Limitations on the Applicability of High-Explosive Charges for Simulating Nuclear Airblast

D. Book, D. Fyfe, M. Picone, and M. Fry*

Laboratory for Computational Physics

*Science Applications Inc.
McLean, VA 22102

September 22, 1983

This work was supported by the Defense Nuclear Agency under Subtask N99QAXAH, work unit 00061 and work unit title "Cloud Calculations."

Approved for public release, distribution unlimited.
LIMITATIONS ON THE APPLICABILITY OF HIGH-EXPLOSIVE CHARGES FOR SIMULATING NUCLEAR AIRBLAST

D. Bock, D. Fyfe, M. Picone, and M. Fry

Naval Research Laboratory
Washington, DC 20375

Defense Nuclear Agency
Washington, DC 20305

Approved for public release; distribution unlimited.

Explosions
Fireball
Blast waves
Airblast
Chemical explosive
Nuclear explosion

Since flow fields that result from nuclear and high explosive (HE) detonations are qualitatively alike but quantitatively different, caution must be exercised in carrying over conclusions drawn from measurements of HE tests to nuclear explosions. The usefulness of HE explosions for simulating nuclear airblast is predicated on the fact that after reaching 5-6 times the initial radius, the flow field looks like that produced by a point source and produces shock overpressures similar to those in the nuclear case. Numerical simulations of airblast phenomena have been carried out using one- and two-fluid...
Flux-Corrected Transport hydrodynamics in one and two dimensions. The principal difference in the free-field solutions are the presence in the HE case of a contact discontinuity between air and HE products and of a backward-facing shock behind it. Temperatures in the nuclear fireball are initially three orders of magnitude higher; correspondingly, the density minimum at the center of the fireball is much broader and deeper. When the blast wave in a nuclear height-of-burst (HOB) situation undergoes regular reflections from the ground only one peak develops in the overpressure, and the reflected wave propagates upward rapidly through the hot underdense fireball. In the HE case part of the upward-moving reflected wave is reflected downward at the contact surface, producing a second pressure peak on the ground, while the shock transmitted through the contact surface propagates slowly upward. After transition to Mach reflection other differences appear. At late times following shock breakaway the nuclear fireball, unlike the HE fireball, appears to develop a Rayleigh-Taylor instability along its lower edge below the HOB. The vortices (both forward and reverse) are stronger and form earlier. This has important consequences for fireball rise and for dust entrainment and transport to high altitudes.
CONTENTS

Section 1 — INTRODUCTION .. 2
Section 2 — NUMERICAL TREATMENT 4
Section 3 — FREE-FIELD SOLUTION 7
Section 4 — 2D SIMULATION OF AIRBLAST 11
Section 5 — CONCLUSIONS ... 22
REFERENCES ... 23
ACKNOWLEDGMENT .. 24
LIMITATIONS ON THE APPLICABILITY OF HIGH-EXPLOSIVE CHARGES
FOR SIMULATING NUCLEAR AIRBLAST

D. Book, D. Pyfe, M. Picone, Naval Research Laboratory, Washington, D.C.

The flow fields that result from nuclear and high explosive (HE) detonations are qualitatively alike but quantitively different. Consequently, care must be exercised in carrying over conclusions drawn from measurements of HE tests to nuclear explosions. The usefulness of HE explosions for simulating nuclear airblast is predicated on the fact that after reaching 5-6 times the initial radius the flow field looks like that produced by a point source and produces shock overpressures similar to those in the nuclear case. Numerical simulations of airblast phenomena have been carried out using one- and two-fluid Flux-Corrected Transport hydrocodes in one and two dimensions. The principal differences in the free-field solutions are the presence in the HE case of a contact discontinuity between air and HE products and of a backward-facing shock behind it. Temperatures in the nuclear fireball are initially three orders of magnitude higher; correspondingly, the density minimum at the center of the fireball is much broader and deeper. When the blast wave in a nuclear height-of-burst (HOB) situation undergoes regular reflection from the ground only one peak develops in the overpressure, and the reflected wave propagates upward rapidly through the hot underdense fireball. In the HE case.

Manuscript approved June 29, 1983.
part of the upward-moving reflected wave is reflected downward at the contact surface, producing a second pressure peak on the ground, while the shock transmitted through the contact surface propagates slowly upward. After transition to Mach reflection other differences appear. At late times following shock breakaway the nuclear fireball, unlike the HE fireball, appears to develop a Rayleigh-Taylor instability along its lower edge below the HOB. The vortices (both forward and reverse) are stronger and form earlier. This has important consequences for fireball rise and for dust entrainment and transport to high altitudes.

Section 1
INTRODUCTION

In this paper we describe a series of calculations carried out as part of the ongoing NRL effort aimed at studying airblast effects. The phenomena of chief interest to us include the following: peak overpressures and pressure histories on the ground as functions of yield, range, and height of burst (HOB), both at early times (prior to and during transition to Mach reflection) and at late times (after shock breakaway, with peak pressure in the range of tens of psi); velocity fields, particularly those associated with the toruses (both forward and reverse) in the neighborhood of the rising fireball; and the distribution of dust lifted off the ground by the winds and the structure of the cloud at the time of stabilization. We are interested in comparing the nuclear and HE cases, and learning how much they differ from one another. Our motivation is to determine the extent to which HE tests can simulate events in a nuclear height-of-burst situation.
The technique we have employed for this purpose is numerical modeling. One- and two-fluid hydrocodes based on the Flux-Corrected Transport (FCT) shock-capturing techniques have been used to simulate airblast phenomena in one and two dimensions. FCT refers to a class of state-of-the-art fluid computational algorithms developed at NRL in the course of the past ten years with supersonic gas-dynamic applications expressly in mind. Simply put, our procedure is to model a one-kton nuclear burst and its 600-ton chemical equivalent, both at a HOB of 50 m, and compare the results. In order to validate, initialize, and interpret these 2D simulations, a number of ancillary calculations (mostly 1D) were undertaken. The results are most conveniently exhibited in terms of plots of peak overpressure vs range and time, station histories, contour plots of combustion product and total density, velocity vector plots, and tracer particle trajectories. Examples of these are presented to illustrate our results and conclusions.

The plan of the paper is as follows: In the next section we discuss our numerical techniques and validation procedures. In Section 3 we discuss the free-field (1D) solution and indicate the salient differences between nuclear and HE cases. Section 4 describes the 2D HOB calculations done for the HE and nuclear cases. In Section 5 we summarize our conclusions and discuss their domain of validity. We find that simulation of nuclear explosions by HE has distinct limitations, particularly at early times, in the fireball and transition regions, and in the details of the dust scouring process.
Section 2
NUMERICAL TREATMENT

FCT is a finite-difference technique for solving the fluid equations in problems where sharp discontinuities arise (e.g., shocks, slip surfaces and contact surfaces). It modifies the linear properties of a second- (or higher-) order algorithm by adding a diffusion term during convective transport, and then subtracting it out "almost everywhere" in the antidiffusion phase of each time step. The residual diffusion is just large enough to prevent dispersive ripples from arising at the discontinuity, thus ensuring that all conserved quantities remain positive. FCT captures shocks accurately over a wide range of parameters. No information about the number or nature of the surfaces of discontinuity need be provided prior to initiating the calculation.

The FCT routine used in the present calculations, called JPBFCT (an advanced version of ETBFCT)\(^2\), consists of a flexible, general transport module which solves 1-D fluid equations in Cartesian, cylindrical, or spherical geometry. It provides a finite-difference approximation to conservation laws in the general form:

\[
\frac{\partial}{\partial t} \int_{\delta V(t)} \phi \, dV = - \int_{\delta V(t)} \phi (\bar{u} - u_g) \cdot \frac{dA}{\delta A(t)} + \int_{\delta A(t)} \tau \, dA, \tag{1}
\]

where \(\phi\) represents the mass, momentum, energy or mass species in cell \(\delta V(t)\), \(\bar{u}\) and \(u_g\) represent the fluid and grid velocities, respectively, and \(\tau\) represents the pressure/work terms. This formulation allows the grid to slide with respect to the fluid without introducing any additional
numerical diffusion. Thus, knowing where the features of greatest interest are located, one can concentrate fine zones where they will resolve these features most effectively as the system evolves.

The same transport routine is employed in the 2D r-z code (called FAST2D) via coordinate splitting. A Jones-Wilkins-Lee (JWL) equation of state (EOS) was used for the detonation products and a real-air EOS was used outside the HE-air interface. The routine was written in the form of a table lookup, using interpolation with logarithms to the base 16 computed by means of logical shifts. By thus taking account of the architecture of the machine (in these calculations, a 32-bit-word two-pipe Texas Instruments ASC) it was possible to generate very efficient vector code, decreasing the time required for EOS calculations to a small fraction of that required for the hydro. The EOS specifies pressure as a function of density and internal energy. In mixed cells the combined pressure was calculated according to Dalton's law.

For the HE calculations the initial conditions were taken to be the self-similar flow field corresponding to a spherical Chapman-Jouguet detonation at the time the detonation wave reaches the charge radius (Fig. 1). This was propagated with the 1D spherical code until the detonation front attained a radius just smaller than the HOB, at which time the solution was laid down on the 2D mesh (Fig. 2). The nuclear calculation was initialized with the 1-kton standard with the same initial radius.

The boundary conditions were chosen to enforce perfect reflection on the ground and on the axis of symmetry.
\[(d\phi/dn)_{bc} = 0, \text{ where } \phi = \rho, p, v^t, \text{ and } v^n_{bc} = 0\], where "t" and "n" denote tangential and normal components, respectively, and outflow on the outer and the top boundaries \[(d\phi/dn)_{bc} = 0, \text{ where } \phi = \rho, p, v^t, v^n\].

For the 2D calculations the mesh was typically \(\sim 100 \times 100\). Fixed gridding was used to minimize numerical errors. These zones were 2.1 m x 2.1 m. For the late time calculations, a fixed mesh with 100 zones in the radial and 200 zones in the vertical direction was used, with all cells of dimension 4.2 m x 4.2 m.

Section 3
FREE-FIELD SOLUTION

The well-known Sedov similarity solution for a point blast consists of a strong shock (post-shock pressure much larger than ambient pressure) followed by a rarefaction wave (Fig. 3). The density distribution is extremely concave and approaches zero at the origin. The pressure approaches a constant as \(r \rightarrow 0\), so that the temperature diverges strongly. The profiles of the 1-kton standard solution (Fig. 4) are qualitatively similar, the temperature being essentially flat in the fireball region.

The solution used to initialize the HE problem, however, contains a number of features which are absent in the other solutions. These are most conspicuous in the density profile (Fig. 2), which exhibits a contact discontinuity between the HE products and shocked air, a secondary...
Figure 3
Figure 4

Figure 5
shock facing inward within the detonation products, and a gentle maximum near the origin. Because of this last feature, temperatures are about three orders of magnitude smaller in the fireball than in the nuclear case, and are nowhere divergent.

It follows that the speed of sound in the nuclear fireball is much greater than in the HE fireball. This has two immediate consequences, one physical and one numerical. The first is that shocks propagating through the nuclear fireball travel much faster. The second is that the upper limit on the computational timestep, set by the Courant criterion

$$\max \left(\frac{|v|+c}{\delta x} \right) < 1,$$

which usually is determined by conditions in the fireball, is much smaller relative to the shock time scale $\tau_s = HOB/v_{\text{shock}}$ in the nuclear case than in the HE case.

As a result, even though the leading shock is well resolved (over ~ 2 zones) in the free-field solution, the process of reflection even at ground zero (where the shock is incident normally) takes hundreds of timesteps. Coupled with the property of FCT (known as "clipping") which makes the points of all sharply-peaked profiles tend to flatten out until they are > 3 zones across, this makes the rise time of the reflected shock quantities ~ 10 times longer than that of the incident shock. This can be seen using a 1D spherical model calculation (Fig. 4), as well as in oblique reflection in 2D. This spreading is a problem only while the shock is in the immediate vicinity of the reflecting boundary. After
the reflected shock has propagated a few zones back into the interior of the mesh, the profiles steepen up and assume their correct forms (this has been shown by rerunning the calculation with a refined mesh and comparing the peak values after reflection with those predicted theoretically).

When the reflected shock begins propagating back to the origin it encounters drastically different conditions in the HE and nuclear cases. In the former, it strikes the contact discontinuity where it is partly transmitted and partly reflected. The reflected shock then proceeds outward until it reaches the ground (the end of the grid in the 1D calculation), producing the second peak in the station history shown in Fig. 5. In contrast, the shock wave reflected from the ground passes unhindered through the fireball at high speed until it reaches the upper boundary of the fireball whereupon it reflects back.

As we shall show, it is primarily through these reverberating shock waves and the wind pattern they set up that the HE and nuclear HOB airblasts differ.

Section 4
2D SIMULATION OF AIRBLAST

The yield and HOB (600 tons and 166 ft, respectively) were chosen to equal the values used in the Direct Course experiment, which we are simulating. The Chapman-Jouguet parameters used to initialize the spherical free-field calculation were taken to be those for the NH₄NO₃-fuel oil (ANFO) mixture used as the explosive.
Figures 6(a)–(c) show the contours of HE density and internal energy per unit mass and the velocity arrow plot at t = 0, just before the reflection at ground zero occurs. Figures 6(d)–(f) show the corresponding plots 54 ms later, while Figs. 6(g)–(i) show them after 245 ms. Note the reflected shock proceeding upward, reflecting again off the fireball, and propagating back in a downward and outward direction. The interaction of this shock with the radially inward flow near the ground generates the reverse vortex, which is clearly seen in Fig. 6(i). Note also the positive vortex forming near the top of the grid in the same plot. The latter results when the upward-propagating reflected shock interacts with the radially outward flow near the top of the fireball; it is not produced by the buoyant rise of the fireball, which at these early times has scarcely begun.

To look at the evolution of the fireball at late times, we reinitialized on a larger, coarser grid, representing a cylinder 400 m in radius and 800 m high. The first 300 cycles approximately reproduce the early-time results. The spherical shock breaks away and leaves the mesh. The flows remaining on the grid are now subsonic everywhere. Then the fireball begins to rise and the subsequent development is due to the combination of buoyant rise and the action of the vortices set up by the early shocks.

Figures 7(a)–(b) show the reaction product density and velocities at 0.93 s. Note the "toe" reaching out along the ground and the bulge near the bottom of the HE product density produced by the constructive interference of forward and reverse vortices. These features are accentuated with the passage of time; in Figs. 7(c)–(d) (t = 2.70 s), they are
even clearer. The cloud has become quite elongated vertically and shows a distinct mushroom shape. Development slows as the fireball cools and velocities diminish. By 7.34 s (after 2600 timesteps) the cloud is almost at 600 m. Figures 7(e)-(f) show its form at this time. Note that the maximum velocity is now 145 m/s.

Figure 8a, which shows the trajectories of passively advected tracer particles over the time interval 1.8 sec to 3.97 sec, displays the vortices very clearly. Figure 8b shows the particle paths for the time interval 3.97 sec to 7.34 sec. Notice that there are four vortices visible in the plot: two positive and two reversed. The additional small vortices are apparently a consequence of entrainment by the major ones. As far as we know, their existence has not been noted previously.

When we repeat the calculation with nuclear initial conditions, several differences appear at a very early stage. The reflected shock propagates upward rapidly through the much hotter fireball and reverberates more. The maximum flow speeds (as opposed to sound speeds) are smaller, a difference which persists to late times. Although the shock radius as a function of time is essentially the same, the rarefaction wave moves faster as the deeper density well gets filled in.

Figures 9(a)-(c) show plots analogous to those of Figures 6(g)-(i); by this time it is clear that much of the early difference in the density profiles is washed out as pressure begins to relax to ambient. (The pressure differs from ambient by < 5% everywhere, so that pressure contour plots are not very informative.) Note, however, the indentations that appear on the underside of the internal energy
contours at the base of the stem [Fig. 9(b)]. These are absent in the corresponding HE plot, Fig. 6(g). We conjecture that they are the signature of a fluid instability, possible Rayleigh-Taylor. The idea is that the air sucked in by the (forward) vortex at the bottom of the fireball is much denser than the fireball itself. In running into the latter it sets up the classic condition for Rayleigh-Taylor instability (direction of effective gravity and density gradient are opposed).

It is clear that the major qualitative differences between the HE and nuclear cases persist longest in the velocity plots. This is not surprising, as the circulation patterns represented by the vortices have essentially infinite lifetimes in the absence of viscosity. We have run both nuclear and HE cases out to stabilization (not shown here) and have shown that there are qualitative differences in velocity plots to the very end. At all times t>0 the peak flow velocity in the HE case exceeds that in the comparable nuclear result. This is a reflection of the fact that the Chapman-Jouguet solution at a radius of 10 m has a pressure peak of 52 kbar, vs 3 kbar for the 1-kton standard at the same radius. The means that the former starts out with much more violent motion, i.e., fluid velocities an order of magnitude larger. In point of fact, the HE case does not closely resemble a point source. At initialization the nuclear profiles have ~ 6% of the yield in kinetic energy. This fraction increases to a maximum of ~ 15%, then decreases. In the HE case the fraction is initially about one-half and decreases monotonically thereafter at about the same rate as in the nuclear case.
Section 5
CONCLUSIONS

We have described numerical simulations carried out for a 600-ton HE burst and a 1-kton nuclear burst, both at 166 ft. The code, gridding, and method of solution are the same in the two calculations. Although the shock waves in the two cases propagate at roughly the same speed and break away at roughly the same time, and although the pressure fields relax to ambient in similar fashion, we find significant differences, of which the following appear to be the most important.

(i) The HE flow velocities are systematically larger.

(ii) In the regular reflection region (underneath and close to the fireball), the HE case exhibits two overpressure peaks at the surface, rather than one, due to re-reflection of the reflected shock from the contact surface between air and detonation products.

(iii) For the HE case the upper vortex forms first, followed by the reverse vortex near the axis of symmetry and the ground. Adjacent HE products begin to be entrained into a positive vortex over a longer period of time, several seconds. In the nuclear case the negative vortex is the dominant one; it is larger than the HE, persists longer, and
contains larger velocities than the positive vortex at comparable times.

(iv) The HE flow establishes a pattern of four vortices, two forward and two reversed, instead of one of each.

(v) The stem of the nuclear fireball appears to exhibit a Rayleigh-Taylor instability, absent in the HE case.

Since the velocities on axis are higher in the HE case (the upper positive vortex is larger), fireball rise is faster than in the nuclear case. The nuclear case, however, probably scourds up more dust because the velocities are larger, and the reverse vortex is larger and more persistent. It is difficult to argue conclusively on this point because so much depends on terrain, conditions in the boundary layer, and other physical effects not included in this model (e.g., precursor heating and turbulence). Further study of the tracer particle motions we have calculated is expected to be illuminating in this regard.

REFERENCES

 Boris, J. P., "FCT Simulation of HOB AIRBLAST Phenomena",

4. Young, T. R., "Table Look-Up: An Effective Tool on
 Vector Computers", Tenth Conf. on Numerical Simulation of
 Plasmas, San Diego, CA, January 4-6, 1983.

5. Needham, C. E. and Crepeau, J. E., "The DNA Nuclear Blast

6. Sedov, L. I., Similarity and Dimensional Methods in

ACKNOWLEDGMENT

This work was supported by the Defense Nuclear
Agency under Subtask N99QAXAH Work Unit # 00061, Work Unit
Title 'Cloud Calculations'.
DISTRIBUTION LIST

Assistant to the Secretary of Defense (Atomic Energy)
Washington, DC 20301
01CY Attn Executive Assistant

Director
Defense Communications Agency
Washington, DC 20305
01CY Attn Code 240 (ADR CNWDI: Attn Code 240 FOR)
01CY Attn Code 670 R LIPP

Director
Defense Intelligency Agency
Washington, DC 20301
01CY Attn RDS-3A (Tech LIB)
01CY Attn DB-4M
01CY Attn DT-1C
01CY Attn DT-2
01CY Attn DB-4C E Ofarrell

Director
Defense Nuclear Agency
Washington, DC 20305
02CY Attn SPSS
01CY Attn SPSS C Ulrich
01CY Attn SPSS T Deevy
04CY Attn TItl

Universal Analytics, Inc.
7740 W Manchester Blvd
Playa Del Rey, Ca 90291
01CY Attn E Field

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314
(12 if open pub, otherwise 2
No Whintel)
12CY Attn DD

Weidlinger Assoc. Consulting Engineers
110 E 59th Street
New York, NY 10022
01CY Attn I Sandler
01CY Attn M Baron

Weidlinger Assoc. Consulting Eng.
3000 Sand Hill Road
Menlo Park, CA 94025
01CY Attn J Isenberg

Naval Research Laboratory
Laboratory for Computational Physics
Code 4040
Washington, DC 20375
100 copies Attn J Boris

Terra Tek, Inc.
420 Wakara Way
Salt Lake City, UT 84108
01CY Attn A Abou-Sayed
01CY Attn Library
01CY Attn A Jones
01CY Attn S Green

Tetra Tech, Inc.
630 N Rosemead Blvd
Pasadena, CA 91107
01CY Attn L Hwang

TRW Defense & Space Sys Group
One Space Park
Redondo Beach, CA 90278
01CY Attn N Lipner
01CY Attn Technical Info Center
01CY Attn T Mazzola

TRW Defense & Space Sys Group
P.O. Box 1310
San Bernardino, CA 92402
01CY Attn G Balchuc.
01CY Attn P Dai
01CY Attn E Wong
01CY Attn Library
01CY Attn J Colton

Systems, Science & Software Inc.
P.O. Box 8243
Albuquerque NM 87198
01CY Attn C Needham
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>Commander</th>
</tr>
</thead>
<tbody>
<tr>
<td>16017</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>01CY Attn Code 474 N Perrone</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>01CY Attn Code 013 E Cooper</td>
<td>01CY Attn Code 4471 (Tech Lib)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Superintendent</th>
<th>Officer in Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Postgraduate School</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td>Washington, DC 20375</td>
</tr>
<tr>
<td>(Desires No CNWDI Documents)</td>
<td>(RD & RD/N Attn Code 1221 for &</td>
</tr>
<tr>
<td>01CY Attn Code 1424 Library</td>
<td>FRD Attn Code 2627 FOR)</td>
</tr>
<tr>
<td>01CY Attn Code 4471 (Tech Lib)</td>
<td>01CY Attn Code 4040 J Boris</td>
</tr>
<tr>
<td>01CY Attn Code 2627 (Tech Lib)</td>
<td>01CY Attn Code 2627 (Tech Lib)</td>
</tr>
<tr>
<td>01CY Attn Code 013 E Cooper</td>
<td>01CY Attn Code 4040 D Book</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th>Officer in Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Sea Systems Command</td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td>Washington, DC 20362</td>
<td>White Oak Laboratory</td>
</tr>
<tr>
<td>01CY Attn SEA 09053 (Lib)</td>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>01CY Attn SEA 0351</td>
<td>01CY Attn P44 H Galz</td>
</tr>
<tr>
<td>01CY Attn Code F31</td>
<td>01CY Attn Code X31 (Tech Lib)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commander</th>
<th>Officer in Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Taylor Naval Ship R&D Ctr</td>
<td>Naval Civil Engineering Laboratory</td>
</tr>
<tr>
<td>Bethesda, MD 20044</td>
<td>Port Hueneme, CA 93041</td>
</tr>
<tr>
<td>(CNWDI only Attn Mrs. M Birkhead</td>
<td>01CY Attn Code L53 Forrest</td>
</tr>
<tr>
<td>Code 5815.6)</td>
<td>01CY Attn Code L08A Library</td>
</tr>
<tr>
<td>01CY Attn Code L42-3 (Library)</td>
<td>01CY Attn Code L51 J Crawford</td>
</tr>
<tr>
<td>01CY Attn Code L51 J Crawford</td>
<td>01CY Attn Code X31 (Tech Lib)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commander</th>
<th>Officer in Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Electronic Systems Command</td>
<td>Naval Facilities Engineering Command</td>
</tr>
<tr>
<td>Washington, DC 20360</td>
<td>Washington, DC 20360</td>
</tr>
<tr>
<td>01CY Attn PME 117-21</td>
<td>01CY Attn Code 04B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Headquarters</th>
<th>Commander</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Material Command</td>
<td>U.S. Army Missile Command</td>
</tr>
<tr>
<td>Washington, DC 20360</td>
<td>Redstone Arsenal, AL 35898</td>
</tr>
<tr>
<td>01CY Attn MAT 081T-22</td>
<td>01CY Attn RSIC</td>
</tr>
<tr>
<td>01CY Attn DRDMD-XS</td>
<td>01CY Attn J Simms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commander</th>
<th>Officer in Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Mobility Equip R&D CMD</td>
<td>U.S. Army Nuclear & Chemical Agency</td>
</tr>
<tr>
<td>Fort Belvoir, VA 22060</td>
<td>7500 Backlick Road</td>
</tr>
<tr>
<td>(CNWOK to Army MAT Dev & Readiness Com</td>
<td>Building 2073</td>
</tr>
<tr>
<td>01CY Attn Drome-WC (Tech Lib)</td>
<td>Springfield, VA 22150</td>
</tr>
<tr>
<td>01CY Attn Library</td>
<td>(Desires only 1 cy to library)</td>
</tr>
<tr>
<td>01CY Attn J Simms</td>
<td>01CY Attn Library</td>
</tr>
</tbody>
</table>

32