CALCULATING THE PROBABILITY OF RADIATION FROM THE DISSOCIATED STATES OF DIATOMIC MOLECULES(U) FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH V A KOCHELAP

UNCLASSIFIED 06 JUL 83 FTD-1D(RS)T-0571-83 F/G 7/4
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 A
FOREIGN TECHNOLOGY DIVISION

CALCULATING THE PROBABILITY OF RADIATION FROM THE DISSOCIATED STATES OF DIATOMIC MOLECULES

by

V. A. Kochelap

Approved for public release; distribution unlimited.
CALCULATING THE PROBABILITY OF RADIATION FROM THE DISSOCIATED STATES OF DIATOMIC MOLECULES

By: V. A. Kochelap

English pages: 16

Source: Ukrainskiy Fizicheskiy Zhurnal, Vol. 15, No. 6, June 1980, pp. 1000-1013

Country of origin: USSR
Translated by: Victor Messeneff
Requester: FTD/TQTD
Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.
<table>
<thead>
<tr>
<th>Block</th>
<th>Italic</th>
<th>Transliteration</th>
<th>Block</th>
<th>Italic</th>
<th>Transliteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>А а</td>
<td>A, a</td>
<td>А a</td>
<td>Р р</td>
<td>P, p</td>
<td>R, r</td>
</tr>
<tr>
<td>Б б</td>
<td>B, b</td>
<td>Б b</td>
<td>С с</td>
<td>С c</td>
<td>S, s</td>
</tr>
<tr>
<td>В в</td>
<td>V, v</td>
<td>В v</td>
<td>Т т</td>
<td>T, t</td>
<td>T, t</td>
</tr>
<tr>
<td>Г г</td>
<td>G, g</td>
<td>Г g</td>
<td>У у</td>
<td>У u</td>
<td>U, u</td>
</tr>
<tr>
<td>Д д</td>
<td>D, d</td>
<td>Д d</td>
<td>Ф ф</td>
<td>Ф f</td>
<td>F, f</td>
</tr>
<tr>
<td>Е е</td>
<td>Ye, ye</td>
<td>Е e*</td>
<td>А х</td>
<td>X, x</td>
<td>Kh, kh</td>
</tr>
<tr>
<td>Ж ж</td>
<td>Ch, ch</td>
<td>Ж ж</td>
<td>Ц ц</td>
<td>Ч, ch</td>
<td>Ts, ts</td>
</tr>
<tr>
<td>З з</td>
<td>Z, z</td>
<td>З z</td>
<td>Ю ю</td>
<td>Ю ю</td>
<td>Ш, sh</td>
</tr>
<tr>
<td>И и</td>
<td>I, i</td>
<td>И и</td>
<td>Ш щ</td>
<td>Ш щ</td>
<td>Shch, shch</td>
</tr>
<tr>
<td>Я я</td>
<td>Y, y</td>
<td>Я я</td>
<td>Б б</td>
<td>Б, b</td>
<td></td>
</tr>
<tr>
<td>К к</td>
<td>K, k</td>
<td>К к</td>
<td>Ч ч</td>
<td>Ч, ch</td>
<td></td>
</tr>
<tr>
<td>Л л</td>
<td>L, l</td>
<td>Л л</td>
<td>З з</td>
<td>З, z</td>
<td></td>
</tr>
<tr>
<td>М м</td>
<td>M, m</td>
<td>М м</td>
<td>Э э</td>
<td>Э, e</td>
<td></td>
</tr>
<tr>
<td>Н н</td>
<td>N, n</td>
<td>Н н</td>
<td>Ю ю</td>
<td>Ю, yu</td>
<td></td>
</tr>
<tr>
<td>О о</td>
<td>О, o</td>
<td>О о</td>
<td>Я я</td>
<td>Я, ya</td>
<td></td>
</tr>
</tbody>
</table>

*ye initially, after vowels, and after б, б; э elsewhere.

When written as ë in Russian, transliterate as yë or ë.

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

<table>
<thead>
<tr>
<th>Russian</th>
<th>English</th>
<th>Russian</th>
<th>English</th>
<th>Russian</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin</td>
<td>sin</td>
<td>sh</td>
<td>sinh</td>
<td>arc sh</td>
<td>sinh</td>
</tr>
<tr>
<td>cos</td>
<td>cos</td>
<td>ch</td>
<td>cosh</td>
<td>arc ch</td>
<td>cosh</td>
</tr>
<tr>
<td>tg</td>
<td>tan</td>
<td>th</td>
<td>tanh</td>
<td>arc th</td>
<td>tanh</td>
</tr>
<tr>
<td>ctg</td>
<td>cot</td>
<td>cth</td>
<td>coth</td>
<td>arc cth</td>
<td>coth</td>
</tr>
<tr>
<td>sec</td>
<td>sec</td>
<td>sch</td>
<td>sech</td>
<td>arc sch</td>
<td>sech</td>
</tr>
<tr>
<td>cosec</td>
<td>csc</td>
<td>csch</td>
<td>csch</td>
<td>arc csch</td>
<td>csch</td>
</tr>
</tbody>
</table>

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.
CALCULATING THE PROBABILITY OF RADIATION FROM THE DISSOCIATED STATES OF DIATOMIC MOLECULES

V. A. Kochelap

The probability of electronic phototransition accompanying the collision of two atoms, i.e., phototransition from the dissociated states of a diatomic molecule, was calculated. The main problem is a correct consideration of the relative motion of atoms, which constitutes the specific nature of the phototransition under consideration. The electron motion is assumed to be given (in an adiabatic approximation). The relative motion of electrons is being examined with the aid of the approximate solutions of the Shroedinger equation. The velocity distribution of the colliding atoms is taken into account by means of the density operator. The results obtained are more general than those of the classical theory. In instances where the classical theory yields a result that is different from zero, the criteria of validity of classical examination are written out. This article investigates the spectral dependence of the probability of radiation during a collision of two atoms.

Introduction

In the work done by Pekar [1], a qualitatively new possibility of using chemical processes in lasers is shown. His approach is to stimulate the radiative transitions occurring immediately during the elementary chemical events.

In order to estimate the capabilities of the laser proposed in [1], it is necessary to know quantitatively the probabilities of phototransitions accompanying the elementary chemical processes. The special feature of such transitions is the fact that the light is emitted by the atoms which have not formed a molecule at the moment of their collision, i.e., from the dissociated states of atoms.
This work is devoted to the study of phototransitions from the dissociated states of atoms and develops some of the results obtained in [2].

It is convenient to conduct this examination in an adiabatic approximation. Then the wave function of an atom pair \(\Psi_{\text{el}}(q,r) \) can be presented in the form \(\Psi_{\text{el}}(q,r) = \Psi_\text{el}(q,r) \varphi_{\text{el}}(r) \), where \(\Psi_\text{el}(q,r) \) is the electron wave function, \(\varphi_{\text{el}}(r) \) - wave function of nuclear motion, \(q \) - set of electron coordinates, \(r \) - relative distance between nuclei, \(s \) - set quantum numbers characterizing nuclear motion, and \(g \) - electron quantum number.

The \(\Psi_\text{el}(q,r) \) depends on \(r \) as on the parameter, \(\varphi_{\text{el}}(r) \) is the eigenfunction of the Hamiltonian of the nuclear subsystem \(H_\text{n}(r) = -\frac{\hbar^2 \Delta_\text{n}}{2\mu} + u_\text{n}(r) \), here \(\mu \) is the reduced mass of the atom pair and \(u_\text{n}(r) \) - potential energy of the nuclei, which is determined by the electron motion.

Since \(u_\text{n}(r) \) is a centrally symmetrical potential, \(\varphi_{\text{el}}(r) = \frac{1}{r} \chi_{\text{el}}(r) \ Y_{lm}(\theta, \varphi) \), \(s = (n, l, m) \), \(Y_{lm}(\theta, \varphi) \) are spherical functions and \(n \) is a vibrational quantum number for the bound states and simply energy for the dissociated states. The \(\chi_{\text{el}}(r) \) satisfies the Shroedinger equation with the potential \(u_\text{el}(r) = u_\text{n}(r) + \frac{\hbar^2 (l+1)}{2\mu r^2} \), the eigenvalue of this equation is the total energy of the system in the state with the quantum numbers \((g, s) \). The energy of the dissociated states is independent of \(l \) and \(m \).

According to [2], the probability of the phototransition from the electron state \(g \) to the state \(g' \) can be presented as

\[
\omega_{gg'} = \frac{2n \hbar^4}{\hbar \omega} \int_0^{\infty} dt e^{-\frac{i\omega t}{\hbar}} \text{Sp} \left[U_{\text{el}}(r) R_g \ e^{-\frac{H_{\text{el}}}{\hbar} t} e^{\frac{H_\text{n}}{\hbar} t} \right].
\]

where \(U_{\text{el}}(r) \) is the matrix element of the electron-velocity operator calculated on the wave functions \(\Psi_{\text{el}}(q,r) \) and \(\Psi_{\text{el}'}(q,r) \), \(\omega \) - frequency of light, and \(R_g \) - density operator determining the population of the energy levels of the atom pair, when the electrons are in the \(g \) state. In expression (1) it is necessary to take into account only the relative motion of atoms. This motion is the one which constitutes the specific nature of these phototransitions, and to calculate it is the main objective of this work. We will assume that such electron characteristics as \(u_g(r) \), \(u_{g'}(r) \), and \(u_{\text{el}gg'}(r) \) are given.

In order to calculate the probability of a phototransition during a collision, we will differentiate between cases A and B.
Case A is realized if the centrifugal energy of the relative rotation of the atoms does not prevent the atoms from moving towards one another reaching distances at which an effective phototransition occurs, i.e., if \(u_\varphi(r) \) diminishes slower than \(r^{-2} \) with \(r \to \infty \).

Case B, on the other hand, occurs in the presence of a centrifugal barrier in the function \(u_\varphi(r) \) with \(r > 0 \), i.e., when \(u_\varphi(r) \) diminishes faster than \(r^{-2} \).

Case A was examined in work [2] with a quasiclassical motion of the nuclei. In this work this case will be examined without the indicated limitation and we will obtain the applicability criteria for a quasiclassical investigation of motion of the nuclei. We will also conduct a thorough analysis of case B.

1. Calculation of Matrix Elements

1. In a number of cases, it is convenient to calculate the expression for the probability of phototransition (1) with the aid of the matrix elements. If we assume that a dissociated diatomic molecule is in the electron state \(\varphi \) and during radiation it passes to the \(\varphi' \) state, the following form of matrix elements should be calculated:

\[
\langle \varphi E | U_\varphi | \varphi' \rangle = \int dr \varphi_{\varphi E E}(r) \langle \varphi E | U_\varphi | \varphi' \rangle.
\]

where the energy of the initial \(\varphi \) and final \(\varphi' \) states are coupled by the law of conservation \(E - E_{\varphi'} = h\omega \).

For the dissociated states everywhere, with the exception of the stopping point \(r_1 \), the wave function \(\varphi_{\varphi E E}(r) \) can be calculated in the quasiclassic approximation:

\[
\varphi_{\varphi E E}(r) = \begin{cases}
\frac{A}{2\sqrt{P(r)}} \exp \left[-\frac{1}{2} \int_0^r dr |P(r)| \right], & r < r_1, \\
\frac{A}{\sqrt{P(r)}} \sin \left[\frac{1}{2} \int_0^r dr P(r) + \frac{\pi}{4} \right], & r > r_1,
\end{cases}
\]

\[
P(r) = P_{\varphi E E}(r) = \sqrt{2\mu(E - u_\varphi(r))}, \quad A \text{ is a normalized constant.}
\]

We will assume that in the vicinity \(r_1(P(r_1) = 0) \), \(u_\varphi(r) = -(r - r_1)F_\varphi(r) \); then, in this region, \(\varphi_{\varphi E E}(r) \) is given by the Airy function [3]:

\[\text{For the sake of brevity we omit the indices } \varphi, \varphi', \text{ and } 1 \text{ in the values } P_{\varphi E E}(r), r_1, r_\varphi, \text{ and other. The values pertaining to the } \varphi' \text{ state we denote by dashes, for example, } P(r) = P_{\varphi' E}(r) \text{ etc.}\]
\[x_{\text{rot}}(r) = \frac{A}{\sqrt{2 \mu \hbar^2 F_\nu(r)}} A \left[(r - r) \sqrt{\frac{2 \mu F_\nu(r)}{\hbar^2}} \right]. \tag{5} \]

where
\[A[x] = \frac{1}{\sqrt{\pi}} \int_0^\infty dy \cos \left(\frac{y^2}{3} + xy \right). \]

For the lowest bound states it is possible to restrict oneself to the quadratic expansion of \(u_{\nu}(r) \) in the vicinity of its minimum \(r_0 \), i.e., having assumed that \(u_{\nu}(r) = u_{\nu}(r_0) + \frac{\hbar^2}{2 \mu} (r - r_0)^2 \). Then the wave function of the rotational sublevels of the principal vibrational state, for example, is presented as
\[x_{\text{rot}}(r) = \frac{1}{\sqrt{2 \pi \hbar^2}} e^{-\frac{(r-r_0)^2}{2}} x_0 = \sqrt{\frac{2 \pi}{\hbar^2 \omega}}. \tag{6} \]

The energy of these sublevels \(E_{\nu} = E_{\nu 0} + \frac{\hbar^2 (\nu + 1)}{2 \mu \omega^2} \).

We can use the following quasiclassical expression for the strongly excited states:
\[x_{\text{rot}}(r) = \begin{cases} \frac{A'}{\sqrt{P'(r)}} \sin \left[\frac{1}{\hbar} \int_{r_1}^{r} dr' P'(r') + \frac{\pi}{4} \right], & r_1 < r < r'_2 \tag{7} \\ \frac{A'}{2 \sqrt{|P'(r)|}} e^{-\frac{1}{2} \int_{r_2}^{r_1} P'(r') \right]}, & r > r'_2 \end{cases} \tag{8} \]

Here \(P'(r) = P_\nu(r), A' = \sqrt{\frac{2 \mu \omega}{\pi}}, \omega \) is the frequency of vibrations, \(r_1' \) and \(r_2' \) are the stopping points (\(P'(r_1') = P'(r_2') = 0 \)). In the vicinity of these points it is possible to write, analogously to (5), the function \(x_{\text{rot}}(r) \); for example, in the vicinity of \(r_1' \)
\[x_{\text{rot}}(r) = \frac{A}{\sqrt{2 \pi |F_\nu(r)|}} A' \left[(r - r) \sqrt{\frac{2 \mu F_\nu(r)}{\hbar^2}} \right]. \tag{9} \]

\[F_\nu = -\frac{\partial u_{\nu}}{\partial r}, \text{ here } F_\nu(r_1') > 0, F_\nu(r_2') < 0. \]

2. The matrix element (2) is calculated easily with the aid of functions (3)-(6), when \(n = 0, l > 0 \). The analytical expressions for (2) differ in such cases: \(r_0 < r_0, r_0 = r_1, r_0 > r_1 \).
In the first case one should use expression (3) as the wave function of the dissociated state. Considering the $U_{xgg}(r)$ a smooth function, we take it out from under the integral sign at the maximum point of the expression r_m under the integral sign whose vicinity is determined by (2), as a result we obtain

$$
\langle gEl | U_x | g'nl \rangle = \frac{A \sqrt{2} \pi U_{xgg}(r_m)}{\alpha \sqrt{2 \pi} |P(r_m)|} e^{-\varphi(r_m)}.
$$

$$
d^2 = \frac{\hbar^2 x_0^2 + 2 \mu F_x(r_m)|P(r_m)|}{2 \mu \alpha F_x(r_m)|P(r_m)|}, \quad r_0 < r_1,
$$

where r_m is determined from the condition $\frac{d\varphi}{dr}(r) = 0, \varphi(r) = -\frac{(r-r_0)^2}{2x_0^2} + \int_{r_0}^{r} dr |P(r)|$.

With $r_0 = r_1$ we will use $x_{el}(r)$ from (5); then, after carrying out U_{xgg} at point r_1, we write

$$
\langle gEl | U_x | g'nl \rangle = \frac{A \sqrt{2} \pi U_{xgg}(r_1)}{\alpha \sqrt{2 \pi} |P(r_1)|} e^{-\varphi(r_1)} A \left[b \eta + \frac{b^2}{4} \right].
$$

where $b = x_0 \sqrt{\frac{2 \mu F_x(r_1)}{\alpha^2}}, \eta = \frac{r_1 - r_0}{r_0}$.

Finally, for the third case $(r_0 > r_1)$, we find the following from (4) and (6):

$$
\langle gEl | U_x | g'nl \rangle = \frac{A \sqrt{2} \pi U_{xgg}(r_0)}{\alpha \sqrt{2 \pi} |P(r_0)|} \sin \varphi(r_0) e^{-\frac{2 \pi - \varphi(0)}{\alpha}},
$$

where $\varphi(r) = \frac{\pi}{4} + \int_{r_0}^{r} dr |P(r)|$.

We note that expressions (10)-(12) change into one another, just as functions (3)-(5), at the limits of their applicability regions. Thus, these formulas determine the matrix element of transition to the lowest excited states with any relative disposition of the curves $u_x(r)$ and $u_{x'}(r)$.

3. When $n >> 1$, we will use functions (3)-(5) and (7)-(9) for calculating (2). As is known (see, for example, [3] and also [2], when $n >> 1$, the main contribution to the matrix element is due to the
neighborhoods of the transition points \(r_j \) determined from the equation

\[\Delta U_{\text{eff}} (r) = u_x (r) - u_x (r) = \hbar \omega. \]

(13)

Here we will calculate the contribution made by points \(r_j \) to (2), when \(\left. \frac{d\Delta U_{\text{eff}}}{dr} \right|_{r_j} \neq 0 \). The contribution of these points depends substantially on the form of the potential-energy curves. In particular, it is easy to check that the contribution of points \(r_j \) to (2) is small, when \(r_j < \max(r_1, r_1) \) and \(r_j > \max(r_2, r_2) \).

With \(r_2 < r < r_1 \), after substituting expressions (3) and (8) in (2) and carrying out \(U_{\text{eff}} (r) \) at point \(r_j \), we obtain the following exponentially small expression for the matrix element:

\[
\langle gEl | U_x | g'nl \rangle = \frac{AA' V}{4 \sqrt{\mu P(r_j)}} \frac{\pi \hbar \Delta U_{\text{eff}} (r_j)}{\mu P(r_j) \left| \frac{d\Delta U_{\text{eff}}}{dr} \right|_{r_j}^{r_j}} e^{-\frac{1}{2} \int_{r_2}^{r_1} dr P(r)} \cos \varphi (r).
\]

(14)

With \(r_1, r'_1 < r < r'_2 \), a similar calculation with the aid of functions (4) and (7) results in the following:

\[
\langle gEl | U_x | g'nl \rangle = \frac{AA' V}{\sqrt{\mu P(r_j)}} \frac{\pi \hbar \Delta U_{\text{eff}} (r_j)}{\mu P(r_j) \left| \frac{d\Delta U_{\text{eff}}}{dr} \right|_{r_j}^{r_j}} \cos \varphi (r).
\]

(15)

\[\varphi (r_j) = \frac{1}{\hbar} \int_{r_1}^{r_2} dr P(r) - \frac{1}{\hbar} \int_{r_1}^{r_2} dr P'(r). \]

In the cases \(r_1, r_1' \approx r_j \) and \(r_1, r_1' \approx r_j \), one should use formulas (5) and (9); thus, we obtain

\[
\langle gEl | U_x | g'nl \rangle = \frac{AA' U_{\text{eff}} (r_j) \sqrt{\pi \hbar} \left[(E - u_x (r_j)) \right]^3}{\sqrt{2 \mu \hbar} \left| \frac{d\Delta U_{\text{eff}}}{dr} \right|_{r_j}^{r_j}} \sqrt{\frac{2 \mu [F_x (r_j) - F_x (r_j)]}{\hbar}} \sqrt{F_x (r_j) [F_x (r_j)]^3}.
\]

(16)

We note that with a change in \(r_j \), expressions (14)–(16) change into one another.

Expressions (15) and (16), also some of those presented below, are oscillating functions \(r_j, E, \ell \) etc. This is connected with the fact that the phototransition is realized from a state (or between states), which is of the standing-wave type (4) and (7). The matrix element
vanishes when the point \(r_j \) coincides with the node of this wave; since the contribution of other points \(r \neq r_j \) to (2) is small, in reality, the vanishing of the matrix element corresponds to very small probabilities of phototransitions.

4. Since in the general case the difference \(\Omega_{gg'}(r) \) is limited from above and below, then there is an upper or a lower boundary of the frequency region, in which equation (13) has a solution and in which expressions (14)–(16) are valid.

Let us calculate (2) close to any of the indicated boundaries. Let the value of the threshold frequency be \(\omega=\omega_0 \) and \(r_0 \) is the root of equation (13), when \(\omega=\omega_0 \). It is possible to show that \(r_0 \) is a multiple root, while \(\left. \frac{d \Omega_{gg'}}{dr} \right|_{r_0} = 0 \). As before, the main contribution to the matrix element is made by the neighborhood of the point \(r_0 \), where \(\Omega_{gg'}(r) \) does not have to be zero, but always small. For definiteness, let \(\omega_0 \) correspond to the maximum \(\Omega_{gg'}(r) \), then, in the neighborhood \(r_0 \left(\frac{d \Omega_{gg'}}{dr^2} \right|_{r_0} < 0 \), it is possible to write

\[
\Omega_{gg'}(r) = \begin{cases}
\omega^0 + \frac{1}{2}(r-r_0^0) \left. \frac{d \Omega_{gg'}}{dr} \right|_{r_0}, \omega > \omega_0; \\
\omega + (r-r_0) \left. \frac{d \Omega_{gg'}}{dr} \right|_{r_0} + \frac{1}{2}(r-r_0)^2 \left. \frac{d^2 \Omega_{gg'}}{dr^2} \right|_{r_0}, \omega < \omega_0.
\end{cases}
\] (17)

Taking into account (17), with the aid of (4) and (7) we calculate the matrix element, assuming that the main contribution is due to the neighborhood of the point \(r_0 \), as a result we obtain the following:

with \(\omega > \omega_0 \)

\[
\langle gE|U_s|g'n \rangle = \frac{AA' V \pi U_{s,gg'}(r_0) \cos \varphi(r_0)}{\sqrt{4\mu P(r_0) \frac{d \Omega_{gg'}}{dr^2}}} \left. A \left[\frac{\omega_0 - \omega}{\sqrt{\frac{P^2(r_0)}{2\mu^3} \frac{d^2 \Omega_{gg'}}{dr^2}}} \right] \right] \] (18)

with \(\omega < \omega_0 \)

\[
\langle gE|U_s|g'n \rangle = \frac{AA' V \pi U_{s,gg'}(r_0) \cos \varphi(r_0)}{\sqrt{4\mu P(r_0) \frac{d \Omega_{gg'}}{dr^2}}} \left. A \left[\frac{\omega_0 - \omega}{\sqrt{\frac{P^2(r_0)}{2\mu^3} \frac{d^2 \Omega_{gg'}}{dr^2}}} \right] \right] \] (19)

\[C = \left. \frac{d \Omega_{gg'}}{dr} \right|_{r_0} \mu^{1/2} \left(4P(r_0) \frac{d \Omega_{gg'}}{dr^2} \right)^{-1/2}.
\]
where \(\varphi(r) \) should be taken from (15) and \(\varphi(r) = \varphi(r) - \frac{2C^2}{3} \).

Expression (19) describes the behavior of the matrix element in the region, where (15) ceases to be valid due to the tendency towards zero \(\frac{dQ_{xx}}{dr} \). Hence the applicability criterion of formula (15):

\[
\left| \frac{dQ_{xx}}{dr} \right| \gg \left(\frac{4P(r)}{\mu} \right)^{1/2} \left(\left| \frac{dQ_{xx}}{dr} \right| \right)^{1/2}.
\]

(20)

We note that the applicability criteria of formulas (14) and (16) have an analogous form.

Generally speaking, the edge of the frequency region, in which (13) has a solution, can wind up at such a point \(r_j^0 \), where \(r_j = r_1 = r'_1 \). However, this is a rare case for us, since it requires the fulfillment of two conditions simultaneously: \(r_j = r_1 = r'_1 \) and \(\frac{dQ_{xx}}{dr} \bigg| _{r_j} = 0 \) with the same parameter \(\omega \). A simple geometrical examination shows that there can be no other relations between \(r_j^0, r_1, r'_1, \) and \(r_2 \) with the exception of those calculated.

2. Calculating the Probabilities of Phototransitions with the Aid of Matrix Elements

1. Expression (1) can be written in the following form for the phototransitions from the dissociated states:

\[
\omega_{xx} = \frac{4\pi c^2}{\hbar} \int dE \sum_{n,l} (2l + 1) R_{xx}^2 | \langle gE | U_x | g'l \rangle |^2 \delta(E - E_{nl} - \hbar \omega).
\]

(21)

where \(R_{xx} \) are matrix elements of the diagonal density operator \(R_g \).

In the case A we will use the Gibbs distribution for \(R_g \) with an explicit account of the fact that only the dissociated states\(^2\)

\[
R_g = c \Theta(H_g) \exp(-\frac{H_g}{\hbar}), \text{Sp}R_g = 1, \text{and} \Theta(x) = \begin{cases} 1 & \text{with} x \geq 0, \\ 0 & \text{with} x < 0 \end{cases}
\]

are populated. The last equality defines the normalized constant \(c \) which, when calculating with the aid of functions (3)-(5), equals

\(c \) \(\text{in (22), and later in (38), we introduced the } \Theta \text{ function for the the purpose of exclusion of the bound states [2] from the consideration. We note that population of these states, occurring in the process of the usual chemical reactions, can lead to a case, which corresponds to an ordinary chemical laser (see, for example, [4 and 5]).} \)
when standardizing these functions for the \(\delta \) function from energy \(c = \frac{(2nh)^{\nu}}{V(\mu T)^{\nu}} \) (\(V \) is the space where the atom pair is).

In the general case, the expressions obtained in section 1 fully determine the probabilities of phototransitions in the case A together with (21) and (22).

Below we will examine the characteristic extreme cases, in which assumes a simple analytical form.

2. Let us analyze the probability of a phototransition when one of the lowest bound states \((n=0, l>0) \) is the final one.

First of all, we can see from the analytical expressions (10)-(12), defining the matrix element in this case, that the probability of a phototransition is not small only when \(r_1 = r_0 \); otherwise it diminishes exponentially. When \(r_1 < r_0 \), this occurs because the kinetic energy of the atoms in the \(r=r_0 \) region is high and its loss is unlikely (according to the Franck-Condon principle). When \(r_1 > r_0 \), the probability of their getting close to one another for the phototransition to occur is exponentially small.

It is easy to calculate expression (21) when \(\frac{h^2}{2\mu r_0^2} \ll T \ll E_1 - E_0 \).

then in (21) it is possible to bring out the matrix element from under the \(l \) sum, when \(l=0 \), and replace the remaining sum with an integral.

The criterion of such an approximation \(r_0 F_g(r_0) \gg T \) is always satisfied. As a result, we find

\[
\omega_{\text{ext}} = \frac{64n^2r_0^2F_g(r_0)^2 \left| U_{\text{ext}}(r_0) \right|^2}{\omega^2 \nu^2 \hbar^2} e^{\frac{\nu - \nu^*}{2}} \frac{4 \nu^*}{A^3} \left(b \nu + \frac{b^2}{4} \right). \tag{23}
\]

We will use the following values of the parameters for a quantitative estimate of expression (23):

\[
U_{\text{ext}}(r_0) = \omega \cdot 10^{-6} \text{ cm}, \omega = 3 \cdot 10^{15} \text{ cm}^{-1}, r_0 = 2 \cdot 10^{-6} \text{ cm}, T =
\]

\[
= 0,025 \text{ cm}, n_1 = n_2 = 10^{19} \text{ cm}^{-3}, \tag{24}
\]

and also \(F_g(r_0) = 1.6 \cdot 10^{-4} \text{ erg cm}^{-1} \). At these values of the parameters, the maximum of expression (23) is realized when \(r_0 = r_1 \) and equals

\(\omega_{\text{ext}} = 9.3 \cdot 10^{-30} \text{ cm}^{-3}/\nu \). According to [2], the amplification factor \(\alpha \) of the light wave is connected with \(\omega_{\text{ext}} \) and the concentration of atoms \(n_1 \) and \(n_2 \) by the simple relation \(\alpha = \frac{V}{c} \omega_{\text{ext}} n_1 n_2 \), with the values of \(n_1 \) and \(n_2 \) from (24) \(\alpha = 0.031 \text{ cm}^{-1} \).
According to [2], the probability of photon absorption by the dissociated states at the same frequency \(\omega \), significant only when \(u_g(\omega) = u_g'(\omega) \), is given by the formula

\[
\omega_{ss} = \frac{32n^3e^2|U_{se} (r_j)|^2}{\omega |F_x (r_j) - F_y (r_j)| V} \sqrt{\frac{|u_x(r_j)|}{r_j}}, \quad |u_x (r_j)| \gg T, \quad (25)
\]

where \(r_j \) is the root of equation (13), for our case \(r_j = r_o \). We can see from the comparison of (23) and (25) that \(\frac{\omega_{se}}{\omega_{ss}} \ll \sqrt{\frac{n_0}{|u_x(r_j)|}} < 1 \), i.e., the probability of absorption is always greater than the probability of radiation. This means that in order for the negative absorption to exist in the recombination reactions, it is necessary that \(u_g(\omega) < u_g'(\omega) \) in the case A.

3. The probabilities of phototransitions to highly excited levels will be examined in the following section; here, we will estimate the probability of a phototransition at the frequency \(\omega = \omega^0 \). As is noted in [2], this case is of particular interest since the classical calculation corresponding to it yields \(\omega_{ss} \to \infty \), and conversely, it is possible to obtain the final result with the aid of the matrix elements (18) and (19). We will present it for \(\omega = \omega^0 \), \(|u_g(r_j)| >> T \). In calculating (21) we will use integration instead of the summation over \(n \) and \(l \); in this case, we will sum over \(l \) to those values at which \(E > u_{el}(r_i) \), because, when \(E < u_{el}(r_i) \), the probability of the particles closing towards one another to within \(-r_j \) is exponentially small, i.e., such \(l \) do not make a significant contribution to the probability of a phototransition. As a result

\[
\omega_{el} = \frac{48n^3 \lambda (\theta g)^{1/2} (r^0_j)^3 e^2 |U_{se} (r_j)|^2}{2\pi |dr_{se} \lambda|^1/2} \sqrt{\frac{1}{\omega T^1/2 r^0_j}} \frac{|u_x (r_j)|^1/2 A^2 (0). \quad (26)}
\]

It can be seen from (26) that the probability of transition also with \(\omega = \omega^0 \) remains to be a gradually increasing one with the \(|u_g(r_j)| \) function, just as expression (25).

In addition to the parameters in (24), we will also use \(\mu = 10^{-23} \) g, \(|u_g(r^0_j)| = 1 \) eV, \((d^2 Q_{gg} / dr^2) r^0_j = 2.10^{-11} \) s\(^{-1}\) cm\(^{-2}\) [2] for a numerical estimate. As a result, \(\omega_{el} \approx 3.2 \times 10^{-28} \) cm\(^{-3} / V \), \(\alpha = 3.2 \) cm\(^{-1}\).

We note that the estimate of the probability of phototransition in [2] in the case of \(\omega = \omega^0 \) was performed based on other considerations.
In its order of magnitude the result proved to coincide with the one presented above.

3. The Probabilities of Phototransitions to Quasiclassical Levels

1. In this case the calculation of \(w_{\text{eff}} \) with the aid of (21) is difficult because the transitions taking place are to the many nearby vibration-rotational levels. A direct calculation of expression (1) seems convenient to us with the aid of the known operator methods [4].

Just as above, we will assume that the main contribution is due to the neighborhoods of points \(r_j \) defined by equation (13). We will calculate the contribution made by one of such points, assuming, for the sake of simplicity, that equation (13) has only one solution. We will assume that

\[
\psi_g(r) \approx u_g(r) - (r - r_j) F_k + \frac{(r - r_j)^2}{2} \frac{\partial^2 u_g}{\partial r^2} + \ldots
\]

in the neighborhood of this point and, considering the \(u_g(r) \) a relatively smooth function, we make use of the following approximation [4]:

\[
e^{-\mathcal{H} \epsilon} \approx \left(1 + \frac{\hbar^2 \epsilon}{4 \mu} \left| \frac{\partial^2 u_g}{\partial r^2} \right|_{r_j} + \ldots \right) e^{\psi_g(r)} e^{-\epsilon \left[\frac{\hbar^2 \epsilon}{4 \mu} \frac{\partial^2 u_g}{\partial r^2} \right]_{r_j}}.
\] (27)

below we will also assume that

\[
\frac{\hbar^2 \epsilon}{4 \mu} \left| \frac{\partial^2 u_g}{\partial r^2} \right|_{r_j} \ll 1.
\] (28)

We will make use of an integral representation of the \(\Theta \) function for the following transformation \((\epsilon > 0)\):

\[
\Theta(x) e^{-x} = e^{-\pi} \frac{i}{\pi} \lim_{\eta \to 0} \int_0^{\infty} dy \frac{e^{-\pi y}}{y + i \eta} = \frac{i}{\pi} \int_0^{\infty} e^{-\pi y} \frac{1}{y + i \epsilon} dy.
\] (29)

Then taking into account (29), we can write (22) as

\[
R_{\text{eff}}(H) = c \Theta(H) e^{-\frac{\mathcal{H} \epsilon}{\pi}} = \frac{i c}{\pi} \int_0^{\infty} \frac{e^{-i \epsilon \mathcal{H} \epsilon}}{y + i \epsilon} dy,
\] (30)

which makes it possible to obtain a convenient form for expression (1):

\[
\begin{aligned}
\psi_{\text{eff}} &= i \frac{2^m \pi^{m^2/2} \hbar^2 \epsilon^2 |U_{\text{eff}}(r)|^2}{\omega (\mu \epsilon)^{3/2}} \\
\times &\int_0^{\infty} \int d\tau_1 d\tau_2 \frac{e^{-i \omega \epsilon \tau_1}}{\tau_1 + \tau_2 + i \epsilon} \text{Sp} \left[e^{-i \epsilon \mathcal{H} \epsilon} e^{-i \epsilon \mathcal{H} \epsilon} \right].
\end{aligned}
\] (31)
It is simple to rewrite the exponent in (27) as follows [4]:

\[
\exp\left[-\frac{\hbar}{\mu} \left(r_{s}^{*} - r_{j} \right) \right] = \exp\left[-\frac{\hbar^{2}}{2\mu} \left(\frac{\partial}{\partial r} + \frac{\partial}{\partial r_{j}} \right)^{2} \right] = \exp\left[-\tau F_{s} (r - r_{j}) - \frac{\hbar^{2} F_{2}}{6\mu} r^{2} + \frac{\hbar^{2} F_{2}}{2\mu} F_{r}^{2} + \frac{\hbar^{2}}{2\mu} \Delta r \right].
\] (32)

Here we disregarded the noncommutativity \(\frac{1}{r} \) with the operators of the type \(\frac{\partial}{\partial r} \) and assumed that \(\frac{1}{r} = \frac{1}{r_{j}} \). It is possible to show that such an approximation does not introduce a significant error.

Omitting further details in the calculation of (31) using the complete system of Fourier functions \(\frac{1}{(2\pi)^{3}} e^{i \mathbf{k} \cdot \mathbf{r}} \) we present the final result:

\[
\omega_{ss} = \left| \frac{16 \pi^{3} e^{i} U_{ss} (r_{j}) | P (r_{j}) |}{\omega | F_{s} (r_{j}) - F_{r} (r_{j}) |} \right| \]

where the value of \(P (r_{j}) \) is determined by the integral

\[
P (r) = \frac{1}{\pi^{3} V} \lim_{\omega \to 0} \int_{-\infty}^{+\infty} d\eta \exp \left(\frac{\hbar}{\mu} \left(\frac{\partial}{\partial r} + \frac{\partial}{\partial r_{j}} \right)^{2} \right) \frac{\eta^{2} - \eta_{0}^{2}}{(\tau + i)(\tau - i\hbar)}.
\]

\[
u = \frac{u_{s} (r)}{T}, \quad a_{1} = \frac{\mu^{2} F^{2} (r)}{8 \mu F_{s}^{2} (r)} F_{s} (r), \quad a_{2} = \frac{\mu^{2} F_{s} (r) F_{r} (r) + F_{r} (r)}{\omega \mu \mu F_{s} (r)}\]

Formula (34) was obtained by us for the case \(a_{2} \gg 0 \), other cases can be investigated analogously, but this leads to long expressions. The integral over \(\eta \) is easily calculated in (34); however, for further deductions, this type of expressions (34) is sufficient for us.

2. From the standpoint of accuracy, expression (33) coincides with the classic expression obtained in work [2]; however, (34) differs from the corresponding formulas of work [2]. A classical case is obtained from (33) and (34) when \(\hbar \to 0 \), which corresponds to \(a_{1} = 0, a_{2} = 0 \). In reality, however, the last equalities never occur; however, using the expansion of expression (34) in values of \(a_{1} \) and \(a_{2} \), it is easy to show that a classical result is obtained when

\[
\frac{a_{1}}{8 |u|} \ll 1, \quad \frac{a_{2}}{8 |u|} \ll 1, \quad u < 0, \text{ if } |u| > 1.
\]

and

\[
\frac{a_{1}}{3} \ll 1, \quad \frac{a_{2}}{3} \ll 1, \quad u < 0 \text{ or } u > 0, \text{ if } |u| \sim 1.
\]
When criterion (36) is violated, as a function of the quantity \(u \) changes as follows: with \(|u| \gg 1 \) in places where criterion (35) is satisfied, \(w_u \) is close to its quasiclassical value, which corresponds to the phototransition passing from the state with high energy \(-T|u| \), i.e., from a quasiclassical state; with a decrease in \(|u| \) the value of \(w_u \) also decreases, exceeding the classical expression predicted in work [2]. This is connected with the stopping point when \(u=0 \), increasing the probability of phototransition. When \(u>0 \), \(w_u \) diminishes exponentially with an increase in \(u \); thus, when \(u>>1 \), the following can be obtained from (34):

\[
P(r) = P(0) \exp \left[-u(r) + \frac{a_1 + a_2}{2} \right], \quad u(r) > a_1 + a_2.
\]

(37)

Thus, as before, the probability of phototransition \(w_u \) remains a steadily increasing function with a change in the value of \(|u(r)| \).

Let us estimate \(a_1 \) and \(a_2 \) and also criterion (28), with the following values of the parameters: \(F_g = 2F_g = 1.6 \times 10^{-4} \text{ erg cm}^{-1} \), \(u = 10^{-23} \text{ g} \), \(r_j = 2 \times 10^{-6} \text{ cm}, \quad \frac{\partial u^2}{\partial r^2} = 10^6 \text{ erg cm}^{-2} \). Then \(a_1 = 0.6 \left(\frac{10^{-1}}{T^0} \right)^2 \), and \(a_2 = 0.7 \left(\frac{10^{-1}}{T^0} \right)^2 \), where \(T^0 \) should be in degrees Kelvin. For estimating (28), we note that, analogously to criteria (35) and (36), significant are such \(\tau \) which are proportional to \(T^{-1} \) when \(u>0 \) and \(|u|<<1 \) and proportional to \(\frac{|u|}{T} \) when \(u<0 \) and \(|u|>>1 \). For the above-given values of the parameters and \(T=600^0 \text{K} \), \(\frac{\hbar^2 r^2}{4\mu} \left| \frac{\partial u^2}{\partial r^2} \right| \approx 0.1 \).

4. The probabilities of Phototransitions in the Presence of a Centrifugal Barrier (case B)

1. In this case the potential energy \(u_{\text{el}}(r) \) \((l>0)\) is characterized by a centrifugal barrier, whose maximum is situated with \(r=r_0 \), and the height equals \(u_{\text{el}}(r_0) \). These parameters are found easily from the following conditions:

\[
\frac{\partial^2 u_{\text{el}}(r)}{\partial r^2} = 0, \quad \frac{\partial u_{\text{el}}(r)}{\partial r} < 0, \quad l > 0.
\]

(38)

Disregarding the tunneling of atoms through this barrier, we will use the following expression for the density operator in the region:

\[
R_{\text{el}} = c\Theta \{E - u_{\text{el}}(r)\} e^{-\frac{E}{T}}.
\]

(39)
Such a form of the operator R_g corresponds to the fact that out of the number of colliding atoms, whose relative rotation is characterized by the quantum number I, only the atoms, whose energy of translational motion exceeds the height of the barrier $u_{el}(r_i)$, are able to penetrate to the distances $r_i < r_t$.

The constant c in expression (39) is determined as before and equals

$$\frac{1}{V} \left(\frac{2\hbar^2}{\mu V} \right)^{3/2}$$

2. The simplest way to calculate the probability of phototransition is by means of a quasiclassical approximation. This calculation is performed conveniently with the use of the complete system of functions

$$\Psi_m = \sqrt{\frac{2}{\pi}} \cos kr \cdot Y_{lm}(\theta, \varphi).$$

Omitting the details, we present the final result (the calculation is performed similarly to the way it was done in work [2])

$$w_{st'} = \frac{4\pi e^2}{\omega_0} \sum_j \left| \frac{P_{st}(r_j)}{\partial U_{sel}(r_j)} \right|^2,$$ \hspace{1cm} (40)

where

$$P_{st}(r) = \sum_l (2l + 1) P_{sl}(r) = \sum_l (2l + 1) \int dk \frac{\partial R_{stl}(\frac{\hbar^2}{2\mu} + u_{el}(r))}{\partial r},$$ \hspace{1cm} (41)

$$P_{el}(r) = \frac{2\hbar^2}{\mu TV} e^{-\frac{u_{el}(r)}{\mu TV}} \left\{ \begin{array}{ll}
1 & \text{with } u_{el}(r_i) > u_{el}(r), \\
1 - \Phi \left[\sqrt{\frac{u_{el}(r_i) - u_{el}(r)}{\mu TV}} \right] & \text{with } u_{el}(r_i) < u_{el}(r),
\end{array} \right.$$ \hspace{1cm} (42)

r_j is the root of equation (13), $\Phi(x) = \frac{2}{\pi} \int_0^x dy e^{-y^2}$.

The following extreme cases are easily obtained from (40)-(42).

With $u_{el}(r_i) > 0$, we find the exact formula

$$w_{st'} = \frac{16\pi e^2}{\omega_0 V} \sum_j \frac{r_j^2 \left| U_{sel}(r_j) \right|^2 e^{-\frac{u_{el}(r)}{\mu TV}}}{\frac{\partial U_{sel}(r_j)}{\partial r}}.$$ \hspace{1cm} (43)

With $u_{el}(r_i) < 0$, $|u_{el}(r_i)| > u_{el}(r) \sim T$, we find approximately

$$w_{st'} = \frac{8\pi^2 e^2}{\omega_0 TV^{1/2}} \sum_j \sqrt{\left| U_{sel}(r_j) \right| \frac{\partial U_{sel}(r_j)}{\partial r}},$$ \hspace{1cm} (44)
where
\[\sigma_k = \sum_i (2l+1) e^{-\frac{\pi E_l \hbar}{\hbar}}. \] (45)

3. In the case \(w = w_0 \), we employ formulas (18) and (19), from which, with \(u_k(r) < 0, |u_k(r)| \gg u_{2l}(r) \sim T \), follows the

\[\omega_{\text{eff}} = \frac{2^{37/6} 5^5 \pi^{5/2} |U_{\text{eff}}(r)|^2 \sigma \times \left(\frac{\omega}{\omega_0} - \frac{\omega}{\omega} \right)^{5/6} \left(\frac{d^2 U_{\text{eff}}}{dr^2} \right)^{1/3} \right] \times \frac{\omega^2 - \omega}{2 \mu} \]

\[\times A^2 \left(\frac{3}{2} \sqrt{\frac{P^2(r)}{d^2 U_{\text{eff}}}} \right) \]

\[\frac{\sqrt{\frac{2}{5}}}{\pi^{5/2}} \left(\frac{\omega^2 - \omega}{\omega} \right)^{1/3} \]

(46)

\[\omega_{\text{eff}} = \frac{2^{37/6} 5^5 \pi^{5/2} |U_{\text{eff}}(r)|^2 \sigma \times \left(\frac{\omega}{\omega_0} - \frac{\omega}{\omega} \right)^{5/6} \left(\frac{d^2 U_{\text{eff}}}{dr^2} \right)^{1/3} \right] \times \frac{\omega^2 - \omega}{2 \mu} \]

(47)

\[C = \frac{\sqrt{\frac{2}{5}}}{\pi^{5/2}} \left(\frac{\omega^2 - \omega}{\omega} \right)^{1/3} \]

\[\frac{\left(\frac{d^2 U_{\text{eff}}}{dr^2} \right)^{1/3} \left(\frac{d^2 U_{\text{eff}}}{dr^2} \right)^{1/3}}{\mu} \]

For definiteness, it is assumed in (46) and (47) that \(\omega_0 \) is the upper limit of the region, in which equation (13) has a solution. On the basis of (46) and (47) it is possible to observe a spectral dependence of the probability of the phototransition \(\omega_{\text{eff}}(\omega) \). First of all, it can be seen that \(\omega_0 \) determines the edge of the luminescence line, since with \(\omega > \omega_0 \) the probability of phototransition decreases exponentially:

\[\omega_{\text{eff}} \sim \exp \left[- \frac{2^{37/6} 5^5 \pi^{5/2} (\omega - \omega_0)^{1/2}}{3P(r) \left(\frac{d^2 U_{\text{eff}}}{dr^2} \right)^{1/3}} \right]. \]

To determine the frequency dependence of the phototransition probability when \(\omega < \omega_0 \), we have to determine \(r \approx r_j(\omega) \) from (13). Close to \(r_j - r_j \approx \frac{1}{2} \left(\frac{d^2 U_{\text{eff}}}{dr^2} \right)^{1/3} \left(\frac{d^2 U_{\text{eff}}}{dr^2} \right)^{1/3} \); substituting these values in (47), we find that formula (46) describes approximately the spectral dependence \(\omega_{\text{eff}}(\omega) \) also when \(\omega < \omega_0 \). Now we can see that the maximum \(\omega_{\text{eff}}(\omega) \) is realized with \(\omega - \omega = \left(\frac{u_k(r)}{\mu} \left(\frac{d^2 U_{\text{eff}}}{dr^2} \right)^{1/3} \right) \) and equals

\[\max \omega_{\text{eff}}(\omega) = \frac{5.2 \pi^{5/2} \hbar \sigma \left(\frac{d^2 U_{\text{eff}}}{dr^2} \right)^{1/3}}{\omega^{17/6} \pi^{5/2} \left(\frac{d^2 U_{\text{eff}}}{dr^2} \right)^{1/3} \sigma \left(\frac{d^2 U_{\text{eff}}}{dr^2} \right)^{1/3}}. \] (48)
The half-width of the chemiluminescence "line," determined by the conventional method from (46) and (47), proves to be equal to

$$\Delta \omega = 0.8 \left\{ \frac{u_{g}(r)}{\mu} \left(\frac{d^{2}Q_{g}}{dr^{2}} \right) \right\}^{\frac{3}{4}}. \quad (49)$$

Let us estimate expressions (48) and (49), using the following values of the parameters in addition to (24): \(\mu = 10^{-23} \text{ g} \), \(|u_{g}(r)| = 1 \text{ eV} \), \((d^{2}Q_{g}/dr^{2}) = 2 \times 10^{21} \text{ s}^{-1} \cdot \text{cm}^{-2} \) (concerning the estimation of the last parameter, see work [2]). We estimate the quantity \(\sigma_{g} \) using the usual parameters of curves \(u_{g}(r) \) (see, for example, [7]), as a result we find \(\sigma_{g} = 50-100 \). The substitution of these values in (48) and (49) yields

$$\Delta \omega = 1 \times 10^{14} \text{ s}^{-1}, \text{max} \ w_{g}(\omega) \approx (3-6) \times 10^{-20} \text{ cm}^{-1}/\text{V}, \alpha \approx (0.1-0.2) \text{ cm}^{-1}.$$

The author is very grateful to S. I. Pekar, academician of the AS UkrSSR, for the numerous discussions of this work.

Bibliography

Institute of Semiconductors, AS UkrSSR, Kiev. Received 9/9/1969.

CALCULATION OF PROBABILITY OF RADIATION FROM BIATOMIC MOLECULE DISSOCIATION STATES

V. A. Kochelap

Summary

To estimate possibilities of a laser, where a photostimulated chemical reaction is used, calculation was carried out of probabilities of radiation from biatomic molecule dissociation states. Quantum consideration made it possible to investigate in detail those cases when the classical theory is not applicable and to find out the applicability criteria of the quasi-classical results obtained earlier. Numerical estimations substantiate the possibility to realize the laser where the photostimulated chemical reaction is used.
END
DATE FILMED
9 - 83
DTIC