Optimum Filtering Required for Broadband Detection of Gaussian Processes

Ira B. Cohen
Albert H. Nuttall
Surface Ship Sonar Department

Naval Underwater Systems Center
Newport, Rhode Island / New London, Connecticut

Approved for public release; distribution unlimited.
Preface

This report was prepared for Principal Investigator, D. W. Counsellor (Code 3322). It was prepared under NUSC Project No. C67840.

The technical reviewer for this report was Dr. G. Clifford Carter (Code 3331).

Reviewed and Approved: 22 September 1983

Larry Freeman
Surface Ship Sonar Department

The authors of this report are located at the
New London Laboratory, Naval Underwater Systems Center,
REPORT DOCUMENTATION PAGE

1. REPORT NUMBER
 TR 6999

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
 OPTIMUM FILTERING REQUIRED FOR BROADBAND DETECTION OF GAUSSIAN PROCESSES

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
 Ira B. Cohen and Albert H. Nuttall

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS
 Naval Underwater Systems Center
 New London Laboratory
 New London, CT 06320

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
 C675450

11. CONTROLLING OFFICE NAME AND ADDRESS
 Naval Sea Systems Command
 PMS -411
 Washington, DC 20362

12. REPORT DATE
 22 September 1983

13. NUMBER OF PAGES
 24

14. MONITORING AGENCY NAME & ADDRESS (IF different from Controlling Office)
 Naval Sea Systems Command
 PMS -411
 Washington, DC 20362

15. SECURITY CLASS. (of this report)
 UNCLASSIFIED

15a. DECLASSIFICATION/DEOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
 Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
 Broadband Detection
 Detection and False Alarm Probability
 Optimum Filtering
 Gaussian Processes

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
 The derivation for the optimum filter required for broadband detection of Gaussian processes is presented. The performance criteria that is optimized is probability of detection for a fixed false alarm rate. It is shown by example that the optimum filter out performs the widely used Eckart filter and other filters.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Symbols</td>
<td>ii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Problem Definition</td>
<td>1</td>
</tr>
<tr>
<td>Problem Solution</td>
<td>2</td>
</tr>
<tr>
<td>Comparison with Other Filters</td>
<td>4</td>
</tr>
<tr>
<td>Unknown Spectra</td>
<td>5</td>
</tr>
<tr>
<td>Conclusion</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>Appendix A – Derivation of Optimum Filter Power Transfer Function</td>
<td>A-1</td>
</tr>
<tr>
<td>Appendix B – Sensitivity Analysis of Filter</td>
<td>B-1</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\[\begin{align*}
 t & \quad \text{Time} \\
 x(t) & \quad \text{Input waveform} \\
 s(t) & \quad \text{Input signal} \\
 n(t) & \quad \text{Input noise} \\
 M & \quad \text{Number of independent samples} \\
 T & \quad \text{Observation time} \\
 f & \quad \text{Frequency} \\
 H(f) & \quad \text{Filter transfer function} \\
 z & \quad \text{Decision variable} \\
 \Lambda & \quad \text{Threshold} \\
 H_0(f) & \quad \text{Optimum filter} \\
 S & \quad \text{Signal Power} \\
 N & \quad \text{Noise Power} \\
 \Phi & \quad \text{Cumulative Gaussian distribution; Eq. 3} \\
 \Phi^{-1} & \quad \text{Inverse } \Phi \text{ function} \\
 P_D & \quad \text{Probability of Detection} \\
 P_F & \quad \text{Probability of False Alarm} \\
 B & \quad \text{Bandwidth of Signal} \\
 G_S(f) & \quad \text{Signal Power Spectrum} \\
 G_N(f) & \quad \text{Noise Power Spectrum} \\
 Q & \quad \text{Measure of performance} \\
 F(\cdot) & \quad \text{Function of } (\cdot) \\
 E[\cdot] & \quad \text{Expected value} \\
 \text{Var}[\cdot] & \quad \text{Variance} \\
 \sigma & \quad \text{Standard deviation} \\
 R & \quad G_S(f)/G_N(f); \text{ continuous or discrete} \\
 \hat{R} & \quad \text{Estimate of } R \\
 \bar{R}_i & \quad \text{Collection of } \bar{R}_i
\end{align*} \]
INTRODUCTION

It has long been believed that optimum filtering for broadband detection consists of using an Eckart filter. The Eckart filter optimizes the deflection criteria; however, it does not optimize the criteria of usual interest, which is maximum probability of detection \(P_D \) for a fixed false alarm rate.

In this report, we present the derivation of the optimum filter that maximizes \(P_D \) for a fixed false alarm rate. We show by example that the optimum filter out performs the Eckart filter and other filters. Additionally, we present a method of estimating performance when the input spectra are unknown and must be estimated.

PROBLEM DEFINITION

The configuration of interest is depicted in figure 1. The input \(x(t) \) is composed of stationary, zero-mean, Gaussian signal, \(s(t) \), and noise, \(n(t) \), or noise \(n(t) \) alone. The sampler and summer effectively accumulates \(M \) statistically independent samples during an observation time of \(T \) seconds.

![Diagram](image)

Figure 1. Processing Configuration

If the random variable \(z \) exceeds the threshold \(\lambda \) when signal is present, a detection occurs. If \(z \) exceeds the threshold when signal is absent, a false alarm occurs. The problem is to find the optimum filter, \(H_0(f) \), that maximizes \(P_D \), for a given probability of false alarm, \(P_F \), and a given observation time, \(T \).
PROBLEM SOLUTION

We first define the signal-to-noise ratio \(S/N \) at the input of the square law detector in figure 1 that is required to detect a signal with given \(P_D \) and \(P_F \), i.e.,

\[
S/N \approx \frac{\Phi^{-1}(P_D) - \Phi^{-1}(P_F)}{M - \Phi^{-1}(P_D)},
\]

\(M \approx BT \),

where

\[
\Phi(x) = \int_{-\infty}^{x} dt(2\pi)^{-1/2} \exp(-t^2/2).
\]

The derivation for the above is given by reference 1. The filter output \(S/N \) and bandwidth \(B \) are given by

\[
S/N \equiv \frac{\int df |H(f)|^2 G_S(f)}{\int df |H(f)|^2 G_N(f)},
\]

and

\[
B \equiv \frac{\left[\int df |H(f)|^2 G_S(f) \right]^2}{\int df |H(f)|^4 G_S(f)^2}.
\]

Equation (1) was derived by approximating the random variable \(z \) as Gaussian; this is a good approximation for \(M \gg 1 \).

Substituting (2) into (1) and rearranging, we obtain

\[
P_D \approx \Phi\left[\frac{S/N \sqrt{BT} + \Phi^{-1}(P_F)}{1 + S/N} \right].
\]
Since Φ, as given by (3), is a monotonically increasing function, P_D can be maximized by maximizing its argument

$$\frac{S/N \sqrt{BT} + \Phi^{-1}(P_F)}{1 + S/N}.$$ \hspace{1cm} (7)

For the filter output $S/N \ll 1$, as is usually the case, and recognizing that $\Phi^{-1}(P_F)$ and T are constants, P_D can be maximized by maximizing Q, where

$$Q \equiv (S/N)^2 B.$$ \hspace{1cm} (8)

Appendix A provides the derivation for the optimum filter $|H_0(f)|^2$ that maximizes Q. $|H_0(f)|^2$ is given by the following equation:

$$|H_0(f)|^2 = \frac{1}{R^2(f) G_N(f)} \left[R(f) - \frac{3I_1 - (9I_1^2 - 8I_0 I_2)^{1/2}}{4I_0} \right]$$ \hspace{1cm} (9)

where

$$R(f) = G_S(f)/G_N(f),$$

$$I_n \equiv \int_{W_0} df R^{n-2}(f).$$

W_0 is the largest region where

$$9I_1^2 \geq 8I_0 I_2.$$

Substituting (8) into (6) and utilizing $S/N \ll 1$, we have

$$P_D \approx \Phi \left[(QT)^{1/2} + \Phi^{-1}(P_F) \right].$$ \hspace{1cm} (10)
COMPARISON WITH OTHER FILTERS

Other filters are presently in use for broadband processing. These include the ideal passband filter, the Eckart filter, and the prewhitening filter. These filters are popular because of their ease of implementation or particular performance measure that they optimize.

We now compare the performance of the optimum filter, \(H_0(f) \), with the performance of the forenamed filters. The best way to make this comparison is by a numerical example. Consider the following:

\[
G_S(f) = \begin{cases}
\text{0.01 exp } (-f/750) & f < 5000 \\
0 & f > 5000
\end{cases}
\]

\[G_N(f) = \exp(-f/1000) \quad \text{for } f > 0 \tag{11}\]

with integration time

\[
T = 250 \text{ sec, and } P_F = 10^{-5}. \tag{12}
\]

Equations (8) and (10) are used to determine performance. The results are presented in table 1; it shows that, for this example, \(H_0(f) \) yields the best \(P_D \).

Table 1. Filter Comparison

| Filter | Transfer Function | \(|H(f)|^2 \) | Q | \(P_D \) |
|-----------------|-------------------|-------------|----|---------|
| Optimum | Equation (9) | 0.112199 | 0.71| |
| Eckart | \(G_S(f)/G^2_N(f) \) | 0.098704 | 0.58| |
| Prewhitening | \(1/G_N(f)^N \) | 0.096571 | 0.56| |
| Ideal Passband | 1 | 0.085089 | 0.44| |
If filtering is performed in the time domain, $H_0(f)$ is no more difficult to implement than the other filters. However, it is more difficult to design. The same holds true if filtering is performed in the frequency domain, except that the ideal passband filter is trivial to implement. The other advantage to the optimum filter is that the whole signal band need not be processed. The cutoff for the optimum filter in this example is 3455 Hz, whereas the other filters cut off at 5000 Hz.

UNKNOWN SPECTRA

When $G_S(f)$ and/or $G_N(f)$ are not completely known, then P_D is a function of the random variable Q. Two characteristics of P_D that are of interest are its expected value and variance.

Writing (10) as

$$P_D = F(Q),$$ \hspace{1cm} (13)

and making use of section 7.7 of reference 2, we obtain the following approximations:

$$E[P_D] = F(E[Q]) + F''(E[Q]) \frac{\text{Var}[Q]}{2},$$
$$\text{Var}[P_D] \approx [F'(E[Q])]^2 \text{Var}[Q].$$ \hspace{1cm} (14)

Substituting (3) and (10) into (13), there follows

$$F'(E[Q]) = (2\pi)^{-1/2} \frac{T}{2(E[Q]T)^{-1/2}} \exp[-(E[Q]T)^{1/2} + \Phi^{-1}(P_F)]^2/2],$$

$$F''(E[Q]) = -(2\pi)^{-1/2} \frac{T^2}{4(E[Q]T)^{-1}} \left[\left((E[Q]T)^{1/2} + \Phi^{-1}(P_F)\right) + (E[Q]T)^{-1/2}\right]$$
$$\times \exp[-(E[Q]T)^{1/2} + \Phi^{-1}(P_F)]^2/2].$$ \hspace{1cm} (15)

Appendix B is used to evaluate $E[Q]$ and $\text{Var}[Q]$ (see (B-8)).

5
Consider the example from Appendix B with

\[T = 450 \text{ sec}, \quad P_F = 10^{-7}, \quad \Phi^{-1}(P_F) = -5.2 \quad . \] (16)

Since \(Q(R) = 0.08 \), using (10), we obtain

\[P_D(R) = 0.7881 \quad . \] (17)

Since \(E[Q] = 0.08 \) and \(\text{Var}[Q] = 0.000256 \), substituting into (14) and (15), we obtain

\[F'(E[Q]) = 10.863433, \]
\[F''(E[Q]) = -393.799455, \] (18)

and therefore

\[E[P_D] = 0.7377, \]
\[\text{Var}[P_D] = 0.0302. \] (19)

The error in the estimate of the signal spectrum has caused a decrease in expected performance.

CONCLUSION

The derivation for the broadband filter that maximizes probability of detection for a given false alarm rate has been provided. Performance improvement can be achieved using this filter. The detection performance will be degraded when the signal or noise spectrum must be estimated.
REFERENCES

APPENDIX A
DERIVATION OF OPTIMUM FILTER POWER TRANSFER FUNCTION

For notational convenience, we drop the f-dependence in (4) and (5) temporarily. Then defining

\[A = |H|^2 G_N, \quad R = G_S/G_N, \quad (A-1) \]

we have to maximize, by choice of A, the quantity

\[(S/N)^2 B = \frac{\left[\int AR \right]^4}{\left[\int A \right]^2 \left[\int A^2 R^2 \right]} \quad (A-2) \]

Actually, we will consider the slightly more general form

\[Q = \frac{\left[\int AR_1 \right]^4}{\left[\int A \right]^2 \left[\int A^2 R_2 \right]} = \frac{\alpha^4}{\beta^2 \gamma} \quad (A-3) \]

where \(R_1 \) and \(R_2 \) are given known non-negative functions of frequency, f. The integrals in (A-3) are over the band \(W \) of interest, and would be written more accurately, for example, as

\[\alpha = \int AR_1 = \int_W df A(f)R_1(f) \quad (A-4) \]

Notice that the function A defined in (A-1) can never be negative.

To determine the optimum A, we let

\[A(f) = A_0(f) + \epsilon \eta(f) \quad (A-5) \]

where \(A_0 \) is the optimum, and \(\eta \) is an arbitrary perturbation. Substituting (A-5) into (A-3), we obtain...
\[Q_0 + \delta Q = \frac{\left[(A_0 + \varepsilon n)^R_1 \right]^4}{\left[(A_0 + \varepsilon n)^2 \right]^2 \left[(A_0 + \varepsilon n)^2 R_2 \right]} \quad (A-6) \]

Taking a partial of (A-6) with respect to \(\varepsilon \), and then setting \(\varepsilon = 0 \), we get

\[\left[B_0^2 \gamma_0 \frac{4}{\alpha_0} \int n R_1 - \alpha_0^4 \left\{ 2B_0 \gamma_0 (\int n + B_0^2 \int A_0 n R_2) \right\} \right]/(B_0^2 \gamma_0^2) = 0 \text{ for any } n \quad (A-7) \]

Cancelling irrelevant constants, none of which can be zero, we find that

\[\int n \left\{ \frac{\gamma_0}{\alpha_0} R_1 - \frac{\gamma_0}{B_0} - R_2 A_0 \right\} = 0 \quad \text{for any } n \quad (A-8) \]

The only way this can be is if the bracketed term is zero for all \(f \in W \). Thus re-substituting the \(f \) dependence, the unique optimum \(A \)-function satisfies

\[R_2(f) A_0(f) = \frac{2\gamma_0}{\alpha_0} \left(R_1(f) - \frac{\alpha_0}{2B_0} \right) \quad \text{for } f \in W \quad (A-9) \]

Now if \(R_2(f) \) were zero in some subregion of \(W \), where \(R_1(f) \) is not zero, it is obvious from (A-3) that \(Q \) can be made equal to \(+\infty \) by simply choosing \(A(f) \) to be non-zero only in that subregion, for then \(\gamma = 0 \). Therefore, we exclude this case and require that \(R_2(f) > 0 \) for \(f \in W \).

Also, since \(A_0(f) \) can never be negative, we must replace any negative values that arise in (A-9) by zero. Accordingly we define region \(W_0 \) such that

\[R_1(f) \geq \frac{\alpha_0}{2B_0} \quad \text{for } f \in W_0 \quad (A-10) \]

Then the optimum \(A \) function is

\[A_0(f) = \begin{cases} \frac{2\gamma_0}{\alpha_0} \frac{1}{R_2(f)} \left[R_1(f) - \frac{\alpha_0}{2B_0} \right] \quad \text{for } f \in W_0 \\ 0 \text{ for remaining } f \in W \end{cases} \quad (A-11) \]
Several useful observations should be made at this point. First, from (A-3), the absolute scale of A or A_0 does not affect O_0; so we will eventually be able to discard the scale factor $2\gamma_0/\alpha_0$ in (A-11). However, we must temporarily retain it in order to solve for the constants α_0, β_0, γ_0 defined in (A-3).

Second, we do not need γ_0 at all since it is merely a scale factor in (A-11); and we do not need to know α_0 and β_0 separately, but only their ratio. Also, α_0, β_0, γ_0 must all be positive since they are integrals of positive functions.

Finally, the form of the optimum $A_0(f)$ in (A-11) indicates that if $A_0(f)$ is zero, it is zero in the frequency regions where $R_1(f)$ is minimum, regardless of what $R_2(f)$ is. This is a very useful observation for determining W_0.

Now we substitute (A-11) in the individual terms of (A-3) to determine the constants α_0, β_0, γ_0. Dropping the zero subscripts on α, β, γ for notational convenience, we have

$$\alpha = \int \frac{A_0 R_1}{R_2} = \frac{2\gamma}{\alpha} \int \frac{R_1}{R_2} \left(R_1 - \frac{2\alpha}{2\beta} \right) = \frac{2\gamma}{\alpha} \left(I_2 - \frac{4\alpha}{2\beta} I_1 \right),$$

$$\beta = \int A_0 = \frac{2\gamma}{\alpha} \int \frac{R_1}{R_2} \left(R_1 - \frac{\alpha}{2\beta} \right) = \frac{2\gamma}{\alpha} \left(I_1 - \frac{\alpha}{2\beta} I_0 \right),$$

$$\gamma = \int A_0^2 R_2 = \left(\frac{2\gamma}{\alpha} \right)^2 \int \frac{R_1}{R_2} \left(R_1 - \frac{\alpha}{2\beta} \right)^2 = \frac{4\gamma^2}{\alpha^2} \left(I_2 - \frac{\alpha}{\beta} I_1 + \frac{\alpha^2}{4\beta^2} I_0 \right), \quad (A-12)$$

where

$$I_n = \int \frac{R_1^n}{R_2} = \int \frac{R_1^n(f)}{R_2(f)} \quad \text{and} \quad (A-13)$$
Simplifying (A-12), we have the three simultaneous nonlinear equations

\[\alpha^2 \beta = \gamma \left(2 \beta I_2 - \alpha I_1 \right), \]
\[\alpha \beta^2 = \gamma \left(2 \beta I_1 - \alpha I_0 \right), \]
\[\alpha^2 \beta^2 = \gamma \left(4 \beta^2 I_2 - 4 \alpha \beta I_1 + \alpha^2 I_0 \right). \] \hspace{1cm} (A-14)

At first sight, solution of this set looks formidable indeed. However, observe that the third equation is not independent of the first two; in fact, 2\(\beta \) times the first equation minus \(\alpha \) times the second equation yields the third equation. So we discard the third equation in (A-14).

Next, eliminating the unwanted \(\gamma \) from the first two equations in (A-14), we obtain (restoring the zero subscripts on \(\alpha, \beta, \gamma \))

\[\left(\frac{\alpha_0}{\beta_0} \right)^2 I_0 - 3 \frac{\alpha_0}{\beta_0} I_1 + 2 I_2 = 0, \] \hspace{1cm} (A-15)

which is an equation in exactly the one unknown we fundamentally need in (A-11). The solutions are

\[\frac{\alpha_0}{\beta_0} = \frac{3 I_1 \pm \left(9 I_1^2 - 8 I_0 I_2 \right)^{1/2}}{2 I_0}. \] \hspace{1cm} (A-16)

Define square root

\[S = \left(9 I_1^2 - 8 I_0 I_2 \right)^{1/2}. \] \hspace{1cm} (A-17)

In order that a real solution for \(\frac{\alpha_0}{\beta_0} \) exist, as required by definitions (A-3), we must also have discriminant

\[D = 9 I_1^2 - 8 I_0 I_2 \geq 0. \] \hspace{1cm} (A-18)
Thus when we pick the region W_0 in (A-13), it must be done with constraint (A-18) in mind. If (A-18) is not satisfied, the corresponding choice of W_0 is disallowed.

It should be observed that (A-18) is a very tight restriction on I_0, I_1, I_2. For when we couple it with the Schwartz inequality (see (A-13))

\[I_1^2 = \left(\int \frac{R_1}{R_2} \right)^2 \leq \int \frac{1}{R_2} \int \frac{R_1^2}{R_2} = I_0 I_2, \]

we have

\[\frac{8}{9} I_0 I_2 \leq I_1^2 \leq I_0 I_2. \]

In order to determine which of the two positive roots for α_0/β_0 is the correct one to retain in (A-16), we must substitute it into Q_0 and find which yields a maximum. From (A-16) and (A-17),

\[\left(\frac{\alpha_0}{\beta_0} \right)^2 = \left(\frac{3}{2} I_1 \pm S \right)^2 = \frac{1}{4 I_0^2} \left(18 I_1^2 - 8 I_0 I_2 \pm 6 I_1 S \right), \quad (A-19) \]

and from the first equation of (A-14),

\[\frac{\alpha_0^2}{\gamma_0} = 2 I_2 - \frac{\alpha_0}{\beta_0} I_1 = 2 I_2 - I_1 \left(\frac{3 I_1 \pm S}{2 I_0} \right) = \frac{1}{2 I_0} \left(4 I_0 I_2 - 3 I_1^2 \pm I_1 S \right). \quad (A-20) \]

Then from (A-3), (A-19), and (A-20),

\[Q_0 = \frac{\alpha_0^2}{\beta_0^2} \frac{\alpha_0^2}{\gamma_0} = \frac{1}{2 I_0^3} \left(36 I_0 I_1^2 I_2 - 8 I_0 I_2^2 - 27 I_1^4 \pm I_1 S^3 \right). \quad (A-21) \]

This is obviously maximized by choosing the lower sign here and in (A-16). So we have
\[\frac{a_0}{b_0} = \frac{3 I_1 - S}{2 I_0} \] \hspace{1cm} (A-22) \\

and

\[
Q_0 = \frac{1}{2 I_0^3} \left(36 I_0 I_1^2 I_2 - 8 I_0^2 I_2^2 - 27 I_1^4 + I_1 S^3 \right)
\]

\[= \frac{1}{2 I_0^3} \left(27 I_1^2 (I_0 I_2 - I_1^2) + I_0 I_2 D + I_1 D S \right). \hspace{1cm} (A-23) \]

All the terms in (A-23) are obviously positive, the \(I_0 I_2 - I_1^2 \) term following from Schwartz's inequality under (A-18).

We can now drop irrelevant scale factors in (A-11) and state that

\[
A_0(f) = \frac{1}{R_2(f)} \left[R_1(f) - \frac{a_0}{2b_0} \right]
\]

\[= \frac{1}{R_2(f)} \left[R_1(f) - \frac{3 I_1 - S}{4 I_0} \right] \quad \text{for } f \in W_0. \hspace{1cm} (A-24) \]

The quantities \(I_0, I_1, I_2, \) and \(S \) needed in (A-22)-(A-24) are given by (A-13) and (A-17). We must keep in mind that (A-24) can never be negative and that (A-18) must be satisfied. The optimum filter power transfer function follows from (A-1) as

\[
\left| H_0(f) \right|^2 = A_0(f)/G_N(f) \quad \text{for } f \in W_0. \hspace{1cm} (A-25) \]

If \(\frac{a_0}{2b_0} \) were known, we could easily determine \(W_0 \) by finding the frequencies where \(R_1(f) = \frac{a_0}{2b_0} \), as noted earlier under (A-11); but \(\frac{a_0}{2b_0} \) itself

A-6
depends on \(W_0 \) through the quantities \(I_0, I_1, I_2 \). The way to determine \(\frac{a_0}{2\beta_0} \) as follows. Hypothesize a value for \(\frac{a_0}{2\beta_0} \); call it \(c \). Determine \(W_c \) from \(R_1(f) \) by solving \(R_1(f_c) = c \), and then choosing \(W_c \) as that region where \(R_1(f) \geq c \); there may be several values of \(f_c \). (There has been no need to consider \(R_2(f) \) up to this point.) Compute

\[
I_n = \int_{W_c} \frac{R_1^n(f)}{R_2(f)} \text{ for } n = 0, 1, 2 \quad , \tag{A-26}
\]

which depend on \(c \). Compute \(D \) from (A-18); if \(D < 0 \), the hypothesized \(c \) value is disallowed. Otherwise, compute \(S = \sqrt{D} \), and then \(a/\beta \) from (A-22). Now we will have the correct value of \(c \) when we get back \(a/(2\beta) = c \); so we have the identity

\[
c = \frac{3 I_1 - S}{4 I_0} = \frac{3 I_1 - \left(9 I_1^2 - 8 I_0 I_2 \right)^{1/2}}{4 I_0} \quad \tag{A-27}
\]

or

\[
2 I_0 c^2 - 3 I_1 c + I_2 = 0 \quad . \tag{A-28}
\]

This last equation is identical to (A-15). Solution of (A-27) or (A-28) (numerically or analytically) determines \(a_0/(2\beta_0) \). Negative values for \(A_0(f) \) are never encountered or contemplated via this approach. The only check to make is that \(D \) is not negative; if it is, the corresponding selection of \(c \) is disallowed and must be modified.
Example 1

We consider first the special case

\[R_1(f) = R(f), \quad R_2(f) = R^2(f), \] \hspace{1cm} (A-29)

where \(R(f) \) is a two-level function, i.e.,

\[R(f) = \begin{cases} r_1 & \text{for } 0 < f < 1 \\ r_2 & \text{for } 1 < f < 2 \end{cases} \] \hspace{1cm} (A-30)

This example has equal bandwidths for each of the two frequency intervals, namely (0, 1) and (1, 2), normalized to 1 Hz for convenience. Without loss of generality, we let \(r_1 \leq r_2 \) and define

\[r = \frac{r_2}{r_1}; \quad r > 1 \] \hspace{1cm} (A-31)

We now employ the procedure described in (A-26)-(A-28). First assume

\[c \leq r_1 \] \hspace{1cm} (A-32)

Then \(W_c = (0, 2) \), and from (A-13), (A-29), (A-30), and (A-18),

\[I_n = \int_0^2 df \ R^{n-2}(f) = r_1^{n-2} + r_2^{n-2} = q_1^{2-n} + q_2^{2-n} \] \hspace{1cm} (A-33)

where \(q_k = 1/r_k \). Then

\[I_0 = q_1^2 + q_2^2, \quad I_1 = q_1 + q_2, \quad I_2 = 2, \quad S = \left(18 \ q_1 \ q_2 - 7 \ q_1^2 - 7 \ q_2^2 \right)^{1/2}. \] \hspace{1cm} (A-34)

The identity (A-27) yields immediately

A-8
\[c = \frac{3 q_1 + 3 q_2 - \left(18 q_1 q_2 - 7 q_1^2 - 7 q_2^2\right)^{1/2}}{4\left(q_1^2 + q_2^2\right)} \leq \frac{3 q_1 + 3 q_2 - S}{4\left(q_1^2 + q_2^2\right)} \] \hspace{1cm} (A-35)

for the value of \(\frac{a_0}{2P_0} \), provided only that the discriminant is non-negative.

Satisfaction of this requirement yields (in conjunction with (A-31))

\[1 \leq r \leq \frac{9 + 4\sqrt{2}}{7} = 2.0938 \] \hspace{1cm} (A-36)

Also we have to confirm that (A-32) is true; i.e.,

\[\frac{3 q_1 + 3 q_2 - S}{4\left(q_1^2 + q_2^2\right)} \leq r_1 = \frac{1}{q_1} \] \hspace{1cm} (A-37)

This can be manipulated into the form

\[\frac{7}{4} q_2^2 + \left(\frac{3}{2} q_2 - q_1\right)^2 + q_1 S \geq 0 \] \hspace{1cm} (A-38)

But since this is obviously always true, the only restriction, for this case of assumption (A-32), is (A-36). That is, (A-32) is an allowable assumption provided that (A-36) is satisfied.

We now consider the complementary case to (A-32); namely, we assume

\[c \geq r_1 \] \hspace{1cm} (A-39)

Then, \(W_c = (1, 2) \), and

\[I_n = \int_1^2 df \ R_n^{-2}(f) = r_2^{n-2} \] \hspace{1cm} (A-40)
that is,

\[I_0 = q^2, \ I_1 = q^2, \ I_2 = 1, \ D = q^2 > 0, \ S = q^2 \quad . \] \hspace{1cm} (A-41)

Identity (A-27) yields immediately

\[c = \frac{3}{4} \frac{q^2 - q^2}{q^2} = \frac{1}{2q^2} = \frac{r^2}{2} \quad . \] \hspace{1cm} (A-42)

for the value of \(q_0/(2B_0) \). In order to satisfy (A-39), we must have

\[\frac{r^2}{2} \geq r_1 \quad \text{or} \quad r \geq 2 \quad . \] \hspace{1cm} (A-43)

We now observe that conditions (A-36) and (A-43) cover all the possible values of \(r \) in \((1, +\infty)\); in fact, they overlap in the interval \((2, 2.0938)\). In order to determine whether to select (A-35) or (A-42) in this overlap interval (and both are allowed), we must evaluate \(Q_0 \) in this interval and take the larger value.

We find that, from (A-23) and (A-34),

\[Q_0 = \frac{r^2}{2} \left[\frac{13(1 + r^2)^2 + 36r(1 + r^2 - 3r) + (1 + r)(18r - 7 - 7 r^2)^{3/2}}{2(1 + r^2)^{3/2}} \right] \] \hspace{1cm} (A-44)

for condition (A-36); while from (A-23) and (A-41),

\[Q_0 = r^2 \] \hspace{1cm} (A-45)

for condition (A-43). We also find that \(Q_0/r^2 \) in (A-44) decreases monotonically from the value 2 at \(r = 1 \), to the value 1 at

\[\hat{r} = 2.06353 \quad . \] \hspace{1cm} (A-46)
Thus, for \(r < \hat{r} \), the maximum \(Q_0 \) is given by (A-44), while for \(r \geq \hat{r} \),
the maximum \(Q_0 \) is given by (A-45). \(Q_0 \) is continuous with \(r \), but has a
discontinuous slope at \(\hat{r} \).

As for the optimum \(A_0 \) function, we find, by use of (A-24) and (A-35),
that when \(1 \leq r \leq 2.0938 \), with \(q = (18r_{12} - 7r_1^2 - 7r_2^2)^{1/2} \),

\[
A_0(f) = \begin{cases}
\frac{4 r_1^2 + r_2^2 - 3 r_1 r_2 + r_2 q}{4 r_1 (r_1^2 + r_2^2)} & \text{for } f \in (0, 1) \\
\frac{r_1^2 + 4 r_2^2 - 3 r_1 r_2 + r_1 q}{4 r_2 (r_1^2 + r_2^2)} & \text{for } f \in (1, 2)
\end{cases}
\] \hspace{1cm} (A-47)

Since the absolute scale of \(A_0(f) \) is not important, only the ratio of filter
gains is essential. It is, after considerable manipulation,

\[
\frac{A_0^{(2)}(f)}{A_0^{(1)}(f)} = \frac{1 - r + \left(\frac{18r - 7 - 7r^2}{2r(2 - r)}\right)^{1/2}}{1 - r + \left(\frac{18r - 7 - 7r^2}{2r(2 - r)}\right)^{1/2}} \hspace{1cm} (A-48)
\]

(When \(r = 2 \), this ratio is 3/2 via a limiting operation.) For \(r = 1 \), the
ratio in (A-48) is 1 as expected, since the function \(R(f) \) in (A-30) is flat
over \((0, 2)\). At the other extreme, where \(r \) is the largest allowable value for
this case (see (A-36)), the ratio of filter gains is

\[
\frac{A_0^{(2)}(f)}{A_0^{(1)}(f)} = \frac{11 + 6 \sqrt{2}}{7} = 2.7836 \hspace{1cm} \text{for} \hspace{1cm} r = \frac{9 + 4 \sqrt{2}}{7} \hspace{1cm} ; \hspace{1cm} (A-49)
\]

while at \(r = \hat{r} = 2.06353 \), the ratio is 1.8440. Thus, ratio (A-48) increases
monotonically from 1 (at \(r = 1 \)) to the value in (A-49). Observe that this
ratio is not \(+\infty \) at this upper limit for \(r \) in this case; i.e., \(A_0^{(1)}(f) \) is not
zero at this value of \(r = (9 + 4 \sqrt{2})/7 \).
For the complementary case, (A-43), we use (A-24) and (A-42) to get

\[
A_0(f) = \begin{cases}
0 & \text{for } f \in (0, 1) \\
\frac{1}{2r_2} & \text{for } f \in (1, 2)
\end{cases} \quad \text{(A-50)}
\]

This is the optimum filter function for \(r \geq \hat{r} \), while (A-47) is the optimum for \(1 \leq r \leq \hat{r} \). So at \(r = \hat{r} \), \(A_0^{(1)}(f) \) jumps abruptly from a positive value to zero.

Example 2

Here we consider continuous functions of frequency

\[
\begin{align*}
R_1(f) &= \exp(-\tau f) \quad \text{for } f > 0 \\
R_2(f) &= \exp(-a\tau f) \quad \text{for } f > 0
\end{align*}
\]

where \(a \) is a dimensionless known constant; if \(a = 2 \), then \(R_2(f) = R_1^2(f) \), the original case of interest in (A-2).

We use the procedure described in (A-26)-(A-28). Let \(c=1 \).
Then \(\mathcal{W}_c = (0, f_c) \), where \(f_c \) is the solution of

\[
R_1(f_c) = \exp(-\tau f_c) = c; \quad \tau f_c = -\ln(c) \quad \text{(A-52)}
\]

Then,

\[
I_n = \int_{\mathcal{W}_c} df \frac{R_1^n(f)}{R_2(f)} = \int_0^{f_c} df \exp(-n\tau f + a\tau f) = \frac{\exp[(a - n)\tau f_c] - 1}{(a - n)\tau} \quad \text{(A-53)}
\]

A-12
The only case we will consider here is \(a = 2 \); then, using (A-52),

\[
I_0 = \frac{1}{T} \frac{1 - c^2}{2c^2}, \quad I_1 = \frac{1}{T} \frac{1 - c}{c}, \quad I_2 = f_c = -\frac{1}{T} \ln(c) \quad .
\]

(A-54)

Identity (A-28) yields

\[
1 - c^2 - 3(1 - c) - \ln(c) = 0 \quad , \\
(c - 1)(c - 2) + \ln(c) = 0 \quad .
\]

(A-55)

There are only two solutions of this equation; they are \(c = 1 \) (disallowed) and

\[
c = .316197 = \frac{a_0}{2b_0}
\]

(A-56)

Then (A-52) yields

\[
\tau f_c = 1.15139 \quad .
\]

(A-57)

The value of \(Q_o \) is obtained by substituting (A-54) and (A-56) in (A-23), yielding

\[
\tau Q_o = .373997 \quad .
\]

(A-58)

The optimum filter follows upon use of (A-51), (A-54), and (A-56) in (A-24); i.e.,

\[
A_o(f) = \frac{c^u - c}{c^{2u}} \quad \text{for} \quad 0 < u < 1
\]

(A-59)

where

\[
u = \frac{f}{f_c} \quad .
\]

(A-60)

A plot of (A-59) is given in figure A-1. The optimum \(A_o(f) \) goes to zero at \(f = f_c \); it also lends heaviest emphasis to frequencies near \(.4f_c \), rather than at zero where \(R_1(f) \) and \(R_2(f) \) are largest.
Figure A-1. Optimum $A_o(f)$ of (A-59)
APPENDIX B

SENSITIVITY ANALYSIS OF FILTER

It often happens that G_S and/or G_N are not completely known but must be "guessed" or estimated. Furthermore $H(f)$ usually cannot be realized exactly. All of these factors influence performance and a derived optimum filter may not be optimum in fact.

When \tilde{R} (the estimate of R) differs from the true R in a deterministic manner, Q can be computed via (B-1). However, if \tilde{R} differs from R in a probabilistic manner, then Q is a random variable and one can only compute the expected performance.

From (A-1) and (A-3) in appendix A,

$$Q = \frac{\left[\intAR\right]^4}{\left[\intA^2\right] \left[\intA^2R^2\right]} = \frac{a^4}{\beta^2 \gamma}, \quad (B-1)$$

where $\tilde{R} = G_S/G_N$, $A = |H|^2G_N$.

The subsequent analysis assumes that only G_S must be estimated (i.e., G_N is exactly known and H can be exactly implemented). The analysis can be extended to the case of implementation errors in the filter and unknown G_N.

We assume that G_S is estimated by breaking frequency region W into n equilength subregions W_i, $1 \leq i \leq n$, where the power in each subregion is measured. Thus, n must be chosen large enough so that G_S and G_N remain fairly constant within each subregion. The problem is then transformed into the discrete domain. Namely, we can now rewrite (B-1) as

$$Q(\tilde{R}) = \frac{\left[\sum_{i=1}^{n} A_i \tilde{R}_i\right]^4}{\left[\sum_{i=1}^{n} A_i^2\right] \left[\sum_{i=1}^{n} A_i^2 \tilde{R}_i^2\right]} = \frac{a^4}{\beta^2 \gamma}, \quad (B-2)$$

B-1
where Q is a function of the random variables \tilde{R}_i, $1 \leq i \leq n$.

Q can be expressed as a multidimensional Taylor series, i.e.,

$$Q(R) = Q(\bar{R}) + \sum_{i=1}^{n} \frac{\partial Q}{\partial R_i} \bigg|_{\bar{R}} (R_i - \bar{R}_i)$$

$$+ \frac{1}{2!} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 Q}{\partial R_i \partial R_j} \bigg|_{\bar{R}} (R_i - \bar{R}_i)(R_j - \bar{R}_j)$$

$$+ \ldots$$

(B-3)

If $(R_i - \bar{R}_i)$ is small, then $E[Q]$ and $\text{Var}[Q]$ may be approximated by neglecting high order terms in the Taylor series. Furthermore, if

$$E[R_i - \bar{R}_i] = 0,$$

$$\text{Var}[\tilde{R}_i] = \sigma_i^2,$$

and all the $\{\bar{R}_i\}$ are independent, then

$$E[Q] \approx Q(\bar{R}) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 Q}{\partial R_i^2} \bigg|_{\bar{R}} \sigma_i^2,$$

$$\text{Var}[Q] \approx \sum_{i=1}^{n} (\frac{\partial Q}{\partial R_i})^2 \bigg|_{\bar{R}} \sigma_i^2.$$

(B-5)

The chain rule can now be used to evaluate $\frac{\partial Q}{\partial R_i}$ and $\frac{\partial^2 Q}{\partial R_i^2}$. Making use of (B-2), we find that

$$\frac{\partial Q}{\partial R_i} \bigg|_{\bar{R}} = \frac{1}{\beta^2} \left[\frac{4A_i \sigma^3}{\gamma} - \frac{2A_i^2 R_i \sigma^4}{\gamma^2} \right] \bar{R_i}.$$
\[\frac{a^2 Q}{a R_i^2} \bigg|_{\bar{R}} = \frac{1}{b^2} \left[4A_i \left(\frac{3A_i a^2}{\gamma} - \frac{2A_i^2 R_i a^3}{\gamma^2} \right) \right. \\
+ \left. 2A_i^2 \left(\frac{4A_i^2 R_i^2 a^4}{\gamma^3} - \frac{4A_i R_i^3 a^3 + a^4}{\gamma^2} \right) \right] \]

Rearranging (B-6), we obtain

\[\frac{a Q}{a R_i} \bigg|_{\bar{R}} = Q(\bar{R}) \left[4A_i / a - 2A_i^2 R_i / \gamma \right] \bigg|_{\bar{R}} , \]

\[\frac{a^2 Q}{a R_i^2} \bigg|_{\bar{R}} = Q(\bar{R}) \left[12A_i^2 / a^2 - 16A_i^3 R_i / (a \gamma) \right. \\
+ \left. 8A_i^4 R_i^2 / \gamma^2 - 2A_i^2 / \gamma \right] \bigg|_{\bar{R}} . \]

Substituting (B-7) into (B-5), we obtain

\[E[Q] = Q(\bar{R}) \left[1 + \frac{1}{2} \sum_{i=1}^{n} (12A_i^2 / a^2 - 16A_i^3 R_i / (a \gamma)) \right. \\
+ \left. 8A_i^4 R_i^2 / \gamma^2 - 2A_i^2 / \gamma \right] \sigma_i^2 \bigg|_{\bar{R}} , \]

\[\text{Var}[Q] = Q^2(\bar{R}) \left[\sum_{i=1}^{n} (4A_i / a - 2A_i^2 R_i / \gamma) \right] \sigma_i^2 . \]

Example

Reconsider Ex. 1 from Appendix A with

\[E [G_{S1}] = 2 , \]
\[\text{Var} [G_{S1}] = 0.04 , \]
\[E [G_{S2}] = 2 , \]
\[\text{Var} [G_{S2}] = 0.12 , \]
\[G_N = 10. \]

(B-9)
Then,

\[R_1 = 0.2 \quad , \]
\[R_2 = 0.2 \quad , \]
\[\sigma_1^2 = 0.04/G_N^2 = 0.0004 \quad , \]
\[\sigma_2^2 = 0.12/G_N^2 = 0.0012 \quad . \]

(B-10)

For this trivial example, by inspection let

\[H_1^2 = 1 \quad , \]
\[H_2^2 = 1 \quad . \]

(B-11)

Then, from (B-2)

\[A_1 = 10 \quad , \]
\[A_2 = 10 \quad . \]

(B-12)

and at \(\hat{R} \)

\[\alpha = 4 \quad , \]
\[\theta = 20 \quad , \]
\[\gamma = 8 \quad , \]
\[Q = 0.08. \]

(B-13)

Substituting (B-10), (B-12), and (B-13) into (B-8)

\[E[Q] \approx 0.08 \quad , \]
\[\text{Var}[Q] \approx 0.000256, \]
\[\text{Std dev}[Q] \approx 0.016 \quad . \]

(B-14)

So \(Q \) lies most often in the region \(0.08 \pm 0.016 \).
INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Addressee</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUSDR&D (Research & Advanced Technology)</td>
<td>2</td>
</tr>
<tr>
<td>Dep. USDR&E (Research & Advanced Technology)</td>
<td>1</td>
</tr>
<tr>
<td>ONR (ONR-200, -220, -400, -410, -414, -425AC)</td>
<td>6</td>
</tr>
<tr>
<td>CNM (MAT-05, SP-20, ASW-14)</td>
<td>3</td>
</tr>
<tr>
<td>NRL</td>
<td>1</td>
</tr>
<tr>
<td>NORDA</td>
<td>1</td>
</tr>
<tr>
<td>NAVOCEANO (Code 02)</td>
<td>1</td>
</tr>
<tr>
<td>NAVAIRSYSCOM (PMA/PMS-266)</td>
<td>1</td>
</tr>
<tr>
<td>NAVELECSYSCOM (ELEX 03, PME-124, ELEX 612)</td>
<td>3</td>
</tr>
<tr>
<td>NAVSEASYSCOM (SEA-63R (2), -63D, -63Y, PMS-411, -409)</td>
<td>6</td>
</tr>
<tr>
<td>NAVAIRDEVCEN, Warminster</td>
<td>4</td>
</tr>
<tr>
<td>NAVAIRDEVCEN, Key West</td>
<td>1</td>
</tr>
<tr>
<td>NOSC</td>
<td>4</td>
</tr>
<tr>
<td>NOSC, Library (Code 6565)</td>
<td>1</td>
</tr>
<tr>
<td>NAVWPNSCEN</td>
<td>2</td>
</tr>
<tr>
<td>NCSC</td>
<td>2</td>
</tr>
<tr>
<td>NAVCIVENGRLAB</td>
<td>1</td>
</tr>
<tr>
<td>NAVSWC</td>
<td>2</td>
</tr>
<tr>
<td>NAVSWC, White Oak Lab.</td>
<td>4</td>
</tr>
<tr>
<td>DWTNSRDC, Annapolis</td>
<td>2</td>
</tr>
<tr>
<td>DWTNSRDC, Bethesda</td>
<td>2</td>
</tr>
<tr>
<td>NAVTRAEQUIPCENT (Tech. Library)</td>
<td>1</td>
</tr>
<tr>
<td>NAVPGSCOL</td>
<td>4</td>
</tr>
<tr>
<td>APL/UW, Seattle</td>
<td>1</td>
</tr>
<tr>
<td>ARL/Penn State</td>
<td>2</td>
</tr>
<tr>
<td>ARL, University of Texas</td>
<td>1</td>
</tr>
<tr>
<td>DTIC</td>
<td>2</td>
</tr>
<tr>
<td>DARPA (CDR K. Evans)</td>
<td>1</td>
</tr>
<tr>
<td>Woods Hole Oceanographic Institution</td>
<td>1</td>
</tr>
<tr>
<td>MPL/Scripps</td>
<td>1</td>
</tr>
</tbody>
</table>