laser beam (30-40 J in 5 nsec) at 1.05 μm irradiates a 50-μm thick carbon target in the near field of an f/6 lens. (See Fig. 3a.) In the first set of the measurements a 7-cm diameter mask was placed ahead of the focusing lens so that a ring-shaped laser intensity pattern with an outer diameter of approximately 0.35 mm and a deep minimum would fall onto the target (allowing a larger density gradient and magnetic field to develop). In the second set of measurements the mask was removed from the beam so that a focal-intensity distribution which is almost flat-topped (but with a shallow minimum at the focal spot center) would be incident on the target. The plasma light was collected by an f/1.6 parabolic mirror, M1. The mirror was placed one focal length from the target so that a collimated light beam would be transmitted via plane mirrors, M2, M3, M4 to the f/5 concave mirror M5 which focused the beam through a Wollaston prism onto the slit of a 1-m spectrograph. The collected light always had small angles of incidence with respect to the mirror normals in order to minimize depolarization effects. The magnification of this optical train was 5.3 at the entrance slit of the spectrograph. The optics were aligned so that the image of the spectrograph slit at the center of the plasma plume was parallel to the target surface and 400 μm from the surface. (See Fig. 3b.) (This distance was chosen because a reasonable spectral line-to-continuum ratio could be obtained there. At distances closer to the target surface, the continuum intensity overpowered the line intensities.) The cross-sectional area of the slit image at the center of the plume is ~20 μm (or 40 μm for the 200 μm slit width) by ~200 μm, and emitted light from f/1.6 cones on both sides of the focal region is accepted by the detector.

The Wollaston prism, shown in the side view of Fig. 3a, vertically separated (along the slit) the light beam from the plasma plume into the two orthogonal polarizations, π and σ, so that these polarizations would then continue to be separated in passing through the spectrograph. Mirrors at the exit slit of the spectrograph then directed the two polarized signals into separate photomultiplier tubes. To optimize the intensity collected by the detectors at this wavelength, a spectrograph grating blazed at 2000 Å was used. The signal from the photomultipliers (RCA IP28) was sent through 50-Ω cables to fast recording oscilloscopes (Tektronix 7104), giving a system time-response of 3 nsec. A relative intensity calibration of the spectrograph and detectors was made using a deuterium arc lamp. Also, the continuum intensity at 2256 Å, which should not be polarized, was used to calibrate on a relative scale the entire optical train. A calibration of the spectrograph wavelength scale was made using a Hg Pen-Ray light source. Using this optical setup the intensities of the π and σ emissions at a particular wavelength are recorded separately and simultaneously. To obtain the spectral line shapes it is necessary to assume shot-to-shot reproducibility and to take a sufficient number of shots to cover the line shape, one small increment of wavelength at a time.
Fig. 3 — (a) Experimental arrangement (b) Area of observation
IV. RESULTS AND ANALYSIS

A. General

Typical photomultiplier oscillograms are shown in Fig. 4. The two traces shown were taken on the same shot near the peak of one of the CV lines; (a) signal with \(\pi \)-polarization and (b) signal with \(\sigma \)-polarization. Two prominent peaks are seen on each trace. The first peak is due to the early rise of the continuum (and possibly the CV line) intensity. Since the peak temperature that is produced in the plasma plume is greater than 100 eV, e.g., about 200 eV, the CV line initially burns through and does not radiate significantly until the temperature falls later in time; then recombination occurs and the CV line reappears. Thus, the second peak is primarily due to the CV line emission as the plasma temperature decreases to between 80 and 100 eV. (The contribution of the underlying continuum measured on a separate shot, is subtracted off of the signal shown here.) A fiducial signal is fed into the oscilloscope so that the time of the CV signal with respect to the time of the peak of the laser pulse can be determined. Near the spectral line intensity peak, the line-to-continuum ratio is 3 or more.

It is assumed in these studies that the CV (C\(^{4+}\)) ions are distributed in a conical annulus about the target normal. This is expected for the case of a ring-shaped focal spot, but is also produced from the intensity distribution with no mask in the beam as well; due to our intensity distribution having a shallow central minimum. Figure 5 shows a cross sectional view of the plasma plume. In this \(r \) the interior of the plume is cooler and more dense than the surrounding ring (due to the lower laser intensity at the center and the flow of mass from the ring into the central region.)\(^{11,14}\) Because the

\[\lambda = 2277.5 \text{Å}, \Delta \lambda = 1.5 \text{Å} \]

--- SPECTRAL LINE
--- CONTINUUM (2256Å)

Fig. 4 — Typical photomultiplier oscillograms. The time \(t = 0 \) corresponds to the time of the peak of the laser pulse.
ring is expanding away from the center, an observer would see photons produced on the near side of the ring, blue-shifted, and those on the far side of the ring, red-shifted. However, because the center region of the plume is relatively cool, is at a higher density and is large (~mm), the red-shifted photons are absorbed and do not reach the observer. As discussed earlier, the blue-shifted CV lines are also partially absorbed, particularly at later times, by the region outside of the annular region emitting the CV light.

Although the magnetic field is in a clockwise direction in the drawing in Fig. 5, the Zeeman effect cannot distinguish a clockwise from a counterclockwise field. Observations of the line emission are made perpendicular to the laser axis and intersecting the laser axis, so that the observations are approximately perpendicular to the magnetic field.

As mentioned in the introduction, to determine a magnetic field from the line profile measurements, one must assume the composite shape of the Stark and Doppler broadening of the spectral line, use the measured instrumental width, and calculate the Zeeman pattern for the expected range of the magnetic field. If absorption is also present (as is usually the case), this too, will have to be taken into account. Then one can determine the magnetic field which will give the best fit to the line profile. Since this analysis involves a rather tedious calculation, an interactive computer code was written for this purpose. Our calculation utilized the values of shifts and intensities for intermediate magnetic fields of each \(\pi \) and \(\sigma \) component as described in the Appendix. The steps in the calculation are as follows:

1. First, a Stark-Doppler profile of the individual Zeeman components was assumed. (This decision was guided by estimates of \(N_e \) from interferometric measurements and \(T_e \) from the CV emission data.)

2. This Stark-Doppler width was then assigned to both the \(\pi \) and \(\sigma \) components of the Zeeman profile for a particular assumed value of the magnetic field. Each component is shifted from its zero field location and its relative amplitude set according to its intermediate field calculation. The profiles of the 3 \(\pi \) components of the \(J = 2 \) line (or the 6 \(\sigma \) components) are then added together to give a net \(\pi \) (or \(\sigma \) profile); at this point no absorption effects have been included. We now have the optically thin profile \(f(\lambda) \).

3. Next, the opacity effects are included. This is done for the emitting and outside regions of the plasma by adjusting coefficients \(C_1 \) and \(C_2 \) and using Eq. (4).
4. Finally, then, to calculate the "observed" line profiles, one must convolve the $I_0(\lambda)$ profile with the known instrument profile. The instrument function used was a Gaussian with a FWHM of 1.5 Å, or 0.75 Å, as appropriate.

5. The computed profile $I_0'(\lambda)$ now can be compared to the measured profile; if it does not fit, a new value of the magnetic field can be tried, a new Stark-Doppler width can be used, or the values of the opacity C_1 and C_2 may be varied to obtain a satisfactory fit.

B. Experiments with a Ring-Shaped Laser Focal Spot

In Fig. 6 a comparison is shown of the experimental profile for the $J = 2$ line of the CV multiplet with a theoretical profile for 200 kilogauss. Since the data for $J = 0$, $J = 1$ lines is incomplete we did not include them in the paper. The experimental profile was observed 5 nanoseconds after the peak of the laser pulse, and near the time of the peak intensity of the $J = 2$ line (centered at 2270.9 Å). The measured data points of the π components are noted with crosses and the data points for the σ components are shown with circles. We assume reproducibility of the plasma plume and take only one or two shots for each wavelength (which gives simultaneous data for both π and σ components). The scatter in the data is indicative of the error in this procedure. Generally, the data points fall within a scatter bracket of ±20%; however, at +3 Å the scatter is higher. (This is possibly due to the fact that the $J = 0$ line is beginning to overlap the $J = 2$ line at that wavelength.) For the fit shown here, rather small opacity parameters $C_1 = 0.3$ and $C_2 = 2$ are required. The agreement in profile fits was better at 200 kG than at 100 kG or 300 kG, although it was noted that a slightly smaller π width would agree better with the data, indicating that a field slightly larger than 200 kG would agree somewhat better with the data.
Data was also analyzed at a later time (8 nsec after the peak of the laser pulse) on these same shots. The profile obtained at this time is shown in Fig. 7a. The striking feature in this data is that the σ line is nearly twice as intense as the π line at the center of the profiles. It was found that by making the surrounding region more absorbing ($C_2 = 5$) and continuing to assume a magnetic field of 200 kG the theoretical curve gives a fairly good fit to the experimental data. A slightly smaller σ width would give an even better fit to the data, indicating that the field is just under 200 kG. The important point to be made regarding this data is that the only way the σ profile could have a much higher intensity than the π profile is for absorption to be taking place, in which the σ profile in the presence of a magnetic field has a dip in the line center (where peak absorption would normally occur) and therefore, has less absorption than the π-profile which has a sharp peak at the line center even with a magnetic field.

1. Error Analysis

We have several free parameters which can be varied to get a fit to the experimental data. Since we do not have precise auxiliary data to pin down these variables, it is necessary to do trial calculations varying the parameters individually to see if we can get a satisfactory fit with different sets of values of the parameters, i.e., to see if we have a unique fit with the values chosen. For this set of calculations, the value of B was varied between 0 and 300 kG, C_1 was varied from 0.3 to 7, C_2 was varied from 0.1 to 10, and the Stark-Doppler width (W_{S-D}) was varied from 0.36 Å to 1.5 Å (where the upper limit could be determined by the width of the π component, whose width is much less dependent on the magnetic field than the σ component).

From over 40 calculations, we found that the best fit occurred with $W_{S-D} = 0.6$ Å, $C_1 = 0.3$, $C_2 = 5$, and the magnetic field $= 200$ kG. An example of the sensitivity of the line shape to the magnetic field, holding the other variables constant to the values given above is shown in Fig. 7b and 7c. (All of the curves are normalized with respect to the σ values at 0 Å.) It is noted in Fig. 7b where $B = 0$ G that the π and σ curves are identical, and thus could not fit the data. The data points are also plotted on the same set of curves in Fig. 7c. It is seen that the best overall fit of the calculated curves with the data points, considering both the amplitude and the shape is given by the 200 kG σ and π curves. (A somewhat better fit might be obtained if increments of magnetic field smaller than 100 kG were used.) From this error analysis, it is concluded that the accuracy for the magnetic field measurement is ± 75 kG when absorption is present.

C. Experiments with a Flat-topped Focal Spot (Mask Removed from Laser Beam)

When the mask in front of the lens is removed, the focal intensity distribution is relatively flat-topped with a shallow minimum at the center. The diameter of the focal spot was 0.48 mm, which contained 90% of absorbed laser energy. The resulting CV data is shown in Fig. 8. The instrumental width remained 1.5 Å, the same as for the previous data. The theoretical curve for $B = 100$ kG, $C_1 = .01$, $C_2 = 3.5$ and the Stark-Doppler width of 1.5 Å fits the experimental data for the $J = 2$ line fairly well in both shape and amplitude for both the π and the σ lines. Due to the lack of structure in the σ line, it appeared desirable to have better wavelength resolution. For this reason another data run was taken in which the instrumental width was decreased from 1.5 Å to 0.75 Å, the other experimental conditions remaining approximately the same.

The results with the improved wavelength resolution are shown in Fig. 9; more structure can be seen in the profiles. For the $J = 2$ line both the π and the σ lines are in good agreement, in shape and amplitude, with the calculated curve. (The Stark-Doppler broadening parameter was changed from 1.5 Å to 1.0 Å and the opacity parameters were changed from $C_1 = .01$ to 0.3 and $C_2 = 3.5$ to 3.0 from those used in Fig. 8 since the wavelength resolution is better here and more accurate values of the above parameters can be chosen.) Again these curves have been plotted for different values for B to show the sensitivity of the technique. The best fit was again $B = 100^{+75}_{-100}$ kG.
Fig. 7 — Comparison of measured data and calculated profile for \(J = 2 \) line at \(t = 0 \) nsec for the same data runs as used for Fig. 6. Measure data points: \(X \) are for \(\pi \) polarization and \(O \) are for \(\sigma \) polarization. Curves are calculated using an instrumental width = 1.5 Å, the Stark-Doppler width = 0.6 Å and the \(B \) varied between 0 and 300 kG. (a) \(B = 200 \) kG, (b) \(B = 0 \) G, (c) \(B \) varied between 100 kG and 300 kG to show error spread in data.
Fig. 8 — Comparison of measured and calculated profiles for the $J = 2$ line at $t = 8$ ns for standard focal spot (mask removed from laser beam). The π line is plotted above the abscissa and the σ line is plotted below the abscissa. The data points are measured points and the curves are calculated, using an instrument width of 1.5 Å, a Stark-Doppler width of 1.5 Å, and $B = 100$ kG.

Fig. 9 — Comparison of measured data points and calculated profiles for the $J = 2$ line at $t = 9$ ns for standard laser focal spot. The π line is plotted above and the σ line below the abscissa, which is the wavelength in Angstroms. The curves are calculated using an instrument width of 0.75 Å, a Stark-Doppler width of 1 Å, and the magnetic field values of 0, 100, and 200 kG.
V. DISCUSSION AND CONCLUSIONS

The magnetic field produced when a pulsed laser beam is focused onto a target is measured for the first time using the Zeeman effect. These measurements, which were made at electron densities of $10^{19} - 10^{20}$ cm$^{-3}$, allowed somewhat lower magnetic fields (~ 100 kG) to be measured than the Faraday Rotation technique, and further did not require the measurement of the electron density.

The plasma opacity present enhanced the accuracy of the B-field measurement. At laser irradiance of $\sim 10^{12}$ W/cm2, the magnetic field increased from 100 kG to 200 kG when the focal spot was changed from a flat-topped distribution to a ring pattern, which caused higher density gradients. The magnetic field measured using the Zeeman effect with the ring shaped focal spot is consistent with a Faraday Rotation measurement made under similar conditions.

In summary, magnetic fields of 1-2 MG were seen previously when the laser irradiance was high ($\sim 10^{16}$ W/cm2) and pulse duration short (100 psec); here the magnetic field was found to be reduced to 200 kG and below for lower irradiances (5×10^{12} W/cm2), longer pulse durations (3-4 nsec) and later observation times (5-8 nsec).

ACKNOWLEDGMENTS

The authors would like to acknowledge discussions and the support of S. Bodner and valued advice and assistance of S. P. Obenschain, J. Grun, M. J. Herbst, R. R. Whitlock, and F. Young. The technical assistance of N. Nocerino, E. Turbyfill, M. Fink and B. Sands is greatly appreciated.

This work was supported by the Department of Energy and the Defense Nuclear Agency.
Appendix
THEORY AND CALCULATION OF ZEEMAN EFFECT FOR INTERMEDIATE FIELDS

The field-free \((1s2p)^3P_J\) levels of CV for \(J = 0, 1\) and \(2\) are rather closely spaced, with intervals\(^{20}\)
\(E_2(0) - E_1(0) = 136 \text{ cm}^{-1}\) and \(E_1(0) - E_0(0) = 13 \text{ cm}^{-1}\). Because of the small (and inverted) interval
between the \(J = 1\) and \(0\) levels, use of lowest order perturbation theory for the Zeeman effect as in
Ref. 8 would not be justified for the field-strengths of interest. This is easily seen by comparing the
magnitude of magnetic interactions,\(^{21}\)
\[|H_{\text{mag}}| = \mu_\alpha B = 46.686 \text{ B cm}^{-1}, \quad (A1) \]
with \(B\) in megagauss, with the above field-free intervals. Particularly important\(^{21}\) here are the changes
in relative intensities, relative to the low field (anomalous Zeeman effect) results, of the various Zeeman
components associated with the \(2^3P_J - 2^3S_1\) transitions observed in our experiment.

To obtain a quantitative theory of the Zeeman effect for intermediate fields, one writes the \(2^3P_J\)
eigenfunctions as superpositions of \(LSJM>\) functions of various \(J \geqslant |M|\),
\[|LSJM> = \sum |LSJM>, \quad J \geqslant |M| \quad (A2) \]
Only the magnetic quantum numbers \(M\) remain "good," and the expansion coefficients \(C_{JM}\) follow from
the Schrödinger equations
\[\left[H_J(0) + H_{\text{mag}} \right] |LSJM> = E_{JM}(B) |LSJM> \quad (A3a) \]
where \(H_J(0)\) is the field-free Hamiltonian with eigenvalues \(E_J(0)\) and eigenfunctions \(|LSJM>\). The
nonvanishing matrix elements of the magnetic interaction are in the \(|LSJM>\) representation\(^{22}\)
\[<11JM|H_{\text{mag}}|11JM> = \tfrac{3}{2} M \mu_\alpha B, \quad (A4a) \]
\[<11JM|H_{\text{mag}}|1(J-1)M> = -\tfrac{1}{2} \mu_\alpha B \left[(J^2 - M^2)(9 - J^2) \right]^{1/2} \]
\[(A4b) \]
for diagonal and off-diagonal elements, respectively. According to the various properties of \(H_J(0)\),
\(H_{\text{mag}}\), and \(|LSJM>\), the system of equations corresponding to Eq. (A3a) becomes for each \(M\) a set of
coupled linear equations
\[\sum J' \left[|E_J(0) - E_{J'M}(B)| \delta_{JJ'} + <J'M|H_{\text{mag}}|JM> \right] C_{J'M}(B) = 0. \quad (A3b) \]
which can only be solved if the level energy \(E_{J'M}(B)\) is such that the determinant of the matrix in curly
brackets vanishes. For each such root, \(J'\), one then finds the coefficient vector \(C_{J'M}(B)\) which will be
assumed to be normalized. The actual matrices are
\[
\begin{pmatrix}
|J\rangle\langle J| & -\frac{1}{\sqrt{3}} \mu_\alpha B & 0 \\
-\frac{1}{\sqrt{3}} \mu_\alpha B & |E_1(0) - E_{J'M}(B)| & -\sqrt{\frac{2}{3}} \mu_\alpha B \\
0 & -\sqrt{\frac{2}{3}} \mu_\alpha B & |E_0(0) - E_{J'M}(B)|
\end{pmatrix}
\]
\[
\begin{pmatrix}
|E_J(0) - E_{J'M}(B)| & -\frac{1}{2} \mu_\alpha B \\
-\frac{1}{2} \mu_\alpha B & |E_0(0) - E_{J'M}(B)| \\
-\frac{1}{2} \mu_\alpha B & |E_1(0) - E_{J'M}(B)|
\end{pmatrix}
\]
\[
= |E_J(0) - 3\mu_\alpha B - E_{J'M}(B)|
\]
\[
(A5)
\]
\[\quad \text{for} \quad J = J' = J' + 1 \]
for \(M = 0, \ M = \pm 1 \) and \(M = \pm 2 \), respectively, written in the order of decreasing indices \(J \) and \(J'' \). It is convenient to refer all energies in the numerical calculations to the unshifted position of the \(J = 2 \) level, i.e., to use \(E_1(0) = 0, \ E_1(0) = -136 \text{ cm}^{-1} \) and \(E_0(0) = -123 \text{ cm}^{-3} \). The value of \(\mu_B B \) is as in Eq. (A1).

In Fig. 10, the differences of the eigenvalues \(E_{J'M'}(B) \) and \(E_{J'M}(0) \) are plotted, in units of \(\mu_B B \), and it is seen that significant deviations from the weak field limit occur for \(B > 0.1 \text{ MG} \). (Note that there is no real level crossing of the \((0,0)\) and \((2,0)\) levels near 5 MG.) The relative intensities of the Zeeman components for observation perpendicular to the field can be calculated from\(^{21}\)

\[
M - M: S_{\nu}^\prime = -\sum_j C_{J'M}(1)\ \begin{bmatrix} J & 1 & 1 \\ -M & 0 & M \end{bmatrix} [3(2J + 1)]^{1/2} \begin{bmatrix} 1 & 1 & J \\ 1 & 1 & 0 \end{bmatrix} \tag{A6a}
\]

\[
M - M \pm 1: S_{\nu}^\prime = \frac{1}{2} \sum_j C_{J'M}(1)\ \begin{bmatrix} J & 1 & 1 \\ -M \mp 1 & M \pm 1 \end{bmatrix} [3(2J + 1)]^{1/2} \begin{bmatrix} 1 & 1 & J \\ 1 & 1 & 0 \end{bmatrix} \tag{A6b}
\]

where the expressions in large parentheses and large curly brackets are Wigner's 3 - \(J \) and 6 - \(J \) symbols, respectively. The 6 - \(J \) symbols have the values 1/3, -1/3 and 1/3 for \(J = 0, 1 \) and 2. They may therefore be combined with the phase factors into a common factor 1/3. Using tabulated\(^{21}\) 3 - \(J \) symbols one obtains for \(\pi \)-polarization

\[
M = M' = 0: S_{\nu}^\prime = \frac{\sqrt{3}}{3} C_{J_0'} - \frac{1}{3} C_{J_0} \tag{A7a}
\]

\[
M = M' = \pm 1: S_{\nu}^\prime = \frac{1}{6} C_{J_{\pm 1}} \mp C_{J_{\pm 1}} \tag{A7b}
\]

\[
M = M' = \pm 2: S_{\nu}^\prime = 0 \tag{A7c}
\]
Fig. 11 — Relative intensities of σ (up) and σ (down) Zeeman components (J',M',M) of the $2^3P_1 - 2^3S_1$ transitions as functions of magnetic field strength. Observation is assumed to be perpendicular to the magnetic field.

and for σ polarization

\begin{align}
M = 0, \quad M' = \pm 1 : & \quad S_\sigma^L = \frac{1}{\sqrt{2}} \left(C_{s0}^L + \frac{\sqrt{3}}{2} C_{t0}^L \pm C_{t1}^P \right) \\
M = \pm 1, \quad M' = 0 : & \quad S_\sigma^L = \frac{1}{12} |C_{t0}^{\pm 1} \pm C_{t1}^{\pm 1}|^2 \\
M = \pm 2, \quad M' = \pm 1 : & \quad S_\sigma^L = \frac{1}{6} |C_{t0}^{\pm 1}|^2 = \frac{1}{6}.
\end{align}

where M' is the magnetic quantum number of the 2^3S_1 (lower) state. The calculated intensities are shown in Fig. 11. They clearly deviate from the weak field limit already at fields below 0.1 MG.

To compute line rather than level shifts, the shifts of the lower level, namely

\[E_{lm'} = 2M' \mu_B B = 93.372 \text{ } M'B \text{ cm}^{-1} \]

must be subtracted and the zero-field $2^3P_2 - 2^3S_1$ interval be added. Or, if wavelengths are desired, one calculates the wavelength shifts according to

\[\Delta \lambda_{lm'} = -\lambda_0 \left(E_{lm'}(B) - E_{lm'}(0) - E_{lm'}(B) \right) \]

with $\lambda_2 = 2270.9$, $\lambda_1 = 2277.9$ and $\lambda_0 = 2277.3$ Å.
REFERENCES

16. Private communication with Mihan Blaha.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
02CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN DOST
03CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
01CY ATTN FCPR

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WWMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113
01CY ATTN JLTW-2
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

WWMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO F. NILES
SCIENCE APPLICATIONS, INC.
P.O. BOX 2351
LA JOLLA, CA 92038
01CY ATTN LEWIS M. LINSON
01CY ATTN DANIEL A. HAMLIN
01CY ATTN E. FRIEMAN
01CY ATTN E.A. STRAKER
01CY ATTN CURTIS A. SMITH
01CY ATTN JACK MCDougall

SCIENCE APPLICATIONS, INC.
1710 GOODRIDGE DR.
MCLEAN, VA 22102
ATTN: J. COCKAYNE

SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025
01CY ATTN DONALD NEILSON
01CY ATTN ALAN BURNS
01CY ATTN G. SMITH
01CY ATTN R. TSUNODA
01CY ATTN DAVID A. JOHNSON
01CY ATTN WALTER G. CHESNUT
01CY ATTN CHARLES L. RINO
01CY ATTN WALTER JAYE
01CY ATTN J. VICKREY
01CY ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTER
01CY ATTN G. PRICE
01CY ATTN R. LIVINGSTON
01CY ATTN V. GONZALES
01CY ATTN D. MCDANIEL

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730
01CY ATTN W.P. BOQUIST

TOYON RESEARCH CO.
P.O. Box 6890
SANTA BARBARA, CA 93111
01CY ATTN JOHN ISE, JR.
01CY ATTN JOEL GARBARINO

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278
01CY ATTN R. K. PLEBUCH
01CY ATTN S. ALTSCRULER
01CY ATTN D. DEE
01CY ATTN D/ STOCKWELL
01CY ATTN D. NIGER

VISIDYNE
SOUTH BEDFORD STREET
BURLINGTON, MASS 01803
01CY ATTN W. REIDY
01CY ATTN J. CARPENTER
01CY ATTN C. HUMPHREY
DOE DISTRIBUTION LIST FOR REPORTS

University of California
Lawrence Livermore National Lab
Post Office Box 808
Livermore, CA 94550
H.G. Ahlstrom, L-481
J.L. Emmett, L-448
J.P. Holzrichter, L-481
M.J. Monsler, L-479
J.R. Nuckolls, L-477
L.W. Coleman, L-473
J.T. Hunt, L-481
A.B. Langdon, L-477

Z.N. Zafiris/R. Bredderman
U.S. Department of Energy
San Francisco Operations Office
1333 Broadway
Oakland, CA 94512

Los Alamos National Laboratory
Post Office Box 1663
Los Alamos, NM 87545
S.D. Rockwood, ICF Prog. Mgr.
DAD/IF, M/S527 (6 cys)

G. Yonas (4 cys)
Sandia National Laboratories
Post Office Box 5880
Albuquerque, NM 87185

L.E. Killian
G. Gibbs
T.F. Godlove
S.L. Kahalas
J.E. Lewis
R.L. Schriever
T.H. Walsh
S.J. Barish

S. Bodner
Naval Research Laboratory
Code 4730
Washington, DC 20375

T. Coffey
Naval Research Laboratory
Code 1001
Washington, DC 20375

R. McCrory
University of Rochester
250 East River Road
Rochester, NY 14623

Robert T. Duff
U.S. Department of Energy
Office of Classification
Washington, DC 20545

Rex B. Purcell (2 cys)
U.S. Department of Energy
Nevada Operations Office
Post Office Box 14100
Las Vegas, NV 89114