A GENERAL SYNTHESIS FOR DITUNGSTEN TETRACARBOXYLATES
PREPARATION OF W-W 0. (U) INDIANA UNIV AT BLOOMINGTON
DEPT OF CHEMISTRY M H CHISHOLM ET AL. 08 SEP 83
UNCLASSIFIED INDU/DC/TR-83/4-MC N00041-79-C-0044
A GENERAL SYNTHESIS FOR DITUNGSTEN TETRACARBOXYLATES.
PREPARATION OF W-W QUADRUPLE BONDS BY REDUCTIVE-ELIMINATION
(ALKYL GROUP DISPROPORTIONATION) FROM 1,2-DIETHYL COMPOUNDS
WITH W-W TRIPLE BONDS.

by
M.H. Chisholm, H.T. Chiu and J.C. Huffman

Prepared for Publication
in
Journal of the American Chemical Society

Department of Chemistry
Indiana University
Bloomington, IN 47405

September 8, 1983

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

This document has been approved for public release
and sale; its distribution in unlimited.
A General Synthesis for Ditungsten Tetracarboxylates. Preparation of W–W Quadruple Bonds by Reductive-Elimination (Alkyl Group Disproportionation) from 1,2-Diethyl Compounds with W–W Triple Bonds

M.H. Chisholm, H.T. Chiu and J.C. Huffman

This document has been approved for public release and sale; its distribution is unlimited.

dinuclear reductive-elimination, tungsten, quadruple bonds, carboxylates

A general high yield synthesis for \(\text{W}_2(\text{O}_2\text{CR})_4\) compounds is proposed based on eq. 1, wherein a W–W triple bond is converted to a quadruple bond, and this has been established for \(R = \text{Me}, \text{Et}\) and \(\text{t-Bu}\).

\[
\text{W}_2\text{Et}_2(\text{NMe}_2)_4 + 4\text{RCOOCOR} \rightarrow \text{W}_2(\text{O}_2\text{CR})_4 + 4\text{RCONMe}_2 + \text{C}_2\text{H}_4 + \text{C}_2\text{H}_6
\]
A General Synthesis for Ditungsten Tetracarboxylates.

Preparation of W-W Quadruple Bonds by Reductive-Elimination (Alkyl Group Disproportionation) from 1,2-Diethyl Compounds with W-W Triple Bonds.

The search for compounds containing W-W quadruple bonds, particularly ditungsten tetracarboxylates, is one of the fascinating stories in the development of the chemistry of compounds containing multiple bonds between metal atoms.\(^1\)\(^2\) At this time there are two reports of the preparation and characterization of \(W_2(O_2CR)_4\) compounds. Sattelberger and McLaughlin\(^3\) reported in 1981 that reduction of \(W_2C_6(THF)_4\) with 2 equivalents of sodium amalgam in THF at \(-20^\circ\) C, followed by addition of sodium trifluoroacetate (4 equiv) gave, upon work up, \(W_2(O_2CCF_3)_4\) in 20% yield based on tungsten. More recently Cotton and Wang\(^4\) reported a higher yield synthesis (ca. 55% based on W) for the benzoate, \(W_2(O_2CPh)_4\cdot2THF\), from Na/Hg reduction of WC\(_4\) in THF followed by treatment with sodium benzoate. We wish here to report a general high yield synthesis for \(W_2(O_2CR)_4\) (M\(_2\)H) compounds based on reductive elimination (alkyl group disproportionation) from W\(_2\)W containing compounds.

Hydrocarbon solutions of 1,2-W\(_2\)Et\(_2\)(NMe\(_2\))\(_4\)\(^5\) react quickly at room temperature with acid anhydrides RCOOCOR, where R = Me, Et and t-Bu, according to equation 1. These reactions appear quantitative when they are carried out in sealed nmr tubes and followed by \(^1\)H nmr spectroscopy. In the absence of oxygen donor solvents, the tetracarboxylates are isolated either as weakly ligated polymers \([W_2(O_2CR)_4]_n\), where R = Me or Et\(^6\), as shown in Figure 1, or as the RCONMe\(_2\) adduct \(W_2(O_2C-t-Bu)_4\cdot2t-BuCONMe\(_2\), by crystallization from benzene or hexane. These
new compounds are bright yellow, crystalline, volatile, air-sensitive compounds and appear analogous to the two previously reported related compounds. An extension of eq. 1 to include other R groups seems obvious.

\[W_2Et_2(NMe_2)_4 + 4RCOOCOR \rightarrow W_2(O_2CR)_4 + 4RCONMe_2 + C_2H_6 + C_2H_4 \]

The present finding is of interest and worthy of note because it reveals that by appropriate synthetic strategy W-W triple bonds can be converted to W-W quadruple bonds. This is the first observation of this transformation.
Acknowledgement We thank the Office of Naval Research and the Wrubel Computing Center for support.

6. Crystal data for $\text{W}_2(\text{O}_2\text{CEt})_4$ at -160° C: $a = 9.377(2)\text{Å}$, $b = 8.271(2)\text{Å}$, $c = 5.527(1)\text{Å}$, $\alpha = 102.49\text{Å}$, $\beta = 84.61(1)\text{Å}$, $\gamma = 89.45(2)$, $Z = 1$, $d_{\text{calc}} = 2.631\text{gcm}^{-3}$ and space group P1. Data collection was performed using standard moving crystal-moving detector techniques (MoKα $6^\circ < 2\theta < 50^\circ$). Of 1477 unique intensities, 1464 having $F>2.33\sigma (F)$ were used in the refinement. The W atom position was located in a Patterson and all remaining atoms, including H atoms, were located in the Fourier synthesis. A final difference Fourier was featureless, the largest peak being $0.83e/\text{Å}^3$, located near the W position. Final residuals are $R(F) = 0.016$ and $R_w(F) = 0.015$.

7. Reactions between $\text{W}_2\text{Et}_2(\text{NMe}_2)_4$ and each of CO$_2$ and ArNNNHAr do not appear to parallel reactions wherein Mo-Mo triple bonds are converted to Mo-Mo quaduple bonds. These reactions are under continuing investigation: Chetcuti, J.J.; Chisholm, M.H.; Folting, K., Haitko, D.A., Huffman, J.C. J. Am. Soc. 1982, 104, 2138.
Caption to Figure 1

An ORTEP view of the centrosymmetric $W_2(O_2CEt)_4$ molecule showing the connectivity in the infinite chain $[W_2(O_2CEt)_4]_n$. Pertinent distances (Å) and angles (°) (averaged where appropriate), are $W-W = 2.189(1)$, $W-O = 2.08(2)$, $W---O = 2.665(4)$, $W-W-O = 91(1)$, $W-W---O = 161.6(1)$°.