TAXONOMIC NOTES ON THE ABYSSAL AGGLUTINATED BENTHIC FORAMINIFERA OF THE H. (U) WOODS HOLE OCEANOGRAPHIC INSTITUTION MA M A KAMINSKI SEP 83 WHOI-83-35
Taxonomic Notes On The Abyssal Agglutinated Benthic Foraminifera Of The HEBBLE Area (Lower Nova Scotian Continental Rise)

by

M. A. Kaminski

September 1983

Technical Report

Prepared for the Office of Naval Research under Contract N00014-82-C-0019.

Approved for public release; distribution unlimited.
Taxonomic Notes On The Abyssal Agglutinated Benthic Foraminifera
Of The HEBBLE Area (Lower Nova Scotian Continental Rise)

Michael A. Kaminski

Woods Hole Oceanographic Institution
Woods hole, Massachusetts 02543

Office of Naval Research
Washington, DC

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept. WHOI-83-35.

Eighty species and morphological varieties of agglutinated benthic foraminifera were identified in sediments from the HEBBLE Site (4800 m depth) and the HEBBLE Shallow Site (4185 m) on the lower Nova Scotian Continental Rise. Details of their morphology and classification are included in descriptions of each species, and representative specimens are illustrated using SEM, light microscopy, and X-radiography.

Approved for public release; distribution unlimited.
Taxonomic Notes On The Abyssal Agglutinated Benthic Foraminifera
Of The HEBBLE Area (Lower Nova Scotian Continental Rise)

By

M. A. Kaminski

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

September 1983

Technical Report

Prepared for the Office of Naval Research under Contract N00014-82-C-0019.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept. WHOI-83-35.

Approved for public release; distribution unlimited.

Approved for Distribution:

[Signature]
Richard P. von Herzen, Chairman
Department of Geology and Geophysics
ABSTRACT:

Eighty species and morphological varieties of agglutinated benthic foraminifera were identified in sediments from the HEBBLE Site (4800 m depth) and the HEBBLE Shallow Site (4185 m) on the lower Nova Scotian Continental Rise. Details of their morphology and classification are included in descriptions of each species, and representative specimens are illustrated using SEM, light microscopy, and X-radiography.
INTRODUCTION:

In 1982 and 1983 a total of 48 box cores were collected at the HEBBLE (High Energy Benthic Boundary Layer Experiment) site, using a 0.25m² corer (Hessler and Jumars, 1974). The HEBBLE site is located on the lower continental rise off Nova Scotia centered at (40° 27'N, 62° 20'W) at approx. 4815 - 4830 m water depth. On a large scale, this region is influenced by intermittently strong bottom currents capable of resuspending sediments. The predominant water mass at the site is NADW, with periodic influence of AABW. On KNORR Cruise 103 (June, 1983), one box core was taken from a site designated the Hebble Shallow site (40° 53'N, 63° 44'W) at a depth of 4185 m. These samples will serve as a basis for comparing the fauna of a relatively quiet region with those of the primary HEBBLE site. The locations of both sites are shown in Fig. 1.

On KNORR Cruise 96 (July 1982), the top sediment layer from twenty-one box cores was sampled at 0-1mm, 1-5mm, and 5-20mm depth for analysis of particle size. The 0-1mm sample was obtained by gently oscillating sea water across the core surface to resuspend mobile surface particles, and picking up the resuspended material with a syringe. 1-5mm and 5-20mm layers were sampled by scraping the core surface with a spatula to the appropriate depth. On KNORR 101 (April, 1983) and 103, samples were taken from each core from the 0-1 cm. surface layer. Deeper samples were obtained from split Knorr 96 subcores using a plastic hypodermic syringe inserted into the sediment to give 10cc subsamples. All samples were gently washed without dispersant through a 63μm screen. Foraminifera were picked from the >250 and 63-250μm size fraction splits, and individual specimens photographed on SEM and in reflected light.

This report deals specifically with the taxonomy of the agglutinated foraminifera of the lower Nova Scotian Continental Rise. Environmental data obtained from samples and spatial variation of agglutinated species will be published separately.
Fig. 1. Map showing location of HEBBLE Area (after Hollister et al. 1980, with modifications.)

★ - HEBBLE Site

○ - HEBBLE Shallow Site

On the basis of morphology, modern deep-water agglutinated foraminifera can be sub-divided into 7 general taxonomic groups:

1. Bush- or bead-like forms made of clay (Komokiidae and Baculellidae)..............p.12.
2. Tubular forms, branched or unbranched (Astrorhizidae).............p. 5.
4. Single coiled tubes (Ammodiscidae)..............p.11.
5. Multilocular uniserial forms (Hormosinidae).............p.13.
6. Bi- and triserial forms (Textulariidae)..............p.20.
 (also Textulariopsidae, Spiroplectamminidae, Valvulinidae, and Ataxophragmiidae)
7. Multilocular coiled forms (Lituolidae, Loftusiidae, and Trochamminidae).....p.17.

The suprageneric classification currently in use by most workers is that of Loeblich and Tappan (1964). However, in recent years profound changes have been made in the classification of Foraminifera. Scores of new genera have been created, and one new superfamily, the Komokiacea, was described (Tendal and Hessler, 1977). Saidova (1981) proposed
a new suprageneric classification scheme that has not gained wide acceptance. More recently, Loeblich and Tappan (1982a) published an outline of a suprageneric classification scheme which features modified latin endings for superfamilies, and incorporates many newly erected genera. This scheme was later modified by Loeblich and Tappan (1982b). Loeblich and Tappan (1982c) proposed a revised suprageneric classification, in which the original superfamily endings were retained. This classification contains 13 superfamilies and 52 families in the suborder Textulariina, compared with 3 superfamilies and 16 families in Loeblich and Tappan (1982a). In a revision of the Trochamminacea, Brönnimann et al. (1983) modified Loeblich and Tappan's (1982c) scheme. The anticipated publication of an updated treatise by Loeblich and Tappan will no doubt synthesize recent changes in the classification of Foraminifera.

Since Loeblich and Tappan (1983c) do not list the genera contained within individual subfamilies, I have classified species according to the scheme of Loeblich and Tappan (1982a) with minor modifications. Taxonomic problems abound at the species level even among well-established taxa. I have taken a conservative taxonomic approach and describe several forms using open nomenclature. Notes of recent generic classification changes appear in the species descriptions.

ACKNOWLEDGEMENTS:

I wish to thank the following persons for their help in the preparation of this study: C.D. Hollister, I.N. McCave, R.S. Chandler, J.Y. Yingst, D.E. Thistle, C.H. Pilskaln. W.A. Berggren, F.M. Gradstein and Claudia Schroeder reviewed this manuscript and provided useful suggestions. Financial support was supplied in part by the Office of Naval Research through the HEBBLE Project. This investigation is part of a long-term project on Cenozoic Deep Water Benthic Foraminifera conducted by W.A. Berggren and colleagues at the Woods Hole Oceanographic Institution and supported by a consortium of oil companies.
SYSTEMATIC PART

Class GRANULORETICULOSA Deflandre in Gresse, 1953
Order FORAMINIFERIDA Eichwald, 1830
Suborder ALLOGROMIINA Loeblich and Tappan, 1961
Superfamily LAGYNACEA Schultze, 1854
Family ALLOGROMIIDAE Rhumbler, 1904

Placopsilinella aurantica Earland.
Pl. 11, fig. 8
Small, chitinous, bright-reddish-brown species attached to planktonic foraminifer tests.

Superfamily AMMODISCOIDEA Reuss, 1862
Family ASTRORHIZIDAE Brady, 1881

?Astrammina sphaerica (Heron-Allen and Earland) var.
Pl. 1, fig. 1
Armorella was listed as a synonym of Astrammina by Loeblich and Tappan (1964), but retained by Hofker (1972) who maintains it differs from the latter in possessing a test built of a single layer of sand grains.
Specimens are large, brown in color with globular central chamber and 3 - 6 tubular arms not in one plane. Firmly cemented test comprised of one layer of sand grains. May incorporate large sand grains and occasionally planktonic foraminifera. Differs from the typical form in the larger dimensions of the tubular arms.

Rhabdammina cf. abyssorum Carpenter
Pl. 1, fig. 2
Rhabdammina abyssorum Carpenter, 1869 Roy. Soc. London, Proc. vol. 18,
no. 4, p. 60. Milam and Anderson, 1981 pl. 1, fig. 1.
Test rectilinear, open at both ends, reddish brown in color, slender, up to 5 mm long, firmly cemented, comprised of quartz grains, exterior roughly finished. Distinguished from H. cylindrica by its rough texture, darker color and lack of mafic grains.

Rhabdammina discreta Brady
Pl. 1, fig. 3

Test straight, thicker than R. abyssorum, comprised of mud and sand with some mafic grains, firmly cemented.

Rhabdammina linearis Brady
Pl. 1, fig. 4

Test robust, straight, with swollen central chamber.

Rhizammina cf. algaeformis Brady
Pl. 1, fig. 5

Test thin, comprised of mud with or without agglutinated small planktic foraminiferal tests, loosely cemented, friable, flattened.

Rhizammina indivisa Brady
Pl. 1, fig. 6

Test cylindrical, robust, with chitinous lining, composed of mud with small planktonic foraminiferal tests, more firmly cemented than R. algaeformis.
Bathysiphon cf. filiformis M. Sars
Pl. 1, fig. 7

Bathysiphon cf. rufescens Cushman
Pl. 1, fig. 8

Marsipella cylindrica Brady
Pl. 2, fig. 1

Hyperammina cylindrica Parr
Pl. 2, fig. 2

Hyperammina elongata Brady
Pl. 2, fig. 3
Test thick, elongate, with subglobular proloculum greater in diameter than second chamber, which tapers towards distal end. Wall comprised of fine sand grains. Larger in size than *H. cylindrica*.

Hyperammina friabilis Brady

Pl. 2, fig. 4

Test large. Wall thick, composed of fine sand with some coarse particles.

Hyperammina cf. subnodosa Brady

Pl. 2, fig. 5

Test robust, wall thick with coarse quartz grains and sponge spicules, no inner lining, loosely cemented. Differs from the typical *H. subnodosa* in its more coarsely arenaceous test.

Hyperammina sp.

Pl. 2, fig. 6

Very fine, fragile, rectilinear tube with globular proloculus comprised of clear-white quartz grains.

Botellina labyrinthica Brady

Pl. 2, fig. 10

Test grey in color, wall thick, comprised of very fine silt grains, loosely cemented. Interior labyrinthic with organic lining. Wall finer grained than Brady's material.

Dendrophrya arborescens (Norman)

Very fine, delicate bifurcating tube comprised of fine sand grains.
Saccorhiza ramosa (Brady)

Saccorhiza ramosa (Brady). Cole, 1981 pl. 1, fig. 5.

Specimens are curved, rather coarsely agglutinated, with a moderate amount of sponge spicules oriented normal to the test.

?Saccorhiza sp.

Test fragile, comprised of long, diachotomously branching tube closed at one end. Closed end not wider than ensuing tubular portion. Wall is tan in color, built of 2 or 3 layers of fine quartz silt grains with little cement. Black organic lining often collapses and pulls away from inner surface of rigid wall. Diameter of tube: 0.21 - 0.27 mm; Thickness of wall: 0.03 mm.

Family SACCAMMINIDAE Brady, 1884

Psammosphaera cf. fusca Schulze

Psammosphaera fusca Schulze, 1875 II Jahr. Comm. Wiss. Unt. deutsch Meer in Kiel. p. 113, pl. 2, figs. 8a-f.

Test coarsely finished, brown in color, may incorporate larger mineral grains (pseudoattached). Wall a single layer of sand grains.

Psammosphaera parva Flint

Test free or pseudo-attached, resembling P. cf. fusca except built around a single long sponge spicule. Wall comprised of a single layer of sand grains, reddish brown, firmly cemented.
Psammosphaera testacea (Flint)
Pl. 3, fig. 6

Test comprised of tests of small planktonic foraminifera.

Psammosphaera sp.
Pl. 3, figs. 4, 5
Test variable in composition, usually comprised of several large angular quartz grains agglutinated by fine quartz silt. Fine-grained portion yellow in color. May possess one or two planktonic foraminifera incorporated into the test.

Saccammina sphaerica G.O. Sars
Pl. 3, fig. 7
Test delicate, monolocular with aperture on a produced neck. Wall brown, finely agglutinated.

Saccammina sphaerica G.O. Sars var. catenulata Cushman
Specimens are pseudo-attached to large sand grains

Saccammina tubulata Rhumbler
Pl. 3, fig. 8
Saccammina tubulata Rhumbler, 1931 in: Drygalski, 1931 Deutsche Sudpolar Expedition 1901-1903 Bd. 20, pl. 23. Resig, 1981 pl. 9, fig. 5.
Test free or pseudo-attached, coarsely agglutinated with long, delicate, finely agglutinated neck.

Thurammina papillata Brady
Pl. 3, fig. 9
Fragile species often flattened, brown in color, with multiple apertures. Finely agglutinated fragile test.

Lagenammina *difflugiformis* (Brady) var. *calcarea* Cushman

Lagenammina *difflugiformis* (Brady) var. *calcarea* Cushman, 1947 Cush. Lab. Foram. Res. Contr. vol. 23, p. 86, fig. 16
Test small, longer than wide, comprised of calcareous and clear-white quartz grains. Lukina (1969) erects the genus *Proteonella* for such pear-shaped monolocular forms.

Family AMMODISCIDAE Reuss, 1862

Glomospira charoides (Jones and Parker)

Pl. 5. fig. 1

Glomospira charoides (Jones and Parker). Poag, 1981 pl. 7-8, fig. 4.
Small, very rare - found in one sample.

Glomospira gordialis (Jones and Parker)

Pl. 5, fig. 4

Glomospira gordialis (Jones and Parker). Resig, 1981 pl. 9, fig. 12.
Found occurring with *G. charoides*.

Ammolagena clavata (Parker and Jones)

Ammolagena clavata (Parker and Jones). Lukina, 1980 fig. 31.
Test attached (pseudo-attached) to *Globorotalia menardii*.
Suborder TEXTULARIINA Delage and Herouard, 1896
Superfamily KOMOKIACEA Tendal and Hessler, 1977
Family KOMOKIIDAE Tendal and Hessler, 1977

Septuma ocotillo Tendal and Hessler
Pl. 4, fig. 1

Test bush-like, branching out irregularly from the base. Wall comprised of tan-colored clay with an organic lining.

Septuma sp.
Pl. 4, figs. 3, 4

Test large, bush-like, flexible. Tubules flattened, with constrictions, branching out from the basal portion. Wall made of tan-colored clay and coccolith debris with some small fragments of planktonic foraminifera over a darker organic lining.

Lana reticulata Tendal and Hessler
Pl. 4, fig. 2

Specimen comprised of fine, branching tubules with no focal point of symmetry. Wall tan colored clay.

Lana sp.
Pl. 4, figs. 5, 6

Tubules are thicker than in **Lana reticulata**, and comprised of fine silt sized quartz particles over a dark inner organic lining. Attached to planktonic foraminifera and other debris.
Superfamily LITUOLOIDEA de Blainville, 1825
Family HORMOSINIDAE Haeckel, 1894

Aschemonella scabra Brady
Pl. 5, figs. 3, 4
Test several millimeters in size, with several openings. Test wall comprised of fine sand several grains thick with occasional small planktonic foraminiferal tests. Type species for Aschemonella. Large number of fragmentary specimens found in one sample. Gooday (1983) speculates this species is a Xenophyophore.

Aschemonella ramuliformis Brady
Pl. 5, figs. 5, 6
Dark, irregular ramifying tube with multiple apertures. Wall thin, comprised of fine quartz grains with occasional larger grains over a black organic lining. Rare. Traditionally listed with Foraminifera, Gooday and Nott (1982) have shown that this species is actually a Xenophyophore.

Hormosina globulifera Brady
Pl. 5, fig. 7
Test large, yellow in color, with globular chambers, rapidly increasing in size.

Hormosina sp.
Pl. 5, fig. 8
Small, reddish-brown in color, usually 2 or 3 chambers.

Hormosinella distans (Brady)
Pl. 5, fig. 9
Reophax distans Brady. Barker, 1960 pl. 31, figs. 18, 19.
Test thin-shelled, most commonly broken into single chambers, colored brown. May incorporate larger quartz grains. Stschedrina (1969) designated R. distans the type species for Hormosinella. Saidova (1970) assigned this species as the genotype for Cadminus, which is considered a junior synonym herein.

Reophanus oviculus (Brady)
Pl. 5, fig. 10
Reophanus oviculus (Brady). Mendelson, 1981 pl. 5.
Test slender, finely agglutinated, several grains thick at apertural neck, yellowish to brown in color. Placed in Reophanus Saidova, 1970 by Saidova (1975), which supposedly differs from Reophax in possessing extended apertural ends of chambers which are embraced by successive chambers. Mendelson (1981) upheld the generic designation Reophanus, maintaining that the chambers do not embrace, but it differs from Hormosina in possessing a long apertural neck.

Subreophax adunca (Brady)
Pl. 6, fig. 1, 2
Subreophax adunca (Brady). Saidova, 1975 pl. 11, fig. 6.
Non-rectilinear flexible test with globular chambers. Wall brownish-grey in color. Saidova (1975) assigned this species as the genotype for Subreophax, which differs from Reophax in its sinuous test and compressed chambers. The generic designation was upheld by Loeblich and Tappan (1982).

Reophax agglutinatus Cushman
Pl. 6, fig. 2. Pl. 6, fig. 3
Test large, containing 2-4 chambers, possessing a pelitic wall with agglutinated small planktonic foraminiferal tests.
Reophax bacillaris Brady

Pl. 6, fig. 4

Reophax bacillaris Brady, 1881 *Quart. Jour. Micr. Sci.* vol. 21, p. 49

Cole, 1981 pl. 2, fig. 12.

Test large, gently curved, coarsely agglutinated, with sponge spicules. Found only at HEBBLE Shallow Site (4185 m depth). Placed in *Pseudonodosinella* by Saidova (1970).

Reophax bilocularis Flint

Pl. 6, figs. 5, 7, 8

Test large, comprised of small planktonic foraminiferal tests and occasional sand grains. Aperture on a produced neck built of minute clear-white quartz fragments.

Reophax dentaliniformis Brady

Pl. 6, fig. 9

Slender, elongate test comprised of clear quartz grains. Chambers globular, aperture small, on a produced neck.

Reophax dentaliniformis Brady var. 1

Pl. 6, fig. 10

Differs from typical *R. dentaliniformis* in its more straight-sided test and wider aperture. Not found at the HEBBLE Shallow Site.

Reophax dentaliniformis Brady var. 2

Pl. 6, figs. 6, 11

Differs from *R. dentaliniformis* var. 1 in utilizing small planktonic foraminifera in the construction of its test.

Reophax gracilis (Kiaer)

Modulina gracilis Kiaer, 1900 *Norweg. Fish Mar. Invest.*, Rept.,
Kristiania vol. 1, no. 7, p. 24, text-figs. 1, 2.

Reophax gracilis (Kiaer). Cole, 1981 pl. 16, fig. 25.

Rare, very delicate, fine grained species, yellow in color.

Reophax nodulosa Brady

Pl. 6, fig. 12

Robust brownish test with finely agglutinated, finely finished wall. Type species for Pseudonodosinella Saidova (1970), which differs from Reophax in having 3-4 costae at base of chamber interior. Not found at the HEBBLE Shallow Site.

Reophax pilulifer Brady

Pl. 7, figs. 1, 2

Test robust, yellow in color, comprised of coarse sand grains with occasional small planktonic foraminifera and pelitic material.

Reophax scorpiurus Montfort

Pl. 7, fig. 3

Test clear-white, coarsely arenaceous with few chambers.

Reophax sp. 1

Pl. 7, figs. 4, 5

Test increases rapidly in size, chambers flask-shaped, comprised of a single layer of clear-white quartz grains, usually found as monolocular fragments.

Reophax sp. 2

Pl. 7, fig. 6

Test minute, reddish-brown in color, coarsely agglutinated. Differs from Hormosina sp. in possessing less embracing chambers.
?Hormosina guttifer (Brady)

Pl. 7, fig. 7

Brownish test with overlapping pyriform chambers. Test wall made of sand grains of various size, typically one layer thick. Saidova (1970) placed this species in Reophanus.

Family LITUOLIDAE de Blainville, 1825

Haplophragmoides sp.

Pl. 7, fig. 8

Minute planispiral, finely agglutinated test with 4 1/2 chambers in last whorl, brown in color.

Adercotryma glomerata (Brady)

Pl. 7, figs. 9, 10

Adercotryma glomerata (Brady). Barker, 1960 pl. 34, figs. 15-18.
Small, brownish test with high chambers.

Cribrostomoides rotulatum (Brady)

Cribrostomoides rotulatum (Brady). Barker, 1960 pl. 34, figs. 5, 6.
Test coarsely agglutinated, with deeply excavated umbilicus. Pl. 8, figs. 1a, b.

Cribrostomoides scitulum (Brady)

Pl. 8, figs. 2a, b

Lituola (Haplophragmium) scitulum Brady, 1881 Quart. Jour. Micr. Sci. vol. 21, p. 50
Cribrostomoides scitulum (Brady). Poag, 1981 pl. 11-12, fig. 4.
Smaller, more evolute and more numerous chambers than *C. subglobosum*. Test finely arenaceous, brownish-yellow, with open umbilicus.

Cribrostomoides subglobosum (G.O. Sars)

Pl. 8, figs. 3a, b

Cribrostomoides subglobosum (G.O. Sars). Poag, 1981 pl. 11-12, fig. 2.

A robust species with 6 chambers in the last whorl.

Recurvoldes contortus Earland

Pl. 8, fig. 5a, b

The type species for *Recurvoldes*, test light brown in color, early convolutions are inclined 90° to later convolutions, with about 7 chambers in the first plane, and 2 or 3 in the second. Common.

Recurvoldes contortus Earland var.

Pl. 8, fig. 6

Differs from the typical in its greenish-yellow color and more finely agglutinated test with more cement.

Recurvoldes turbinatus (Brady)

Pl. 8, fig. 4

Test brown in color, with open umbilicus. Later convolution inclined only slightly to previous one. More finely agglutinated than *R. contortus*.

Cystammina pauciloculata (Brady)

Pl. 9, fig. 1

Cystammina pauciloculata (Brady). Ingle et al., 1980 pl. 9, fig. 11.

Test brown in color, rare. Placed in the family Lituolidea by Brönnimann et al. (1983).
Cystamminella galeata (Brady)

P1. 9, fig. 2a, b

Cystamminella galeata (Brady). Lukina, 1980 fig. 47.

Wall finely agglutinated, finely finished, dark brown. Designated by Lukina (1980) as the type species for *Cystamminella*, which differs from *Cystammina* in possessing a planispiral involute test with a peripheral aperture. Not found at the HEBBLE Shallow Site.

Cystamminella ringens (Brady)

P1. 9, fig. 3a, b

Trochammina ringens Brady, 1979 Quart. Jour. Micr. Sci., vol. 19, p. 57, pl. 5, fig. 12a,b.

Cystamminella ringens (Brady). Lukina, 1980 fig. 48.

Color brown, very smoothly finished test, 3 chambers in the last whorl, aperture an areal slit. Rare.

Ammobaculites agglutinans (d'Orbigny)

P1. 9, fig. 4

Spiroolina agglutinans d'Orbigny, 1846 Foram. Foss. Vienne, p. 137, pl. 7, figs. 10-12.

Ammobaculites agglutinans (d'Orbigny). Resig, 1981 pl. 9, fig. 16.

Robust, coarsely agglutinated test, poorly cemented. Test larger and thicker than *A. americanus*, with wider uniserial part. Found only at HEBBLE Shallow site (4185m).

Ammobaculites cf. americanus Cushman

P1. 9, fig. 5

Test thin, coarsely agglutinated, with dark mafic grains, spiral part in 2 whorls, uniserial part usually absent, delicate and thin. Differs from the typical in the more slender uniserial part. Abundant.

19
Ammonomarginulina foliacea (Brady)

Ammonomarginulina foliacea (Brady). Cole, 1981 pl. 5, fig. 4.
Test finely agglutinated, very thin, almost black in color, with many biotite flakes and mafic grains. Uniserial part broad, with arched septa. Spiral part in 1 whorl, broader than uniserial part.

Family LOFTUSIIDAE Brady, 1884

Cyclammina cancellata Brady

Biconvex, compressed planispiral test with approx. 13 chambers in the last whorl. Reddish or yellowish brown in color and typically poorly preserved. Both megalosphaeric and microsphaeric forms present.

Family TEXTULARIIDAE Ehrenberg, 1838

Textularia cf. flintii Cushman

Litoula nautiloidea Lamarck var. globigeriniformis Parker and Jones, 1865 Roy. Soc. London Philos. Trans. vol. 155, p. 407, pl. 15, figs. 46, 47.
Trochammina globigeriniformis (Parker and Jones). Poag, 1981 pl. 13-14, fig. 1.
Robust species with four chambers visible on the umbilical side.

Trochammina cf. macrescens Brady
Rare species, compressed, with 2 whorls on spiral side, brown in color.

Trochammina pygmaea Höglund
Pl. 10, fig. 7
Trochammina globigeriniformis (Parker et Jones) var. pygmaea Höglund, 1947 p. 200, text-fig. 182, pl. 17, fig. 3.
Test smaller, yellowish in color, with fewer chambers in last whorl than T. globigeriniformis. Finely agglutinated with many mafic grains.

Trochammina soldanii Earland
Pl. 11, fig. 4a, b
Trochammina soldanii Earland, 1936 Discovery Reports vol. 8, p. 38, pl. 1, figs. 32-34.
Robust, coarsely agglutinated, yellowish test with earlier whorls sometimes darker in color. Five chambers are visible on the ventral side. Aperture interiomarginal surrounded by a thin rim.

Portatrochammina eltaninae Echols
Pl. 10, figs. 4, 6a, b
Portatrochammina eltaninae Echols, 1971 Antarctic Res. ser. 15, p. 148, pl. 8, fig. 1, 2.
Test attached or free, brown in color, with 5 chambers in the last whorl.

?Conotrochammina bullata (Höglund)
Pl. 11, figs. 1, 2, 3
Trochamminella bullata Höglund, 1947 pp. 213-214, pl. 17, fig. 5. Conotrochammina bullata (Höglund). Echols, 1971 pl. 5, fig. 11, 12.
Test small, conical, initial chambers brownish-red in color, 4 to a whorl, latter chambers lighter in color or white, 3 to a whorl. Aperture umbilical. Brönnimann et al. (1983) consider Conotrochammina nomen dubium.

Family VULVULINIDAE Berthelin, 1880

Eggerella bradyi (Cushman)

Pl. 11, fig. 5

Verneullina bradyi Cushman, 1911 U.S. Nat. Mus. Bull. 71, pt. 2, p. 54, test fig. 87a, b. pl. 6, fig. 4.

Robust, very fine-grained, greyish-white in color.

Eggerella propinqua (Brady)

Pl. 11, fig. 6

Eggerella propinqua (Brady). Barker, 1960 pl. 47, fig. 8-12.
Robust, coarse-grained with some dark mafic grains, brown in color.

Karreriella apicularis (Cushman)

Pl. 11, fig. 7.

Karreriella apicularis (Cushman). Poag, 1981 pl. 15-16, fig. 5.
Test minute, dark brown in color, with twisted biserial part.
Bibliography

Earland, A., 1936 Foraminifera Part IV. Additional records from the Weddell Sea sector from material obtained by the S.Y. 'Scotia'. Ibidem 10.

Plates
<p>| Fig. 1. | ?Astrammina sphaerica Heron-Allen and Earland var. X 40 |
| Fig. 2. | Rhabdammina cf. abyssorum Carpenter X 50 |
| Fig. 3. | Rhabdammina discreta Brady X 85 |
| Fig. 4. | Rhabdammina linearis Brady X 40 |
| Fig. 5. | Rhizammina cf. algaeforlis Brady X 40 |
| Fig. 6. | Rhizammina indivisa Brady X 40 |
| Fig. 7. | Bathysiphon cf. filiformis M. Sars X 35 |
| Fig. 8. | Bathysiphon cf. rufescens Cushman X 35 |</p>
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Species</th>
<th>Magnification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marsipella cylindrica Brady. Abraded specimen showing inner lining</td>
<td>X 200</td>
</tr>
<tr>
<td>2</td>
<td>Hyperammina cylindrica Parr</td>
<td>X 50</td>
</tr>
<tr>
<td>3</td>
<td>Hyperammina elongata Brady</td>
<td>X 50</td>
</tr>
<tr>
<td>4</td>
<td>Hyperammina friabilis Brady</td>
<td>X 25</td>
</tr>
<tr>
<td>5</td>
<td>Hyperammina cf. subnodos Brady</td>
<td>X 50</td>
</tr>
<tr>
<td>6</td>
<td>Hyperammina sp.</td>
<td>X 75</td>
</tr>
<tr>
<td>7</td>
<td>Saccorhiza ramosa (Brady)</td>
<td>X 45</td>
</tr>
<tr>
<td>8, 9</td>
<td>?Saccorhiza sp.</td>
<td>X 50</td>
</tr>
<tr>
<td>10</td>
<td>Botellina labynthica Brady</td>
<td>X 50</td>
</tr>
</tbody>
</table>
Plate 3

Fig. 1. *Psammosphaera cf. fusca* Schultze X 85

Fig. 2. *Psammosphaera cf. fusca* Schultze X 100

Fig. 3. *Psammosphaera parva* Flint X 100

Fig. 4. *Psammosphaera* sp. X 170

Fig. 5. *Psammosphaera* sp. Specimen with agglutinated planktonic foraminifer and *P. cf. fusca* test. X 100

Fig. 6. *Psammosphaera testacea* (Flint) X 100

Fig. 7. *Saccammina sphaerica* G.O. Sars X 200

Fig. 8. *Saccammina tubulata* Rhumbler X 100

Fig. 9: *Thurammina papillata* Brady X 100
Plate 4

Fig. 1. Septum ocotillo Tendal and Hessler X 25
Fig. 2. Lana reticulata Tendal and Hessler X 25
Fig. 3. Septum sp. X 25
Fig. 4. Septum sp. X 75
Figs. 5, 6. Lana sp. X 25
Plate 5

Fig. 1. *Glomospira charoides* (Jones and Parker) X 250

Fig. 2. *Glomospira gordialis* (Jones and Parker) X 375

Fig. 3. *Aschemonella scabra* Brady X 25

Fig. 4. *Aschemonella scabra* Brady X 50

Fig. 5, 6. *Aschemonella ramuliformis* Brady X 50

Fig. 7. *Hormosina globulifera* Brady X 60

Fig. 8. *Hormosina sp.* X 120

Fig. 9. *Hormosinella distans* (Brady) X 75

Fig. 10. *Reophanus oviculus* (Brady) X 100
Plate 6

Fig. 1. - Subreophax adunca (Brady) X 80
Fig. 2. Subreophax adunca (Brady) X 50
Fig. 3. Reophax agglutinatus Cushman X 25
Fig. 4. Reophax bacillaris Brady X 50
Fig. 5. Reophax bilocularis Flint X 50
Fig. 6. Reophax dentaliniformis Brady var. 2 X 25
Fig. 7. Reophax bilocularis Flint X 25
Fig. 8. Reophax bilocularis Flint X 25
Fig. 9. Reophax dentaliniformis Brady X 100
Fig. 10. Reophax dentaliniformis Brady var. 1 X 80
Fig. 11. Reophax dentaliniformis Brady var. 2 X 100
Fig. 12. Reophax nodulosa Brady X 75
Plate 7

Fig. 1.
Reophax pilulifer Brady X 50

Fig. 2.
Reophax pilulifer Brady (specimen with planktonic foraminifera incorporated into the test) X 60

Fig. 3.
Reophax scorpiurus Montfort X 70

Fig. 4.
Reophax sp. 1 X 75

Fig. 5.
Reophax sp. 1 X 85

Fig. 6.
Reophax sp. 2 X 250

Fig. 7.
?Hormosina guttifer (Brady) X 100

Fig. 8.
Haplophragmoides sp. X 250

Figs. 9, 10. Adercotryma glomerata (Brady) X 250
Plate 8

Figs. 1a, b. *Cribrostomoides rotulatum* (Brady) X 80
Figs. 2a, b. *Cribrostomoides scitulum* (Brady) X 80
Figs. 3a, b. *Cribrostomoides subglobosum* (G.O. Sars) X 80
Fig. 4. *Recurvoides turbinatus* (Brady) X 75
Figs. 5a, b. *Recurvoides contortus* Earland X 80
Fig. 6. *Recurvoides contortus* Earland var. X 160
Plate 9

<table>
<thead>
<tr>
<th>Fig. 1</th>
<th>Cystamina pauciloculata (Brady)</th>
<th align="right">X 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2a, b</td>
<td>Cystaminella galeata (Brady)</td>
<td align="right">X 120</td>
</tr>
<tr>
<td>Figs. 3a, b</td>
<td>Cystaminella ringens (Brady)</td>
<td align="right">X 100</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Ammobaculites agglutinans (d'Orbigny)</td>
<td align="right">X 50</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>Ammobaculites cf. americanus Cushman</td>
<td align="right">X 75</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>Ammomarginulina foliacea (Brady)</td>
<td align="right">X 125</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Textularia cf. flintii Cushman</td>
<td align="right">X 75</td>
</tr>
</tbody>
</table>
Plate 10

Figs. 1a, b. *Cyclammina cancellata* Brady X 120

Figs. 2, 3. *Cyclammina cancellata* Brady. Contact X-radiograph images of microsphaeric and megalosphaeric specimens X 100

Fig. 4. *Portatrochammina eltaniniae* Echols X 250

Figs. 5a, b. *Trochammina globigeriniformis* (Parker and Jones) X 120

Figs. 6a, b. *Portatrochammina eltaniniae* Echols X 200

Fig. 7. *Trochammina pygmaea* Höglund X 100
Plate II

Fig. 1. ?Conotrochammina bullata Höglund X 200
Fig. 2. ?Conotrochammina bullata Höglund Spiral side. X 150
Fig. 3. ?Conotrochammina bullata Höglund Umbilical side. X 150
Fig. 4a, b. Trochammina soldanii Earland X 100
Fig. 5. Eggerella bradyi (Cushman) X 200
Fig. 6. Eggerella propinqua (Brady) X 75
Fig. 7. Karreriella apicularis (Cushman) X 100
Fig. 8. Placopsilinella aurantica Earland X 250
MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS
PUBLISHED BY OCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE
AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH

(REVISED JUNE 1983)

1 Deputy Under Secretary of Defense
(Research and Advanced Technology)
Military Assistant for Environmental Science
Room 3D129
Washington, DC 20301

Office of Naval Research
800 North Quincy Street
Arlington, Va 22217
3 ATTN: Code 483
1 ATTN: Code 420C
2 ATTN: 102B

Commanding Officer
Naval Research Laboratory
Washington, DC 20375
6 ATTN: Library Code 2627
1 ATTN: Library Code 2620, Mr. Peter Imhof

12 Defense Technical Information Center
Cameron Station
Alexandria, VA 22314
ATTN: DCA

Commander
Naval Oceanographic Office
NSTL Station
Bay St. Louis, MS 39522
1 ATTN: Code 8100
1 ATTN: Code 6000
1 ATTN: Code 3300

1 NODC/NOAA
Code D781
Wilson Blvd., N.W.
Washington, DC 20235