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ABSTRACT

A mechanical integrating accelerometer (MIA) based on the rolamite
approach can be used for delaying the arming of an aerial bomb. Substantial
miniaturization of the MIA is feasibile in a system in which the moving part
of the rolamite is subjected to a retardation proportional to the square of
the velocity of the moving part.

Analytical details are given for three exemplary classes of motion
of the bomb: constant deceleration, exponentially decaying deceleration and
velocity-squared deceleration of the bomb. The relationship between the
distance travelled by the moving part of the MIA and the separation between
munition and aircraft is found to depend on the form of the deceleration of
the bomb.

However, bounds for the relationship exist and are obtained
explicitly. From these bounds, it is inferred that the relationship is almost
independent of the initial motion of the bomb.

Further, the relationship is shown to be invariant with respect to a
special but relatively large class of motions of the bomb. This includes the
practical case of the munition experiencing a drag obeying the usual velocity-
square law of aerodynamics.
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DELAYED ARMING WITH A VELOCITY-SQUARE

RETARDED MECHANICAL INTEGRATING ACCELEROMETER

1. INTRODUCTION

In the design of fuzing systems for missiles and air-dropped weapons
it is necessary for the fuze to remain in safe condition for some time after
release to prevent inadvertant explosion close to the launch vehicle. Arming
of the weapon can be suitably delayed by placing in the fuze a device which
detects the acceleration of the weapon and by integration gives the distance
travelled by the weapon. Mechanical devices which are used to perform this
operation are known as mechanical integrating acceleromesters (MIAs). Examples

of such devices include runaway (or verge) escapements and flywheel
integrators.

The rolamite mechanism (Figure 1) has the potential to detect and
integrate acceleration. It consists of a pair of rollers (collectively called
a cluster) designed to move freely in one dimension. One way of reducing the
size of the device is to provide the cluster with some form of retardation,
for example, a retardation proportional to the sguare of the cluster's
velocity. However introduction of such a retardation complicates the motion
of the cluster so that its use as a distance indicator involves more than a
simple double integration step. In this report, the effects of retardation on
the motion of a rolamite cluster and the implications on the way the distance
should be measured are examined analytically.

2. THE MATHBMATICAL NMODEL MID THE EQUATIONS OF MDTION

The mathematical model is based on high-dreg aerial dbombs but the
analysis can be adapted to other situations. Typicslly, suwch bombe are
subjected to an almost uni-directional deceleration which is ten to a humndred
times greater than the acoceleration dewe to gravity duriag the relewaant phase
of motion. The effects of gravity caa therefore be neglected. It is
appropriate then to adopt a one-dimsnsions] gecamstry to study the dynaaics of




the rolamite MIA provided the rolamite is free to move in the same direction
as that of the initial motion of the bomb.

The coordinate systems used are shown in Figure 2. The bomb is
released at time t = 0 directly above a fixed point 0 on the ground and
initially continues to move in a straight line. The distance it travels in
time t is denoted by y(t). The distance the rolamite cluster travels in the
same time is denoted by x(t) when referred to the bomb and is denoted as s{t)
when referred to the ground.

The total kinetic energy of the rollers is

where m is the combined mass of the rollers, I, and I, the moment of inertia
of the primary and secondary rollers respectively, ans v, and w, their
respective angular velocities. If r., and r, are the regpective radii of the
rollers, then w, = ;‘:/r1 and w_ = i/rz « By using these relationships the
above expression for the kineéic energy can be cast in terms of the
generalised coordinates x and y, thus:

_1 '2 1 -2 02 +1 "2 02
T = '/yms +/2I1r1 n /212r2 x

_1 . 'y 2 1 2
=/om(x + ¥)° + /zmr:’c

where m_ = I.r,”2 + 12r2‘2 is an effective mass associated with the rotation
of the rollers.

The lagrange's equation of motion applied to the rollers which are
associated with the coordinate x is,

8T
- - ® = Q (2.2)
Here, Q represents the applied forces acting on the rollers. For the forces
intended to be applied to the rollers,
Q= ~ k|x|x

where k is a constant. The equation of motion (2.2) on expanding now becomes

m_x"(t) + k[x'(t)|x'(t) = - my"(¢t) (2.3)

- -2 -2
where B, = m + m, m + I1t1 + Iry %




In the case of aerial bombs, the bomb is continuocusly decelerated
with the result that the rolamite cluster is continuously accelerated in the
same direction and hence x'(t) is always positive for t > o. PBEguation (2.3)
may then be written as

x"(8) + xlx'(£)12 = - " (t) (2.4)

-2

where x = k/m , a=m/m =m/(m + I1t1 + I_xr=2) . This is the primary

equation of mStion governing the distances gtgvelled by the rollers.

3. OBRJECT DISTANCE, IMAGE DISTANCE AND THEIR
RELATIONSHIP : PRELIMINARIES

For mathematical convenience, we introduce here an auxiliary
function defined thus,

z(t) = vt - y(t) (3.1)

where Vo = y' (o) is the initial velocity of the bomb. The function z(t) gives
the separation between the aircraft and the bomb if the aircraft continues to
move with the same uniform velocity V° after the bomb is released. Note that,
2" (t) = -y"(t),

z(o) = z'(0) = 0, (3.2)

and the equation of motion (2.4) can be re-written in terms of the function
z(t) as

x"(t) + kx' ()12 = az"(¢) (3.3)

The distance x(t) travelled by the rolamite cluster in time t will
be referred to as the image distance at time t; the function z(t) the object
distance at time t. Given some form of deceleration z"(t), equation (3.3) may
be solved for x(t) subject to the initial conditions:

x(o) = x'(0) = 0 (3.4)

By comparing the image distance x(t) and the object distance z(t) over a range
of values of t, a relationship between the image and the object distance can
be obtained. This relationship will be referred to as a distance relationship
for the accelerometer.

For an ideal distance measurer, the distance relationship should be
invariant with respect to all forms of deceleration z"(t) for the bomb. For
the velocity-square-retarded MIA, however, the distance relationship is in
general not invariant and depends on the deceleration z"(t). This dependence
may be indicated explicity by writing

z = Wix; z") (3.5)




The governing equation (3.3) is a general Riccati equation for the
function v(t) = x'(t). By using a standard change of variable (e.g. Goldstein
and Braun 1973).

x(t) =1 1n 6(r) (3.6)
the non-linear equation (3.3) can be put in a linear form thus,
(t) - az"(t)8 (t) =0 (3.7)

The corresponding initial conditions for 6(t) follows from (3.4) and (3.6) and
are given by

6(0) =1, 0'(0) =0 (3.8)

Accounts on the solution of equation (3.7) can be found readily in
the literature (e.g. Goldstein and Braun, 1973; Rainville, 1964; Murphy, 1960;
Kamke, 1967), but none is available which is directly relevant to the distance
relation W(x; z").

4. THREE TYPICAL CLASSES OF MOTION

We begin by presenting specific results for the distance
relationship for three typical classes of motion: (a) constant deceleration
of the bomb; (b} deceleration of the bomb Qecaying exponentially; (c)
deceleration of the bomb proportional to the square of its velocity. Analysis
is made in each case giving the behaviour of the distance relationship in the
late stages of motion. The behaviour in the early phase of the motion is
treated in a general way later (Section 6).

Class (a) : Constant deceleration, i.e. 2"(t) = c where ¢ is a
constant. Bjguation (3.7) in this case is @ (t) - ckcO(t) = 0 . This
gives 8(t) = cosh ([ akx] 1/2 t) vwhich satisfies also the initial conditions
(3.8). Consequently, by (3.6), the image distance is given by

x(t) = 17: 1n cosh ([aw] 1/, t) (4.1)

The object distance is obtained by integrating z"(t) twice subject to the
initial conditions (3.2). This gives
z(t) = Vet (4.2)

Upon eliminating t between (4.1} and (4.2), the distance relationship can be
obtained as

1
X = 1—‘ 1n cosh ([2m¢]/2) (4.3a)

or




= [cosh-1en‘]2/2mc (4.3b)

Note that the constant ¢ giving the magnitude of the bomb's deceleration does
not enter into the distance relation. The distance relation is therefore
invariant with respect to the class of motion generated by different values of
the deceleration. A graph of the distance relation (4.3) is shown as curve
(a) in Figure 3.

For large values of «x, the right member of the expression (4.3b)
may be expanded by using a formula of Abramowitz and Stegqun (1965, p. 88),
giving
-2 3 -Ag

1 2
z 2K[1n2+€- e -3ze + eesel

=?1;‘-< (in 202 + € + 26 1n 2 -Yee 25+ oY)

5 €0+ og (4.4)

vwhere £ = axx . The last expression gives the principal term asymptotically
for large values of . Provided x >> 1/k, the necessary increment in the
image distance per unit increment in the object distance (i.e. the
differential coefficient dx/dz) is inversely proportional to the image
distance x and a significant increment in the object distance z can be
indicated by smaller and smaller changes in the image distance x as x
increases.

Class (b) : Deceleration of the bomb decaying exponentially with
time. Here z"(t) = a“e -bt where a and b are two parameters charactetising
such a decay. Bquation (3.7) in this case is 8"(t) - ama2ePto(t) =0 . Upon
solving this equation with the initial conditions (3.8), the image distance
can be obtained as

-bt/2

x(t) = % in p{K1 (p)Io(pe'bt/z) + I, (P)Ko(pe )} (4.5)

vhere p = 2((:.:)/2 (a/b), I and K_ are modified Bessel functions of the first
and second kind respectively (thg normalization for these functions follows
those of Abramowitz and Stequn (1965)). By integrating the retardation z"(t)
twice, the object distance for this case is given by

2(t) = (%)zlbt + e_bt - 1) (4.6)

The product bt may be eliminated between (4.5) and (4.6), giving a single
relationship between the object distance and the image distance for a fixed
ratio a/b and fixed values of a and x. A graph of the distance relationship
for the ratio ab = 1 is shown as curve (b) in Figure 3.

The behaviour of the distance relationship at late stages nay be
seen by making the following expansions for the functions Io(pe t/2 ) and




Ko(pePt/2) which occurs in the expression for the image distance, (4.5):

-bt/2 1 2 -bt 2 -bt)
pe ) =

Io( 1 +-z pe + esse =1 + 0(pe

~bt/2 -bt/2 1 _2 -bt

)+_Pe + oo

) = - (nlspe™Y?) + yi1_(pe :

xo(pe

= -';i -y-1m &+ o(btp2e %) (4.7)

where y(= .57721 ...) is the Euler's constant (Abramowitz and Stegun 1965,
p. 375). PFor large values of the time variable t, the object distance (4.6)
may be approximated for

z(6) = (2t - 1+ 0(e™)) (4.8)

Combining the expansions (4.7), (4.8) with the expression for the image
distance (4.5) we obtain, after some algebra, the following relationship
between object and image distances valid for the late stages of the motion:

z = (tx:c)-vz(a/b)ze'<x

2
aa

b2

- (a/p)211 + 2x1(a.<)'/2(a/b) + 1n(22) 4 2y (4.9)

+ 0(aK(a/b)4bt e Pt

As can be geen from the expression, the asymptotic behaviour is by no means
simple with respect to the various design parameters (a, X, a and b); the
expression is useful as a means of gaining insight into the distance
relationship and providing a guide to more elaborate and exact numerical
studies in sgpecific cases,

Class (c) : Deceleration of the bomb in proportion to the square of
its velocity. In this case the distance travelled by the bomb in time t is
y(t) where y(t) satisfies the equation

yh(t) = - uly'(¢))? (4.10)

for some constant ue. Solving the equation with the initial conditions
y(0) = 0, y'(0) = Vv, gives

'
y(t) -1—”109 o+ 1) (4.11)

where T = uvst « The object distance function is then

e &




z(t) = V_t - y(t) =lu [t-1log (1 + 0] (4.12)

The deceleration of the bomb z"(t) is given by

w
wig) =L (O 2
z(t) = < (7 wot) (4.13)

and the governing equation (3.7) for this case is

e (t) - B )2 8(t) = 0 (4.14)

—_—
1 t
+ ‘.IVO

where 8 = ak/u « The solution of this equation which satisfies also the
initial conditions (3.8) can be shown to be

"1/2 -v'l v2
o(t) = (1 + 48) {v2(1 + 1) + v1(1 + 1) 7} (4.15)

where v. =1, (Y1 + 48 - 1) and v, =V, (/1 + 4B - 1) . Accordingly, the image
distance is given by

1 -V v
x(t) =l‘1n(1 + 4p) 2 {v2(1 + 1) 1 + v1(1 + 7 2} (4.16)

Upon eliminating the variable Tt between (4.16) and (4.12), a relationship
between the object distance and the image distance can be obtained which is
independent of the initial velocity Vor and which is unique for fixed values
of the design parameters a, x and p .

For large values of t, uz ~ 1, while

1 v v -(v, + v.)
X ea 2v o+ nin Ao 2y
1
9 v (v, + v.,)
=~ (1 + 48)" /2v1'r 2{1 + 0(1 ! 2)}
1 v -(v, + v.)
“ (1 + 48) /2v1(|¢) 2{1 + 0(1t ! 2)} (4.17)
or
-1 1, &xX/v; v, +V
e "L v eam” 21 2e Ppsar ' P (4.18)
7




A plot of z(t) against x{t) which is derived from the expressions
(4.12) and (4.16) is shown in Fiqure 3 for the case 8 = ak/u = 0.25 .
Expression (4.17) or (4.18) may be used to study the characteristics of the
distance relationship at the late stages of the motion. They may also be used
conveniently to extent the graph of Figure 3 indefinitely.

5. BOUNDS ON THE OBJECT DISTANCE

On integrating both sides of the equation (3.3) twice with respect
to time and using the initial conditions (3.2) and (3.4), we obtain,

t
- L 2 ' 2
z(t) = - x(t) + (). [oat, [ “at {x'(t)} (5.1)

il
o

The integrand in the double integral is always positive. The integral then
must be positive. Hence,

1
z(t) > ;x(t) (5.2)
This gives a lower bound for the object distance z;, for a given image distance

X as

z, = x/a (5.3)

The expression (5.3) is the distance relationship in the absence of
any retardation of the MIA cluster if z. is interpreted as the object
distance. The lower bound indicates that if retardation is present, the
object distance is increased. This in turn permits miniaturization of the
MIA.

]

Substituting 06(t) 1 + g(t) in equations (3.7) gives

z!l (t)

1 " "
x 9 (t) g(t)z"(t) (5.4)
A double integration with respect to time gives

1 t 2
z(t) = glt) - jo at, fo at, g(t, )z"(t,) (5.5)




From the definition of d(t), (3.6), and the definition of g(t), we have

w(t) _

g(t) = e 1 (5.6)

Since x > 0 and x(t) > o, g(t) is positive. By assumption, z"(t) is also
positive for t > o. The double integral in (5.5) is thus positive, making

1
z(t) < o g{t) (5.7)
This provides an upper bound for the object distance attainable with a given

image distance x as

1 KX
zu = E_ (e - 1) (5.8)

Conversely, for a given object distance, the above expression sets a limit to
the degree of miniaturization of the accelerometer (minimising x).

6. THE EARLY PHASE OF THE MOTION

The expression for the upper bound of the object distance (5.8) may
be expanded as

1 2 1 3
zu=“K {m+2 (KT, +3l “, +.'o}

1
1
During the sufficiently early phase of the motion when xx << 1 , the upper
bound may be approximated by the leading term in the above series, giving

z, x/a (6.1)

up to second order in the product kx . Comparing this with the expression for
the lower bound (5.3), it is seen that the upper and the lower bounds for the
object distance coincide during this phase of the motion up to second order
in o . It follows that the relationship between the object and the image
distance is simply

z = x/a+ 0((:1)2/0) (6.2)

and is independent of any particular nature of bomb's deceleration (i.e. any
function for z"(t)).

The result may be understood physically as follows. When the
distance x travelled by the cluster is less than a characteristic length

(x << 1/ K ), the effects of the retardation are negligible. Consequently,
the distance relationship correasponds to the case in which there is no
retardation,




This result (6.2) can be illustrated by using the case where the
bomb experiences constant deceleration. For this case the distance
relationship is given by expression (4.3a). For small values of axz , the
relationship (4.3a) can be expanded in a series of ascending powers
of axz thus,

X = %( 1n cosh ({20@}2)

-:Eln {1 + az + 0({un<z}2)}

@ + 0(x(z)?)

On inverting the relationship, we obtain

z=x/a+ 0 ((Kx)z/a)

in agreement with (6.2).

7. A GENERAL INVARIANCE PROPERTY

The question of invariance of the distance relationship W(x;z") with
repsect to the motions of the bomb is now considered. We propose the
following theorem, the proof of which is given below.

Consider the class of motions of the bomb in which any two object-
distance functions z1(t) and z,(t) can be related as z,(t) = z,(vt) where v is
a suitable constant. With respect to such a class of motions the distance
relationship is invariant for fixed values of the design parameters k and a .

Proof

We note that for two object-distance functions related as zz(t) =
z.l(vt), the corresponding decelerations of the bomb are related as

z,"(t) = v2 z,"(vt) (7.1)

and vice versa,

Let x.(t) and x,(t) be the image-distance functions corresponding to
the decelerations z,"(t) and z,"(t) respectively. That is, x1(t) and xz(t:)
each satisfies the governing equation (3.3):

x,"(8) ¢k fx(0))2 = az,(e) (7.3)

10




%" (8) + k&K, (£) 1 = az,"(t) (7.4)

Define a function £ as follows:

£(t) = x,(vt) (7.5)

2

Then £1(t) = vx,'(vt), £"(t) = v°x,"(vt) so that

2

£7(t) + ¢ {£'(t) }2 = vox,"(vt) + x {vx,'(vt) }2

= v2(x,"(vE) + & B, (ve) 1)

By using (7.3), the last expression can be simplified, giving

£(t) + () )2 = a viz,"(ve) .
By (7.1), it follows that

£ () + e (£ ()2 = @, () . (7.6)
From its definition (7.5), the function f has the initial properties

£(0) =0, £'(0) = 0O
By comparing (7.6) with (7.4), it can be seen that the function f(t) satisfies
the same equation as the function x.,(t) and the same initial conditions. This
implies equality between the two functions xz(t) and f£(t), or

x,(t) = x,(vt)

On eliminating t between the above relationgship for the image distances and
the assumed relationship for the object distances

zz(t) = z1(vt)

it is seen that z, is related to x, as z, is related to x,. The above
argument is general for any two mo%ions represented by z, and 2, in the class
and thus invariance of the distance relationship with respect to the whole

class of motions follows.
Application

The case of constant decleration of the bomb (class (a) of section
4) and the case of exponentially decaying deceleration of the bomb (class (b)
of Section 4) for a fixed ratio of a/b are trivial examples of Theorem 7.1.
The case of the bomb undergoing wvelocity-squared deceleration may be used to
illustrate the application of the theorem to obtain invariance of the distance
relationship, without actually solving the equation of motion for the bomb.

1




The equation of motion for the last case is given by equation
(4.10). Let

z(t) = Vot - y(t) = u" ' gt) (7.7)

where T = uvot . Then equation (4.10) transforms into
(D - ¢ (t) 242 gr(t) =1 (7.8)

with the initial conditions ¢(0) = ¢'(0) = 0. The solution of the above
equation with these initial conditions is unique. Thus all object distance
functions z(t) which arise out of solutions of equation of motion (4.10) can
be put in the form of (7.8), or

2(6) = W' o uve) (7.9)

It can be checked by straight forward algebra that if za(t) and zb(t) are two
solutions given by (7.9) corresponding to two values of Vor namely Va and vb
respectively, then

z (t) =z, ({V/V, }t)

provided p is fixed. The conditions of Theorem 7.1 are therefore satisfied
and invariance of the distance relationship with respect to the class of
motion follows.

8. REMARKS

In the case of an aerial bomb which is decelerated by a parachute,
the whole assembly consisting of the bomb and the fully opened parachute
experiences an aerodynamic drag which is proportional to the square of its
velocity. According to Section 7, the distance relationship of the MIA for
this case is unique, since the aerodynamic drag coefficient for the bomb-
parachute assembly and its presented area would be almost constant (thus u is
constant) and the coefficients a and x are constant for a particular design of
the the MIA, The opening of the parachute introduces some complications.
However, if the opening time of the parachute and the retardation
coefficient x on the rolamite are suitably chosen so that the opening of the
parachute occurs within the ‘early' phase of the motion of the rolamite
(kz << 1 ), then according to Section 6, the motion of the bomb during this
period would have negligible effects on the distance relationship of the
resultant MIA.

12




9. SUMMARY

The distance relationship for a mechanical integrating accelerometer
using a velocity-squared retardation on its moving parts is examined. The
principal results are as follows.

(i) The distance relationship is found to depend on the particular
nature of deceleration of the bomb.

(ii) Bounds for the object distance corresponding to a given image
distance exist. Expressions for the lower bound and the upper bound
: are obtained explicitly, (5.3) and (5.8).

(iii) From these bounds, it is inferred that during the early phase of the
motion, the distance relationship is almost independent of the
particular form of the motion of the bomb. This allows design
effort to be concentrated on the late phase of the motion.

(iv) Further, the distance relationship is found to be invariant with
respect to a large class of motion of the bomb whose decelerations
admit transformation of the form (7.1).

(v) This invariance property of the distance relationship applies in
‘ particular to the practical case of a bomb undergoing deceleration
i which is proportional to the square of its velocity.

: (vi) The object distance, the image distance and their relationships are

? analysed in detail for three exemplary classes of motion of the
bomb, namely, constant deceleration, exponentially decaying
deceleration, velocity-square deceleration. Quantitative results in
graphical form (Figure 3) are presented. In view of (iii),
expressions are given from which the asymptotic behaviour of the
distance relationship at late stages of the motion can be studied in
detail.
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S-band

Pigure 1.

The rolamite mechanism. It consists of two rollers which are
suspended by an S-band and are designed to move freely in one
dimension. Flywheels are attached to the rollers to increase
their moments of inertia,




Rollers of Rolamite

O

Reference frame fixed
< X to the bomb

Reference frame fixed
Y — to the ground

Figure 2. The reference frames used to develop the equations of notion
for the system.
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The relationship between the object distance (z) and the image

The dash curve gives the upper bound for the

object distance whereas the dot-dash curve gives the lower
bound. The solid curves apply to three typical classes of
motions of the bomb: (a) constant deceleration of the bomb,

(b) the bomb's deceleration being given by aZe-3%,
bomb's deceleration being given by y x (its wvelocity)“.
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