Preliminary Report on UVDEP and PRODEP Results for the NRL Laser/HANE Experiment

E. HYMAN, M. MULBRANDON AND J. D. HUBA

Geophysical and Plasma Dynamics Branch
Plasma Physics Division

*Science Applications, Inc.
McLean, VA 22102

August 16, 1983

This research was sponsored by the Defense Nuclear Agency under Subtask S99QMXBC, work unit 00067, and work unit title “Plasma Structure Evolution.”

Approved for public release; distribution unlimited.
ABSTRACT

We present predictions for the NRL laser/HANE experiment of the effects on an N₂ background gas of (1) x-rays emitted following laser irradiation of an aluminum target, (2) debris ions moving out from the target, and (3) deposition of uv radiation resulting from interaction between the debris ions and the background gas. We calculate both primary ionization and time dependent chemistry changes. Results are based on two NRL codes, UVDEP and PRODEP, developed for HANE studies. Certain assumptions...
made in the codes are uncertain and/or violated to some extent within the context of the NRL experiment. Hence, the results must be considered preliminary and first order.
I. Introduction

Recently, there has been renewed interest in the laboratory simulation of HANE phenomena (Vesecky et al., 1980; Cornwall et al., 1981). DNA is presently sponsoring a major experiment at NRL in which a laser beam is used to "explode" a target. The subsequent interaction between the target plasma and the ambient gas in the target chamber is believed to be similar to the interaction between a weapon's debris and the atmosphere in certain parameter domains (Longmire et al., 1981; Tsai et al., 1982; Smith and Hube, 1983; Sperling, 1983). Thus, an understanding of the phenomena occurring in the laser experiment may provide insight into the physical processes and consequences of HANE.

One of the purposes of the experiment is to study the collisionless coupling of the debris and air plasma via plasma turbulence (Lampe et al., 1975). This coupling mechanism relies upon the excitation of one or more plasma instabilities in the debris shell. The fluctuating electric and magnetic fields that are generated provide a means by which momentum and energy can be exchanged between the debris and air plasmas. However, in order to study this process it is important to first determine (1) the initial state of the target plasma and background gas (e.g., the state of ionization after the laser beam has been terminated) and (2) the influence of collisional processes on the interaction between the target and background species (e.g., charge exchange, ionization processes, electron stripping). The purpose of this report is to address several of these problems using existing NRL codes (i.e., UVDEP and PRODEP). Specifically, we study (1) the preionization of the background gas due to the initial radiation flash (UVDEP); (2) the energy degradation of the ions due to several collisional processes (e.g., elastic scattering, ionization, charge exchange) (PRODEP). (3) the ionization of the background gas due to the target ions (PRODEP); (4) and the ionization produced by uv from the interaction of debris ions with the background (UVDEP).

For all studies we use an aluminum target and a background N₂ gas. The laser energy is taken to be 100 joules, with 25 joules in prompt x-rays and a kinetic yield of the debris ions of 60 joules. We assume that there are 6.8 x 10¹⁰ aluminum ions released with average velocity of 6.7 x 10⁷
cm/sec. The mass distribution of debris is assumed to obey a cosine law around the forward direction (Grun et al., 1983). All radiation is assumed to come from a point source.

The organization of the paper is as follows. In Section II we discuss the influence of prompt x-ray emission and deposition into the background nitrogen gas using the code UVDEP. In Section III we make use of the code PRODEP to study the energy degradation of the target ions due to several collisional processes, and the amount of background ionization produced by these ions. In Section IV we present a discussion of uv emission effects and in the final section offer some concluding remarks.

II. Prompt X-Ray Emission and Deposition

A. Discussion

In a HANE event x-rays are emitted during the disassembly process. The energy released from nuclear processes heats the materials of the structure to kilovolt temperatures. This results in the emission of blackbody thermal radiation from the core of the device which diffuses outward through the outer layers of the device and the surrounding rocket, reentry vehicle, etc., and radiates into the atmosphere. These prompt x-rays have long mean free paths in the upper atmosphere and deposit their energy out to distances of thousands of kilometers, or down to an altitude of ~70 km. They ionize the atmosphere, altering it from its ambient state. It is this altered medium through which the bomb debris, the blast wave, the uv radiation, etc. subsequently must pass.

At NRL, a code has been developed, UVDEP, (Hyman, et al., 1971; Hyman, et al., 1977) which models the deposition both of prompt x-ray emission and the later uv emission, out to large distances from the burst. It tracks the resulting atmospheric chemistry in a time dependent way to times ~1 sec, which in the HANE case is the time scale up to which hydrodynamic processes are not too important, the uv emission is essentially complete, and the 'fast' chemistry is completed. The chemistry includes a modeling of both molecular and atomic atoms and ions.
In the laser experiment it is necessary first to calculate the x-ray emission spectrum. The spectrum is not black body. The laser pulse causes ablation of the aluminum target forming an aluminum plasma. The pulse has a duration of several nanoseconds and the x-ray emission occurs over a time scale not much longer than this. Thus, as in the HANE case, the x-radiation is prompt compared to time scales for other phenomenology of interest. A detailed radiation-hydrodynamic model to simulate the x-ray emission induced by a laser pulse on an aluminum target has been constructed at NRL (Duston et al., 1983). Figure 1 illustrates schematically the various regions modeled in this simulation. The model determines the electron plasma temperature and the distribution of Al charge states in each of the regions as a function of time. The x-ray emission is a result of bound-bound, bound-free, and free-free electron transitions of the various aluminum charge states present in the plasma at a given time. Thus, the spectrum calculated not only is not black body, but is also time dependent.

Different segments of the x-ray energy spectrum originate from different spatial regions. For example, more than three quarters of the energy for x-ray energies above ~ 1.5 kev is due to bound-bound transitions resulting from excitation of K-shell electrons of Al XII and Al XIII. These species occur in the hot blowoff region (Figure 1) where the electron plasma temperature is ~ 1 kev. Between ~ 0.5 kev and ~ 1.5 kev the x-ray spectrum is almost totally due to bound-free transitions, since this energy range corresponds to energies too small for K-shell transitions but too large for L-shell transitions. Below ~ 0.5 kev L-shell transitions from ions less ionized than Al XII contribute substantially. These ions occur in the cooler transition region (Figure 1). In this energy region bound-free transitions represent the major contributor down to ~ 0.04 kev, with bound-bound still important down to ~ 0.1 kev. Below 40 ev free-free transitions predominate. Figure 2 shows the spectrum of the total x-ray energy emitted per square centimeter indicating separately the bound-free and free-free contributions as well as the bound-bound lines as predicted by the model. Figure 3 gives the energy spectrum of the intensity at a particular time, near the time of peak emission. The two are, not surprisingly, similar in overall shape but exhibit differences of detail. At other times, away from the time of peak emission, the differences may be
more pronounced. To approximate the x-ray spectrum for use in UVDEP we divided it into segments each of which is fit by a power law (straight line on a log-log plot). In performing this fit we were careful to maintain the model predictions of the fraction of photon energy in various photon bins (Table III, Duston et al., 1983).

We have considered the following cases: (1) N\textsubscript{2} density = 1014 cm-3, scaled to a STARFISH density (400 km), (2) N\textsubscript{2} density = 1016 cm-3, scaled to a standard SPARTAN density (200 km), and (3) N\textsubscript{2} density = 1017 cm-3, scaled to CHECKMATE density (150 km). The scaling assumes that binary collisions in the HANE event and in the experiment play an equivalent role. However, when referring to these scaled HANE events one needs to keep in mind differences: the existence of an exponential atmosphere in the real event but not in the laser experiment; the fact that N\textsubscript{2} is not the only species in the real event, and not even an important one in the STARFISH case; and the fact that magnetic fields are not scaled properly in the experiment. Still, for the early time phenomenology, which is a primary goal for the experiment to simulate, these differences are either not crucial or can be accounted for, hopefully, by theory. Finally, in calculating the deposition of x-ray energy we have not accounted for the possible dependence of emission with angle in the forward direction. This is probably not a serious error, since the dependence should be weak except at very large angles.

B. Results

We first consider the case N\textsubscript{2} density = 1014 cm-3, which corresponds to a scaled STARFISH altitude. Figure 4 is a plot of electron density as a function of distance from the target at three times subsequent to the passage of the x-rays. The first time, (1) t = 0 is the time just after the x-rays have been deposited but before any chemistry has occurred. The other two times are (2) t = 1 \times 10-7 sec and (3) t = 5 \times 10-6 sec after time t = 0. The upper scale gives an expanded picture of the first 10 cm and the lower shows the electron density dependence out to 70 cm.

Before continuing with a discussion of these results one important caveat needs to be stated. The following results concern only the effect of the x-rays. As the debris moves out, this is the environment it moves
into. Once the debris reaches a particular distance from the target, however, it will significantly change the electron density. Assuming the debris moves with a velocity of 6.7×10^7 cm/sec it will have reached out to 6.7 cm by 10^{-7} sec and, therefore, have altered the electron densities on this curve in Figure 4 closer in than 6.7 cm. By 5×10^{-6} sec, debris moving with 6.7×10^7 cm/sec will more than cover the entire region plotted in Figure 4. Generally speaking, where the debris has reached it will have caused much more ionization than the x-rays (see Section III). Because the debris mass tends to be peaked in the forward direction with a dependence $\sim \cos \theta$, θ the angle away from forward, off-angle its effect is likely to be less dominant over the x-ray effect than is the case in the forward direction.

More important is the question of whether the debris will continue moving out with this velocity indefinitely or will couple with the background and lose its kinetic energy. If it couples, its directed energy will likely be significantly altered once it interacts with a weapon mass of background. If the background were fully ionized, this corresponds to a weapon radius of a few centimeters for this density (see section III). However, the average ionization in this region due to x-rays is only $\sim 10\%$, so that a true weapon mass corresponds to a much larger dimension, unless there is a mechanism for coupling with the neutral atmosphere or via an anomalous ionization process. If coupling does occur the beam will be slowed or stopped and the results in Figure 4 will be valid beyond that radius. When the debris interacts with the N_2 it will generate hot electrons with a temperature and for a duration that depends on the nature of the coupling, collisional or non-collisional. The hot electrons will excite electronic levels in the debris-air mixture resulting in uv emission. The uv will be deposited mostly outside the debris-coupling region, but on the average at closer distances than the x-rays and will, in general, greatly alter the electron densities outside the coupling region. In the example being discussed here, N_2 density $= 10^{14}$ cm$^{-3}$, we do not expect uv emission to be important, whether coupling occurs or not, just as it was not important in STARFISH. Uv effects will be described in Section IV.
With the above provisos, let us take a more careful look at the x-ray results. After the initial ionization of N\(_2\) by the x-rays we are left with hot electrons throughout the mesh (20-30 ev). These electrons further ionize N\(_2\), at first, and also begin dissociatively recombining the N\(_2^+\). The resulting N and N(\(^2\)D) can also be ionized by the still hot electrons. Thus, the initial effect of the chemistry is to increase the electron density. Because of the high N\(_2\) density, the electrons cool predominantly by ionizing N\(_2\), so that the electron temperature at a given time is nearly independent of distance from the target, except very near the target where N\(_2\) has been depleted. Figure 5 shows the time dependence of the electron density and temperature at three distances from the target: (1) 0.5 cm, (2) 5.0 cm, and (3) 50. cm. The temperature curves are nearly identical at 5.0 cm and 50. cm. At 0.5 cm, where the N\(_2\) has been depleted, the temperature is essentially constant by \(2 \times 10^{-6}\) sec. The electron density here has already begun to drop by a few times \(10^{-7}\) sec because of the depletion of neutrals even though the electron temperature is still high. At greater distances, where depletion of neutrals has not occurred and when the electron temperature has cooled to \(\sim 2\) ev, ionization is no longer important and the electron density begins to decrease. Figure 6 shows the densities of N\(_2\), N\(_2^+\), N\(^+\), N, and N(\(^2\)D) and the electron temperature \((T_e)\) as a function of distance from the target at \(10^{-7}\) sec. The near constancy of electron temperature with distance from the target, discussed above, can be seen here. We see that N\(_2^+\) is everywhere the major ion constituent. As electron temperatures drop or neutral species are depleted, electron densities stop increasing. But the time scales to deplete electrons are longer than the time scales exhibited here. N\(_2^+\) dissociatively recombines with a rate coefficient between \(10^{-7}\) cm\(^3\)/sec - \(10^{-8}\) cm\(^3\)/sec at these temperatures, which gives a time scale for depletion of electrons, even where N\(_2^+\) \(\sim 10^{13}\) cm\(^{-3}\), of \(10^{-6} - 10^{-5}\) sec. This is also, of course, the time scale for the buildup of N and N(\(^2\)D). N\(^+\) recombines radiatively on a much slower time scale. Thus, except for the electron temperature, which drops fairly rapidly (Figure 5), the profiles shown in Figure 6 will not change in time significantly until (and unless) the debris or uv alters the state of affairs.
We next consider the case N_2 density $= 10^{16} \text{ cm}^{-3}$ which scales to a "standard altitude" SPARTAN. Here uv emission is likely to be important, but we will postpone the analysis of uv effects to Section IV and consider only the effects of x-rays. For the laser experiment at this density, if the background is totally ionized, a weapon radius is $< 1 \text{ cm}$. Figure 7 shows electron densities as a function of distance from the target, due to x-ray deposition, for several times after deposition. These curves suggest that the debris probably does intercept a weapon mass within a few centimeters of the target. The times plotted are (1) $t = 0.0$, (2) 1×10^{-8}, (3) 1×10^{-7}, and (4) 5×10^{-7} sec after deposition. If coupling does not occur, only the nearest 0.67 cm would be altered for the $t = 10^{-8}$ sec curve. At 10^{-7} sec, 6.7 cm would be changed by the debris, and at 5×10^{-7} sec the entire plotted curve would be altered. If coupling does occur, the beam would probably be stopped in the first few centimeters, but uv emission and deposition would then alter the x-ray results. Neglecting these effects, for the moment, we now consider the x-ray only results in more detail.

In contrast to the N_2 density $= 10^{14} \text{ cm}^{-3}$ case, processes with the N_2 density $= 10^{16} \text{ cm}^{-3}$ occur much faster. At 1.0 cm the electron density appears in Figure 7 to drop monotonically from the time zero value to its value at $t = 5 \times 10^{-7}$ sec. What, in fact, has happened is the electron density has peaked by $t \sim 3 \times 10^{-9}$ sec. The major ion at this time is N_2^+, which from then on decreases at a faster rate than new ions are produced, since the electron temperature is dropping very rapidly. By $t = 1 \times 10^{-7}$ sec, at 1.0 cm, the N_2^+ has been substantially depleted (Figure 8), N^+ is the major ion and the major neutral constituents are N and $N(2D)$. At later times the N_2^+ continues to deplete, building up N and $N(2D)$ somewhat more, but N^+ remains virtually unchanged because of the long time constant for radiative recombination of N^+ and the low electron temperature, which excludes substantial ionization.

At larger distances, the time scales are, of course, somewhat slower. At 10 cm, at time $t = 10^{-7}$ sec, N_2^+ is still the major constituent at $\sim 2.5 \times 10^{13} \text{ cm}^{-3}$. The temperature is very low, cutting off ionization. The N_2^+ will continue to drop until by several times 10^{-6} sec it will be
below the N^+ value. From then on the electron density will remain essentially constant at a value $n_e \approx 1.5 \times 10^{12}$ cm$^{-3}$ for a long time.

Finally, we plot the N_2 density $= 10^{17}$ cm$^{-3}$ case, scaled to a CHECKMATE altitude. A weapon mass of ionized background N_2 will be intercepted within about 0.5 cm of the target. Assuming coupling occurs, uv emission and deposition will be very important in altering the electron densities derived from x-ray deposition. Figure 9 is a plot of the x-ray induced electron densities at times (1) $t = 0.0$, (2) 5×10^{-9}, (3) 1×10^{-8}, and (4) 2×10^{-7} sec. The general characteristics are similar to the N_2 density $= 10^{16}$ cm$^{-3}$ case. Very close in (less than 0.4 cm) the temperature is high enough, and the N_2^+ has been recombined, so that electron densities are increasing. Slightly further out, (say, 0.4-0.7 cm) the temperature is too low for ionization to increase the electron density, but the N_2^+ density is small compared to N^+ so that the electron density is not changing, and the different curves in Figure 9 are merged. Beyond this region, N_2^+ is important, and its recombination governs the decrease in electron density and increase in N and $N(2D)$. Ionization is not important because of the low electron temperature. Figure 10 shows the individual species and the electron temperature at $t = 1 \times 10^{-8}$ sec.

III. Ion Energy Degradation and Background Ionization

A. Discussion

We study the energy degradation of the ion beam due to several collisional processes, and the amount of background ionization produced by the beam using the code PRODEP. PRODEP is a code which was developed at NRL to study proton deposition in the atmosphere (Rogerson and Davis, 1974; Rogerson and Davis, 1975). The code is one-dimensional and is based upon the continuous slowing down approximation (CSDA). The collisional effects included in PRODEP are collisional ionization, electron stripping, charge exchange, and elastic collisions. PRODEP does not account for any interactions between the debris and background ions. We have modified PRODEP to study the case of a beam of aluminum ions (Al^+) propagating through a nitrogen gas (N_2). We consider a set of parameters relevant to
the NRL laser experiment and present results pertaining to (1) the energy degradation of the aluminum ion beam due to collisional effects, and (2) the ionization of the nitrogen gas due to the ion beam.

The fundamental equation used in the CSDA is

\[dE = - F(x) L(E) \, dx \]

(1)

where \(dE \) is the incremental energy change in the ion beam in kev as it traverses a distance \(dx \) through a background gas of \(F(x) \) atoms per cm\(^2\). In Eq. (1), \(L(E) \) is the ion energy loss function in kev cm\(^2\)/atom and is comprised of four parts in our model. Specifically,

\[L(E) = \text{ionization} + \text{electron stripping} + \text{charge exchange} + \text{elastic collisions} \]

(2)

The reactions considered are

1. Ionization

 \[Al + N_2 \rightarrow Al^+ + N_2^+ + e \]

 \[Al^+ + N_2 \rightarrow Al^+ + N_2^+ + e \]

2. Electron stripping

 \[Al + N_2 \rightarrow Al^+ + N_2^+ + e \]

3. Charge exchange

 \[Al^+ + N_2 \rightarrow Al + N_2^+ \]

The cross sections for these reactions were provided by Rogerson (private communication). Further details of the code can be found in Rogerson and Davis (1974) and Rogerson and Davis (1975).
Prior to discussing the results from PRODEP for the NRL laser experiment it is important to note the assumptions used in the code. First, it is assumed that the fractional energy loss per process is small. Second, the code is one-dimensional so that the scattering process is assumed to be symmetric. Third, only singly ionized states are considered. And fourth, it is assumed that the ions interact only with a neutral background gas. We point out that not all of these assumptions are well-justified in the NRL experiment. In particular, (1) the debris ions do not come off the target in a spherically symmetric manner; (2) there are indications that the debris ions are in multiple charge states that vary in time (J. Grun, private communication); and (3) close to the target the assumption of a predominately neutral gas clearly breaks down. Thus, the results from PRODEP must be interpreted with care in attempting to relate them to the NRL experiment. Nonetheless, several of the results are pertinent to the experiment and provide a good, first-order understanding of some of the collisional processes occurring in the experiment.

B. Results

We now present PRODEP results for conditions relevant to the NRL experiment. It is implicitly assumed that coupling has not occurred. An important quantity used in the analysis is F which is the number of molecules encountered per cm2. In order to make contact with experimental results, the following relationship is used

$$F = n \xi$$ \hspace{1cm} (2)

where n is the density of the background gas (cm$^{-3}$) and ξ is the distance the ions have travelled in the background gas (cm). Thus, for a given F used in the code, different values of n and ξ can be applied to the experiment through Eq. (2).

The initial energy distribution for the ion beam (Al^+) is given by

$$\Gamma(E) = \frac{\Delta E^2}{(E-E_0)^2 + \Delta E^2}$$ \hspace{1cm} (3)

where $E_0 = 60$ kev, $\Delta E = 0.23E_0$. The total energy in the ion beam is 60 joules. The average initial ion velocity of the beam is $V_0 = 6.7 \times 10^7$ cm/sec with an energy flux of 4.8×10^{15} kev/cm2. This value of the flux
corresponds to an average flux at 3.5 cm from the target, or to the flux at 4.2 cm in the forward direction in the laser experiment.

We first present "time of flight" curves (Figure 11) and the energy distribution (Figure 12) corresponding to each curve. The "time of flight" curves are shown since they correspond to the type of measurements made in the NRL experiment (J. Grun, private communication). To facilitate comparison with the experiment, and to make the results depend only on F, the time is normalized so that an ion of average energy E_o in vacuum will impact the detector at $t_{\text{norm}} = 70$ on a scale 0 to 256 (i.e., $t_{\text{norm}} = 70 V_o t_{\text{real}} / \lambda$). In Figure 11 we show "time of flight" curves for the initial conditions described above and taking $F = 10^{15}, 10^{16}, 10^{17}, 5 \times 10^{17}$ and 10^{18} cm^{-2}. The plot is number of particles on an arbitrary scale versus normalized time. The curves for $F = 10^{15}$ and 10^{16} cm^{-2} are indistinguishable and are effectively the same as would arise if $F = 0$ (i.e., an ion beam propagating through a vacuum). The ions to the left of the peak (at $t \approx 70$) are the "fast" particles ($E > 60 \text{ kev}$) while those to the right of the peak are the "slow" particles ($E < 60 \text{ kev}$). Note that the "time of flight" curves are not symmetrical about the peak, while the energy distributions (Figure 12) are symmetrical. Thus, for $F < 10^{16} \text{ cm}^{-2}$ we see that there is no energy degradation of the ion beam because of collisional interactions with the background gas. For $F = 10^{17} \text{ cm}^{-2}$ (or $n = 10^{16} \text{ cm}^{-3}$ for $\lambda = 10 \text{ cm}$) the "time of flight" curve is slightly displaced from the $F = 10^{16} \text{ cm}^{-2}$ curve (Figure 11), while there is a more noticeable change in the energy distribution (Figure 12). As F increases further, $F = 5 \times 10^{17}$ and 10^{18} cm^{-2} (or $n = 5 \times 10^{16}$ or 10^{17} cm^{-3} for $\lambda = 10 \text{ cm}$), a significant change in the "time of flight" curves (Figure 11) occurs, along with a marked change in the energy distribution. The peak of the "time of flight" curves shift to the right, indicating a slowing down of the "average" velocity of the beam, and the curves become broader. However, the broadening of the "time of flight" curves does not correspond to a broadening of the energy distribution. Note that the energy distributions for $F = 5 \times 10^{17}$ and 10^{18} cm^{-2} (Figure 12) maintain approximately the same width ΔE but the peak energy E_o decreases significantly. We expect that in the experiment the ion beam (i.e., debris ions) will broaden its energy distribution if energy degradation occurs.
PRODEP does not entirely account for this effect because in each energy channel all ions are slowed by the same amount, with no allowance for statistical variations.

The results shown in Figs. 11 and 12 are consistent with measurements made to date in the NRL laser experiment, although a detailed comparison cannot be made at this time. The reason for this is that the existing PRODEP code can only treat an aluminum target and nitrogen background, while the relevant existing data from the experiment is for a carbon target with nitrogen and hydrogen backgrounds. Nonetheless the experimental results presented by J. Grun at the DNA NRL meeting in January, 1983 indicated that for \(F < 4 \times 10^{16} \, \text{cm}^{-2} \) the debris "time of flight" curves were essentially unchanged from the vacuum case. This agrees with our results shown in Fig. 11 which indicate that for \(F < 10^{17} \, \text{cm}^{-2} \) the "time of flight" curves are virtually the same. Clearly, a more detailed comparison is needed to assess the predictions made by PRODEP in regard to the NRL laser experiment.

In Figure 13 we show a plot of percent of background primary ionized gas \((N_2^+/N_2) \) as a function of distance for the average flux. Three curves are shown, \(n = 10^{14}, 10^{16} \) and \(10^{17} \, \text{cm}^{-3} \). For the most part \(N_2^+/N_2 \propto 1/r^2 \) in each case but, as expected, there is more absorption of the beam at the higher \(n \) values. These curves are only correct for \(x \geq 3.5 \, \text{cm} \) at which \(N_2^+/N_2 \approx 9\% \). If we extrapolate these curves to the regime \(x \lesssim 3.5 \, \text{cm} \) as denoted by the dotted line, they will intersect 100% ionization near 1 cm. The dashed curves show the percent of primary ionization produced by x-rays for these same densities. For both the x-rays and the beam the \(F = 10^{14} \) curves fall off as \(1/r^2 \) but at the larger densities absorption causes the curves to fall off faster. For all densities the ionization produced by the ions is about an order of magnitude greater than that produced by the x-rays. Directly in front of the target the 9% ionization distance occurs at 4.2 cm so the difference is even greater. The results presented here are primary ionization with no effects of chemistry. The electron density and ion composition will change in time due to chemistry effects in a manner similar to that described in Section II.
IV. Uv Emission Effects

Until we have completed development of our early time codes which specify when coupling occurs, the nature of the coupling, and the resulting uv emission, we cannot predict with certainty whether the debris will be slowed, and if so, how far from the target, and what portion of the beam kinetic yield will be converted to uv. Consider, first, the N₂ density = \(10^{16}\) cm\(^{-3}\) case. In the laser experiment approximately 60% of the yield is kinetic so that uv effects are potentially more important than would be the case in a typical HANE event. To bracket the likely effects of uv we have considered two possible cases: (1) uv yield 30% of kinetic and (2) uv yield 60% of kinetic. In discussing these results one must understand that they are based upon debris-background coupling. The debris loses its energy so that it does not continue moving out from the target much past a few cm, and has a substantial portion of its directed energy converted to uv radiation. The code UVDEP assumes the uv originates from a point source at the target, an assumption that is not terribly good near the target. We have used a uv spectrum obtained from CHECKMATE calculations, which is a relatively low energy uv spectrum. The hardness of the spectrum, which can only be determined from full early time calculations may also affect the results given here.

Figure 14 shows the electron density as a function of distance from the target at \(t = 5 \times 10^{-7}\) sec with no uv and at \(t = 5.5 \times 10^{-7}\) sec for the two cases, 30% and 60% of the kinetic yield in uv. Clearly, the uv very significantly alters the ionization. The time dependence of the electron density for two points distant 2 cm and 10 cm, respectively, from the target is exhibited in Figure 15. The uv is emitted in time with 57% emitted by \(t = 2 \times 10^{-7}\) sec and 98% by \(t = 5.5 \times 10^{-7}\) sec. Consequently, at each point the electron density for the different cases initially begins falling in the same way. As the uv deposition builds up, the curves diverge with the electron density increasing. Only after the bulk of the uv has been emitted does the electron density begin to fall again. The effect of uv is clearly significant under the assumptions we have made.

Consider, now the N₂ density = \(10^{17}\) cm\(^{-3}\) case. At this higher density we expect a higher uv yield than in the previous example. We consider two cases here: (1) 62% of the kinetic yield is converted to uv radiation and
(2) 90% of the kinetic yield is converted to uv radiation. If coupling occurs the debris should be stopped within ~1 cm. Figure 16 shows the electron density profile for no uv at \(t = 1 \times 10^{-7} \) sec and for 62% and 90% of the kinetic yield converted to uv at \(t = 1.1 \times 10^{-7} \) sec. The interesting point here is that at a density of \(10^{17} \text{ cm}^{-3} \) the uv is essentially totally absorbed within a distance of ~5 cm. from the target. At closer in distances the uv is clearly important. At 2 cm from the target the uv has increased the electron density by more than an order of magnitude at \(10^{-7} \) sec.

V. Concluding Remarks

We have made a preliminary investigation of the role of radiation and collisional effects in the NRL laser/HANE experiment. The issues we have addressed are (1) the preionization of the background gas due to the initial radiation flash; (2) the energy degradation of the ions due to the several collisional processes (see Eq. (2)); (3) the ionization of the background gas due to the target ions; and (4) the ionization produced by uv radiation from the interaction of debris ions with the background gas. Our study has been based upon existing NRL codes (UVDEP and PRODEP) and considers an aluminum target and a background nitrogen gas. We have also considered parameter regimes accessible to the NRL experiment which scale (via binary collisions) to STARFISH, SPARTAN and CHECKMATE events. We emphasize that certain assumptions made in the codes are uncertain and/or violated to some extent within the context of the experiment since they were developed for actual HANE phenomena. Hence, the results must be considered preliminary and first order. More viable results depend upon further developments in early-time modeling currently underway at NRL.
Figure 1 Laser-target simulation regions.
Figure 2 X-ray spectrum of total energy emitted by laser irradiated aluminum target per square centimeter of target.
Figure 3 X-ray spectral intensity near time of peak emission of laser irradiated aluminum target.
Figure 4 Electron density as a function of distance from target: (a) Upper scale = first 10 cm, (b) Lower scale = to 70 cm. Ambient $N_2 = 10^{14}$ cm$^{-3}$. Curve labels give time after x-ray deposition: (1) = 0.0 sec, (2) = 1×10^{-7} sec, (3) = 5×10^{-6} sec.
Figure 5 Electron density and temperature as a function of time after x-ray deposition at three distances from target: (1) 0.5 cm, (2) 5.0 cm, and (3) 50. cm. Ambient N$_2$ = 1014 cm$^{-3}$.

19
Figure 6 Specie densities and electron temperature at 1×10^{-7} sec after x-ray deposition as a function of distance from the target. Ambient $N_2 = 10^{14}$ cm$^{-3}$.
Figure 7 Electron density as a function of distance from target. Ambient \(N_2 = 10^{16} \text{ cm}^{-3} \). Curve labels give time after x-ray deposition: (1) = 0.0 sec, (2) \(1 \times 10^{-8} \) sec, (3) = \(1 \times 10^{-7} \) sec, (4) = \(5 \times 10^{-7} \) sec.
Figure 8 Specie densities and electron temperature at 1 x 10^{-7} sec after x-ray deposition as a function of distance from the target. Ambient N_2 = 10^{16} \text{ cm}^{-3}.
Figure 9 Electron density as a function of distance from target. Ambient $N_2 = 10^{17}$ cm$^{-3}$. Curve labels give time after x-ray deposition: (1) $= 0.0$ sec, (2) $= 5 \times 10^{-9}$ sec, (3) 1×10^{-8} sec, (4) 5×10^{-8} sec, (5) 2×10^{-7} sec.
Figure 10 Specie densities and electron temperature at 1×10^{-8} sec after x-ray deposition as a function of distance from the target. Ambient $N_2 = 10^{17}$ cm$^{-3}$.
Figure 11 Distribution function of debris ions as a function of normalized time of flight (see text) for different values of F^2 number of molecules/cm2 encountered by beam.
Figure 12 Energy distribution function (number/keV) of debris ions for different values of \(F \) = number of molecules/cm\(^2\) encountered by beam.
Figure 13 Percent primary ionization due to debris ions (solid curves) and x-rays (dashed curves) as a function of distance from target for various ambient N₂ densities.
Figure 14 Electron density as a function of distance from target at approximately 5×10^{-7} sec after x-ray deposition. Ambient $N_2 = 10^{16}$ cm$^{-3}$. Curve labels give percent of kinetic yield of debris ions converted to uv.
Figure 15 Electron density as a function of time after x-ray deposition at distances of 2.0 cm and 10.0 cm from target. Ambient $N_2 = 10^{16}$ cm$^{-3}$. Curve labels give percent of kinetic yield of debris ions converted to uv. Dashed lines are extrapolations beyond calculation.
Figure 16 Electron density as a function of distance from target at approximately 1×10^{-7} sec after x-ray deposition. Ambient $N_2 = 10^{17}$ cm$^{-3}$. Curve labels give percent of kinetic yield of debris ions converted to uv.
Acknowledgments

The authors would like to thank J. Davis, R. Clark, D. Duston, and J. Rogerson of NRL's Plasma Radiation Branch for many fruitful discussions concerning the appropriate x-ray spectrum for this experiment and aid in establishing reasonable ion-neutral cross sections. We also wish to thank B. Ripin of NRL's Laser Plasma Branch and J. Grun of Mission Research Corporation for many helpful discussions concerning the laser experiment. This work was funded by the Defense Nuclear Agency.
References

Hyman, E., T. Young, and T. Coffey (see authors for reference), 1971.

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>DEPARTMENT OF DEFENSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSISTANT SECRETARY OF DEFENSE</td>
</tr>
<tr>
<td>COMM, CMD, CONT 7 INTELL</td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20301</td>
</tr>
<tr>
<td>DIRECTOR</td>
</tr>
<tr>
<td>COMMAND CONTROL TECHNICAL CENTER</td>
</tr>
<tr>
<td>PENTAGON RM BE 685</td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20301</td>
</tr>
<tr>
<td>01CY ATTN C-650</td>
</tr>
<tr>
<td>01CY ATTN C-312 R. MASON</td>
</tr>
<tr>
<td>DIRECTOR</td>
</tr>
<tr>
<td>DEFENSE ADVANCED RSCH PROJ AGENCY</td>
</tr>
<tr>
<td>ARCHITECT BUILDING</td>
</tr>
<tr>
<td>1400 WILSON BLVD.</td>
</tr>
<tr>
<td>ARLINGTON, VA. 22209</td>
</tr>
<tr>
<td>01CY ATTN NUCLEAR MONITORING RESEARCH</td>
</tr>
<tr>
<td>01CY ATTN STRATEGIC TECH OFFICE</td>
</tr>
<tr>
<td>DIRECTOR</td>
</tr>
<tr>
<td>DEFENSE COMMUNICATION ENGINEER CENTER</td>
</tr>
<tr>
<td>1860 WIEHLE AVENUE</td>
</tr>
<tr>
<td>RESTON, VA. 22090</td>
</tr>
<tr>
<td>01CY ATTN CODE R410</td>
</tr>
<tr>
<td>01CY ATTN CODE R612</td>
</tr>
<tr>
<td>DEFENSE TECHNICAL INFORMATION CENTER</td>
</tr>
<tr>
<td>CAMERON STATION</td>
</tr>
<tr>
<td>ALEXANDRIA, VA. 22314</td>
</tr>
<tr>
<td>02CY</td>
</tr>
<tr>
<td>DIRECTOR</td>
</tr>
<tr>
<td>DEFENSE NUCLEAR AGENCY</td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20305</td>
</tr>
<tr>
<td>01CY ATTN STVL</td>
</tr>
<tr>
<td>04CY ATTN TITL</td>
</tr>
<tr>
<td>01CY ATTN DDST</td>
</tr>
<tr>
<td>03CY ATTN RAAE</td>
</tr>
<tr>
<td>COMMANDER</td>
</tr>
<tr>
<td>FIELD COMMAND</td>
</tr>
<tr>
<td>DEFENSE NUCLEAR AGENCY</td>
</tr>
<tr>
<td>KIRTLAND, AFB, NM 87115</td>
</tr>
<tr>
<td>01CY ATTN FCPR</td>
</tr>
</tbody>
</table>

| DIRECTOR |
| INTERSERVICE NUCLEAR WEAPONS SCHOOL |
| KIRTLAND AFB, NM 87115 |
| 01CY ATTN DOCUMENT CONTROL |
| DIRECTOR |
| JOINT CHIEFS OF STAFF |
| WASHINGTON, D.C. 20301 |
| 01CY ATTN J-3 WMMC3S EVALUATION OFFICE |
| DIRECTOR |
| JOINT STRAT TGT PLANNING STAFF |
| OFFUTT AFB |
| OMAHA, NB 68113 |
| 01CY ATTN JLTW-2 |
| 01CY ATTN JPST G. GOETZ |
| CHIEF |
| LIVERMORE DIVISION FLD COMMAND DNA |
| DEPARTMENT OF DEFENSE |
| LAWRENCE LIVERMORE LABORATORY |
| P.O. BOX 808 |
| LIVERMORE, CA 94550 |
| 01CY ATTN FCPRL |
| COMMANDANT |
| NATO SCHOOL (SHAPE) |
| APO NEW YORK 09172 |
| 01CY ATTN U.S. DOCUMENTS OFFICER |
| DIRECTOR |
| UNDER SECY OF DEF FOR RSCH & ENCRG |
| DEPARTMENT OF DEFENSE |
| WWMCCS SYSTEM ENGINEERING ORG |
| WASHINGTON, D.C. 20305 |
| 01CY ATTN R. CRAWFORD |
| COMMANDER/DIRECTOR |
| ATMOSPHERIC SCIENCES LABORATORY |
| U.S. ARMY ELECTRONICS COMMAND |
| WHITE SANDS MISSILE RANGE, NM 88002 |
| 01CY ATTN DELAS-EO F. NILES |

33
HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/DC
DEPARTMENT OF THE AIR FORCE
HANSCOM AFB, MA 01731
01CY ATTN DOCC MAJ J.C. CLARK

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
01CY ATTN NICD LIBRARY
01CY ATTN ETDP B. BALLARD

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13441
01CY ATTN DOC LIBRARY/TSLD
01CY ATTN OCSE V. COYNE

SAMSO/SZ
POST OFFICE BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
(SPACE DEFENSE SYSTEMS)
01CY ATTN SZJ

STRATEGIC AIR COMMAND/XFFS
OFFUTT AFB, NB 68113
01CY ATTN ADWATE MAJ BRUCE BAUER
01CY ATTN NRT
01CY ATTN DOK CHIEF SCIENTIST

SAMSO/SK
P.O. BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
01CY ATTN SKA (SPACE COMM SYSTEMS)
M. CLAVIN

SAMSO/YN
NORTON AFB, CA 92409
(MINUTEMAN)
01CY ATTN MNRL

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSCOM AFB, MA 01731
01CY ATTN EEP A. LORENTZEN

DEPARTMENT OF ENERGY
LIBRARY ROOM G-042
WASHINGTON, D.C. 20545
01CY ATTN DOC CON FOR A. LABOWITZ

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P.O. BOX 5400
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR D. SHERWOOD

EG&G, INC.
LOS ALAMOS DIVISION
P.O. BOX 809
LOS ALAMOS, NM 85544
01CY ATTN DOC CON FOR J. BREEDLOVE

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR TECH INFO DEPT
01CY ATTN DOC CON FOR L-389 R. OTT
01CY ATTN DOC CON FOR L-31 R. HAGER
01CY ATTN DOC CON FOR L-46 F. SEWARD

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545
01CY ATTN DOC CON FOR J. WOLCOTT
01CY ATTN DOC CON FOR R.F. TASCHEK
01CY ATTN DOC CON FOR E. JONES
01CY ATTN DOC CON FOR J. MALIK
01CY ATTN DOC CON FOR R. JEFFRIES
01CY ATTN DOC CON FOR J. ZINN
01CY ATTN DOC CON FOR P. KEATON
01CY ATTN DOC CON FOR D. WESTERVETL
01CY ATTN D. SAPPENFIELD

SANDIA LABORATORIES
P.O. BOX 5800
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR W. BROWN
01CY ATTN DOC CON FOR A. THORNBROUGH
01CY ATTN DOC CON FOR T. WRIGHT
01CY ATTN DOC CON FOR D. DAHlgREN
01CY ATTN DOC CON FOR 3141
01CY ATTN DOC CON FOR SPACE PROJECT DIV

SANDIA LABORATORIES
LIVERMORE LABORATORY
P.O. BOX 969
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR B. MURPHY
01CY ATTN DOC CON FOR T. COOK

OFFICE OF MILITARY APPLICATION
DEPARTMENT OF ENERGY
WASHINGTON, D.C. 20545
01CY ATTN DOC CON DR. YO SONG

36
IONOSPHERIC MODELING DISTRIBUTION LIST
(UNCLASSIFIED ONLY)

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE (UNLESS OTHERWISE NOTED)

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
DR. S. OSSAKOW - Code 4700 (26 Copies)
Code 4701
Code 4780 (100 copies)
DR. P. MANGE - CODE 4101
DR. E. SZUSZCZEWICZ - CODE 4108
DR. J. GOODMAN - CODE 4180
DR. P. RODRIGUEZ - CODE 4108

A.F. GEOPHYSICS LABORATORY
L.G. HANSCOM FIELD
BEDFORD, MA 01730
DR. T. ELKINS
DR. W. SWIDER
MRS. R. SAGALYN
DR. J.M. FORBES
DR. T J. KENESHEA
DR. W. BURKE
DR. H. CARLSON
DR. J. JASPERSE

BOSTON UNIVERSITY
DEPARTMENT OF ASTRONOMY
BOSTON, MA 02215
DR. J. AARONS

CORNELL UNIVERSITY
ITHACA, NY 14850
DR. W.E. SMARTZ
DR. R. SUDAN
DR. D. FARLEY
DR. M. KELLEY

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MA 02138
DR. N.B. McELROY
DR. R. LINDZEN

INSTITUTE FOR DEFENSE ANALYSIS
400 ARMY/NAVY DRIVE
ARLINGTON, VA 22202
DR. E. BAUER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PLASMA FUSION CENTER
LIBRARY, NW16-262
CAMBRIDGE, MA 02139

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
DR. R.F. BENSON
DR. K. MAEDA
DR. S. CURTIS
DR. N. DUBIN
DR. N. HAYNARD - CODE 696

COMMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20360
DR. T. CZUBA

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
MR. R. ROSE - CODE 5321

NOAA
DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY
BOULDER, CO 80302
DR. A. GLENN JEAN
DR. G.W. ADAMS
DR. D.N. ANDERSON
DR. K. DAVIES
DR. R. F. DONNELLY

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
DR. G. JOINER

41
END

FILMED

9-83

DTIC