LOSS MECHANISMS IN LOW TEMPERATURE EXPANDERS (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA T E SCHEIB JUN 81
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOV'T ACCESSION NO.</th>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad. A133941</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TITLES (and Subtitles)

LOSS MECHANISMS IN LOW TEMPERATURE EXPANDERS

AUTHOR(s)

Scheib, Timothy E.

PERFORMING ORGANIZATION NAME AND ADDRESS

MASS. INST. OF TECHNOLOGY
CAMBRIDGE, MA 02139

CONTRACT OR GRANT NUMBER(S)

PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

REPORT DATE

JUN 81

NUMBER OF PAGES

76

SECURITY CLASS. (OF THIS REPORT)

UNCLASSIFIED

DISTRIBUTION STATEMENT (OF REPORT)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

SUPPLEMENTARY NOTES

KEY WORDS

LOSS MECHANISMS
LOW TEMPERATURE EXPANDERS

ABSTRACT

ATTACHED
ABSTRACT

An experimental study was carried out to investigate the actual influence of the boundary layer on heat transfer losses in typical expanders utilized in low temperature systems. More specifically, to investigate the effect of the boundary layer on the time dependence of the rate of heat transfer through the cylinder walls. The experimental expander utilized was a closed cylinder apparatus with a fixed mass charge of helium gas. Cyclic pressure and volume data points were generated during operation of the expander. The resulting experimental pressure vs. volume data trace was stored digitally and presented graphically using a Nicolet storage oscilloscope. The CMS computer system was used to further reduce and interpret the data.

The results concluded that the temperature of the boundary layer gas had the controlling effect over the cylinder bulk gas temperature in determining the actual rate of heat transfer through the cylinder walls. The apparent zero rate of heat transfer point occurred when the bulk gas temperature equaled the cylinder wall temperature. Because of the strong effect that the boundary layer had on the heat transfer in the cylinder, the actual zero rate of heat transfer point occurred when the boundary layer gas temperature equaled the cylinder wall temperature. The boundary layer gas temperature was determined responsible for up to a 64 degree phase difference in the times of the actual and apparent zero rate of heat transfer points in the compression and expansion strokes in the cylinder. This phase difference was evaluated to be leading in both cases. Therefore the actual time of zero rate of heat transfer preceded the apparent time of zero rate of heat transfer by a significant margin in each piston stroke.
LOSS MECHANISMS IN LOW TEMPERATURE EXPANDERS

by

TIMOTHY EDWARD SCHEIB

B.S., United States Naval Academy
(1973)

SUBMITTED TO THE DEPARTMENT OF
OCEAN ENGINEERING IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREES OF

OCEAN ENGINEER

and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1981

© Timothy Edward Scheib 1981

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole
or in part.

Signature of Author ____________________________
Timothy Edward Scheib
Department of Ocean Engineering
May 8, 1981

Certified by ____________________________
Joseph L. Smith, Jr.
Thesis Supervisor

Accepted by ____________________________
A. Douglas Carmichael
Chairman, Departmental Graduate Committee
LOSS MECHANISMS IN LOW-TEMPERATURE EXPANDERS

by

TIMOTHY EDWARD SCHEIB

Submitted to the Department of Ocean Engineering
on May 3, 1981 in partial fulfillment of the
requirements for the degree of Ocean Engineer and
the degree of Master of Science in
Mechanical Engineering

ABSTRACT

An experimental study was carried out to investigate
the actual influence of the boundary layer on heat transfer
losses in typical expanders utilized in low temperature
systems. More specifically, to investigate the effect of
the boundary layer on the time dependence of the rate of
heat transfer through the cylinder walls. The experimental
expander utilized was a closed cylinder apparatus with a
fixed mass charge of helium gas. Cyclic pressure and volume
data points were generated during operation of the expander.
The resulting experimental pressure vs. volume data trace
was stored digitally and presented graphically using a
Nicolet storage oscilloscope. The CMS computer system was
used to further reduce and interpret the data.

The results concluded that the temperature of the
boundary layer gas had the controlling effect over the
cylinder bulk gas temperature in determining the actual rate
of heat transfer through the cylinder walls. The apparent
zero rate of heat transfer point occurred when the bulk gas
temperature equaled the cylinder wall temperature. Because
of the strong effect that the boundary layer had on the
heat transfer in the cylinder, the actual zero rate of heat
transfer point occurred when the boundary layer gas tempe-
rate equaled the cylinder wall temperature. The boundary
layer gas temperature was determined responsible for up to a
64 degree phase difference in the times of the actual and
apparent zero rate of heat transfer points in the compression
and expansion strokes in the cylinder. This phase difference
was evaluated to be leading in both cases. Therefore the
actual time of zero rate of heat transfer preceded the ap-
parent time of zero rate of heat transfer by a significant
margin in each piston stroke.

Thesis Supervisor: Dr. Joseph L. Smith, Jr.

Title: Professor of Mechanical Engineering
I thank my thesis advisor, Professor Joseph L. Smith, Jr., for his guidance and support which was essential for the development of this thesis. I also thank Henry Faulkner for his invaluable assistance. Finally, I thank my wife, Cheryl, and children, Holly and Skip, for their undying patience and understanding during these past three years. Without their help not a word of this thesis would have been possible.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>List of Figures</td>
<td>6</td>
</tr>
<tr>
<td>Definition of Symbols Used</td>
<td>7</td>
</tr>
<tr>
<td>Chapter I - Introduction</td>
<td>9</td>
</tr>
<tr>
<td>I.A. - Calculation of Loss</td>
<td>11</td>
</tr>
<tr>
<td>I.B. - Boundary Layer Effects</td>
<td>14</td>
</tr>
<tr>
<td>I.C. - Phase Difference in Heat Flux</td>
<td>16</td>
</tr>
<tr>
<td>Chapter II - Description of Test Equipment and Testing Procedure</td>
<td>23</td>
</tr>
<tr>
<td>II.A. - Experimental Expander</td>
<td>23</td>
</tr>
<tr>
<td>II.B. - Pressure Measurement</td>
<td>25</td>
</tr>
<tr>
<td>II.C. - Volume Measurement</td>
<td>25</td>
</tr>
<tr>
<td>II.D. - Cylinder Wall Temperature Measurement</td>
<td>26</td>
</tr>
<tr>
<td>II.E. - Digital Storage Oscilloscope</td>
<td>26</td>
</tr>
<tr>
<td>II.F. - Testing Procedure</td>
<td>28</td>
</tr>
<tr>
<td>Chapter III - Computer Reduction and Interpretation of Data</td>
<td>30</td>
</tr>
<tr>
<td>III.A. - Computer Inputs</td>
<td>30</td>
</tr>
<tr>
<td>III.B. - Calculation of Reference Points</td>
<td>31</td>
</tr>
<tr>
<td>III.C. - System Mass Calculation</td>
<td>32</td>
</tr>
<tr>
<td>III.D. - Calculation of Temperature and Entropy</td>
<td>32</td>
</tr>
<tr>
<td>III.E. - Calculation of System Losses</td>
<td>33</td>
</tr>
</tbody>
</table>
III.F. - Non-Dimensional Parameter
 Calculations 34
 F.1. Non-Dimensional Volume 34
 F.2. Non-Dimensional Pressure 35
 F.3. Non-Dimensional Temperature .. 35
 F.4. Non-Dimensional Entropy 35
 F.5. Non-Dimensional System Losses.. 36

III.G. - Computer Output 36

Chapter IV - Results 38

Chapter V - Discussion 42
 V.A. - Data Point Scatter 42
 V.B. - Shape of Temperature vs. Entropy Plots .. 44
 V.C. - Identification of the Adiabatic Points in the Cycle 47
 V.D. - Effects of the Boundary Layer 48
 V.E. - Explanation of the Phase Difference .. 50

Chapter VI - Conclusions 53

References 55

Appendices 56
 A. - Cycle Fortran Program Listing 56
 B. - Cycle Data File Listing 60
 C. - Cycle Program Data Output 65
 D. - Cycle Program Plots Output 71
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pressure vs. Volume Diagram for an Ideal Cycle of a Closed Cylinder Containing a Fixed Mass.</td>
</tr>
<tr>
<td>2.</td>
<td>Pressure vs. Volume Diagram for a Non-Ideal Cycle of a Closed Cylinder Containing a Fixed Mass.</td>
</tr>
<tr>
<td>3.</td>
<td>Schematic of Basic Heat Flow with Boundary Layer.</td>
</tr>
<tr>
<td>4.</td>
<td>Pressure vs. Volume Diagram of System with Zero Boundary Layer Heat Capacitance.</td>
</tr>
<tr>
<td>5.</td>
<td>Pressure vs. Volume Diagram of System with Non-Zero Boundary Layer Heat Capacitance.</td>
</tr>
<tr>
<td>6.</td>
<td>Temperature vs. Entropy Diagram for a Single Cycle.</td>
</tr>
<tr>
<td>7.</td>
<td>Diagram of Experimental Expander.</td>
</tr>
<tr>
<td>8.</td>
<td>Schematic of Volume Indicator.</td>
</tr>
<tr>
<td>9.</td>
<td>TSTR vs. SSTR Smooth Curve Trace with Adiabatic and Isothermal Limits and Compression and Expansion Stroke Phase Differences.</td>
</tr>
<tr>
<td>10.</td>
<td>Non-Dimensional Temperature vs. Non-Dimensional Entropy Plot Annotated with Minimum and Maximum Values.</td>
</tr>
<tr>
<td>11.</td>
<td>Pressure vs. Volume Plot with Adiabatic Points Annotated.</td>
</tr>
</tbody>
</table>
DEFINITION OF SYMBOLS USED

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>heat transfer area</td>
<td>in²</td>
</tr>
<tr>
<td>(C_p)</td>
<td>specific heat at constant pressure</td>
<td>Btu/lbm·°R</td>
</tr>
<tr>
<td>(C_v)</td>
<td>specific heat at constant volume</td>
<td>Btu/lbm·°R</td>
</tr>
<tr>
<td>h</td>
<td>surface coefficient of heat transfer</td>
<td>Btu/hr·ft²·°R</td>
</tr>
<tr>
<td>m</td>
<td>system mass</td>
<td>lb_m</td>
</tr>
<tr>
<td>P</td>
<td>cylinder pressure</td>
<td>lb_f/in²</td>
</tr>
<tr>
<td>(P_0)</td>
<td>reference cylinder pressure</td>
<td>lb_f/in²</td>
</tr>
<tr>
<td>(P_{comp})</td>
<td>compression stroke pressure at reference volume</td>
<td>lb_f/in²</td>
</tr>
<tr>
<td>(P_{exp})</td>
<td>expansion stroke pressure at reference volume</td>
<td>lb_f/in²</td>
</tr>
<tr>
<td>(P_{mep})</td>
<td>mean pressure over the compression stroke (eqn 21)</td>
<td>lb_f/in²</td>
</tr>
<tr>
<td>(P_{STR})</td>
<td>non-dimensionalized pressure (eqn 22)</td>
<td>--</td>
</tr>
<tr>
<td>q</td>
<td>rate of heat transfer</td>
<td>in-lb_f/sec</td>
</tr>
<tr>
<td>Q</td>
<td>quantity of heat transferred</td>
<td>in-lb_f</td>
</tr>
<tr>
<td>R</td>
<td>specific gas constant</td>
<td>ft-lb_f/lbm·°R</td>
</tr>
<tr>
<td>RPM</td>
<td>piston revolutions per minute</td>
<td>rev/min</td>
</tr>
<tr>
<td>S</td>
<td>entropy of cylinder bulk gas</td>
<td>in-lb_f/°R</td>
</tr>
<tr>
<td>(S_{STR})</td>
<td>non-dimensionalized entropy (eqn 24)</td>
<td>--</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
<td>sec</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td>Units</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>T, $T_{bulk\ gas}$</td>
<td>cylinder bulk gas temperature</td>
<td>°R</td>
</tr>
<tr>
<td>T_0</td>
<td>reference temperature</td>
<td>°R</td>
</tr>
<tr>
<td>$T_{boundary\ layer}$</td>
<td>boundary layer gas temperature</td>
<td>°R</td>
</tr>
<tr>
<td>T_{wall}</td>
<td>cylinder wall temperature</td>
<td>°R</td>
</tr>
<tr>
<td>T_{STR}</td>
<td>non-dimensionalized temperature (eqn 23)</td>
<td>--</td>
</tr>
<tr>
<td>U</td>
<td>internal energy</td>
<td>in-lb$_f$</td>
</tr>
<tr>
<td>V</td>
<td>cylinder volume</td>
<td>in3</td>
</tr>
<tr>
<td>V_0</td>
<td>reference cylinder volume</td>
<td>in3</td>
</tr>
<tr>
<td>V_{BDC}</td>
<td>cylinder volume at piston bottom dead center position</td>
<td>in3</td>
</tr>
<tr>
<td>V_{TDC}</td>
<td>cylinder volume at piston top dead center position</td>
<td>in3</td>
</tr>
<tr>
<td>V_{STR}</td>
<td>non-dimensionalized cylinder volume (eqn 20)</td>
<td>--</td>
</tr>
<tr>
<td>W</td>
<td>total cylinder work</td>
<td>in-lb$_f$</td>
</tr>
<tr>
<td>W_{comp}</td>
<td>work done during compression stroke</td>
<td>in-lb$_f$</td>
</tr>
<tr>
<td>W_{exp}</td>
<td>work done during expansion stroke</td>
<td>in-lb$_f$</td>
</tr>
<tr>
<td>γ</td>
<td>ratio of specific heats (C_p/C_v)</td>
<td>--</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

The reciprocating piston-cylinder system is a common and relatively simple device used in many different applications in today's mechanical world. Each day some type of reciprocating piston-cylinder system impacts on our lives whether it be through a reciprocating automotive engine or through some other type of reciprocating pumping device that may provide another personal service. An additional example of this type of device is a reciprocating cryogenic expander, whose purpose is to produce a reduction in the temperature of the gas passing through it.

In all of these types of systems work is produced through the expansion of a fluid against a piston. For an ideal expansion engine the expansion stage should be isentropic and the work per unit mass should be expressed as:

$$W = C_p (T_1 - T_2) \hspace{1cm} (1)$$

However, because this fluid expansion is not an ideal process, losses and inefficiencies are evident. Some examples of typical loss mechanisms usually associated with through flow expanders are:

1. clearance losses - Because of the clearance volume remaining when the piston is at top dead center, the cylinder cannot fully exhaust the entire old charge. There-
fore the fresh charge entering the piston is further limited in the actual volume that it can ideally occupy. The clearance losses then define these variations from the ideal case. The actual factors responsible for the clearance loss include much more complex processes such as blow in-blow out loss effects and the intricate influences of the mass flow rate. These processes are extremely involved and their evaluation here is not required, so then just calling attention to their existence will suffice.

2. valve losses - Because the inlet and exhaust valves are responsible for a resistance to the fluid flow, there will be a pressure drop across the valves that will account for some loss.

3. piston ring losses - There will be some loss associated with the leakage past the piston rings. Also any friction between the piston rings and cylinder walls will generate some heat that will be transferred to the fluid and add to the loss.

The above examples are certainly not the only loss mechanisms evident in a piston-cylinder arrangement, but they are usually considered the prominent factors.

This experimental investigation will consider the loss mechanisms evident in a closed cylinder. No inlet or exhaust processes will be evaluated. The mass of the working fluid will remain constant throughout the compression expansion cycle being examined. Therefore the causes of the
losses evident in the cylinder will simplify, as the heat transfer loss will be the only prominent loss mechanism. This will then permit the determination of the actual effect that the heat transfer loss has on the system.

I.A. Calculation of Loss

To evaluate the thermodynamic processes occurring in the closed piston-cylinder the first law of thermodynamics will be utilized. In its most basic form the first law states that

\[dQ = dU + dW. \] (2)

If the pressure of the gas is spatially uniform at each state of the cycle and the work done by the gas is restricted to the displacement of the piston, then the work term can be defined as

\[dW = \int PdV. \] (3)

For an ideal gas the change in internal energy of the gas is

\[dU = mC_v \, dT_{\text{bulk gas}}. \] (4)

The first law can then be expressed as

\[\int PdV = dQ - mC_v \, dT_{\text{bulk gas}}. \] (5)

If the process is assumed to be ideal and adiabatic, then the heat transfer in the system will be zero \((dQ = 0)\)
and the first law will then simplify to

$$\int PdV = mC_v \, dT_{\text{bulk gas}}.$$ \hfill (6)

When \(dT\) is eliminated by substitution of the ideal gas equation of state, equation (5) integrates to

$$PV^\gamma = \text{constant.}$$ \hfill (7)

The construction of the trace for this process on a pressure vs. volume diagram will yield a plot in which the compression and expansion processes share the same line and therefore describe no enclosed area (Figure 1). There will be zero net work done on the working fluid.

If the process is not ideal, the compression-expansion trace will not follow the \(PV^\gamma = \text{constant}\) path. Plotting the non-ideal expansion trace on a pressure vs. volume diagram will yield a closed plot circumscribing some enclosed area (Figure 2). This enclosed area represents the net work done on the working fluid during the cycle and also represents the total losses that the system experiences during the cycle.

Therefore the total loss per cycle in the piston-cylinder arrangement can be expressed as the integral of pressure times a differential volume around the entire cycle

$$\oint PdV = \text{loss.}$$ \hfill (8)

This loss is specifically associated with just the bulk gas
PRESSURE VS. VOLUME DIAGRAM FOR AN IDEAL CYCLE OF A CLOSED CYLINDER CONTAINING A FIXED MASS

FIGURE 1

PRESSURE VS. VOLUME DIAGRAM FOR A NON-IDEAL CYCLE OF A CLOSED CYLINDER CONTAINING A FIXED MASS

FIGURE 2
in the cylinder. The total loss per cycle can also be expressed in a different form by considering the loss as the integral of the rate of heat transfer from the bulk gas through the wall around the entire cycle

\[\int q \, dt = \text{loss.} \]

(9)

I.B. Boundary Layer Effects

Adjacent to the inside of the cylinder wall a small volume of gas with finite mass will permanently exist through which the heat flux must travel in order to reach the cylinder wall. As the piston moves in the cylinder, the depth of this thin layer of gas will vary constantly due to well defined boundary layer effects. If the cyclic heat flow entering and exiting the boundary layer is considered, the importance of the boundary layer effect can be illustrated (Figure 3).

For an entire cycle the total loss from the bulk gas to the wall \((q_1 \, dt)\) should be equal to the loss from the bulk gas to the boundary layer \((q_1 \, dt)\) and should also be equivalent to the loss from the boundary layer to the wall \((q_2 \, dt)\).

\[\int q \, dt = \int q_1 \, dt = \int q_2 \, dt \]

(10)

Because the heat capacitance of the cylinder wall is very great when compared to the heat capacitance of the gas, the wall temperature can be assumed to be constant when
SCHEMATIC OF BASIC HEAT FLOW WITH BOUNDARY LAYER

FIGURE 3
considering a single cycle.

If the small volume of gas comprising the boundary layer had no heat capacitance then at any instant during the cycle the rate of heat transfer from the bulk gas to the boundary layer would equal the rate of heat transfer from the boundary layer to the cylinder wall.

\[q = q_1 = q_2 \quad \text{(instantaneous, zero heat capacitance in boundary layer)} \]

However, the presence of this boundary layer would suggest that it would hold some finite value of heat capacitance between the temperature extremes of the bulk gas and the cylinder wall. Assuming that the boundary layer does support some heat capacitance, then as the piston moves through the cylinder the actual rate of heat transfer from the bulk gas to the boundary layer should instantaneously differ from the rate of heat transfer from the boundary layer to the cylinder wall.

\[q \neq q_1 \neq q_2 \quad \text{(instantaneous, finite heat capacitance in boundary layer)} \]

I.C. Phase Difference in Heat Flux

The rate of heat transfer and therefore the loss experienced from the system depends heavily upon the temperature difference between the working gas and the cylinder wall and upon the properties of the working gas.

\[q = hA (T_{\text{gas}} - T_{\text{wall}}) \]
During both the compression and the expansion stroke of a cycle, the system will pass through a point where the gas temperature will equal the cylinder wall temperature. At these two points the rate of heat transfer will equal zero as the temperature difference will equal zero ($T_{\text{gas}} - T_{\text{wall}} = 0$). Consider a system in which the cylinder wall boundary layer has zero heat capacitance. Here the temperature of the gas in the layer adjacent to the wall will be approximately equal to the bulk gas temperature. Therefore at the points in the cycle where the bulk gas temperature equals the cylinder wall temperature, the process will be adiabatic and the rate of heat transfer will equal zero.

However, if the system is assumed to have finite heat capacitance in the thermal boundary layer, the temperature of the gas in the layer adjacent to the wall could differ significantly from the bulk gas temperature. In this system the points of zero rate of heat transfer will not occur where $T_{\text{bulk gas}} = T_{\text{wall}}$, but will occur at the points where $T_{\text{boundary layer}} = T_{\text{wall}}$.

To illustrate this difference, if the compression expansion process is plotted on a pressure vs. volume diagram, the points of zero rate of heat transfer will occur where the process is adiabatic at that point. Previously in this section it was shown that the process will be adiabatic at the point where the trace is tangent to a line where $PV^{\gamma} = \text{constant}$. Figure 4 illustrates a pressure vs. volume.
diagram for a system where the points of tangency to the adiabatic lines coincide with the points where the bulk gas temperature equals the cylinder wall temperature.

If a system with finite heat capacitance in the boundary layer is considered, the points at which the bulk gas temperature equal the cylinder wall temperature will not coincide with the points at which the system trace is tangent to the adiabatic lines. Figure 5 illustrates this difference. In both the compression and expansion stroke, a phase difference is identified that is the difference (in time or degrees of rotation) between the points of actual zero rate of heat transfer in the system (points where the process is perfectly adiabatic where $T_{\text{boundary layer}} = T_{\text{wall}}$) and the points of apparent zero rate of heat transfer in the system (points where $T_{\text{bulk gas}} = T_{\text{wall}}$).

Therefore the effect of the boundary layer on the heat transfer in the cylinder must be determined in order to evaluate the impact of the boundary layer on the total system loss.

Other methods are certainly available that would facilitate calculation of the net cyclic loss and any phase difference experienced in the points of zero rate of heat transfer. One of the most direct and accurate methods requires the plotting of a temperature vs. entropy diagram for the cycle. Figure 6 is an example of such a trace. The area enclosed by the curve represents the net work done on
PRESSURE VS. VOLUME DIAGRAM OF SYSTEM WITH ZERO BOUNDARY LAYER HEAT CAPACITANCE

FIGURE 4
Pressure vs. Volume diagram of a system with non-zero boundary layer heat capacitance.

At points of tangency to $PV^\gamma = \text{constant lines}$, $T \neq T_{\text{wall}}$.

$T = \text{const} = T_{\text{wall}}$.

$PV^\gamma = C_1$

$PV^\gamma = C_2$
the working fluid which is also equivalent to the total loss experienced during the cycle. For any single cycle the following statement should be true:

$$
\Phi PdV = \Phi TdS = \text{loss.}
$$

On this temperature vs. entropy diagram, the points on the trace that are tangent to a vertical line signify points where the change in entropy is equal to zero. At these points the process is perfectly adiabatic and signify points of zero rate of heat transfer. The temperature of the gas adjacent to the cylinder wall at these points should be equal to the temperature of the cylinder walls. If these points of actual zero rate of heat transfer differ from the points on the graph of apparent zero rate of heat transfer (where $$T_{\text{bulk gas}} = T_{\text{wall}}$$), then some phase difference exists. In Figure 6 a phase difference is evident in both the compression and expansion strokes.

The existence of this phase difference must be proven and then evaluated in order to provide information necessary to quantify the impact of the thermal boundary layer effects on the total system loss.
TEMPERATURE VS. ENTROPY DIAGRAM FOR A SINGLE CYCLE

FIGURE 6
II.A. Experimental Expander

The apparatus used to investigate the theoretical processes of the expander was composed primarily of the motor and cylinder body of a modified air compressor. The active cylinder was bolted directly on top of the original compressor cylinder. This cylinder included the gas charging port, temperature and pressure measuring instruments and had the additional capability of water cooling the cylinder. A diagram of this apparatus is shown in Figure 7. The piston utilized to compress and expand the gas was housed in the active cylinder. The active cylinder bore was 2.00 inches and the piston stroke was 3.00 inches. During operation the piston remained within the cylinder, while its maximum upward travel at the top dead center position moved the piston to the upper lip of the cylinder.

The cylinder extension housed a stationary piston that formed the head of the cylinder volume. A threaded bolt extending through the top of the extension cylinder and into the stationary piston provided the additional capability of changing the volume ratio. By raising or lowering the stationary piston through its four inch range with this threaded bolt, the cylinder provided volume ratios ranging from 1.5 to 2.4.
DIAGRAM OF EXPERIMENTAL EXPANDER

FIGURE 7
II.B. Pressure Measurement

A strain gage pressure transducer was utilized to measure cylinder pressure. The pressure measurement is determined in this type of transducer by the fact that the resistance of the transducer strain gages on the pressure sensitive surface changes in proportion to the pressure on the surface. The transducer output is then proportional to the cylinder pressure. The transducer mounted in the cylinder head was of the range 0 to 100 psi and was calibrated at 4.342 psi/millivolt for a 6.0 volt input. In order to calculate the cylinder pressure, the transducer output at a known pressure had to be determined. Therefore prior to recording any experimental data, the transducer input at atmospheric pressure was recorded to provide the required pressure reference. To make this step easier a balance box was installed with the pressure transducer which permitted the setting of a known pressure directly on the oscilloscope.

II.C. Volume Measurement

The method utilized to measure the cylinder volume consisted of a circular cam mounted eccentrically on the compressor crankshaft. Because each cycle of the compressor piston corresponded to one revolution of the compressor crankshaft, the angle of a given spot on the circumference of the shaft was directly proportional to the position of the compressor piston and therefore was also proportional to
the cylinder volume. A follower was mounted on the outer
diameter of the circular cam so that the displacement of the
follower was proportional to the displacement of the piston.
This system is displayed in Figure 8.

An HP 7DCT displacement transducer was connected to the
follower and provided a D.C. output that was proportional to
the displacement of the follower. The calibration of the
transducer provided the maximum output signal when the cylin-
der volume was maximum at the piston bottom dead center
position. By knowing the maximum and minimum cylinder volume
for the experimental run, the intermediate values for cylin-
der volume could easily be calculated by using the transducer
output.

II.D. Cylinder Wall Temperature Measurement

Four thermocouples were utilized to measure the average
cylinder wall temperature during testing. Three thermocou-
ples monitored the temperature at different locations on the
outside of the cylinder wall. The remaining thermocouple
was placed on the outside of the cylinder cooling water
jacket. The output of the thermocouples was displayed using
an Autodata Nine Digital data logger that provided a contin-
uous readout in degrees Centigrade.

II.E. Digital Storage Oscilloscope

The output of the pressure and volume transducers was
provided as input to a Nicolet Digital Oscilloscope Model
SCHEMATIC OF VOLUME INDICATOR

FIGURE 8
The signal information provided to the scope was converted to digital form, stored in a buffer memory and then was displayed graphically. Digital information for each point remained available in storage. The Nicolet scope has the capability of storing up to 4096 data points. Because both pressure and volume were being monitored, each storage cycle consisted of 2048 pressure points and 2048 volume points. The scope had the capability of graphic display of either the pressure or volume trace vs. time or an X-Y axis plot of pressure vs. volume. The time interval between data points could be chosen on the scope to ensure that an entire cycle of data would be available in a single storage cell.

II.F. Testing Procedure

The following steps were performed in this order during the data acquisition run:

1. The position of the stationary piston was set properly.

2. The piston was moved to bottom dead center position and then checked by assuring that the output of the volume transducer was at a maximum.

3. The cylinder was opened to the atmosphere and the pressure transducer output was set on the oscilloscope and recorded.

4. The cylinder was charged with gas and the pressure transducer output recorded. At this point must ensure that the cylinder is not charged to a pressure that will over-pressurize the pressure transducer during compression.

5. The compressor motor was turned on and the oscilloscope set to automatically monitor a single cycle of the cylinder.
6. The cylinder wall temperatures were recorded immediately upon completion of the sample cycle.

7. The compressor motor was secured.

8. The pressure vs. volume data was monitored on the oscilloscope to ensure that the trace was satisfactory.
CHAPTER III
COMPUTER REDUCTION AND INTERPRETATION OF DATA

In order to efficiently interpret and display the raw data extracted from the Nicolet oscilloscope, the Institute's CMS computer system was used. The data was entered into the computer files and then was operated on to provide various thermodynamic parameters at each point. Using this information thermodynamic traces for the cycle were plotted. Finally the losses for the cycle were calculated by numerical integration of the curves.

III.A. Computer Inputs

The digital pressure vs. volume data provided by the Nicolet oscilloscope was input into a data file that was accessible to the main program. Other initial inputs required included:

1. The type of working gas used.
2. The specific gas constant for the gas (R).
3. The specific heat at constant pressure for the gas \(C_p \).
4. The specific heat at constant volume for the gas \(C_v \).
5. The cylinder volume at the top dead center position (VTDC).
6. The cylinder volume at the bottom dead center position (VBDC).
7. The total number of data points (P, V pairs) entered into the computer data file.
8. The time interval between data points.
9. The piston revolutions per minute.
10. The temperature readings from the cylinder wall thermocouples in degrees Centigrade.

III.B. Calculation of Reference Points

In order to have the capability of accurately comparing data at varying volume ratios, compressor speeds, and for different gases, computations performed on the data were done using common reference points. Therefore a standard method was required to determine each of the required temperature, volume and pressure reference points.

Cylinder bulk gas temperature was the first reference point determined and was set at 100°F. This temperature was chosen as it was a typical average cyclic temperature experienced in previous experimentation done with the same experimental cylinder apparatus. When expressed on the absolute scale the reference temperature was then set at the following value:

\[T_0 = 559.67^\circ R \]

The method used to determine the reference volume consisted of calculating the geometric mean using the volume of the cylinder at the top dead center and bottom dead center positions. The actual formula for the determination of reference volume was

\[V_0 = \left(\frac{V_{BDC}}{V_{TDC}} \right)^{\frac{1}{2}} V_{TDC}. \]

(15)
Because the cylinder volume was expressed in units of cubic inches, the reference volume was also in cubic inches.

The determination of the reference pressure point required the prior determination of the reference volume point. Using the reference volume point, the pressures corresponding to this volume for both the compression and expansion strokes were found. The reference pressure was then determined to be the average of the compression and expansion pressure values at the reference volume.

\[P_o = \frac{P_{\text{comp}} + P_{\text{exp}}}{2} \]

(16)

Reference pressure was expressed in units of pounds force per square inch.

III.C. System Mass Calculation

In order to calculate the bulk gas temperature and entropy at each data point the system mass had to be determined. This calculation was performed using the ideal gas equation of state and the reference temperature, volume, and pressure values.

\[m = \frac{P_o V_o}{R T_o} \]

(17)

The system mass was then expressed in units of pounds mass.

III.D. Calculation of Temperature and Entropy

The bulk gas temperature at each data point was then
determined utilizing the ideal gas equation of state and other previously determined parameters.

\[T_i = \frac{P_i V_i}{R m} \] \hspace{1cm} (18)

The temperature values were expressed on the absolute scale in degrees Rankine.

The entropy value for each data point was calculated referenced to the previously determined values of reference volume and pressure by the relation

\[S_i - S_o = \Delta S = mC_v \ln \left(\frac{P_i}{P_o} \right) + mC_p \ln \left(\frac{V_i}{V_o} \right). \] \hspace{1cm} (19)

The entropy values were expressed in units of inch-pounds force per degree Rankine.

III.E. Calculation of System Losses

In order to calculate the system losses during the cycle, cyclic traces of pressure vs. volume and temperature vs. entropy were plotted. The area enclosed within either of these closed curves should equal the total system loss.

\[\oint PdV = \oint TdS = \text{loss} \] \hspace{1cm} (14)

The integration was performed numerically using the trapezoid rule at each successive data point. Total area under the expansion curve was considered negative. The total system loss was then described in the units of negative
inch-pounds force.

An attempt was made to calculate the area using a much more involved and typically more accurate five point Gaussian quadrature integration method. However, because of the scatter of the digital data points near the ends of the curves, this method proved no more accurate than the much simpler trapezoid integration method.

III.F. Non-Dimensional Parameter Calculations

In order to provide the additional capability of comparing the computer output to the output data of any other similar apparatus, notwithstanding differences in the units involved, non-dimensional parameters were introduced. The computer routine then also included the calculations required to produce the output of non-dimensional values of pressure, volume, temperature and entropy. Plots were also made of non-dimensional pressure vs. volume and non-dimensional temperature vs. entropy in order to determine the non-dimensional loss values.

III.F.1. Non-Dimensional Volume

The volume data points were non-dimensionalized by dividing each data point by the total displaced volume of the cylinder.

$$VSTR_1 = \frac{V_1}{(VBDC-VTDC)} \quad (20)$$
II.F.2. Non-Dimensional Pressure

The cylinder pressure data points were non-dimensionalized by dividing each data point by a mean pressure calculated from the compression stroke. This mean pressure was defined as the total work added during the compression stroke divided by the total displaced volume of the cylinder.

\[
P_{\text{mep}} = \frac{\gamma_{\text{comp}}}{(\text{VBDC}-\text{VTDC})}
\]

(21)

Each pressure data point was then divided by this mean pressure during compression to find the non-dimensional pressure values.

\[
P_{\text{STR}_i} = \frac{P_i}{P_{\text{mep}}}
\]

(22)

II.F.3. Non-Dimensional Temperature

The bulk gas temperature data points were non-dimensionalized by dividing each data point by the reference temperature.

\[
T_{\text{STR}_i} = \frac{T_i}{T_0}
\]

(23)

II.F.4. Non-Dimensional Entropy

The entropy values were non-dimensionalized by dividing the calculated entropy values by the mean pressure during compression and the displaced volume of the cylinder and
then multiplying by the reference temperature.

\[S_{STR} = \frac{S_i T_0}{P_{mep} (VBDC-VTDC)} \]

III.F.5. Non-Dimensional System Losses

Non-dimensional values of total system loss were calculated in the same manner as the dimensional loss values were determined. Plots were made of non-dimensional pressure vs. volume and non-dimensional temperature vs. entropy and the enclosed areas were calculated by numerical integration utilizing the trapezoid method.

III.G. Computer Output

A listing of the Fortran computer program is displayed in Appendix A. A listing of the test data file used in the computations is presented in Appendix B.

The output of the computer routine includes the following data:

1. Pressure, volume, bulk gas temperature and entropy at each data point.
2. Non-dimensional pressure, volume, bulk gas temperature and entropy at each data point.
3. Piston revolutions per minute.
4. Time interval between data points.
5. Reference temperature volume and pressure values.
6. Average cylinder wall temperature.
7. System mass.
8. Pressure vs. volume plot.
9. Temperature vs. volume plot.
10. Temperature vs. entropy plot.
11. Non-dimensional pressure vs. non-dimensional volume plot.
12. Non-dimensional temperature vs. non-dimensional volume plot.
13. Non-dimensional temperature vs. non-dimensional entropy plot.
14. Calculations of dimensional and non-dimensional system loss.

An example of the computer output is displayed in Appendices C and D.
CHAPTER IV

RESULTS

The results of the single data set used are presented in the computer output in Appendices C and D. Helium was utilized in the cylinder as the working gas for the experiment.

The final pressure vs. volume and non-dimensional pressure vs. non-dimensional volume plots resulted in extremely smooth traces. Each depicted what could easily be identified as a conventional pressure vs. volume trace for this type of apparatus. Basically the same comment could be made about both the temperature vs. volume and non-dimensional temperature vs. non-dimensional volume plots. However, a greater degree of scatter seemed to be evident in the temperature vs. volume plots than in the pressure vs. volume plots.

In the temperature vs. entropy and non-dimensional temperature vs. non-dimensional entropy plots the scatter is much more evident. The shape of the trace also is somewhat different from a shape that one might expect the plot to have after first seeing the pressure vs. volume and temperature vs. volume traces. Figure 9 is a single line curve approximation of the TSTR vs. SSTR computer trace from Appendix D. The figure shows the adiabatic and isothermal limits of a plot of this type. The adiabatic limit being a curve where the compression and expansion strokes
TSTR VS. SSTP SMOOTH CURVE TRACE WITH ADIABATIC AND ISOTHERMAL LIMITS AND COMPRESSION AND EXPANSION STROKE PHASE DIFFERENCES

FIGURE 9
approach being perfectly adiabatic while the isothermal limit approaches a curve where the compression and expansion strokes are perfectly isothermal. The TSTR vs. SSTR plot has been drawn on a graph with axes of equal length so that the curve has not been mistakenly lengthened in either direction to give the false appearance of being more adiabatic or isothermal. Nevertheless, the trace seems to approach the adiabatic limit in the high temperature portion of the plot, while approaching the isothermal limit in the low temperature portion of the plot. On the compression stroke the trace becomes perfectly adiabatic at a point early in the stroke at \(T_{STR} = 0.865 \left(T = 484^\circ R \right) \). On the expansion stroke the trace also becomes perfectly adiabatic at a point early in the stroke at \(T_{STR} = 1.15 \left(T = 644^\circ R \right) \). At each of these two points that actual rate of heat transfer in the system through the cylinder walls equals zero.

The points of apparent zero rate of heat transfer occur at \(T = T_{wall} = 539.2^\circ R \). The difference between these points and the points of actual zero rate of heat transfer is the phase difference. In both the compression and expansion strokes the phase difference is leading as the point of actual zero rate of heat transfer occurs prior to reaching the point of apparent zero rate of heat transfer. The actual phase differences can be computed to be:
compression stroke 45° leading
expansion stroke 64° leading

The actual system loss figures computed were:

\[
\begin{align*}
\text{PdV loss} &= -24.931 \text{ in-lbf} \\
\text{TdS loss} &= -25.107 \text{ in-lbf} \\
\text{Non-dimensional PdV loss} &= -0.0584 \\
\text{Non-dimensional TdS loss} &= -0.0588
\end{align*}
\]

In both the dimensional and non-dimensional cases, the PdV and TdS losses showed less than one percent difference.
CHAPTER V

DISCUSSION

V.A. Data Point Scatter

The scatter evident in the temperature vs. volume plots and particularly in the temperature vs. entropy plots deserves explanation. In these plots this scatter occurs primarily in the center section of the trace, away from the areas of minimum and maximum cylinder volume. At the upper and lower end portions of all the plots, the data points are generally packed tightly together in an orderly fashion. This is due to the fact that at the ends of the compression and expansion stroke, the piston is decelerating rapidly, halting abruptly and then again rapidly accelerating away from its extreme position. This stopping and starting motion requires a great deal of time to cover a small distance in comparison to the piston's much more rapid pace at the mid-stroke position of its travel. Because the data points are taken at equal time intervals, many more data points are taken at the extreme positions of the plots providing the tighter packing and the generally smoother appearance in those areas.

Near the mid-stroke positions of the cycle a different situation exists. Here the piston is moving much more rapidly relative to the velocity experienced at the extreme cylinder positions. Again as the data points are taken at equal time intervals, a greater distance should exist
between points on each trace near the mid-stroke position. This situation alone does not account for the scatter, but along with two other possible causes, the existence of the scatter can be better explained.

First, the Nicolet oscilloscope samples 2043 volume and 2948 pressure data points per scope storage cycle at equal time intervals between each point. The procedure of the scope is to sample one volume data point, wait the appropriate time interval and then sample one pressure data point, continuing in this manner until the storage cycle is full. The scope does not have the capability to sample pressure and volume simultaneously. Therefore the resulting pressure-volume data point pair formed by matching a volume data point with the following pressure data point does not exactly coincide with that pressure-volume data point pair that would occur if the capability existed to sample each pair simultaneously. This fact brings a small amount of error into the position of each data point.

Second, the digital nature of the data generates additional error. The accuracy of the digital data output of the Nicolet was limited to .05 millivolt. With the large number of data points taken, the changes in output voltage between many points was less than .05 millivolt. Therefore voltage changes of less than .05 millivolt were rounded off to the next .05 millivolt increment creating some error in the data. This might have not been critical except for the
fact that the volume data was being read on the 100 milli-
volt scale on the oscilloscope, and the range of the data
covered only 3.00 - 17.90 millivolts (roughly 15% of the
range of the scale). The 100 millivolt scale was the best
scale to use as it was the smallest scale available on the
scope that would accept the range of the volume data. How-
ever, a 4X or 5X signal amplifier should have been connected
in the volume signal wiring to utilize the full range of the
100 millivolt scale. This would have alleviated the problem
existing due to the .05 millivolt accuracy of the Nicolet
oscilloscope.

These limitations of the digital oscilloscope in con-
junction with the magnitude of the mid-stroke piston velocity
producing a greater distance between data points in this
area of the plots, are surely a sufficient basis with which
to attempt to justify the scatter.

V.B. Shape of Temperature vs. Entropy Plots

The actual shape of the temperature vs. entropy plots
exhibits a few variations from what might be expected after
seeing the other plots. In the high temperature end of the
plot, the curve seems to approach its adiabatic limit,
especially on the initial portion of the expansion stroke
(Figure 10). The explanation for this is fairly simple.
At the start of the expansion stroke, the temperature of the
bulk gas and the temperature of the gas in the boundary
layer are both greater than the cylinder wall temperature.
NON-DIMENSIONAL TEMPERATURE VS. NON-DIMENSIONAL ENTROPY PLOT ANNOTATED WITH MINIMUM AND MAXIMUM VALUES

FIGURE 10

45
However, the temperature of the bulk gas is still significantly greater than the boundary layer gas because the lower temperature cylinder wall has a greater effect on the temperature of the gas in the thin boundary layer. As the expansion stroke begins, the pressure drops and the bulk gas temperature drops rapidly. The temperature of the boundary layer gas drops also, but it drops at a much slower rate as it started the expansion stroke at a significantly lower temperature. Because the temperature difference between the boundary layer gas and the cylinder wall is not great for the first thirty degrees of the expansion stroke, very little heat is transferred out of the system and the process approaches its adiabatic limit.

At the low temperature end of the plot, near the end of the expansion stroke the curve seems to approach its isothermal limit (Figure 10). The explanation for this is very similar to that for the near adiabatic case. Near the end of the expansion stroke the boundary layer gas temperature has fallen somewhat lower than the cylinder wall temperature. In the last thirty degrees of the expansion stroke the volume in the cylinder increases, but it increases at a relative rate much less than the rate of increase near the start of the expansion stroke. Therefore the change in the bulk gas temperature will also change at a rate much less than the rate of change at the start of the expansion stroke. Even though the process approaches its isothermal limit,
there is still a sufficient temperature difference between the boundary layer gas and cylinder wall to permit significant heat transfer from the system.

The temperature vs. entropy plot also has what seems to be an inflection near the mid-stroke position on the compression stroke (Figure 10). At this inflection there is an abrupt change in the slope of the compression trace. Because of its proximity to the mid-stroke position on the curve, this inflection may be due to the change of piston acceleration to deceleration at mid-stroke. No such glaring inflection is evident in the expansion curve.

V.C. Identification of the Adiabatic Points in the Cycle

The identification of the two points in the cycle that are adiabatic is extremely important in determining the actual phase difference between the heat transfer and the bulk gas to wall temperature difference. It is expected that both the compression and expansion strokes should each have one adiabatic point where $T_{\text{boundary layer}} = T_{\text{wall}}$. Ideally this should occur at the points of maximum and minimum values of entropy. However, because of the scatter in the temperature vs. entropy plots it was difficult to envision the actual location where the curve became tangent to the vertical. Therefore to identify the location a rough curve was passed through the data points (Figure 9) and the adiabatic points were then evaluated at the locations where the curve passed through the vertical.
To check these adiabatic locations, lines of $PV^k = \text{constant}$ (adiabatics) were constructed on the pressure vs. volume plot (Figure 11). The locations on the trace that were tangent to an adiabatic line would signify an adiabatic point. The results of this procedure verified the selection of the adiabatic points in Figure 9.

V.D. Effects of the Boundary Layer

The effects of the boundary layer on the rate of heat transfer, or more specifically on the losses in the system are most important. It is obvious that it is the temperature of the boundary layer gas and not the bulk gas temperature which is the driving force on the transfer of heat through the cylinder wall. If the boundary layer gas temperature is greater than the temperature of the cylinder wall, the system will lose heat. If the boundary layer gas temperature is less than the temperature of the cylinder wall, the system will gain heat.

Along the compression stroke and part of the expansion stroke from the minimum to maximum entropy value the boundary layer acts to cool the system (Figure 10). On this area of the curve the boundary layer gas temperature is basically greater than the cylinder wall temperature and heat will be transferred out of the system through the cylinder walls. The heat transfer in this portion of the curve is driven by the change in volume and not the change in the bulk gas temperature of the system.
ADIABATIC POINT
\[\Delta S = 0 \]

LINES OF \(PV^k = \text{CONSTANT} \)

PRESSURE VS. VOLUME PLOT WITH LINES OF \(PV^k = \text{CONSTANT} \)

FIGURE 11

49
Along the expansion stroke from the minimum entropy value to the maximum entropy value the boundary layer acts to heat the system (Figure 10). The temperature of the bulk gas and the boundary layer is falling; however, the boundary layer temperature is generally less than the cylinder wall temperature and therefore heat will be transferred into the system through the cylinder walls.

V.3. Explanation of the Phase Difference

The phase difference that exists in the zero rate of heat transfer location is a very important effect of the boundary layer (Figure 9). The explanation of the cause for the phase difference should be fully discussed.

The bulk gas temperature is an important parameter in this type of system. Because the bulk gas temperature is much easier to measure and to understand than the more difficult to measure boundary layer temperature, the bulk gas temperature is utilized much more in this type of system. Therefore, if the bulk gas temperature is utilized, then when deriving the apparent expression that would define the rate of heat transfer from the system, the temperature extremes utilized would be the bulk gas temperature and the cylinder wall temperature and the expression would be:

\[q = hA (T_{\text{bulk gas}} - T_{\text{wall}}) \]

For this expression the points of zero rate of heat transfer are the points on the cycle where \(T_{\text{bulk gas}} = T_{\text{wall}} \).
The existence of a boundary layer with finite heat capacitance alters the former interpretation of the problem. The temperature of the gas in the layer next to the cylinder wall will not equal the bulk gas temperature, but will equal the boundary layer gas temperature. Therefore, the expression defining the rate of heat transfer to the cylinder walls will become:

\[q = hA (T_{\text{boundary layer}} - T_{\text{wall}}) \]

This expression specifies that the points of zero rate of heat transfer would be the points on the cycle where \(T_{\text{boundary layer}} = T_{\text{wall}} \). Because the bulk gas temperature is not equal to the boundary layer gas temperature in this system, some difference will exist in the time of apparent zero rate of heat transfer and actual zero rate of heat transfer. This difference is the zero rate of heat transfer phase difference. The phase difference in both the compression and expansion strokes of this experimentation was leading, or the actual zero rate of heat transfer occurred in the cycle before the apparent zero rate of heat transfer (Figure 9).

The explanation for the phase difference exists in the examination of the temperature history of the boundary layer. As the compression stroke is started the boundary layer gas temperature is slightly greater than the bulk gas temperature. This is due to the fact that the cylinder wall temperature is
greater than the bulk gas temperature and the cylinder wall temperature has a much greater effect on the temperature of the boundary layer gas rather than the bulk gas. As the gas is compressed the bulk gas and boundary layer gas temperatures rise, but because the boundary layer gas temperature started the stroke at a higher temperature than the bulk gas, the boundary layer gas temperature passes through the cylinder wall temperature prior to the bulk gas providing a leading phase difference.

As the expansion stroke is started both the bulk gas and boundary layer gas are cooled by the drop in pressure. But because the boundary layer gas temperature was significantly lower than the bulk gas temperature at the beginning of the expansion stroke, the boundary layer gas temperature passes through the cylinder wall temperature prior to the bulk gas providing a leading phase difference.
CHAPTER VI
CONCLUSIONS

One of the original objectives of the work included the capability of direct transmission of the data from the experimental expander to the Institute's CMS computer system. This capability required the use of a converter that could properly interface with the Nicolet storage oscilloscope and the CMS computer system. The Electric Power Systems Laboratory was assigned the task of designing and assembling this interface unit. Due to manpower shortages, the Electric Power Systems Laboratory was not able to complete the assembly of the interface unit prior to the submission of this paper. The unavailability of the interface unit required the data to be read point by point digitally from the Nicolet storage oscilloscope and then manually entered into a CMS computer system data file.

With the use of an operable interface unit, dozens of cycle runs could have been performed. However, the lack of the interface significantly limited the number of cycle runs that could be evaluated. Further setbacks occurred when serious problems were encountered in the digital and graphic data presentation from the Nicolet storage oscilloscope. The final result was the availability of only one good set of cycle data for analysis.

Although the technique developed in this paper to analyze the data was used on only one set of experimental
data, the results obtained proved that the analysis method was highly credible. Whether one or one hundred sets of cycle data had been evaluated, the same method would have been utilized.

The additional runs that could have been performed with an operable interface unit would have greatly increased the scope of the experiment. Parameters such as piston RPM, Reynold's number, cylinder volume ratio, cylinder pressure and type of working gas could have been varied. The results that would have been presented with the variations in the above parameters would have provided insight into the actual heat transfer losses and phase difference for a wide range of conditions. This general information could then be extrapolated for use in the design of other devices of this type.
REFERENCES

CYCLE PROGRAM LISTING

DIMENSION P(230), V(230), PR(230), VOL(230), T(230), S(230),
IPSTR(230), VSTR(230), Intr(230), SSTR(230)
READ (32, 10) (P(I), V(I), I=1, 225)
10 FORMAT (10X, F8.2, F8.3)
R=386.33
CP=1.25
CV=.75
VTD=6.77
VBDC=16.19
DIF=VBDC-VTD
RPM=257.0
TINT=1.0
T=559.67
THI=26.8
THI2=26.0
THI3=26.4
THI4=25.7
THAL=((THI+THI2+THI3)*1.8)/3.1*32.6+459.67
VMAX=V(1)
VMIN=V(1)
NMAX=1
NMIN=1
M=225
MM=M-1
DO 40 I=1, MM
1 IF (VMAX .GT. V(I+1)) GO TO 35
VMAX=V(I+1)
20 CONTINUE
35 IF (VMIN .LT. V(I+1)) GO TO 40
VMIN=V(I+1)
NMIN=1
40 CONTINUE
DO 50 I=1, M
P(I)=(P(I)-.4)*.342+14.7
V(I)=((V(I)-VMIN)/(VMAX-VMIN))*(VBDC-VTD)+VTD
50 CONTINUE
41 =I
JMM=MM+NMAX-1
DO 60 J=NMAX, JMM
JJ=J
IF (J .GT. M) JJ=M
CYC00010
CYC00020
CYC00030
CYC00040
CYC00050
CYC00060
CYC00070
CYC00080
CYC00090
CYC0100
CYC0110
CYC0120
CYC0130
CYC0140
CYC0150
CYC0160
CYC0170
CYC0180
CYC0190
CYC0200
CYC0210
CYC0220
CYC0230
CYC0240
CYC0250
CYC0260
CYC0270
CYC0280
CYC0290
CYC0300
CYC0310
CYC0320
CYC0330
CYC0340
CYC0350
CYC0360
CYC0370
CYC0380
CYC0390
CYC0400
CYC0410
IF (J.EQ. MIN) MIN=11
VOL(I)=V(JJ)
P(1)=P(JJ)
11=11+1
60 CONTINUE
VO=(SQR(T(VBDC/VTDC))*VTDC
DO 90 I=1,N
IF (J.EQ. M) VOL(I+1)=VOL(I)
IF (J.EQ. M) P(I+1)=P(I)
IF (VOL(I) .GE. VO) GO TO 75
IF (VOL(I) .LE. VO) GO TO 76
75 IF (VOL(I+1) .LE. VO) GO TO 80
GO TO 90
76 IF (VOL(I+1) .GE. VO) GO TO 85
GO TO 90
80 PHI=P(I+1)-((VOL-I+1)*P(I+1)-P(I))/((VOL-I+1)/(VOL-I+1))
GO TO 90
85 PLOW=P(I+1)*((VOL-I+1)**(P(I+1)-P(I))/(VOL-I+1))
90 CONTINUE
PO=(PHI+PLOW)/2.
MAS=PO=V/O(R+TO*12)
WPV=O.
WC=O.
WE=O.
DO 100 I+1,M
IF (J.EQ. M) VOL(I+1)=VOL(I)
IF (J.EQ. M) P(I+1)=P(I)
IF (VOL(I+1) .GT. VOL(I)) GO TO 95
WC=WC+P(I+1)**(VOL-I+1)**(P(I+1)-P(I))/(VOL-I+1))
GO TO 100
12.
95 WE=WE+P(I)**(VOL-I+1)**(P(I+1)-P(I))/(VOL-I+1))
12.
100 CONTINUE
WPV=WE+HC
DO 110 I+1,M
T(I)=(P(I)**VOL(I))/(R+MAS*12.)
S(I)=MAS*12.*778.*((CVALOG(P(I))/PO)+CP*ALOG(VOL(I)/VO))
110 CONTINUE
PMEP=HC/DISP
DO 120 I+1,M
VSI=VOL(I)/DISP
PSI=PR(I)/PMEP
TSI=T(I)/10
SSI=S(I)/10/(PMEP*DISP)
120 CONTINUE
WDS=O.
WPST=O.
WIST=0.
DO 130 i=1,M
 IF (WIST.EQ.0) T(I+1)=T(I)
 IF (WIST.EQ.1) S(I+1)=S(I)
 IF (WIST.EQ.5) VSTR(I+1)=VSTR(I)
 IF (WIST.EQ.10) PSTR(I+1)=PSTR(I)
 IF (WIST.EQ.15) TSTR(I+1)=TSTR(I)
 IF (WIST.EQ.16) SSTR(I+1)=SSTR(I)

 WTDST=WTDST+T(I)*(S(I)-S(I+1))*T(I+1)-T(I)*(S(I)-S(I+1))/2.

 WPST=WPST+PSTR(I)*(VSTR(I)-VSTR(I+1))*PSTR(I-1)-PSTR(I)

 WIST=WIST+TSTR(I)-(SSTR(I)-SSTR(I+1))*TSTR(I+1)-TSTR(I)

130 CONTINUE
WRITE (6,190)
190 FORMAT ('O',5X,'THE WORKING GAS IS HELIUM')
WRITE (6,191) RPM
191 FORMAT ('O',5X,'RPM = ',F6.1)
WRITE (6,192) TMIN
192 FORMAT ('O',5X,'TIME INTERVAL BETWEEN DATA POINTS = ',F3.1,' MILLSEC')
WRITE (6,200) DISP
200 FORMAT ('O',5X,'CYLINDER DISPLACEMENT = ',F5.3,' IN**3')
WRITE (6,201) PD
201 FORMAT ('O',5X,'REFERENCE PRESSURE = ',F6.3,' LBF/IN**2')
WRITE (6,202) V0
202 FORMAT ('O',5X,'REFERENCE VOLUME = ',F5.2,' IN**3')
WRITE (6,203) IO
203 FORMAT ('O',5X,'REFERENCE TEMPERATURE = ',F5.2,' DEG R')
WRITE (6,204) VAL
204 FORMAT ('O',5X,'CYLINDER WALL TEMPERATURE = ',F6.2,' DEG R')
WRITE (6,205) THAS
205 FORMAT ('O',5X,'SYSTEM MASS = ',F10.4,' LBm')
WRITE (6,206) WPDV
206 FORMAT ('O',5X,'PDV LOSS = ',F7.3,' IN-LBF')
WRITE (6,207) WIDS
207 FORMAT ('O',5X,'TDS LOSS = ',F7.3,' IN-LBF')
WRITE (6,208) WPST
208 FORMAT ('O',5X,'NON-DIMENSIONAL PDV LOSS = ',F7.4)
WRITE (6,209) WIST
209 FORMAT ('O',5X,'NON-DIMENSIONAL TDS LOSS = ',F7.4)
WRITE (6,220)
220 FORMAT ('O',5X,'PRES',4X,'VOL',4X,'TSTR',4X,'TSTR',5X,'SSTR')
WRITE (6,230) (1,PR(I),VOL(I),T(I),S(I),PSTR(I),VSTR(I),TSTR(I),SSTR(I)),I=1,MDM
230 FORMAT (2X,13,F8.3,F7.2,F8.2,F10.5,3F8.4,F10.5)
CALL PLOTS (IDDM,İDMN,20)
CALL PVPLT (PR, VOL, M)
CALL TVPLT (T, VOL, M)
CALL TPPLT (T, S, M)
CALL NTPVL (PSR, VSTR, M)
CALL NTIVER (TSTR, VSTR, M)
CALL NTIS (TSTR, SS, M)
CALL ENODLP (7.0,0.0,999)
STOP
END
SUBROUTINE PVPLT (PP, VV, NPT)
DIMENSION PP(230), VV(230)
CALL PICTUR (5.0,7.0, 'VOLUME (IN^3)', 13, 'PRESSURE (LBF/IN^2)', 19, CYC01470
IVV, PP, -NPT, 1, 1)
RETURN
END
SUBROUTINE TVPLT (TT, VV, NPT)
DIMENSION TT(230), VV(230)
CALL PICTUR (5.0,7.0, 'VOLUME (IN^3)', 13, 'TEMPERATURE (DEG R)', 19, CYC01530
IVV, TT, -NPT, 1, 1)
RETURN
END
SUBROUTINE TPPLT (TT, SS, NPT)
DIMENSION TT(230), SS(230)
CALL PICTUR (5.0,7.0, 'ENTROPY (IN-LBF/DEG R)', 22, 'TEMPERATURE (DEG R)', 19, SS, TT, -NPT, 1, 1)
RETURN
END
SUBROUTINE NTPVL (PPST, VS, NPT)
DIMENSION PPST(230), VS(230)
CALL PICTUR (5.0,7.0, 'VSTAR', 6, 'PSTAR', 6, PPST, -NPT, 1, 1)
RETURN
END
SUBROUTINE NTIVER (TSTR, VS, NPT)
DIMENSION TSTR(230), VS(230)
CALL PICTUR (5.0,7.0, 'VSTAR', 6, 'TSTAR', 6, VS, TSTR, -NPT, 1, 1)
RETURN
END
SUBROUTINE NTIS (TSTR, SS, NPT)
DIMENSION TSTR(230), SS(230)
CALL PICTUR (5.0,6.0, 'SSTAR', 6, 'TSTAR', 6, SS, TSTR, -NPT, 1, 1)
RETURN
END
APPENDIX B

CYCLE DATA FILE LISTING

<table>
<thead>
<tr>
<th>Pressure Readings in Millivolts</th>
<th>Volume Readings in Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.55</td>
<td>12.560</td>
</tr>
<tr>
<td>6.90</td>
<td>12.970</td>
</tr>
<tr>
<td>7.62</td>
<td>13.359</td>
</tr>
<tr>
<td>7.40</td>
<td>13.670</td>
</tr>
<tr>
<td>6.79</td>
<td>14.209</td>
</tr>
<tr>
<td>6.02</td>
<td>14.299</td>
</tr>
<tr>
<td>5.75</td>
<td>14.590</td>
</tr>
<tr>
<td>5.40</td>
<td>14.820</td>
</tr>
<tr>
<td>4.90</td>
<td>15.250</td>
</tr>
<tr>
<td>4.55</td>
<td>15.750</td>
</tr>
<tr>
<td>4.20</td>
<td>16.150</td>
</tr>
</tbody>
</table>

Printout of the data file.
PRINTOUT OF CYCLE PROGRAM PARAMETERS

The working gas is helium.

RPM = 267.0

Time interval between data points = 1.0 millisecond

Cylinder displacement = 9.420 in³

Reference pressure = 46.827 lbf/in²

Reference volume = 10.47 in³

Reference temperature = 559.67 deg R

Cylinder wall temperature = 539.19 deg R

System mass = 0.1889e-03 lbm

PDV loss = -24.931 in-lbf

TDS loss = -25.107 in-lbf

Non-dimensional PDV loss = -0.0184

Non-dimensional TDS loss = -0.0588

PRINTOUT OF CYCLE PROGRAM DATA

<table>
<thead>
<tr>
<th></th>
<th>PRES</th>
<th>VOL</th>
<th>TEMP</th>
<th>ENTR</th>
<th>PSIR</th>
<th>VSIR</th>
<th>TSIR</th>
<th>SSTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.206</td>
<td>16.19</td>
<td>484.36</td>
<td>0.19331</td>
<td>0.5705</td>
<td>1.7187</td>
<td>0.6654</td>
<td>0.25351</td>
</tr>
<tr>
<td>2</td>
<td>25.989</td>
<td>16.17</td>
<td>479.89</td>
<td>0.18018</td>
<td>0.5737</td>
<td>1.7170</td>
<td>0.6574</td>
<td>0.23630</td>
</tr>
<tr>
<td>3</td>
<td>25.989</td>
<td>16.16</td>
<td>479.42</td>
<td>0.17806</td>
<td>0.5737</td>
<td>1.7154</td>
<td>0.8566</td>
<td>0.23351</td>
</tr>
<tr>
<td>4</td>
<td>26.206</td>
<td>16.17</td>
<td>483.89</td>
<td>0.19119</td>
<td>0.5785</td>
<td>1.7170</td>
<td>0.8646</td>
<td>0.25073</td>
</tr>
<tr>
<td>5</td>
<td>26.206</td>
<td>16.17</td>
<td>483.89</td>
<td>0.19119</td>
<td>0.5785</td>
<td>1.7170</td>
<td>0.8646</td>
<td>0.25073</td>
</tr>
<tr>
<td>6</td>
<td>26.206</td>
<td>16.17</td>
<td>483.89</td>
<td>0.19119</td>
<td>0.5785</td>
<td>1.7170</td>
<td>0.8646</td>
<td>0.25073</td>
</tr>
<tr>
<td>7</td>
<td>26.206</td>
<td>16.11</td>
<td>482.03</td>
<td>0.18268</td>
<td>0.5785</td>
<td>1.7104</td>
<td>0.8613</td>
<td>0.23957</td>
</tr>
<tr>
<td>8</td>
<td>26.206</td>
<td>16.13</td>
<td>482.50</td>
<td>0.18481</td>
<td>0.5785</td>
<td>1.7121</td>
<td>0.8621</td>
<td>0.24237</td>
</tr>
<tr>
<td>9</td>
<td>26.206</td>
<td>16.14</td>
<td>482.96</td>
<td>0.18694</td>
<td>0.5785</td>
<td>1.7137</td>
<td>0.8629</td>
<td>0.24516</td>
</tr>
</tbody>
</table>
APPENDIX D

CYCLE PROGRAM PLOTS OUTPUT