REPORT OF TESTS OF A COMPRESSOR CONFIGURATION OF DCA BLADING(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
S J HIMES JUN 83
UNCLASSIFIED
THESIS

REPORT OF TESTS OF A COMPRESSOR CONFIGURATION OF DCA BLADING

by

Stephen J. Himes

June 1983

Thesis Advisor: R. P. Shreeve

Approved for public release: distribution unlimited.
Results of an experimental program to measure the performance of a compressor stator cascade consisting of 20 DCA blades of chord 5.01 inches, aspect ratio 2.0 and solidity 1.67 under conditions of varying incidence angle and Reynolds number are reported. Flow quality and blade performance data were obtained using pneumatic probe surveys and surface pressure measurements. Changes in Reynolds
(20. ABSTRACT Continued)

number in the range of 500,000 to 770,000 did not measurably affect either flow quality or blade performance. Changes in incidence angle over the range -15 to 10 degrees produced generally well behaved blade performance parameters.
REPORT OF TESTS OF A COMRESSOR CONFIGURATION OF DCA BLADING

by

Stephen J. Himes
Lieutenant Commander, United States Navy
B. S. A. E. United States Naval Academy, 1974

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 1983

Author:

Stephen J. Himes

Approved by:

Raymond P. Shearer
Thesis Advisor

Donald A. Johnson
Chairman, Department of Aeronautics

Dean of Science and Engineering
Results of an experimental program to measure the performance of a compressor stator cascade consisting of 20 DCA blades of chord 5.01 inches, aspect ratio 2.0 and solidity 1.67 under conditions of varying incidence angle and Reynolds number are reported. Flow quality and blade performance data were obtained using pneumatic probe surveys and surface pressure measurements. Changes in Reynolds number in the range of 500,000 to 770,000 did not measurably affect either flow quality or blade performance. Changes in incidence angle over the range -15 to 10 degrees produced generally well behaved blade performance parameters.
TABLE OF CONTENTS

I. INTRODUCTION ... 13

II. TEST FACILITY .. 15
 A. HIGH REYNOLDS NUMBER CASCADE 15
 1. Wind Tunnel .. 15
 2. Plenum Modifications 15
 3. Cascade North Wall Composition 15
 4. Inlet Guide Vane Assembly 15
 5. Test Section 16
 B. INSTRUMENTATION ... 16
 1. Survey Probes 16
 2. Reference Probes 16
 3. Wall Pressure Taps 16
 4. Acquisition and Reduction System 17
 5. Measurement Uncertainty 17

III. EXPERIMENTAL PROCEDURES 18
 A. GENERAL .. 18
 1. Flow Quality .. 18
 2. Flow Geometry 18
 3. Reference Quantities 19
 4. Performance Parameters 19
 B. SPECIFIC TEST PROCEDURES 19
 1. Probe Calibration 19
 2. Test Section Setup and Adjustment 19

5
3. Test Measurements ...20
 a. Blade-to-Blade Survey20
 b. Spanwise Survey21
 c. Instrumented Blade Pressure Distribution21

IV. TEST CASCADE AND PROGRAM OF TESTS22
 A. CASCADE CONFIGURATION22
 1. Blading ...22
 B. TEST PARAMETERS22
 1. Incidence Angle22
 2. Reynolds Number23

V. RESULTS ...24
 A. FLOW QUALITY ...24
 B. CASCADE PERFORMANCE24
 C. TEST REPEATABILITY24

VI. DISCUSSION ...25
 A. FLOW QUALITY ...25
 1. Uniformity25
 2. Periodicity25
 3. Pseudo Two-Dimensionality26
 4. Effect of North Wall Composition26
 B. CASCADE PERFORMANCE27
 1. Effect of Reynolds Number27
 C. TEST REPEATABILITY27
 D. COMPARISON WITH CINA28

VII. CONCLUSIONS ..29
VIII. RECOMMENDATIONS ... 31

APPENDIX A ... 56
 A. FLOW QUALITY DOCUMENTATION 56
 1. Uniformity ... 56
 2. Periodicity ... 56
 3. Pseudo Two-Dimensionality 56
 4. Notation ... 56

APPENDIX B ... 170
 A. STORAGE OF EXPERIMENTAL DATA 170
 1. Storage Devices ... 170
 a. Cassette Tape .. 170
 b. File Naming Scheme 170
 2. Thesis Logbook ... 172

 B. PROBE CALIBRATION DATA 172

APPENDIX C ... 174

LIST OF REFERENCES .. 178

INITIAL DISTRIBUTION LIST .. 180
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Test Facility Schematic</td>
<td>32</td>
</tr>
<tr>
<td>2.</td>
<td>McGuire's Plenum Modification</td>
<td>33</td>
</tr>
<tr>
<td>3a.</td>
<td>Cascade Test Section, Plexiglass Wall Installed</td>
<td>34</td>
</tr>
<tr>
<td>3b.</td>
<td>Cascade Test Section, Steel Wall Installed</td>
<td>34</td>
</tr>
<tr>
<td>4.</td>
<td>Test Section Instrumentation and Physical Dimensions</td>
<td>35</td>
</tr>
<tr>
<td>5.</td>
<td>Cascade Geometry, and Definition of Angles</td>
<td>36</td>
</tr>
<tr>
<td>6.</td>
<td>DCA Blade Pressure Tap Locations</td>
<td>37</td>
</tr>
<tr>
<td>7.</td>
<td>Photograph of Center Instrumented Blade</td>
<td>38</td>
</tr>
<tr>
<td>8.</td>
<td>AVDR versus Incidence Angle</td>
<td>39</td>
</tr>
<tr>
<td>9.</td>
<td>Loss Coefficient versus Incidence Angle</td>
<td>40</td>
</tr>
<tr>
<td>10.</td>
<td>Deviation Angle versus Incidence Angle</td>
<td>41</td>
</tr>
<tr>
<td>11.</td>
<td>Static Pressure Coefficient versus Incidence Angle</td>
<td>42</td>
</tr>
<tr>
<td>12.</td>
<td>AVDR versus Diffusion Factor</td>
<td>43</td>
</tr>
<tr>
<td>13.</td>
<td>Loss Coefficient Parameter versus Diffusion Factor</td>
<td>44</td>
</tr>
<tr>
<td>C.1.</td>
<td>Blade Space Control Volume</td>
<td>174</td>
</tr>
<tr>
<td>C.2.</td>
<td>Assumed Pressure Function</td>
<td>176</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Measurement Uncertainty</td>
<td>45</td>
</tr>
<tr>
<td>II.</td>
<td>Cascade Performance Formulas</td>
<td>46</td>
</tr>
<tr>
<td>III.</td>
<td>Cascade Configuration Parameters</td>
<td>48</td>
</tr>
<tr>
<td>IV.</td>
<td>Test Blade Coordinates</td>
<td>49</td>
</tr>
<tr>
<td>V.</td>
<td>Variable Test Parameters</td>
<td>50</td>
</tr>
<tr>
<td>VI.</td>
<td>Flow Uniformity Summary</td>
<td>51</td>
</tr>
<tr>
<td>VII.</td>
<td>Flow Periodicity and Pseudo Two-Dimensionality Summary</td>
<td>54</td>
</tr>
<tr>
<td>VIII.</td>
<td>Cascade Performance Summary</td>
<td>55</td>
</tr>
<tr>
<td>B.1.</td>
<td>Raw Data Storage</td>
<td>173</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVR</td>
<td>Axial Velocity--Density Ratio</td>
</tr>
<tr>
<td>C_{fB}</td>
<td>Coefficient of force based on surface pressure integration</td>
</tr>
<tr>
<td>C_{fM}</td>
<td>Coefficient of force based on momentum conservation</td>
</tr>
<tr>
<td>$C_{p_{static}}$</td>
<td>Coefficient of static pressure rise</td>
</tr>
<tr>
<td>C_{xB}</td>
<td>Coefficient of force in the x direction based on blade surface pressure integration</td>
</tr>
<tr>
<td>C_{yB}</td>
<td>Coefficient of force in the y direction based on blade surface pressure integration</td>
</tr>
<tr>
<td>C_{XM}</td>
<td>Coefficient of force in the x direction based on momentum conservation</td>
</tr>
<tr>
<td>C_{YM}</td>
<td>Coefficient of force in the y direction based on momentum conservation</td>
</tr>
<tr>
<td>c</td>
<td>Blade chord (inches)</td>
</tr>
<tr>
<td>D</td>
<td>Diffusion factor</td>
</tr>
<tr>
<td>h_i</td>
<td>Spanwise depth of control volume at inlet ($i = 1$) or outlet ($i = 2$)</td>
</tr>
<tr>
<td>i</td>
<td>Incidence angle (degrees)</td>
</tr>
<tr>
<td>k_1</td>
<td>$[\int_0^{\rho_1 \theta} V_1 \cos \theta d\theta] / [\int_0^{\rho \theta} V_{ref} \cos \theta d\theta]$</td>
</tr>
<tr>
<td>k_2</td>
<td>$[\int_0^{\rho_2} V_2 \cos \theta d\theta] / [\int_0^{\rho \theta} V_{ref} \cos \theta d\theta]$</td>
</tr>
<tr>
<td>P</td>
<td>Pressure (in H_2O)</td>
</tr>
<tr>
<td>Q</td>
<td>Dynamic Pressure (in H_2O)</td>
</tr>
<tr>
<td>s</td>
<td>Blade-to-blade spacing (inches)</td>
</tr>
<tr>
<td>T</td>
<td>Temperature ($^\circ R$)</td>
</tr>
<tr>
<td>V</td>
<td>Velocity (ft/sec)</td>
</tr>
<tr>
<td>W</td>
<td>Relative velocity (ft/sec)</td>
</tr>
</tbody>
</table>
Velocity, non-dimensionalized by the "limiting" velocity, \(V_T = \sqrt{2} \frac{C_p}{T_t} \)

\(x \) Coordinate in the blade-to-blade direction (inches)

\(y \) Coordinate in the axial direction (inches)

\(z \) Coordinate in the spanwise direction (inches)

\(\beta \) Air angle, measured in the blade-to-blade plane (degrees)

\(\gamma \) Stagger angle (degrees)

\(\delta \) Deviation angle (degrees)

\(\sigma \) Solidity (c/s)

\(\phi \) Pitch angle (of air flow), measured in the spanwise, blade-to-blade plane

\(\phi \) Blade camber angle (degrees)

\(\Omega \) \(\frac{[\bar{u} \cos^3 \beta_2 / 2\sigma \cos^2 \beta_1]}{\text{Loss coefficient parameter}} \)

\(\bar{u} \) Loss coefficient

Subscripts

\(i \) Refers to traversing plane; \(i = 1 \) for inlet, \(i = 2 \) for outlet

\(p \) Pressure

\(\text{plen} \) Plenum (supply)

\(s \) Static

\(t \) Total

\(u \) In the blade-to-blade (x) direction

\(w \& \) North wall, lower plane

\(1 \) Inlet plane

\(2 \) Outlet plane
ACKNOWLEDGMENTS

I would like to express my thanks and appreciation to Dr. R. P. Shreeve, Director, Turbopropulsion Laboratory, for his efforts in making this study a worthwhile and enjoyable learning experience. Special notes of thanks go to Jim Hammer, Kelly Harris, John Morris, Al McGuire and Friedrich Neuhoff for their prompt and efficient assistance. Finally, to my wife, Melissa and son, Michael, thank you for your patience and support during the course of this study.
I. INTRODUCTION

The on and off-design blade element performance of, and flow through a double-circular-arc (DCA) compressor cascade is being examined in a large subsonic cascade wind tunnel. Tests are to be made subsequently of a controlled-diffusion (CD) cascade configuration designed to replace it as the midspan section of the stator of an axial transonic compressor.

Previous phases of the work involving tests with the present DCA blading were reported by Cina [Ref. 1] and Molloy [Ref. 2]. Cina's test results were considered to be preliminary because the cascade flow was found not to be periodic from one blade passage to the next, but was periodic from blade pair to blade pair. As a result of Cina's work, a modification to the inlet guide vane (IGV) assembly was made, decreasing the space between vanes from 2 inches to 1 inch. Molloy set out to repeat Cina's experiments, but encountered IGV blade flutter (which resulted in some blade damage) when adjusting the vanes with the cascade running. Facility modifications were made which included first the installation of plenum chamber turning vanes. This reduced the large scale flow fluctuations which had prevented the use of tufts to determine the cause of the flutter problem. Also, the vane actuating mechanism was stiffened and new cascade operating procedures were adopted. Following these improvements,
the immediate test objective was to document flow quality and the performance of the reference DCA cascade. Additional features of the test program were to investigate the possible effects of Reynolds number and to determine the degree of repeatability of test data from run to run and also from cascade build to build. Additionally, an improvement of the analysis required to derive blade force coefficients from probe survey data was attempted. In the absence of wall suction, side wall boundary layer thickening from inlet to outlet measurement planes causes the control volume to take on a three-dimensional character. An attempt was made to account for the additional pressure-area terms on the control volume surfaces which accompany the streamtube contraction by using the Axial Velocity Density Ratio (AVDR) and an assumed linear distribution of static pressure acting on the streamtube walls. Details of this analysis are presented in Appendix C.

The following report documents a program of 20 tests carried out using the DCA cascade following the facility improvements. Results are given and are discussed, particularly from the viewpoint of flow quality and test repeatability. Details of the results are summarized in figures, tables and appendices. Appendix A contains flow quality documentation, Appendix B, a description of experimental data storage and Appendix C, a discussion of blade force coefficient analysis.
II. TEST FACILITY

A. HIGH REYNOLDS NUMBER CASCADE

1. Wind Tunnel

 A schematic of the test facility as originally configured is shown in Fig. 1. A complete description is given in [Ref. 3].

2. Plenum Modifications

 The plenum chamber (located in the basement of the cascade building) has undergone successive modifications to provide acceptably uniform inlet conditions measured at the inlet guide vane station. Modifications conducted by Bartocci [Ref. 4] and Moebius [Ref. 5] were superseded by those of McGuire [Ref. 6]. McGuire's modification to the plenum is illustrated in Fig. 2. McGuire's plenum modification was in place for all tests reported herein.

3. Cascade North Wall Composition

 A plexiglass north wall used during cascade tests enabled McGuire to conduct a concurrent flow visualization experiment. The regular steel wall was used for two of the twenty test runs.

4. Inlet Guide Vane Assembly

 The inlet guide vane assembly was the same as that used by Molloy, with vanes at one inch spacing.
5. Test Section

Views of the cascade test section are shown in Fig. 3a, Fig. 3b, and Fig. 4. Fig. 3a shows the cascade test section with the plexiglass wall installed and the DCA blade row in place. Fig. 3b shows the test section with the steel wall in place. Fig. 4 illustrates instrumentation placement and physical dimensions.

B. INSTRUMENTATION

1. Survey Probes

Two United Sensor Corporation five-hole probes were used for surveys at the upper and lower planes. A DC-125-24-F-22-CD probe, serial number A981-2 was used at the upper plane and a DA-125 probe, serial A847-1 was used at the lower plane.

2. Reference Probes

Plenum chamber reference total pressure was sensed using a pressure tube suspended in the plenum. Reference static pressure was sensed using a static port located on the lower portion of the cascade south wall. Redundancy of reference pressures was provided by a standard pitot-static probe located approximately 2 inches from the entrance to the blade row at midspan and aligned with the inlet flow.

3. Wall Pressure Taps

Two rows of static pressure taps were located on the cascade south wall 16.25 inches ahead and 6.5 inches
behind mid-chord. Twenty taps per row spaced two inches apart in the blade-to-blade direction, each connected to a water manometer board, allowed visual inspection of the inlet and outlet static pressure distributions.

4. **Acquisition and Reduction System**

Data was acquired, reduced and plotted using a modified Hewlett Packard HP-3052A Data Acquisition System [Ref. 7]. Two 48-port Scanivalves connected to a HP-9845A desktop computer via a NPS/TPL HG-78K Scanivalve Controller and a HP-98034A HP-IB Interface Bus allowed all probe and reference pressures to use a single transducer. Blade surface pressures were sensed by the second Scanivalve transducer. The desktop computer acted as the system controller and used acquisition, reduction and plotting software programs documented in [Ref. 8].

5. **Measurement Uncertainty**

Table I summarizes measurement uncertainties.
III. EXPERIMENTAL PROCEDURES

A. GENERAL

1. Flow Quality

Flow uniformity, periodicity, and pseudo two-dimensionality criteria (which implies that area change is permitted) must be satisfied before any calculated cascade performance parameters can be considered meaningful. These flow quality criteria are discussed extensively in [Ref. 9], [Ref. 10] and [Ref. 11].

Uniformity generally describes the degree of constancy of measured values in the blade-to-blade and spanwise directions at the inlet plane and in the spanwise direction at the outlet plane. Periodicity is indicated by a correspondence of measured values from one blade space to the next at the outlet plane. The pseudo two-dimensionality condition is met when the integrated blade surface pressure distribution gives a blade force vector coincident with the blade force vector calculated using the principle of conservation of momentum.

2. Flow Geometry

Definition of geometrical parameters describing flow through a cascade are given in Fig. 5. Angle measurements were taken from a vertical reference line, clockwise being positive.
3. Reference Quantities

To remove time dependency of inlet dynamic pressure caused by atmospheric fluctuations and variations in blower speed, each pressure measurement was referenced to plenum conditions, a procedure validated earlier by Duval [Ref. 11].

4. Performance Parameters

Cascade performance parameters were calculated using the formulas listed in Table II. Note that the effect of AVDR on loss coefficient, static pressure rise coefficient, diffusion factor and blade force coefficient derived from momentum conservation was accounted for in each expression.

B. SPECIFIC TEST PROCEDURES

1. Probe Calibration

Prior to testing, both United Sensor five-hole probes were calibrated in a free jet flow. The calibration was represented using Zebner's analytical procedure [Ref. 12] and computer software developed by Neuhoff [Ref. 13].

2. Test Section Setup and Adjustment

Tests were conducted at constant stagger angle while varying only air inlet angle and velocity magnitude. To set an inlet condition, before starting the cascade the lower end walls were set to the desired inlet air angle with end wall spacings set to 1.5 inches (one-half blade space). The IGVs were set to deliver the desired inlet air angle following a schedule established in preliminary tests conducted.
without test blades. Finally, upper end walls were positioned approximately. The cascade was started and the upper end wall angles were fine-tuned to give a uniform static pressure distribution at the outlet plane. A check of the inlet air angle was made with the lower probe placed at mid-span in the center of the blade-to-blade traverse. If adjustment of the IGVs was required, the cascade was first shut down, the IGVs were readjusted, the cascade was restarted and the inlet air angle was checked again after the cascade had stabilized at the inlet dynamic pressure required for the test.1

3. Test Measurements
 a. Blade-to-Blade Survey

 Blade-to-blade surveys were conducted using the upper and lower probes simultaneously. Both probes were located at midspan with the lower probe trailing the upper by two inches. Measurements were recorded over four adjacent blade spaces located in the center portion of the cascade test section. The two innermost blade spaces bracketed the center blade which was instrumented with 39 pressure taps. Survey points were spaced 0.25 inches apart over the outermost spaces and at 0.125 inches over the two innermost spaces.

 1 Inlet guide vane flutter similar to that reported by Molloy [Ref. 2] reoccurred while adjusting the IGV assembly at relatively high inlet dynamic pressure (about 17 inches of water). Thus it is essential not to adjust the inlet guide vanes while the cascade is operating.
Closely spaced survey points over two blade passages insured that one full blade wake would be surveyed with good spatial resolution.

b. Spanwise Survey

Two spanwise surveys were carried out to establish the spanwise extent of uniform conditions. First, measurements were taken with the upper probe 1 inch from the suction side of the centermost blade and the lower probe 1 inch from the pressure side of the centermost blade. Once the first spanwise traverse was complete, the upper probe was placed 1 inch from the pressure side, the lower placed 1 inch from the suction side and the spanwise traverse was repeated.

c. Instrumented Blade Pressure Distribution

After completing the blade-to-blade and spanwise traverse, one or more sets of blade pressure distribution data were recorded.
IV. TEST CASCADE AND PROGRAM OF TESTS

A. CASCADE CONFIGURATION

Constant parameters for the cascade configuration are summarized in Table III.

1. Blading

Test blading consisted of twenty constant cross-section double circular arc (DCA) blades of aspect ratio 2.0 and chord 5.01 inches. Coordinates for the test blades are given in Table IV. Three of the twenty blades were instrumented with static pressure taps at midspan in order to provide measurements of blade static pressure distribution. The center blade contained 39 pressure taps while each adjacent blade had 6 taps. Adjacent blade instrumentation provided a measure of the uniformity of pressure distribution from one blade to the next. Pressure tap locations for the center instrumented blade are illustrated in Fig. 6. Fig. 7 shows a photo of the center instrumented blade.

B. TEST PARAMETERS

The results of 20 tests are reported for which the test parameters are summarized in Table V.

1. Incidence Angle

Seven test values of incidence angle were chosen. Five of the seven angles were approximately those reported
by Cina to allow a comparison to be made of corresponding data sets.

2. Reynolds Number

In order to investigate the possible dependence of cascade flow quality and performance on Reynolds number, each incidence angle was tested at at least two Reynolds numbers. The Reynolds number based on chord was varied between 491,000 and 773,000.
V. RESULTS

A. FLOW QUALITY

Uniformity, periodicity and pseudo two-dimensionality were evaluated from data presented in Appendix A and are summarized in Tables VI and VII.

B. CASCADE PERFORMANCE

Cascade performance is summarized in Figs. 8 through 13 and in Table VIII.

C. TEST REPEATABILITY

Run-to-run repeatability of cascade performance parameters is indicated in Figs. 8 to 13 by double-headed solid arrows. The arrow indicates the observed range of the applicable cascade performance parameter. Tunnel build-to-build repeatability was investigated at the design incidence angle of 2.2 degrees. Double-headed broken arrows indicate build-to-build repeatability.
VI. DISCUSSION

A. FLOW QUALITY

1. Uniformity

As seen in Table VI, the dynamic pressure, static pressure, total pressure and non-dimensional velocity were acceptably uniform over at least twenty percent of blade span at the inlet and outlet planes, and over the entire twelve inch blade-to-blade traverse at the inlet plane.

Inlet and outlet air angle were acceptably uniform in the spanwise direction. Beta 1 was indicated to vary slightly in the blade-to-blade direction. The average total change in Beta 1 from beginning to end of a 12 inch blade-to-blade traverse was approximately one degree. Since adjustment of the inlet guide vane assembly with the cascade running was prohibited, this variation was accepted. If the IGV mechanism was stiffened further to allow adjustment during cascade operation, strict uniformity of inlet air angle would probably be assured.

2. Periodicity

With the exception of the most negative incidence angle of -12.5 degrees, good periodicity was obtained over the three centermost blades. Surface pressures from the left, center and right blades were in excellent agreement except at \(i = -12.5 \) degrees. Also, all flow parameters
measured at the outlet plane at midspan were closely periodic from one blade space to the next with the exception of the most negative incidence angle.

3. **Pseudo Two-Dimensionality**

Despite the revision which was made to the calculation of C_{FM} (the blade force coefficient derived from probe survey data; Appendix C), agreement between C_{FM} and C_{FB}, (the blade force coefficient derived from surface pressure measurements), was achieved in only about 50 percent of the tests (Table VII). The problem is thought to lie in the calculation of the axial component of C_{FM}. An order of magnitude comparison of the terms that make up the axial component C_{FM} (Eqn. C. 14) revealed that the first two terms were of order 1.0, the third and fourth terms of order 10.0, and the fifth term of order 0.01. The difference between the first two pairs of terms, however, were both less than order 1.0, with the pressure-area integrals contributing the most. Thus, the value of C_{FM} was highly sensitive to small inaccuracies in the survey data and too coarse spacing of data points. The more satisfactory results obtained for the tangential components of C_{FM} can be explained because its evaluation does not involve pressure-area integration terms.

4. **Effect of North Wall Composition**

At one incidence angle the more rigid and slightly better-fitting steel wall was used. The resultant spanwise distribution of flow parameters was generally indistinguishable
from the distributions obtained when using the plexiglass wall. (See Figs. A.51 to A.76 and Figs. A.139 to A.144).

B. CASCADE PERFORMANCE

1. Effect of Reynolds Number

Figs. 8 to 13, and Appendix A show that varying Reynolds number from approximately 500,000 to 770,000 had no measurable effect on the blading performance or on the cascade flow quality. This can probably be explained as being due to the controlling influence of a leading edge separation bubble on the suction side boundary layer transition [Ref. 6]. Conducting tests significantly above a prescribed threshold Reynolds number is therefore unnecessary for this blade set. It is noted that when operating at Reynolds numbers of 500,000, adjustment of the IGV assembly with the cascade running may be possible in the future after further stiffening of the actuating mechanism.

C. TEST REPEATABILITY

Run-to-run repeatability of cascade performance parameters was satisfactory as was build-to-build repeatability. The total uncertainties in the measurements of AVDR, loss coefficient, deviation angle and static pressure rise coefficient were about 0.01, 0.005, 0.4 degree, and 0.02 respectively.

27
D. COMPARISON WITH CINA

Figs. 8 through 13 each contain a broken line showing the results of Cina's DCA cascade tests. Differences between the two data sets are apparent. Given a specific incidence angle, Cina reported a lower loss coefficient, deviation angle and AVDR, and higher static pressure rise coefficient. Three contributing factors can be cited. First, and most importantly, Cina operated with a different IGV assembly that did not deliver periodic conditions blade-passage to blade-passage. Secondly, he used a plenum which gave less stable, more turbulent supply conditions. Finally, the upper and lower traverse probes were carefully recalibrated after Cina completed his tests.
VII. CONCLUSIONS

Based on an examination of experimental data the following conclusions are drawn.

1. The cascade flow was satisfactorily uniform. Uniformity existed at the upper and lower planes over at least 20% of blade span near midspan and at the lower plane (midspan) in the blade-to-blade direction for all measured flow parameters at all tested inlet conditions.

2. The cascade flow was satisfactorily periodic. Periodicity existed at the upper plane (midspan) in the blade-to-blade direction for all inlet conditions tested.

3. The cascade flow was not shown consistently to be strictly pseudo two-dimensional. Accounting for streamtube contraction due to side wall boundary layer thickening from lower to upper measuring planes introduced additional small terms into the equation for the axial force component. However, the calculation of the axial force is dominated by the difference between two pressure-area integrals of much greater magnitude.

4. Cascade performance parameters were not measurably affected by varying Reynolds number in the range 500,000 to 770,000.

5. Test conditions can be repeated within an acceptable uncertainty from run-to-run. Build-to-build conditions can
also be successfully repeated.

6. Use of the plexiglass north wall instead of a steel wall had no measurable effect on the results.

7. Inlet guide vanes cannot be safely adjusted with the cascade operating.
VIII. RECOMMENDATIONS

It is recommended that the following actions be considered.

1. The inlet guide vane assembly should be modified to allow adjustment of the IGVs while the cascade is running.

2. Yaw balancing manometers should be inclined in order to provide the experimenter with better inlet and outlet air angle measurement sensitivity.

3. The motor driven yaw and spanwise positioning systems mounted on the upper traverse caused a significant bending moment to be placed on the probe blade-to-blade slide. Noticeable wear of the upper traverse mechanism took place during the course of twenty test runs. Removal of the power yaw and span drives in favor of a lighter-weight mount similar to that at the lower plane is recommended.

4. Provide ready data file transfer from the HP-9845A cassette tapes to the IBM 3033 computer so that advantage can be taken of the DISSPLA graphics capability available at the NPS Computer Center.
Fig. 1. Test Facility Schematic
Fig. 2. McGuire's Plenum Modification
Fig. 3a. Cascade Test Section, Plexiglass Wall Installed

Fig. 3b. Cascade Test Section, Steel Wall Installed
Fig. 5. Cascade Geometry, and Definition of Angles
Fig. 9. Loss Coefficient versus Incidence Angle
Fig. 11. Static Pressure Rise Coefficient versus Incidence Angle
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Method</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Blade-to-blade displacement</td>
<td>Position</td>
<td>±.01 in.</td>
</tr>
<tr>
<td></td>
<td>$x = 0$ in. West end</td>
<td>potentiometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x = 60$ in. East end</td>
<td>potentiometer</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>Spanwise displacement</td>
<td>Position</td>
<td>±.01 in.</td>
</tr>
<tr>
<td></td>
<td>$z = 0$ in. North wall</td>
<td>potentiometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$z = 10$ in. South wall</td>
<td>on probe mount</td>
<td></td>
</tr>
<tr>
<td>β_1</td>
<td>Inlet flow yaw angle</td>
<td>Angle potentiometer on probe mount (hand adjustment)</td>
<td>±.2 deg.</td>
</tr>
<tr>
<td>β_2</td>
<td>Outlet flow yaw angle</td>
<td>Angle potentiometer on probe mount (motor driven adjustment)</td>
<td>±.5 deg.</td>
</tr>
<tr>
<td>P_{plen}</td>
<td>Plenum total pressure</td>
<td>Tube in plenum chamber $V = 0$</td>
<td>±.01 in. H_2O gauge</td>
</tr>
<tr>
<td>P_s</td>
<td>Static pressure at the test plane</td>
<td>Calibrated pneumatic probe</td>
<td>±.1 in. H_2O gauge</td>
</tr>
<tr>
<td>P_{wz}</td>
<td>Static pressure at $x = 0$ in., $y = -16.25$ in., $z = 0$ in.</td>
<td>Static tap on North wall</td>
<td>±.01 in. H_2O gauge</td>
</tr>
<tr>
<td>P_{ATM}</td>
<td>Atmospheric pressure</td>
<td>Mercury barometer</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
<td>Scanivalve transducer</td>
<td>±.01 in. H_2O gauge</td>
</tr>
<tr>
<td>Parameter</td>
<td>General Expression</td>
<td>Programmed Expression</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Loss Coefficient</td>
<td>((\overline{Cp_t} - \overline{Cp_t_2})/(\overline{Cp_t_1} - \overline{Cp_1}))</td>
<td>(\frac{\int_{\overline{Cp_t_1}}^{\overline{Cp_t_2}} k_1 , dx \left(1 - \frac{1}{AVDR} \right) \int_{\overline{Cp_t_1}}^{\overline{Cp_t_2}} k_2 , dx}{\int_{\overline{Cp_t_1}}^{\overline{Cp_t_2}} k_1 , dx \left(1 - \int_{\overline{Cp_t_1}}^{\overline{Cp_t_2}} k_1 , dx \right)})</td>
<td></td>
</tr>
<tr>
<td>Diffusion Factor</td>
<td>(D = 1 - \frac{W_2}{W_1} + \frac{\Delta W_y}{2\omega W_1})</td>
<td>(1 - \frac{\cos\overline{\beta_1} + \cos\overline{\beta_1}(\tan\overline{\beta_1} - AVDR(\tan\overline{\beta_2}))}{\cos\overline{\beta_2} (1 + AVDR)_{\text{ref}}})</td>
<td></td>
</tr>
<tr>
<td>Axial Velocity Density Ratio</td>
<td>(\frac{h_1}{h_2})</td>
<td>(\frac{\int_{\overline{Cp_t_2}}^{\overline{Cp_t_1}} (X_2 - X_{\text{ref}}) \left(1 - \frac{X_2^2}{X_{\text{ref}}^2} \right)^{\frac{\gamma - 1}{\gamma}} \cos\overline{\beta_2} , dx}{\int_{\overline{Cp_t_2}}^{\overline{Cp_t_1}} (X_1 - X_{\text{ref}}) \left(1 - \frac{X_1^2}{X_{\text{ref}}^2} \right)^{\frac{\gamma - 1}{\gamma}} 1 \cos\overline{\beta_1} , dx})</td>
<td></td>
</tr>
<tr>
<td>Static Pressure Rise Coefficient</td>
<td>(\frac{\overline{p_2} - \overline{p_1}}{\overline{p_{t_1}} - \overline{p_1}})</td>
<td>(\frac{1}{AVDR} \int_{\overline{Cp_t_2}}^{\overline{Cp_t_1}} \frac{k_2}{k_1} , dx \int_{\overline{Cp_t_2}}^{\overline{Cp_t_1}} \frac{k_2}{k_1} , dx \int_{\overline{Cp_t_1}}^{\overline{Cp_t_1}} k_1 , dx \left(1 - \int_{\overline{Cp_t_1}}^{\overline{Cp_t_2}} k_1 , dx \right))</td>
<td></td>
</tr>
</tbody>
</table>
TABLE II. (continued)

<table>
<thead>
<tr>
<th>Loss Coefficient Parameter</th>
<th>$\bar{\omega} \cos^3 \beta_2$</th>
<th>$\omega \cos^3 \bar{\beta}_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω</td>
<td>$\frac{\bar{\omega} \cos^3 \beta_2}{2\omega \cos^3 \beta_1}$</td>
<td>$\frac{\omega \cos^3 \bar{\beta}_2}{2\omega \cos^3 \beta_1}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incidence Angle</th>
<th>$\beta_1 - \gamma - \phi/2$</th>
<th>$\bar{\beta}_1 - \gamma - \phi/2$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deviation Angle</th>
<th>$\phi/2 - \gamma + \beta_2$</th>
<th>$\phi/2 - \gamma + \bar{\beta}_2$</th>
</tr>
</thead>
</table>

Note 1: "Barred" quantities are average values computed over a selected integration interval--usually one blade space.

Note 2: Derivation of programmed expression is given in Reference 1.
TABLE III. CASCADE CONFIGURATION PARAMETERS

<table>
<thead>
<tr>
<th>Constants</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade type</td>
<td>DCA</td>
</tr>
<tr>
<td>Number of blades</td>
<td>20</td>
</tr>
<tr>
<td>Spacing (inches)</td>
<td>3.0</td>
</tr>
<tr>
<td>Solidity</td>
<td>1.67</td>
</tr>
<tr>
<td>Thickness (% chord)</td>
<td>7.0</td>
</tr>
<tr>
<td>Camber angle (degrees)</td>
<td>45.72</td>
</tr>
<tr>
<td>Stagger angle (degrees)</td>
<td>14.27</td>
</tr>
<tr>
<td>X-COORD.</td>
<td>Y-PRESS.</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>-0.044</td>
<td>0.000</td>
</tr>
<tr>
<td>-0.021</td>
<td>-----</td>
</tr>
<tr>
<td>0.013</td>
<td>-0.042</td>
</tr>
<tr>
<td>0.178</td>
<td>0.007</td>
</tr>
<tr>
<td>0.400</td>
<td>0.067</td>
</tr>
<tr>
<td>0.622</td>
<td>0.120</td>
</tr>
<tr>
<td>0.844</td>
<td>0.164</td>
</tr>
<tr>
<td>1.067</td>
<td>0.207</td>
</tr>
<tr>
<td>1.289</td>
<td>0.242</td>
</tr>
<tr>
<td>1.511</td>
<td>0.271</td>
</tr>
<tr>
<td>1.733</td>
<td>0.293</td>
</tr>
<tr>
<td>1.956</td>
<td>0.309</td>
</tr>
<tr>
<td>2.178</td>
<td>0.320</td>
</tr>
<tr>
<td>2.399</td>
<td>0.324</td>
</tr>
<tr>
<td>2.622</td>
<td>0.324</td>
</tr>
<tr>
<td>2.844</td>
<td>0.318</td>
</tr>
<tr>
<td>3.066</td>
<td>0.304</td>
</tr>
<tr>
<td>3.288</td>
<td>0.284</td>
</tr>
<tr>
<td>3.511</td>
<td>0.260</td>
</tr>
<tr>
<td>3.732</td>
<td>0.229</td>
</tr>
<tr>
<td>3.955</td>
<td>0.191</td>
</tr>
<tr>
<td>4.177</td>
<td>0.147</td>
</tr>
<tr>
<td>4.400</td>
<td>0.098</td>
</tr>
<tr>
<td>4.621</td>
<td>0.040</td>
</tr>
<tr>
<td>4.844</td>
<td>-0.022</td>
</tr>
<tr>
<td>4.908</td>
<td>-0.042</td>
</tr>
<tr>
<td>4.943</td>
<td>-----</td>
</tr>
<tr>
<td>4.966</td>
<td>0.000</td>
</tr>
<tr>
<td>Test Number</td>
<td>θ_1</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>39.02</td>
</tr>
<tr>
<td>2</td>
<td>38.68</td>
</tr>
<tr>
<td>3*</td>
<td>38.34</td>
</tr>
<tr>
<td>4</td>
<td>38.89</td>
</tr>
<tr>
<td>5</td>
<td>42.66</td>
</tr>
<tr>
<td>6</td>
<td>43.13</td>
</tr>
<tr>
<td>7</td>
<td>45.92</td>
</tr>
<tr>
<td>8</td>
<td>45.89</td>
</tr>
<tr>
<td>9</td>
<td>31.32</td>
</tr>
<tr>
<td>10</td>
<td>31.56</td>
</tr>
<tr>
<td>11</td>
<td>27.90</td>
</tr>
<tr>
<td>12</td>
<td>27.55</td>
</tr>
<tr>
<td>13</td>
<td>39.28</td>
</tr>
<tr>
<td>14</td>
<td>39.40</td>
</tr>
<tr>
<td>15</td>
<td>39.16</td>
</tr>
<tr>
<td>16</td>
<td>39.36</td>
</tr>
<tr>
<td>17</td>
<td>35.50</td>
</tr>
<tr>
<td>18</td>
<td>35.60</td>
</tr>
<tr>
<td>19</td>
<td>24.74</td>
</tr>
<tr>
<td>20</td>
<td>24.63</td>
</tr>
</tbody>
</table>

*Note: Data from run number 3 not plotted because data set was judged to be too coarse.
TABLE VI. FLOW UNIFORMITY SUMMARY

(____/____) shows the maximum positive and negative deviation of the tabulated uniformity parameter with respect to its average value computed over the distance indicated.

Inlet plane: mid 20% of span

<table>
<thead>
<tr>
<th>(\theta) (°)</th>
<th>(\Delta Q/Q) (%)</th>
<th>(\Delta(\text{P}{\text{S}}-\text{P}{\text{W}})/Q) (%)</th>
<th>(\Delta(\text{P}{\text{LEN}}-\text{P}{\text{T}})/Q) (%)</th>
<th>(\Delta X/X) (%)</th>
<th>(\Delta \beta/\beta) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-12.50</td>
<td>(1.6/-1.5)</td>
<td>(0.2/-0.1)</td>
<td>(1.4/-1.6)</td>
<td>(0.8/-0.6)</td>
<td>(.05/-0.05)</td>
</tr>
<tr>
<td>-12.39</td>
<td>(1.3/-1.1)</td>
<td>(0.8/-0.1)</td>
<td>(0.8/-0.1)</td>
<td>(0.6/-0.4)</td>
<td>(0/ 0)</td>
</tr>
<tr>
<td>-9.58</td>
<td>(0/ 0)</td>
<td>(0/-0.1)</td>
<td>(0.4/-0.5)</td>
<td>(0.2/-0.1)</td>
<td>(0/ 0)</td>
</tr>
<tr>
<td>-9.23</td>
<td>(0.3/-0.2)</td>
<td>(0.2/-0.1)</td>
<td>(0.1/-0.1)</td>
<td>(0/ 0)</td>
<td>(0/ 0)</td>
</tr>
<tr>
<td>-5.81</td>
<td>(0.1/-0.1)</td>
<td>(0.3/-0.2)</td>
<td>(0.5/-0.4)</td>
<td>(0.3/-0.1)</td>
<td>(.33/-0.17)</td>
</tr>
<tr>
<td>-5.57</td>
<td>(0.2/-0.2)</td>
<td>(0.3/-0.3)</td>
<td>(0.5/-0.4)</td>
<td>(0.2/-0.1)</td>
<td>(0/ 0)</td>
</tr>
<tr>
<td>-1.59</td>
<td>(0.5/-0.4)</td>
<td>(1.2/-0.6)</td>
<td>(0.2/-0.1)</td>
<td>(0.4/-0.7)</td>
<td>(0/ 0)</td>
</tr>
<tr>
<td>-1.50</td>
<td>(0.1/-0.2)</td>
<td>(0.1/-0.1)</td>
<td>(0.3/-0.3)</td>
<td>(0.1/-0.2)</td>
<td>(.17/-0.09)</td>
</tr>
<tr>
<td>2.27</td>
<td>(0.3/-0.3)</td>
<td>(1.6/-0.9)</td>
<td>(0.4/-0.4)</td>
<td>(0.5/-0.9)</td>
<td>(.08/-0.6)</td>
</tr>
<tr>
<td>2.23</td>
<td>(0.3/-0.4)</td>
<td>(0.5/-0.3)</td>
<td>(0.3/-0.3)</td>
<td>(0.3/-0.4)</td>
<td>(0/ 0)</td>
</tr>
<tr>
<td>5.99</td>
<td>(0.2/-0.1)</td>
<td>(0.1/-0.1)</td>
<td>(0.1/-0.1)</td>
<td>(0.1/ 0)</td>
<td>(.05/-0.09)</td>
</tr>
<tr>
<td>5.54</td>
<td>(0.2/-0.3)</td>
<td>(2.8/-1.4)</td>
<td>(0.4/-0.2)</td>
<td>(0.7/-1.2)</td>
<td>(0/ 0)</td>
</tr>
<tr>
<td>8.79</td>
<td>(0.1/-0.1)</td>
<td>(0.1/-0.1)</td>
<td>(0.1/-0.1)</td>
<td>(0.11 0)</td>
<td>(0/ 0)</td>
</tr>
<tr>
<td>8.76</td>
<td>(0.5/-0.4)</td>
<td>(0.2/-0.1)</td>
<td>(0.2/-0.2)</td>
<td>(0.1/-0.1)</td>
<td>(0/ 0)</td>
</tr>
</tbody>
</table>
TABLE VI. (Continued)

(____/-____) shows the maximum positive and negative deviation of the tabulated uniformity parameter with respect to its average value computed over the distance indicated.

Outlet plane: mid 20% of span

<table>
<thead>
<tr>
<th>i(°)</th>
<th>(\Delta Q(Q))</th>
<th>(\Delta (P_s-P_wt)(Q))</th>
<th>(\Delta (P_{plen}-P_t)(Q))</th>
<th>(\Delta X(X))</th>
<th>(\Delta \beta(°))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-12.50</td>
<td>(1.1/-0.7)</td>
<td>(0/-0)</td>
<td>(0.9/-0.8)</td>
<td>(0.4/-0.4)</td>
<td>(.09/-0.06)</td>
</tr>
<tr>
<td>-12.39</td>
<td>(0.5/-0.4)</td>
<td>(0.2/-0.1)</td>
<td>(0.2/-0.1)</td>
<td>(0.5/-0.4)</td>
<td>(.02/-0.06)</td>
</tr>
<tr>
<td>-9.58</td>
<td>(0.1/-0.1)</td>
<td>(0.3/-0.2)</td>
<td>(0.2/-0.2)</td>
<td>(0/-0)</td>
<td>(0/-0)</td>
</tr>
<tr>
<td>-9.23</td>
<td>(0.4/-0.2)</td>
<td>(0.1/-0.1)</td>
<td>(0.3/-0.3)</td>
<td>(0.1/-0.2)</td>
<td>(0/-0)</td>
</tr>
<tr>
<td>-5.81</td>
<td>(0.2/-0.2)</td>
<td>(0/-0)</td>
<td>(0.3/-0.3)</td>
<td>(0.1/-0.1)</td>
<td>(.05/-0.09)</td>
</tr>
<tr>
<td>-5.57</td>
<td>(0.6/-0.5)</td>
<td>(0.3/-0.3)</td>
<td>(2.0/-1.3)</td>
<td>(0.4/-0.7)</td>
<td>(.10/-0.20)</td>
</tr>
<tr>
<td>-1.59</td>
<td>(0.7/-0.9)</td>
<td>(1.3/-0.8)</td>
<td>(0.1/-0.1)</td>
<td>(0.4/-0.5)</td>
<td>(0/-0)</td>
</tr>
<tr>
<td>-1.50</td>
<td>(0.1/-0.2)</td>
<td>(0.2/-0.3)</td>
<td>(0.1/-0.1)</td>
<td>(0.1/-0)</td>
<td>(0/-0)</td>
</tr>
<tr>
<td>2.27</td>
<td>(0.2/-0.3)</td>
<td>(0.1/-0.1)</td>
<td>(0.2/-0.2)</td>
<td>(0/-0)</td>
<td>(.03/-0.07)</td>
</tr>
<tr>
<td>2.20</td>
<td>(0/-0)</td>
<td>(0.4/-0.3)</td>
<td>(0.1/-0.2)</td>
<td>(0.1/-0.2)</td>
<td>(0/-0)</td>
</tr>
<tr>
<td>5.99</td>
<td>(0.5/-0.5)</td>
<td>(4.1/-2.1)</td>
<td>(0.5/-0.4)</td>
<td>(0.7/-1.0)</td>
<td>(0/-0)</td>
</tr>
<tr>
<td>5.54</td>
<td>(0.7/-1.2)</td>
<td>(0.4/-0.6)</td>
<td>(1.4/-0.9)</td>
<td>(0.3/-0.5)</td>
<td>(0/-0)</td>
</tr>
<tr>
<td>8.79</td>
<td>(0.4/-0.4)</td>
<td>(0.2/-0.1)</td>
<td>(0.1/-0.2)</td>
<td>(0/-0)</td>
<td>(.04/-0.02)</td>
</tr>
<tr>
<td>8.76</td>
<td>(4.2/-6.2)</td>
<td>(5.3/-3.0)</td>
<td>(7.0/-4.8)</td>
<td>(2.7/-4.5)</td>
<td>(.08/-0.17)</td>
</tr>
</tbody>
</table>
TABLE VI. (Continued)

(__/-__) shows the maximum positive and negative deviation of the tabulated uniformity parameter with respect to its average value computed over the distance indicated.

Inlet plane: -3 to 0 blade-to-blade direction

<table>
<thead>
<tr>
<th>$1^{(0)}$</th>
<th>$\frac{\Delta Q}{Q}$ (%)</th>
<th>$\frac{\Delta (P_{s}-P_{w})}{Q}$ (%)</th>
<th>$\frac{\Delta (P_{len}-P_{t})}{Q}$ (%)</th>
<th>$\frac{\Delta X}{X}$ (%)</th>
<th>$\frac{\Delta \beta}{\beta}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-12.50</td>
<td>(1.3/-1.7)</td>
<td>(4.4/-0.5)</td>
<td>(2.2/-1.4)</td>
<td>(0.8/-1.1)</td>
<td>(.32/-.30)</td>
</tr>
<tr>
<td>-12.39</td>
<td>(2.6/-2.2)</td>
<td>(0.4/-0.3)</td>
<td>(2.3/-2.1)</td>
<td>(1.1/-0.8)</td>
<td>(.23/-0.28)</td>
</tr>
<tr>
<td>- 9.58</td>
<td>(1.9/-1.9)</td>
<td>(0.5/-0.6)</td>
<td>(2.3/-2.8)</td>
<td>(1.4/-1.0)</td>
<td>(0/-0)</td>
</tr>
<tr>
<td>- 9.23</td>
<td>(1.5/-2.2)</td>
<td>(0.6/-0.4)</td>
<td>(2.8/-1.6)</td>
<td>(0.8/-1.3)</td>
<td>(.15/-0.34)</td>
</tr>
<tr>
<td>- 5.81</td>
<td>(1.6/-2.1)</td>
<td>(0.7/-0.5)</td>
<td>(1.3/-1.2)</td>
<td>(0.5/-0.6)</td>
<td>(.43/-0.31)</td>
</tr>
<tr>
<td>- 5.57</td>
<td>(2.4/-3.0)</td>
<td>(0.4/-0.5)</td>
<td>(3.1/-2.5)</td>
<td>(1.2/-1.5)</td>
<td>(.27/-0.25)</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 1.59</td>
<td>(2.7/-5.2)</td>
<td>(1.4/-0.8)</td>
<td>(2.1/-1.7)</td>
<td>(0.9/-1.3)</td>
<td>(.27/-0.32)</td>
</tr>
<tr>
<td>- 1.50</td>
<td>(2.1/-1.3)</td>
<td>(0.4/-0.4)</td>
<td>(0.8/-1.0)</td>
<td>(0.6/-0.6)</td>
<td>(.27/-0.19)</td>
</tr>
<tr>
<td>2.27</td>
<td>(1.1/-1.2)</td>
<td>(2.2/-0.8)</td>
<td>(1.0/-0.8)</td>
<td>(0.7/-1.2)</td>
<td>(.26/-0.30)</td>
</tr>
<tr>
<td>2.23</td>
<td>(1.2/-1.0)</td>
<td>(0.6/-0.6)</td>
<td>(0.7/-0.6)</td>
<td>(0.5/-0.7)</td>
<td>(.30/-0.20)</td>
</tr>
<tr>
<td>5.99</td>
<td>(2.1/-1.4)</td>
<td>(0.2/-0.1)</td>
<td>(1.2/-1.9)</td>
<td>(0.9/-0.5)</td>
<td>(.28/-0.22)</td>
</tr>
<tr>
<td>5.54</td>
<td>(2.2/-2.3)</td>
<td>(0.5/-0.2)</td>
<td>(1.3/-1.5)</td>
<td>(0.6/-0.6)</td>
<td>(.31/-0.20)</td>
</tr>
<tr>
<td>8.79</td>
<td>(0.4/-0.6)</td>
<td>(0.4/-0.5)</td>
<td>(0.5/-0.4)</td>
<td>(0.3/-0.2)</td>
<td>(.20/-0.17)</td>
</tr>
<tr>
<td>8.76</td>
<td>(0.8/-1.0)</td>
<td>(4.3/-1.6)</td>
<td>(0.9/-1.1)</td>
<td>(0.5/-2.3)</td>
<td>(0/-0)</td>
</tr>
<tr>
<td>Incidence angle (degrees)</td>
<td>Periodicity based on blade static pressures</td>
<td>Pseudo Two-Dimensionality based on blade force coefficient diagrams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Δmagnitude(%) Δdirection(°)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-12.50</td>
<td>imperfect</td>
<td>-2.1 10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-12.39</td>
<td>imperfect</td>
<td>13.0 25.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9.58</td>
<td>acceptable</td>
<td>-1.5 3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9.23</td>
<td>good</td>
<td>41.3 27.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5.81</td>
<td>good</td>
<td>-19.1 7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5.57</td>
<td>good</td>
<td>-20.0 3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.59</td>
<td>good</td>
<td>-25.2 24.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.50</td>
<td>good</td>
<td>16.5 22.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.27</td>
<td>good</td>
<td>-4.6 2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.23</td>
<td>good</td>
<td>-2.4 2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.99</td>
<td>good</td>
<td>-0.7 7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.54</td>
<td>good</td>
<td>-6.1 4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.79</td>
<td>good</td>
<td>-3.4 1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.76</td>
<td>good</td>
<td>-16.2 -5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Data from six additional runs at design incidence angle are not presented.
<table>
<thead>
<tr>
<th>β_1</th>
<th>β_2</th>
<th>δ</th>
<th>D</th>
<th>ω</th>
<th>$\omega \cos^2 \beta_2$</th>
<th>$\omega \cos \beta_2$</th>
<th>AVDR</th>
<th>C_p^{static}</th>
<th>C_x^H</th>
<th>C_y^H</th>
<th>C_x^B</th>
<th>C_y^B</th>
<th>R_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.63</td>
<td>-12.50</td>
<td>-1.68</td>
<td>6.9</td>
<td>0.222</td>
<td>0.0574</td>
<td>0.02077</td>
<td>0.0172</td>
<td>1.0227</td>
<td>0.0752</td>
<td>-0.7734</td>
<td>-.3176</td>
<td>-0.8347</td>
<td>-1.825</td>
</tr>
<tr>
<td>24.74</td>
<td>-12.39</td>
<td>-1.50</td>
<td>7.1</td>
<td>0.222</td>
<td>0.0592</td>
<td>0.02147</td>
<td>0.0177</td>
<td>1.0247</td>
<td>0.0716</td>
<td>-0.7699</td>
<td>-.6142</td>
<td>-0.8486</td>
<td>-1.988</td>
</tr>
<tr>
<td>27.55</td>
<td>-9.58</td>
<td>-1.51</td>
<td>7.1</td>
<td>0.256</td>
<td>0.0378</td>
<td>0.01438</td>
<td>0.0113</td>
<td>1.0383</td>
<td>0.1155</td>
<td>-0.8851</td>
<td>-.2214</td>
<td>-.8963</td>
<td>-2.334</td>
</tr>
<tr>
<td>27.90</td>
<td>-9.23</td>
<td>-0.59</td>
<td>8.0</td>
<td>0.256</td>
<td>0.0374</td>
<td>0.01433</td>
<td>0.0112</td>
<td>1.0432</td>
<td>0.1129</td>
<td>-0.8420</td>
<td>-.7120</td>
<td>-.7609</td>
<td>-1.730</td>
</tr>
<tr>
<td>31.32</td>
<td>-5.81</td>
<td>-0.94</td>
<td>7.6</td>
<td>0.303</td>
<td>0.0328</td>
<td>0.01345</td>
<td>0.0098</td>
<td>1.0309</td>
<td>0.1931</td>
<td>-1.0101</td>
<td>-.4745</td>
<td>-1.2751</td>
<td>-.5261</td>
</tr>
<tr>
<td>31.56</td>
<td>-5.57</td>
<td>-0.83</td>
<td>7.8</td>
<td>0.305</td>
<td>0.0346</td>
<td>0.01426</td>
<td>0.0103</td>
<td>1.0360</td>
<td>0.1874</td>
<td>-1.0003</td>
<td>-.4076</td>
<td>-1.0997</td>
<td>-.3762</td>
</tr>
<tr>
<td>S5</td>
<td></td>
</tr>
<tr>
<td>39.02</td>
<td>1.89</td>
<td>1.16</td>
<td>9.8</td>
<td>0.400</td>
<td>0.0320</td>
<td>0.01586</td>
<td>0.0096</td>
<td>1.0672</td>
<td>0.2875</td>
<td>-1.1967</td>
<td>-0.3833</td>
<td>-1.2794</td>
<td>-0.4741</td>
</tr>
<tr>
<td>38.34</td>
<td>1.21</td>
<td>2.48</td>
<td>11.1</td>
<td>0.386</td>
<td>0.0478</td>
<td>0.02320</td>
<td>0.0143</td>
<td>1.0455</td>
<td>0.2823</td>
<td>-1.1510</td>
<td>-0.4054</td>
<td>-0.6540</td>
<td>-2.746</td>
</tr>
<tr>
<td>39.40</td>
<td>2.27</td>
<td>1.53</td>
<td>10.1</td>
<td>0.405</td>
<td>0.0378</td>
<td>0.01893</td>
<td>0.0113</td>
<td>1.0653</td>
<td>0.2871</td>
<td>-1.1821</td>
<td>-0.5270</td>
<td>-1.2642</td>
<td>-0.4930</td>
</tr>
<tr>
<td>39.36</td>
<td>2.23</td>
<td>1.32</td>
<td>9.9</td>
<td>0.405</td>
<td>0.0425</td>
<td>0.02127</td>
<td>0.0127</td>
<td>1.0612</td>
<td>0.2863</td>
<td>-1.1873</td>
<td>-0.5551</td>
<td>-1.2478</td>
<td>-0.4967</td>
</tr>
<tr>
<td>39.28</td>
<td>2.15</td>
<td>1.77</td>
<td>10.4</td>
<td>0.402</td>
<td>0.0412</td>
<td>0.02056</td>
<td>0.0123</td>
<td>1.0605</td>
<td>0.2851</td>
<td>-1.1611</td>
<td>-0.8821</td>
<td>-1.2732</td>
<td>-0.5267</td>
</tr>
<tr>
<td>39.16</td>
<td>2.03</td>
<td>1.12</td>
<td>9.7</td>
<td>0.404</td>
<td>0.0461</td>
<td>0.02294</td>
<td>0.0138</td>
<td>1.0573</td>
<td>0.2814</td>
<td>-1.1743</td>
<td>-0.4652</td>
<td>-1.2732</td>
<td>-0.5336</td>
</tr>
<tr>
<td>38.68</td>
<td>1.55</td>
<td>1.61</td>
<td>10.2</td>
<td>0.395</td>
<td>0.0378</td>
<td>0.01855</td>
<td>0.0113</td>
<td>1.0538</td>
<td>0.2863</td>
<td>-1.1737</td>
<td>-0.7848</td>
<td>-1.3500</td>
<td>-0.5603</td>
</tr>
<tr>
<td>38.89</td>
<td>1.76</td>
<td>2.24</td>
<td>10.8</td>
<td>0.394</td>
<td>0.0385</td>
<td>0.01898</td>
<td>0.0115</td>
<td>1.0618</td>
<td>0.2786</td>
<td>-1.1352</td>
<td>-0.2153</td>
<td>-1.2751</td>
<td>-0.5261</td>
</tr>
<tr>
<td>43.13</td>
<td>5.99</td>
<td>2.47</td>
<td>11.1</td>
<td>0.455</td>
<td>0.0552</td>
<td>0.03094</td>
<td>0.0165</td>
<td>1.0974</td>
<td>0.3046</td>
<td>-1.2015</td>
<td>-0.6695</td>
<td>-1.2816</td>
<td>-0.5266</td>
</tr>
<tr>
<td>42.66</td>
<td>5.34</td>
<td>2.45</td>
<td>11.0</td>
<td>0.448</td>
<td>0.0498</td>
<td>0.02750</td>
<td>0.0149</td>
<td>1.0923</td>
<td>0.3025</td>
<td>-1.1786</td>
<td>-0.6086</td>
<td>-1.2946</td>
<td>-0.5669</td>
</tr>
<tr>
<td>45.92</td>
<td>8.79</td>
<td>2.46</td>
<td>11.1</td>
<td>0.499</td>
<td>0.0737</td>
<td>0.04547</td>
<td>0.0220</td>
<td>1.0999</td>
<td>0.3341</td>
<td>-1.2605</td>
<td>-0.5957</td>
<td>-1.3924</td>
<td>-0.6218</td>
</tr>
<tr>
<td>45.89</td>
<td>8.76</td>
<td>2.75</td>
<td>11.3</td>
<td>0.497</td>
<td>0.0785</td>
<td>0.04835</td>
<td>0.0235</td>
<td>1.1024</td>
<td>0.3231</td>
<td>-1.2439</td>
<td>-0.4875</td>
<td>-1.2977</td>
<td>-0.6342</td>
</tr>
</tbody>
</table>
APPENDIX A

A. FLOW QUALITY DOCUMENTATION

1. Uniformity

Uniformity of dynamic pressure \((Q/\bar{Q})\), static pressure \((\Delta P_s/\bar{Q})\), total pressure \((\Delta P_t/\bar{Q})\), non dimensional velocity \((X/\bar{X})\), and Beta for spanwise surveys at the inlet and outlet planes and blade-to-blade surveys at the inlet plane at each test condition are shown in Figs. A.1 through A.105. Photographs of upper and lower static pressure distributions for each incidence angle and Reynolds number comprise Figs. A.106 to A.119.

2. Periodicity

Periodicity of \((Q/\bar{Q})\), \((\Delta P_s/\bar{Q})\), \((\Delta P_t/\bar{Q})\), \((X/\bar{X})\) and Beta for blade-to-blade surveys at the outlet plane and adjacent blade pressure distribution for each test condition are shown in Figs. A.120 through A.168.

3. Pseudo Two-Dimensionality

Blade force coefficients for each test condition are plotted in Figs. A.169 to A.182.

4. Notation

The parameters plotted in Figs. A.1 to A.105 and Figs. A.122 to A.154 are defined as follows:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q/\bar{Q}</td>
<td>local value of Q/\bar{Q}</td>
</tr>
<tr>
<td>$\Delta P_s/\bar{Q}$</td>
<td>$(P_s - P_{WL})/\bar{Q}$</td>
</tr>
<tr>
<td>$\Delta P_t/\bar{Q}$</td>
<td>$(P_{plen} - P_t)/\bar{Q}$</td>
</tr>
<tr>
<td>X/\bar{X}</td>
<td>local value of X/\bar{X}</td>
</tr>
</tbody>
</table>

"Barred" quantities apply to the specific measurement plane and are calculated over a prescribed integration interval—usually one blade space.
Fig. A.1

Fig. A.2
\(\frac{\Delta p}{\text{g}} \) (upper plane) VS SPAN POSIT: \(\theta = -12.5 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 6.1E5 +Re = 5.3E5

Fig. A.3

\(\frac{V}{X} \) (upper plane) VS SPAN POSIT: \(\theta = -12.5 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 6.1E5 +Re = 5.3E5

Fig. A.4
BETA2 VS SPAN POSIT; $1 = -12.5$ DEG
SPANWISE TRAVERSE (1 in. from suction side)
$\text{Re}_0 = 6.1 \times 10^5$ $\text{Re}_0 = 5.3 \times 10^5$

Fig. A.5
Q-∅ (lower plane) VS SPAN POSIT: i = -12.5 DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 6.1E5 +Re = 5.3E5

Fig. A.6

ΔPq-∅ (lower plane) VS SPAN POSIT: i = -12.5 DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 6.1E5 +Re = 5.3E5

Fig. A.7
\(\Delta \frac{P_t}{Q} \) (lower plane) VS SPAN POSIT: \(\theta = -12.5 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
\#Re = 6.1E5 +Re = 5.3E5

Fig. A.8

\(\frac{X}{\bar{X}} \) (lower plane) VS SPAN POSIT: \(\theta = -12.5 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
\#Re = 6.1E5 +Re = 5.3E5

Fig. A.9
Fig. A.10

BETA1 VS SPAN POSIT: $\theta = -12.5$ DEG
SPANWISE TRAVERSE (1 in. from suction side)
+$Re = 6.1E5$ -$Re = 5.3E5$
\(Q/\bar{Q} \) (lower plane) vs ET0B POSIT: \(\alpha = -12.5 \text{ DEG} \\
BLADE TO BLADE TRAVERSE (midspan) \\
\#Re = 6.1E5 \ +Re = 5.3E5

Fig. A.11

\(\Delta P_{x}/\bar{Q} \) (lower plane) VS ET0B POSIT: \(\alpha = -12.5 \text{ DEG} \\
BLADE TO BLADE TRAVERSE (midspan) \\
\#Re = 6.1E5 \ +Re = 5.3E5

Fig. A.12
ΔPr/Δx
(lower plane) VS BTOB POSIT: \(\theta = -12.5 \) DEG
BLADE TO BLADE TRAVERSE (midspan)
\(\ast \text{Re} = 6.1 \times 10^5 \quad + \text{Re} = 5.3 \times 10^5 \)

Fig. A.13

\(x/\bar{x} \)
(lower plane) VS BTOB POSIT: \(\theta = -12.5 \) DEG
BLADE TO BLADE TRAVERSE (midspan)
\(\ast \text{Re} = 6.1 \times 10^5 \quad + \text{Re} = 5.3 \times 10^5 \)

Fig. A.14
Fig. A.15

BETAI VS BTOB POSIT: $\beta = -12.5$ DEG
BLADE TO BLADE TRAVERSE (midspan)
$Re = 6.1E5$ +$Re = 5.3E5$
Fig. A.16

\(\Delta \psi / \Delta \) (upper plane) VS SPAN POSIT: \(\beta = -9.5 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)

\(*Re = 6.3E5 \quad +Re = 5.0E5 \)

Fig. A.17

\(\Delta \psi / \Delta \) (upper plane) VS SPAN POSIT: \(\beta = -9.5 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)

\(*Re = 6.3E5 \quad +Re = 5.0E5 \)
\(\Delta P_{\overline{A}} \) (upper plane) VS SPAN POSIT: \(\phi = -9.5 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)

*Re = 6.3E5 +Re = 5.0E5

Fig. A.19

\(X/\overline{X} \) (upper plane) VS SPAN POSIT: \(\phi = -9.5 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)

*Re = 6.3E5 +Re = 5.0E5

Fig. A.19
BETA2 VS SPAN POSIT: \(\gamma = -9.5 \text{ DEG} \)
SPANWISE TRAVERSE (1 in. from suction side)
\(\pm \text{Re} = 6.3 \times 10^5 \), \(\pm \text{Re} = 5.0 \times 10^5 \)

Fig. A.20
(lower plane) VS SPAN POSIT: $\theta = -9.5$ DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 6.3E5 +Re = 5.0E5

Fig. A.21

$\Delta p/\bar{p}$ (lower plane) VS SPAN POSIT: $\theta = -9.5$ DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 6.3E5 +Re = 5.0E5

Fig. A.22
\(\Delta p/\delta \) (lower plane) vs span posit: \(\theta = -9.5 \) deg
spanwise traverse (1 in. from suction side)
\(Re = 6.3 \times 10^5 \) + \(Re = 5.0 \times 10^5 \)

Fig. A.23

\(x/x \) (lower plane) vs span posit: \(\theta = -9.5 \) deg
spanwise traverse (1 in. from suction side)
\(Re = 6.3 \times 10^5 \) + \(Re = 5.0 \times 10^5 \)

Fig. A.24
BETAIL VS SPAN POSIT: \(\beta = -9.5 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 6.3E5 +Re = 5.0E5

Fig. A.25
Fig. A.26

\(\Delta P_{\text{a}}/\bar{Q} \) (lower plane) vs BTOB POSIT; \(\theta = -9.5 \text{ DEG} \)
BLADE TO BLADE TRAVERSE (midspan)
*Re = 6.3E5 +Re = 5.0E5

Fig. A.27
Fig. A.28

Fig. A.29
BETAI VS BT0B POSIT: 1 = -9.5 DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 6.3E5 +Re = 5.0E5

Fig. A.30
\(\Delta P_{a} / \delta \) (upper plane) VS SPAN POSIT: \(\beta = -5.6 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.31

\(\Delta P_{e} / \delta \) (upper plane) VS SPAN POSIT: \(\beta = -5.6 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.32
(upper plane) VS SPAN POSIT: i = -5.6 DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.33

X/R (upper plane) VS SPAN POSIT: i = -5.6 DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 5.6E5 +Re = 3.0E5

Fig. A.34
BETA2 VS SPAN POSIT: \(\theta = -5.6 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 5.6E5 \(+ \)Re = 5.0E5

Fig. A.35
Q/\bar{Q} (lower plane) VS SPAN POSIT: \(\theta = -5.6 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.36

\(\Delta P_s / \bar{Q} \) (lower plane) VS SPAN POSIT: \(\theta = -5.6 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.37
\[\Delta \rho / \rho \] (lower plane) vs span posit: \(\theta = -5.6 \) deg
spanwise traverse (1 in. from suction side)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.38

\[X / X \] (lower plane) vs span posit: \(\theta = -5.6 \) deg
spanwise traverse (1 in. from suction side)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.39
BETA1 VS SPAN POSIT: $\theta = -5.6$ DEG
SPANWISE TRAVERSE (1 in. from suction side)
$\pm Re = 5.6E5 \quad + Re = 5.0E5$

Fig. A.40
OG (lower plane) VS BT OB POSIT: 1 = -5.6 DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.41

ΔP_g/ΔQ (lower plane) VS BT OB POSIT: 1 = -5.6 DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.42
\(\Delta P_{\text{f/a}} \) (lower plane) vs BTOB POSIT: \(\beta = -5.6 \) DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.43

\(T_{x/x} \) (lower plane) vs BTOB POSIT: \(\beta = -5.6 \) DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.44
BETA1 VS BTOB POSIT: $\beta = -5.6$ DEG
BLADE TO BLADE TRAVERSE (midspan)
$Re = 5.6E5 \quad +Re = 5.0E5$

Fig. A.45
\(\frac{\Delta \rho}{\rho} \) (upper plane) VS SPAN POSIT: \(\theta = -1.5 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
\(\ast \text{Re} = 6.4 \times 10^5 \) + \(\ast \text{Re} = 5.2 \times 10^5

Fig. A.46

\(\frac{\Delta \rho}{\rho} \) (upper plane) VS SPAN POSIT: \(\theta = -1.5 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
\(\ast \text{Re} = 6.4 \times 10^5 \) + \(\ast \text{Re} = 5.2 \times 10^5

Fig. A.47
Fig. A.48

Fig. A.49
BETA2 VS SPAN POSIT: 1 = -1.5 DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 6.4E5 +Re = 5.2E5

Fig. A.50
G/\delta: (lower plane) VS SPAN POSIT: \phi = -1.5 DEG
SPANNISE TRAVERSE (1 in. from suction side)
\#Re = 6.4E5 +Re = 5.2E5

\[\begin{align*}
\text{INCHES} & \\
\text{INCHES} & \\
\end{align*} \]

Fig. A.51

\[\begin{align*}
\Delta P_a/\delta & \\
\text{INCHES} & \\
\text{INCHES} & \\
\end{align*} \]

\[\begin{align*}
\text{INCHES} & \\
\text{INCHES} & \\
\end{align*} \]

Fig. A.52
ΔPt/Δz (lower plane) vs span posit: i = -1.5 deg
spanwise traverse (1 in. from suction side)
*Re = 6.4E5 +Re = 5.2E5

Fig. A.53

X/Δz (lower plane) vs span posit: i = -1.5 deg
spanwise traverse (1 in. from suction side)
*Re = 6.4E5 +Re = 5.2E5

Fig. A.54
BETA1 VS SPAN POSIT: θ = -1.5 DEG
SPANNISE TRAVERSE (1 in. from suction side)
*Re = 6.4E5 +Re = 5.2E5

Fig. A.55
\[\frac{q}{\bar{q}} \] (lower plane) vs BTOB POSIT: \(\theta = -1.5 \text{ DEG} \)
BLADE TO BLADE TRAVERSE (midspan)

\(*Re = 6.4E5 \quad +Re = 5.2E5 \)

Fig. A.56

\[\frac{\Delta p}{\bar{p}} \] (lower plane) vs BTOB POSIT: \(\theta = -1.5 \text{ DEG} \)
BLADE TO BLADE TRAVERSE (midspan)

\(*Re = 6.4E5 \quad +Re = 5.2E5 \)

Fig. A.57
ΔP/ΔS (lower plane) VS BTOB POSIT: ∆ = -1.5 DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 6.4E5 +Re = 5.2E5

Fig. A.58

X/√X (lower plane) VS BTOB POSIT: ∆ = -1.5 DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 6.4E5 +Re = 5.2E5

Fig. A.59
BETAI VS BTOB POSIT: $\beta = -1.5$ DEG
BLADE TO BLADE TRAVERSE (midspan)
$Re = 6.4 \times 10^5$ $Re = 5.2 \times 10^5$

Fig. A.60
\(q/\theta \) (upper plane) VS SPAN POSIT: \(\theta = 2.2 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
\(Re=6.7E5 \) (plexiglass wall) + \(Re=6.0E5 \) (steel wall).

![Graph of \(q/\theta \) vs span position](image1)

\(\Delta p/\alpha \) (upper plane) VS SPAN POSIT: \(\alpha = 2.2 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
\(Re=6.7E5 \) (plexiglass wall) + \(Re=6.0E5 \) (steel wall).

![Graph of \(\Delta p/\alpha \) vs span position](image2)

Fig. A.61

Fig. A.62
\(\Delta p / \Omega \) (upper plane) vs span posit: \(\theta = 2.2 \) deg
Spanwise traverse (1 in. from suction side)
*Re=6.7E5 (plexiglass wall) +Re=6.0E5 (steel wall)

Fig. A.63

\(\chi / \bar{x} \) (upper plane) vs span posit: \(\theta = 2.2 \) deg
Spanwise traverse (1 in. from suction side)
*Re=6.7E5 (plexiglass wall) +Re=6.0E5 (steel wall)

Fig. A.64
DETA2 VS SPAN POSIT: 1 = 2.2 DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re=6.7E5 (plexiglass wall) +Re=6.0E5 (steel wall)

Fig. A.65
\(\frac{Q}{A} \) (lower plane) \(\text{VS \ SPAN \ POSIT: } \alpha = 2.2 \ \text{DEG} \)

SPANWISE TRAVERSE (1 in. from suction side)

\(Re = 6.7 \times 10^5 \) (plexiglass wall) + \(Re = 6.0 \times 10^5 \) (steel wall)

Fig. A.66

\(\frac{\Delta P_s}{\bar{G}} \) (lower plane, \(\text{VS \ SPAN \ POSIT: } \alpha = 2.2 \ \text{DEG} \))

SPANWISE TRAVERSE (1 in. from suction side)

\(Re = 6.7 \times 10^5 \) (plexiglass wall) + \(Re = 6.0 \times 10^5 \) (steel wall)

Fig. A.67
\(\Delta p_t/\bar{Q} \) (lower plane) VS SPAN POSIT: \(\theta = 2.2 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
Re=6.7E5 (plexiglass wall) + Re=6.0E5 (steel wall)

Fig. A.68

\(X/\bar{X} \) (lower plane) VS SPAN POSIT: \(\theta = 2.2 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
Re=6.7E5 (plexiglass wall) + Re=6.0E5 (steel wall)

Fig. A.69
BETA1 VS SPAN POSIT: i = 2.2 DEG
SPANWISE TRAVERSE (1 in. from suction side)
Re=6.7E5(plexiglass wall) +Re=8.0E5(steel wall)

Fig. A.70
Q/G (lower plane) VS BTOB POSIT: I = 2.2 DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re=6.7ES(plexiglass wall) +Re=6.9ES(steel wall)

Fig. A.71

ΔP/G (lower plane) VS BTOB POSIT: I = 2.2 DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re=6.7ES(plexiglass wall) +Re=6.9ES(steel wall)

Fig. A.72
\(\Delta P - \bar{P} \) (lower plane) vs BTOB POSIT: \(\theta = 2.2 \) DEG BLADE TO BLADE TRAVERSE (midspan)

*Re=6.7E5(plexiglass wall) +Re=6.0E5(steel wall)

\[\begin{align*}
\text{Fig. A.73}
\end{align*} \]

\(\chi/\bar{X} \) (lower plane) vs BTOB POSIT: \(\theta = 2.2 \) DEG BLADE TO BLADE TRAVERSE (midspan)

*Re=6.7E5(plexiglass wall) +Re=6.0E5(steel wall)

\[\begin{align*}
\text{Fig. A.74}
\end{align*} \]
BETAI VS BTOB POSIT: $i = 3.2$ DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re=6.7E5(plexiglass wall) +RE=6.0E5(steel wall)

Fig. A.75
Fig. A.76

\[\frac{\Delta\rho}{\rho} \text{ (upper plane) VS SPAN POSIT: } \theta = 5.6 \text{ DEG} \]
SPANWISE TRAVERSE (1 in. from suction side)

\[Re = 7.7E5 \quad Re = 5.2E5 \]

Fig. A.77

\[\frac{\Delta P_s}{\rho} \text{ (upper plane) VS SPAN POSIT: } \theta = 5.6 \text{ DEG} \]
SPANWISE TRAVERSE (1 in. from suction side)

\[Re = 7.7E5 \quad Re = 5.2E5 \]
\[\Delta p/q \text{ (upper plane) vs span posit: } \theta = 5.6 \text{ deg} \]

Spanwise traverse (1 in. from suction side)

- \(Re = 7.7E5 \)
- \(Re = 5.2E5 \)

Fig. A.78

\[X/\bar{X} \text{ (upper plane) vs span posit: } \theta = 5.6 \text{ deg} \]

Spanwise traverse (1 in. from suction side)

- \(Re = 7.7E5 \)
- \(Re = 5.2E5 \)

Fig. A.79
BETA2 VS SPAN POSIT: $\phi = 5.6$ DEG
SPANWISE TRAVERSE (1 in. from suction side)
$Re = 7.7E5$ $Re = 5.2E5$

Fig. A.80
O/Q (lower plane) VS SPAN POSIT: \(\theta = 5.6 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
\(\cdot \text{Re} = 7.7 \times 10^5 \quad + \text{Re} = 5.2 \times 10^5 \)

Fig. A.81

\(\Delta P e/\Omega \) (lower plane) VS SPAN POSIT: \(\theta = 5.6 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
\(\cdot \text{Re} = 7.7 \times 10^5 \quad + \text{Re} = 5.2 \times 10^5 \)

Fig. A.82
ΔP/Ω (lower plane) vs Span Posit: $\theta = 5.6$ Deg

Spanwise Traverse (1 in. from suction side)

$Re = 7.7E5$ $Re = 5.2E5$

Fig. A.83

X/Ω (lower plane) vs Span Posit: $\theta = 5.6$ Deg

Spanwise Traverse (1 in. from suction side)

$Re = 7.7E5$ $Re = 5.2E5$

Fig. A.84
BETA1 VS SPAN POSIT: $\theta = 5.6$ DEG
SPANWISE TRAVERSE (1 in. from suction side)
$Re = 7.7E5$ $Re = 5.2E5$

Fig. A.85
Fig. A.86

Fig. A.87
\(\Delta \rho/\rho \) (lower plane) vs BTOB POSIT: \(\theta = 5.6 \) DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 7.7E5 +Re = 5.2E5

Fig. A.88

\(\frac{X}{X} \) (lower plane) vs BTOB POSIT: \(\theta = 5.6 \) DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 7.7E5 +Re = 5.2E5

Fig. A.89
Fig. A.90
Fig. A.91

Fig. A.92
ΔPt/Δ (upper plane) VS SPAN POSIT: 1 = 8.8 DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 7.7E5 +Re = 4.9E5

Fig. A.93

X/Δ (upper plane) VS SPAN POSIT: 1 = 8.8 DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 7.7E5 +Re = 4.9E5

Fig. A.94
BETR2 VS SPAN POSIT: $\beta = 0.8$ DEG
SPANWISE TRAVERSE (1 in. from suction side)
$+Re = 7.7E5$ $-Re = 4.9E5$

Fig. A.95
\(\frac{\Delta P}{\bar{O}} \) (lower plane) vs span posit: \(\theta = 8.8 \) deg
spanwise traverse (1 in. from suction side)
\(\bar{Re} = 7.7 \times 10^5 \) \(+Re = 4.9 \times 10^5 \)

Fig. A.96

\(\Delta P_{\bar{O}} \) (lower plane) vs span posit: \(\theta = 8.8 \) deg
spanwise traverse (1 in. from suction side)
\(\bar{Re} = 7.7 \times 10^5 \) \(+Re = 4.9 \times 10^5 \)

Fig. A.97
\(\Delta \rho / \rho \) (lower plane) VS SPAN POSIT: \(\theta = 8.8^\circ \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 7.7E5 +Re = 4.9E5

Fig. A.98

\(\chi / \chi \) (lower plane) VS SPAN POSIT: \(\theta = 8.8^\circ \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
*Re = 7.7E5 +Re = 4.9E5

Fig. A.99
DETRI VS SPRN POSIT: \(\beta = 0.8 \) DEG
SPANWISE TRAVERSE (1 in. from suction side)
\(\#Re = 7.7E5 \quad +Re = 4.9E5 \)

Fig. A.100

117
Fig. A.101

Fig. A.102

118
△Pt/Ω (lower plane) vs BTOB POSIT: 1 = 8.8 deg
BLADE TO BLADE TRAVERSE (midspan)
\#Re = 7.7E5 +Re = 4.9E5

Fig. A.103

X/Ω (lower plane) vs BTOB POSIT: 1 = 8.8 deg
BLADE TO BLADE TRAVERSE (midspan)
\#Re = 7.7E5 +Re = 4.9E5

Fig. A.104
BETA1 VS BTOB POSIT: $\beta = 6.8$ DEG
BLADE TO BLADE TRAVERSE (midspan)
$Re = 7.7 \times 10^5$ $Re = 4.9 \times 10^5$

Fig. A.105
$\alpha = -12.5^\circ$, $Re = 611,000$

Fig. A.106

$\alpha = -12.39^\circ$, $Re = 535,000$

Fig. A.107
$i = -9.58^\circ, \text{Re} = 626,000$

Fig. A.108

$1 = -9.23, \text{Re} = 502,000$

Fig. A.109
\[i = -5.81^\circ, \text{Re} = 560,000 \]

Fig. A.110

\[i = -5.57^\circ, \text{Re} = 503,000 \]

Fig. A.111
$i = -1.59^\circ, \text{Re} = 643,000$

![Diagram](image)

Fig. A.112

$i = -1.50^\circ, \text{Re} = 525,000$

![Diagram](image)

Fig. A.113

124
$i = 2.27^\circ, \text{Re} = 676,000$

Fig. A.114

$i = 2.23^\circ, \text{Re} = 604,000$

Fig. A.115

125
$i = 5.99^\circ$, $Re = 771,000$

Fig. A.116

$lower$ $wall$ $static$
pressure $distribution$

$upper$ $wall$ $static$
pressure $distribution$

$i = 5.54^\circ$, $Re = 518,000$

Fig. A.117

$lower$ $wall$ $static$
pressure $distribution$

$upper$ $wall$ $static$
pressure $distribution$
$i = 8.79^\circ$, $Re = 768,000$

Fig. A.118

$\text{lower wall static pressure distribution}$

$\text{upper wall static pressure distribution}$

$i = 8.76^\circ$, $Re = 493,000$

Fig. A.119

$\text{lower wall static pressure distribution}$

$\text{upper wall static pressure distribution}$
BETA2 VS BTOB POSIT: $\beta = -12.5$ DEG
BLADE TO BLADE TRAVERSE (midspan)
$Re = 6.1 \times 10^5$ $Re = 5.3 \times 10^5$

Fig. A.124
Q/\bar{Q} \quad \text{(upper plane) VS BTOB POSIT: } \theta = -9.5 \text{ DEG} \\
\text{BLADE TO BLADE TRAVERSE (midspan)} \\
*Re \overset{\ominus}{=} 6.3 \times 10^5 \quad +Re \overset{\oplus}{=} 5.0 \times 10^5 \\

\text{Fig. A.125}

\Delta P/\bar{Q} \quad \text{(upper plane) VS BTOB POSIT: } \theta = -9.5 \text{ DEG} \\
\text{BLADE TO BLADE TRAVERSE (midspan)} \\
*Re \overset{\ominus}{=} 6.3 \times 10^5 \quad +Re \overset{\oplus}{=} 5.0 \times 10^5 \\

\text{Fig. A.126}
\[\Delta \eta / \delta \text{ (upper plane) VS BTOB POSIT: } i = -9.5 \text{ DEG} \]

BLADE TO BLADE TRAVERSE (midspan)

\[\#Re = 6.3 \times 10^5 \quad +Re = 5.0 \times 10^5 \]

Fig. A.127

\[X/R \text{ (upper plane) VS BTOB POSIT: } i = -9.5 \text{ DEG} \]

BLADE TO BLADE TRAVERSE (midspan)

\[\#Re = 6.3 \times 10^5 \quad +Re = 5.0 \times 10^5 \]

Fig. A.128
BETA2 VS BTOB POSIT: $\beta = -9.5$ DEG
BLADE TO BLADE TRAVERSE (midspan)
$Re = 6.3E5$ $Re = 5.0E5$

Fig. A.129
Q/\overline{Q} \text{ (upper plane) VS BTB POSIT: } i = -5.6 \text{ DEG}

BLADE TO BLADE TRAVERSE (midspan)

*Re = 5.6E5 +Re = 5.0E5

Fig. A.130

\Delta P_e/Q \text{ (upper plane) VS BTB POSIT: } i = -5.6 \text{ DEG}

BLADE TO BLADE TRAVERSE (midspan)

*Re = 5.6E5 +Re = 5.0E5

Fig. A.131
ΔP/ΔQ (upper plane) VS BTOB POSIT: i = -5.6 DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.132

X/Δ (upper plane) VS BTOB POSIT: i = -5.6 DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 5.6E5 +Re = 5.0E5

Fig. A.133
BETR2 VS BTOB POSIT: \(\beta = -5.6 \) DEG
BLADE TO BLADE TRAVERSE (midspan)
\(\star R_e = 5.6E5 \quad \star R_e = 5.0E5 \)

Fig. A.134
Fig. A.135

Fig. A.136
Fig. A.137

\[\Delta \frac{P_{t/d}}{\bar{G}} \text{ (upper plane) vs BTOB POSIT: } \alpha = -1.5 \text{ DEG} \]
BLADE TO BLADE TRAVERSE (midspan)
*Re = 6.4E5 +Re = 5.2E5

Fig. A.138

\[\frac{X}{\bar{X}} \text{ (upper plane) vs BTOB POSIT: } \alpha = -1.5 \text{ DEG} \]
BLADE TO BLADE TRAVERSE (midspan)
*Re = 6.4E5 +Re = 5.2E5
BETR2 VS BTOP POSIT: \(\beta = -1.5 \) DEG
BLADE TO BLADE TRAVERSE (midspan)
\(\#Re = 6.4E5 \), \(+Re = 5.2E5 \)

Fig. A.139
\(\frac{Q/\delta}{(upper \ plane)} \ VS \ BTOB \ POSIT: \ \phi = 2.2 \ \text{DEG} \)

BLADE TO BLADE TRAVERSE (midspan)

- \(\text{Re}=5.7\times10^5(\text{plexiglass \ wall}) \)
- \(\text{Re}=6.0\times10^5(\text{steel \ wall}) \)

Fig. A.140

\(\frac{\Delta P_s}{G} \ (upper \ plane) \ VS \ BTOB \ POSIT: \ \phi = 2.2 \ \text{DEG} \)

BLADE TO BLADE TRAVERSE (midspan)

- \(\text{Re}=5.7\times10^5(\text{plexiglass \ wall}) \)
- \(\text{Re}=6.0\times10^5(\text{steel \ wall}) \)

Fig. A.141
ΔP/ΔL (upper plane) VS BTOB POSIT: \(\theta = 2.2 \, \text{DEG} \)
BLADE TO BLADE TRAVERSE (midspan)
\(Re=6.7E5(\text{plexiglass wall}) + Re=6.0E5(\text{steel wall}) \)

Fig. A.142

\[\text{Graph showing variations in ΔP/ΔL with blade traversal at midspan.} \]

X/\bar{X} (upper plane) VS BTOB POSIT: \(\theta = 2.2 \, \text{DEG} \)
BLADE TO BLADE TRAVERSE (midspan)
\(Re=6.7E5(\text{plexiglass wall}) + Re=6.0E5(\text{steel wall}) \)

Fig. A.143

\[\text{Graph showing variations in X/\bar{X} with blade traversal at midspan.} \]
BETA2 VS BT0B POSIT: θ = 2.2 DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re=6.7E5 (plexiglass wall) +Re=6.0E5 (steel wall)

Fig. A.144
Fig. A.145

\(\frac{Q}{\bar{Q}} \) vs BTOB POSIT: \(\theta = 5.6 \) DEG

BLADE TO BLADE TRAVERSE (midspan)

*Re = 7.7E5 +Re = 5.2E5

Fig. A.146

\(\Delta P_{\text{avg}} \) vs BTOB POSIT: \(\theta = 5.6 \) DEG

BLADE TO BLADE TRAVERSE (midspan)

*Re = 7.7E5 +Re = 5.2E5
\[\Delta P / \dot{q} \quad \text{(upper plane)} \; \text{VS BTOB POSIT: } \theta = 5.6 \, \text{DEG} \]

BLADE TO BLADE TRAVERSE (midspan)

\[\Re = 7.7E5 \; \; +\Re = 5.2E5 \]

Fig. A.147

\[\Delta x / \dot{x} \quad \text{(upper plane)} \; \text{VS BTOB POSIT: } \theta = 5.6 \, \text{DEG} \]

BLADE TO BLADE TRAVERSE (midspan)

\[\Re = 7.7E5 \; \; +\Re = 5.2E5 \]

Fig. A.148
BETA2 vs BTB POSIT: \(\beta = 3.6 \text{ DEG} \)
BLADE TO BLADE TRAVERSE (midspan)

Re = 7.7E5 \(\cdot \text{Re} = 5.2E5 \)

Fig. A.149
Fig. A.150

\(\frac{\Delta P_a}{\Delta Q} \) (upper plane) \& BTOB POSIT: \(\theta = 8.8 \) DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 7.7E5 + Re = 4.9E5

Fig. A.151

\(\frac{\Delta P_a}{\Delta Q} \) (upper plane) \& BTOB POSIT: \(\theta = 8.8 \) DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 7.7E5 + Re = 4.9E5
\(\Delta P/\dot{Q} \) (upper plane) vs BTOB POSIT: \(\theta = 8.8 \) DEG
BLADE TO BLADE TRAVERSE (midspan)

Re = 7.7E5 +Re = 4.9E5

Fig. A.152

X/X (upper plane) vs BTOB POSIT: \(\theta = 8.8 \) DEG
BLADE TO BLADE TRAVERSE (midspan)

Re = 7.7E5 +Re = 4.9E5

Fig. A.153
BETA2 VS BTOB POSIT: 1 = 8.8 DEG
BLADE TO BLADE TRAVERSE (midspan)
*Re = 7.7E5 +Re = 4.9E5

Fig. A.154
Cp VS X/C: i = -12.5°
Re = 530,000
R = Right Adjacent Blade
L = Left Adjacent Blade
\(\Delta \) = Pressure Side, Center Blade
\(\triangle \) = Suction Side, Center Blade

Fig. A.155

Cp VS X/C: i = -12.5°
Re = 610,000

Fig. A.156

149
Cp VS X/C: \(i = -9.5^\circ \)
Re = 500,000
R = Right Adjacent Blade
L = Left Adjacent Blade
\(\bigcirc \) = Pressure Side, Center Blade
\(\triangle \) = Suction Side, Center Blade

Fig. A.157

Cp VS X/C: \(i = -9.5^\circ \)
Re = 630,000

Fig. A.158
Cp VS X/C: \(\alpha = -5.6^\circ \)
Re = 500,000
R = Right Adjacent Blade
L = Left Adjacent Blade
O = Pressure Side, Center Blade
\(\triangle \) = Suction Side, Center Blade

Fig. A.159

Cp VS X/C: \(\alpha = -5.6^\circ \)
Re = 560,000

Fig. A.160
Cp VS X/C: $i = -1.5^\circ$
Re = 520,000
R = Right Adjacent Blade
L = Left Adjacent Blade
O = Pressure Side, Center Blade
Δ = Suction Side, Center Blade

Fig. A.161

Cp VS X/C: $i = -1.5^\circ$
Re = 640,000

Fig. A.162
Cp VS X/C: \(i = 2.2^\circ \)
Re = 600,000
R = Right Adjacent Blade
L = Left Adjacent Blade
\(\circ \) = Pressure Side, Center Blade
\(\triangle \) = Suction Side, Center Blade

Fig. A.163

Cp VS X/C: \(i = 2.2^\circ \)
Re = 670,000

Fig. A.164
Cp VS X/C: $i = 5.6^\circ$
Re = 520,000

R = Right Adjacent Blade
L = Left Adjacent Blade
○ = Pressure Side, Center Blade
△ = Suction Side, Center Blade

Fig. A.165

Cp VS X/C: $i = 5.6^\circ$
Re = 770,000

Fig. A.166

154
Cp VS X/C: \(\theta = 8.8^\circ \)
Re = 490,000
R = Right Adjacent Blade
L = Left Adjacent Blade
○ = Pressure Side, Center Blade
△ = Suction Side, Center Blade

Fig. A.167

Cp VS X/C: \(\theta = 8.8^\circ \)
Re = 770,000

Fig. A.168
155
\[\beta_\infty = \tan^{-1}\left(\frac{\tan \theta_1 + \tan \theta_2}{2} \right) \]

\[\theta = -12.5 \text{ degrees} \]
\[\text{Re} = 611,000 \]

Fig. A.169
\[
\beta_i = \tan^{-1}\left(\frac{\tan \beta_1 + \tan \beta_2}{2}\right)
\]

\(1 = -12.39 \text{ degrees}\)

\(Re = 53.5,000\)
\[\beta_\infty = \tan^{-1} \left(\frac{\tan \theta_1 + \tan \theta_2}{2} \right) \]

\(\theta_1 = -9.58\text{ degrees}\)

\(\text{Re} = 626,000\)
\[\beta_\infty = \tan^{-1} \left(\frac{\tan \beta_1 + \tan \beta_2}{2} \right) \]

\[i = -9.23\,\text{degrees} \]

\[\text{Re} = 503,000 \]

Fig. A.172
\[\beta_\infty = \tan^{-1}\left(\frac{\tan \beta_1 + \tan \beta_2}{2} \right) \]

\[\theta = -5.81^\circ \text{degrees} \]

\[\text{Re} = 560,000 \]
\[\beta_\infty = \tan^{-1}\left(\frac{\tan \beta_1 + \tan \beta_2}{2} \right) \]

\[\beta_\infty = -5.57^\circ \]

\[\gamma = -1.0 \]

\[\beta_2 = -1.0 \]

\[\beta_1 = -1.0 \]

Fig. A.174
\[\beta_\infty = \tan^{-1}\left(\frac{\tan \beta_1 + \tan \beta_2}{2} \right) \]

\[i = -1.59 \text{ degrees} \]
\[\text{Re} = 643,000 \]

Fig. A.175
\[\beta_\infty = \tan^{-1}\left(\frac{\tan \beta_1 + \tan \beta_2}{2} \right) \]

\(\beta = -1.5 \) degrees

\(\text{Re} = 525,000 \)
\[\beta_\infty = \tan^{-1} \left(\frac{\tan \beta_1 + \tan \beta_2}{2} \right) \]

\(i = 2.27 \text{ degrees} \)

\(\text{Re} = 676,000 \)

Fig. A.177
\[\beta_r = \tan^{-1}\left(\frac{\tan\theta_1 + \tan\theta_2}{2}\right) \]

\[\theta = 2.23\text{ degrees} \]

\[Re = 604,000 \]

Fig. A.178

165
\[\beta_e = \tan^{-1}\left(\frac{\tan\beta_1 + \tan\beta_2}{2} \right) \]

\[\theta = 5.99 \text{ degrees} \]

\[\Re = 771,000 \]
\[
\beta_\infty = \tan^{-1} \left(\frac{\tan \beta_1 + \tan \beta_2}{2} \right)
\]

\(i = 5.54 \text{ degrees} \)
\(Re = 518,000 \)

Fig. A.180
\[\beta_0 = \tan^{-1} \left(\frac{\tan \theta_1 + \tan \theta_2}{2} \right) \]

\[\theta = 8.79^\circ \text{ degrees} \]

\[\text{Re} = 768,000 \]

Fig. A.181
\[\beta_\infty = \tan^{-1} \left(\frac{\tan \beta_1 + \tan \beta_2}{2} \right) \]

\(i = 8.76 \text{ degrees} \)
\(Re = 493,000 \)

Fig. A.182
APPENDIX B

A. STORAGE OF EXPERIMENTAL DATA

1. Storage Devices

a. Cassette Tape

 All raw and reduced data acquired during the current study via the HP-3052A acquisition system were stored on cassette tape. Table B.1 summarizes the raw data file-names according to inlet air angle and cassette tape number. Tapes were filed with the Director, Turbopropulsion Laboratory, Naval Postgraduate School, Monterey, Ca.

 b. File Naming Scheme

 All files were named using a six character alphanumeric code that allowed the investigator to immediately identify stored data in any file and on what date it was recorded. Here is how the code works.

 1st character: Indicates the type of traverse conducted ("B"lade-to blade, "S"panwise or "I"nstrumented blade data).

 2nd character: Indicates the "state" of the data set (ra"W", re"D"uced or "F"inal).

 3rd character: Indicates which probe was involved in taking the data set, either "U"pper or "L"ower. No letter here means that the probes acquired data simultaneously.

 4th, 5th and 6th characters: These numbers indicate the julian date in 1983 that the test run was conducted.
For example, a file containing data from a raw blade-to-blade survey using the upper probe conducted on January 15, 1983 would be named BWU015. When upper and lower probes were traversed together the "U"pper or "L"ower character was dropped and the entire julian date filled the remaining four spaces. For example, if the upper and lower probes were both traversed in the blade-to-blade direction on January 15, 1983, the resultant raw data filename would be named BW3015.

Sometimes, in order to completely describe a reduced data file, parts of the julian date had to be sacrificed. Raw data from a spanwise survey of the upper probe one inch from the suction side of the centermost instrumented blade conducted on February 1, 1983 would be named SWSU32 ("S"panwise, ra"W", 1 inch from "S"uction side, "U"pper probe, julian date 30"32"). It should be noted that when spanwise surveys were conducted, both probes moved together. To preclude interference of the lower probe wake with the upper probe measurements, the upper probe was place 1 inch from the suction side, and the lower probe was placed 1 inch from the pressure side of the center blade. The composite data file was named with the upper probe in mind, however, even though the lower probe was stationed at a different blade-to-blade position. For example, a raw spanwise survey named SWS077 would show that the upper probe was 1 inch from the
suction side of the center blade, while the lower probe was 1 inch from the pressure side.

Some specialized filenames reflect the type of data stored. Referencing constants calculated for a test conducted on February 15, 1983 would be named RC046A or RC046B where the "A" would mean that the referencing constants were calculated using the plenum total pressure and the lower wall static pressure as reference total and static pressures. "B" would indicate that the reference total and static pressures were supplied by the pitot-static probe.

2. Thesis Logbook

A chronological log of the present study with notes and printouts of all data files was deposited with the Director, Turbopropulsion Laboratory.

B. PROBE CALIBRATION DATA

A folder documenting the calibration of United Sensor probes serial number 847-1 and 981-2 was filed with the Laboratory Manager, Turbopropulsion Laboratory. Non-dimensional velocity (X) and pitch angle (PHI) calibration files for both probes appear on each data storage cassette tape. Their names reflect the file type and the applicable probe. For example, the pitch angle calibration file for the 981 probe is named "PHI981", the X velocity calibration file for the 847 probe is named "X847", and so on.
<table>
<thead>
<tr>
<th>β_1</th>
<th>Raw BTOB Data</th>
<th>Raw Spanwise Data</th>
<th>Raw Instrumented Blade Data</th>
<th>Tape Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.63</td>
<td>BW3144</td>
<td>SWS144</td>
<td>IW3144</td>
<td>11</td>
</tr>
<tr>
<td>24.74</td>
<td>BW3143</td>
<td>SWS143</td>
<td>IW3143</td>
<td>11</td>
</tr>
<tr>
<td>27.55</td>
<td>BW3123</td>
<td>SWS123</td>
<td>IW3123</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.90</td>
<td>BW3125</td>
<td>SWS125</td>
<td>IW3125</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.32</td>
<td>BW3119</td>
<td>SWS119</td>
<td>IW3119</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.56</td>
<td>BW3121</td>
<td>SWS121</td>
<td>IW3121</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.50</td>
<td>BW3138</td>
<td>SWS138</td>
<td>IW3138</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWS139</td>
<td>IW139B</td>
<td>10</td>
</tr>
<tr>
<td>35.60</td>
<td>BW3139</td>
<td>SWS139</td>
<td>IW139B</td>
<td>10</td>
</tr>
<tr>
<td>39.02</td>
<td>BWU077</td>
<td>SWS077</td>
<td>IW077</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWL077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.68</td>
<td>BW3082</td>
<td>SW3082</td>
<td>IW082B</td>
<td>2</td>
</tr>
<tr>
<td>38.34</td>
<td>BW3097</td>
<td>SW3097</td>
<td>IW3097</td>
<td>3</td>
</tr>
<tr>
<td>38.89</td>
<td>BW3103</td>
<td>SW3103</td>
<td>IW3103</td>
<td>3</td>
</tr>
<tr>
<td>39.28</td>
<td>BW3127</td>
<td>SWS127</td>
<td>IW127B</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.40</td>
<td>BW3128</td>
<td>SWS128</td>
<td>IW3128</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.16</td>
<td>BW3129</td>
<td>SWS129</td>
<td>IW3129</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.36</td>
<td>BW3133</td>
<td>SWS133</td>
<td>IW3133</td>
<td>9</td>
</tr>
<tr>
<td>42.66</td>
<td>bw3109</td>
<td>SWS109</td>
<td>IW3109</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.13</td>
<td>BW3110</td>
<td>SWS110</td>
<td>IW110B</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.92</td>
<td>BW3114</td>
<td>SWS114</td>
<td>IW3114</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.89</td>
<td>bw3114</td>
<td>SWS114</td>
<td>IW3114</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWP114</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

EFFECT OF AVDR ON THE AXIAL FORCE COEFFICIENT DERIVED FROM PROBE SURVEY DATA.

The notation used in this section follows [Ref. 14] and [Ref. 15]. The application of the principle of momentum conservation to the control volume shown in Fig. C.1 results in the following expression for the resultant force on the control volume:

$$\overline{R_w} = \sum_{S_1} \overrightarrow{V}_1 \, d\dot{m}_1 - \sum_{S_2} \overrightarrow{V}_2 \, d\dot{m}_2 + \sum_{S_1'} d\overrightarrow{F}_1 + \sum_{S_2'} d\overrightarrow{F}_2$$

$$+ \sum_{A} d\overrightarrow{F}_a + \sum_{B} d\overrightarrow{F}_b$$

$$= R_{w_t} \hat{I}_x + R_{w_v} \hat{I}_y$$ \hspace{1cm} (C-1)

Figure C.1. Blade Space Control Volume
In the enlarged view of the edge of curved surface a, the unit outward normal vector, \(\hat{n}_a \), is given by the relation
\[
\hat{n}_a = \cos \alpha \hat{x} - \sin \alpha \hat{y}
\]
(C-2)

and similarly, on surface b, \(\hat{n}_b \) is given by
\[
\hat{n}_b = \cos \alpha \hat{x} + \sin \alpha \hat{y}
\]
(C-3)

The elemental area "s" on the curved sidewall of the control volume can be expressed as the projection of an element of the base area \(ds \), where
\[
dS = dx \, dy
\]
(C-4)

so that,
\[
d\hat{s} = \frac{dx \, dy}{\cos \alpha}
\]
(C-5)

Resolving the elemental force, \(d\vec{F} \), acting on the curved sidewalls of the control volume into normal and sheer components gives
\[
d\vec{F} = -p \hat{n} \, d\hat{s} - \tau \hat{t} \, d\hat{s}
\]
(C-6)

Neglecting wall friction, \(\tau \), the tangential force becomes:
\[
R_{w_t} = \int_{S_1} \rho_1 V_1 V_u \, dA_1 - \int_{S_2} \rho_2 V_2 V_u \, dA_2
\]
(C-7)

and the axial force becomes:
\[
R_{w_a} = \int_{S_1} \rho_1 V_1^2 \, dA_1 - \int_{S_2} \rho_2 V_2^2 \, dA_2 + \int_{S_1} \rho_1 \, dA_1 - \int_{S_2} \rho_2 \, dA_2 + \int_{a} \hat{n}_y \cdot d\vec{F}_a + \int_{b} \hat{n}_y \cdot d\vec{F}_b
\]
(C-8)
Using Eq. (C-2), Eq. (C-3), Eq. (C-5) and Eq. (C-6),

\[
\int_a \hat{F}_y \cdot d\vec{F}_a = \int_a \hat{F}_y \cdot \left[-p(\cos \alpha \cdot \hat{y} - \sin \alpha \cdot \hat{x})\right] \frac{dx \, dy}{\cos \alpha}
\]

\[= \int_a -p \, dx \, dy \quad \text{(C-9)}\]

and similarly,

\[
\int_b \hat{F}_y \cdot d\vec{F}_b = \int_b -p \, dx \, dy
\]

\[\text{(C-10)}\]

which represent additional axial force components due to pressure forces on the control volume side walls.

Equation (C-7) is identical to Eq. (B-3) of [Ref. 1] which was derived for a strictly two-dimensional flow. Substitution of Eq. (C-9) and Eq. (C-10) into Eq. (C-8) yields,

\[
R_w = \int_0^s \rho_1 V_1 (AVDR) \, dx - \int_0^s \rho_2 V_2 \, dx + \int_0^s \rho_1 (AVDR) \, dx - \int_0^s \rho_2 \, dx - 2 \int_0^s p(y) \, dz \, dx
\]

\[\text{(C-11)}\]

which contains a fifth axial force term not included by \(C_{ina}\), and a modification of the first and third terms resulting from the effects of AVDR.

Since the precise function \(p(y)\) is not known from station 1 to station 2, a linear change of pressure with \(y\) was assumed as depicted in Fig. C.2.

![Figure C.2. Assumed Pressure Function](image)

The fifth term of Eq. (C-11) can then be approximated as:

\[-2 \int_a p(y) \, dz \, dx = -S \left\{ \bar{p}_1 (AVDR - 1) + \left[\frac{\bar{p}_1 - \bar{p}_2}{2} \right] [AVDR - 1] \right\} \]

\[\text{(C-12)}\]
Assuming that
\[\bar{\rho}_1 \cdot S \cdot AVDR = \int_0^S \rho_1 \cdot AVDR \cdot dx \] \hspace{1cm} (C-13)

substitution of Eq. (C-13) and Eq. (C-12) into Eq. (C-11) yields,
\[R_{wa} = \int_0^S \rho_1 V_1^2 (AVDR) dx - \int_0^S \rho_2 V_2^2 dx + \int_0^S \rho_1 dx \]
\[- \int_0^S \rho_2 dx - \left\{ \frac{(\rho_2 - \rho_1)}{2} \right\} [AVDR - 1] S \] \hspace{1cm} (C-14)

Equation (C-14) was reduced to force coefficient form using procedures explained in [Ref. 1] and then incorporated into existing software documented in [Ref. 8].
LIST OF REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Initial Distribution List</th>
</tr>
</thead>
</table>
| 1. | 2 | Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 |
| 2. | 2 | Library, Code 0142
Naval Postgraduate School
Monterey, CA 93940 |
| 3. | 1 | Department Chairman, Code 67
Department of Aeronautics
Naval Postgraduate School
Monterey, CA 93940 |
| 4. | 1 | Director, Turbopropulsion Laboratory, Code 67Sf
Department of Aeronautics
Naval Postgraduate School
Monterey, CA 93940 |
| 5. | 1 | Mr. George Derderian
Naval Air Systems Command
Code AIR-310E
Department of the Navy
Washington, D.C. 20360 |
| 6. | 1 | Dr. A. D. Wood
Office of Naval Research
Eastern/Central Regional Office
666 Summer Street
Boston, MA 02210 |
| 7. | 1 | Chief, Fan and Compressor Branch
(Attn: Nelson Sanger)
NASA Lewis Research Center
Mail Stop 5-9
21000 Brookpark Road
Cleveland, OH 44135 |
| 8. | 1 | LCDR S. J. Himes, USN
4681 Revere Road
Virginia Beach, VA 23456 |
| 9. | 10 | Turbopropulsion Laboratory Code 67
Naval Postgraduate School
Monterey, CA 93940 |