RADIATION PATTERNS OF AN ANTENNA MOUNTED ON THE OFF-MID SECTION OF AN ELLIPSOID

Jeung G. Kim
Walter D. Burnside

The Ohio State University
ElectroScience Laboratory
Department of Electrical Engineering
Columbus, Ohio 43212

Quarterly Report 714215-3
Contract No. N00019-81-C-0424
June 1983

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Department of the Navy
Naval Air Systems Command
Washington, D.C. 20361
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.
An efficient numerical solution for the high frequency radiation patterns of an Antenna mounted on the Off-Mid Section (θ = 90°) of an Ellipsoid is studied in this report. The Uniform Geometrical Theory of Diffraction (UTD) [1] is the basic approach applied here and the elliptic cone perturbation method [2,3] is used to simulate geodesic paths on the ellipsoid surface. The radiation patterns obtained using this technique are compared to those for prolate spheroid-mounted antennas, which have shown good agreement with measured data. Exact agreement between both results for typical spheroid geometries confirms that radiation patterns for ellipsoid mounted antennas can be solved efficiently by this numerical technique.
TABLE OF CONTENTS

LIST OF FIGURES

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>iii</td>
<td></td>
</tr>
</tbody>
</table>

I. INTRODUCTION

<table>
<thead>
<tr>
<th>I. Introduction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

II. NUMERICAL TECHNIQUE

<table>
<thead>
<tr>
<th>II. Numerical Technique</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>B. Numerical Approach for Pattern Calculation</td>
<td>2</td>
</tr>
</tbody>
</table>

III. RESULTS

<table>
<thead>
<tr>
<th>III. Results</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

IV. CONCLUSIONS

<table>
<thead>
<tr>
<th>IV. Conclusions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>References</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Geodesic path from the source on an ellipsoid.</td>
<td>3</td>
</tr>
<tr>
<td>2. Geodesic path on a developed elliptic cone.</td>
<td>7</td>
</tr>
<tr>
<td>3. Illustration of the diffraction point finding for a given receiver location.</td>
<td>15</td>
</tr>
<tr>
<td>4. Illustration of the divergence factor ($\sqrt{d \psi_0/d \psi}$) terms.</td>
<td>17</td>
</tr>
<tr>
<td>5. Definition of pattern axis.</td>
<td>19</td>
</tr>
<tr>
<td>6. Various source locations tested.</td>
<td>20</td>
</tr>
<tr>
<td>7. Comparison of radiation patterns for $R_t = 15\lambda$ for a short monopole mounted at $\phi_s = 0^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 10\lambda$ spheriod.</td>
<td>23</td>
</tr>
<tr>
<td>8. Comparison of radiation patterns for a short monopole mounted at $\phi_s = 0^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 10\lambda$ spheriod.</td>
<td>25</td>
</tr>
<tr>
<td>9. Comparison of radiation patterns for a short monopole mounted at $\phi_s = 30^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 10\lambda$ spheriod.</td>
<td>27</td>
</tr>
<tr>
<td>10. Comparison of radiation patterns for a short monopole mounted at $\phi_s = 30^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 10\lambda$ spheriod.</td>
<td>29</td>
</tr>
<tr>
<td>11. Comparison of radiation patterns for an axial slot mounted at $\phi_s = 0^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 10\lambda$ spheriod.</td>
<td>31</td>
</tr>
<tr>
<td>12. Comparison of radiation patterns for a short monopole mounted at $\phi_s = 30^\circ$, $\theta_s = 120^\circ$ on a $2\lambda \times 10\lambda$ spheriod.</td>
<td>33</td>
</tr>
</tbody>
</table>
13. Comparison of radiation patterns for an axial slot mounted at $\psi_s = 0^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 10\lambda$ spheriod.

14. Comparison of radiation patterns for an axial slot mounted at $\psi_s = 30^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 10\lambda$ spheriod.

15. Comparison of radiation patterns for an axial slot mounted at $\psi_s = 30^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 10\lambda$ spheriod.

16. Comparison of radiation patterns for a circumferential slot mounted at $\phi_s = 0^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 10\lambda$ spheriod.

17. Comparison of radiation patterns for a circumferential slot mounted at $\phi_s = 0^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 10\lambda$ spheriod.

18. Comparison of radiation patterns for a circumferential slot mounted at $\phi_s = 30^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 10\lambda$ spheriod.

19. Comparison of radiation patterns for a circumferential slot mounted at $\phi_s = 30^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 10\lambda$ spheriod.

20. Radiation patterns for $R_t = 15\lambda$ for a short monopole mounted at $\psi_s = 0^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.

21. Radiation patterns for a short monopole mounted at $\psi_s = 0^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.

22. Radiation patterns for a short monopole mounted at $\psi_s = 30^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.

23. Radiation patterns for a short monopole mounted at $\psi_s = 30^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.

24. Radiation patterns for an axial slot mounted at $\psi_s = 0^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 25. Radiation patterns for an axial slot mounted at $\phi_s = 0^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.

26. Radiation patterns for an axial slot mounted at $\phi_s = 30^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.

27. Radiation patterns for an axial slot mounted at $\phi_s = 30^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.

28. Radiation patterns for a circumferential slot mounted at $\phi_s = 0^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.

29. Radiation patterns for a circumferential slot mounted at $\phi_s = 0^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.

30. Radiation patterns for a circumferential slot mounted at $\phi_s = 30^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.

31. Radiation patterns for a circumferential slot mounted at $\phi_s = 30^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.

32. Cone boundary used to define terms to be included in the shadow region.
I. INTRODUCTION

In applying the Uniform Geometrical Theory of Diffraction (UTD) to antenna radiation problem involving curved surfaces, a major task is to determine the final diffraction point and the geodesic path on the curved surface. For the antennas mounted on the fuselage of an aircraft, the fuselage can be modeled as an ellipsoid in the UTD analysis. Geodesic paths on an ellipsoid have been studied in detail in References [2,3] using an elliptic cone perturbation method which is very efficient. Using this perturbation method and another numerical technique, which will be given in this report, the radiation patterns for ellipsoid mounted antennas is efficiently obtained. The theoretical UTD concept to calculate actual radiation fields is given in References [1,2].

II. NUMERICAL TECHNIQUE

A. INTRODUCTION

The ellipsoid simulated by a perturbed elliptic cone model is examined here. Since the elliptic cone is a developable surface, geodesics can be easily obtained [2,3]. Given a radiation direction (\(\phi_t, \phi_t \)), one can find the final diffraction point (\(\phi_Q, \phi_Q \)) by following the geodesic path, step by step, until the geodesic tangent coincides
with the radiation direction \((\theta_t, \phi_t) \). This is a rather tedious and time consuming process if applied for each new radiation direction. Considering a new radiation direction, which does not deviate greatly from the previous direction, one should be able to develop a solution which uses the properties of the surface and the previous geodesic path to find the new diffraction point. Such an approach is attempted here to make this solution as efficient as possible.

Since the field decays exponentially along the ray path on the surface, it is assumed that only one or possibly two dominant rays exist in the problems treated. One is referred to References [2,3] for more details on this topic.

B. NUMERICAL APPROACH FOR PATTERN CALCULATION

Assuming the diffraction point is located at \(O (a \cos \nu_e \cos \nu_r, b \cos \nu_e \sin \nu_r, c \sin \nu_e) \) and the field point at \(P (R_t \sin \theta_t \cos \phi_t, R_t \sin \theta_t \sin \phi_t, R_t \cos \theta_t) \), then at the diffraction point \(O \) the radiation direction \((\theta_t, \phi_t) \) should coincide with the geodesic tangent \(\hat{t} \) as shown in Figure 1. Thus,

\[
\hat{t} = \hat{x} t_x + \hat{y} t_y + \hat{z} t_z
\]
\[
= \hat{t}_1 \cos \beta + \hat{t}_e \sin \beta,
\]

where
Figure 1. Geodesic path from the source on an ellipsoid.
\[t_x = \frac{\sin \theta_t \cos \phi_t - \frac{a_t}{R_t} \cos v_e \cos v_r}{D} \]
\[t_y = \frac{\sin \theta_t \sin \phi_t - \frac{b_t}{R_t} \cos v_e \cos v_r}{D} \]
\[t_z = \frac{\cos \theta_t - \frac{c_t}{R_t} \sin v_e}{\eta} \]

and
\[\eta^2 = \left(\sin \theta_t \cos \phi_t - \frac{a_t}{R_t} \cos v_e \cos v_r \right)^2 + \left(\sin \theta_t \sin \phi_t - \frac{b_t}{R_t} \cos v_e \cos v_r \right)^2 \]
\[= 1 - 2 \sin \theta_t \cos v_e \left(\frac{a_t}{R_t} \cos \phi_t \cos v_r + \frac{b_t}{R_t} \sin \phi_t \sin v_r \right) \]
\[+ \frac{c_t}{R_t} \cos \phi_t \sin v_r \left(\frac{a_t^2}{R_t^2} \cos^2 v_r + \frac{b_t^2}{R_t^2} \sin^2 v_r \right) + \frac{c_t^2}{R_t^2} \sin^2 v_e \]

Note that
\[\eta^2 = \frac{\hat{t}_1 \times \hat{n}}{R_t} \]
\[= \frac{\hat{t}_e \times \hat{n}}{R_t} \]
\[= \frac{-\hat{u}_s v_e (b^2 \sin^2 v_e + c^2 \cos^2 v_e) + \hat{v}_n v_r (a^2 \sin^2 v_e + c^2 \cos^2 v_e)}{a^2 b^2 \sin^2 v_e + c^2 \cos^2 v_e (a^2 \sin^2 v_r + b^2 \cos^2 v_r) 1/2} \]
\[- \frac{-\hat{u}_s (b^2 - a^2) v_r \sin v_e \cos v_e \sin v_e \cos v_e}{c^2 \cos^2 v_e + \sin^2 v_e (a^2 \cos^2 v_r + b^2 \sin^2 v_r) 1/2} \]
where

\[t_e = \frac{\partial \mathbf{v}_e}{\partial \mathbf{r}} = \frac{-\dot{x}_a \sin \mathbf{v}_e \cos \mathbf{v}_r - \dot{y}_b \sin \mathbf{v}_e \sin \mathbf{v}_r + \dot{z}_c \cos \mathbf{v}_e}{\sqrt{a^2 \sin^2 \mathbf{v}_e \cos^2 \mathbf{v}_r + b^2 \sin^2 \mathbf{v}_e \sin^2 \mathbf{v}_r + c^2 \cos^2 \mathbf{v}_e}} \]

\[t_r = \frac{\partial \mathbf{v}_r}{\partial \mathbf{r}} = \frac{-\dot{x}_a \cos \mathbf{v}_e \sin \mathbf{v}_r + \dot{y}_b \cos \mathbf{v}_e \cos \mathbf{v}_r}{\sqrt{a^2 \cos^2 \mathbf{v}_e \sin^2 \mathbf{v}_r + b^2 \cos^2 \mathbf{v}_e \cos^2 \mathbf{v}_r}} \]

and

\[n = \frac{t_r \times t_e}{|t_r \times t_e|} = \frac{\dot{x}_b \cos \mathbf{v}_e \cos \mathbf{v}_r + \dot{y}_c \cos \mathbf{v}_e \sin \mathbf{v}_r + \dot{z}_d \sin \mathbf{v}_e}{\sqrt{a^2 \sin^2 \mathbf{v}_e + c^2 \cos^2 \mathbf{v}_e (a^2 \sin^2 \mathbf{v}_r + b^2 \cos^2 \mathbf{v}_r)}}. \]

Equating the x-, y-, and z- components, respectively, one obtains

\[t_x = \frac{-a \sin \mathbf{v}_r \cos \mathbf{v}_e (b^2 \sin^2 \mathbf{v}_e + c^2 \cos^2 \mathbf{v}_e)}{a^2 b^2 \sin^2 \mathbf{v}_e + c^2 \cos^2 \mathbf{v}_e (a^2 \sin^2 \mathbf{v}_r + b^2 \cos^2 \mathbf{v}_r)}^{1/2} \]

\[t_y = \frac{-a \cos \mathbf{v}_e \sin \mathbf{v}_r (c^2 \cos^2 \mathbf{v}_e + \sin^2 \mathbf{v}_e (a^2 \cos^2 \mathbf{v}_r + b^2 \sin^2 \mathbf{v}_r))}{c^2 \cos^2 \mathbf{v}_e + \sin^2 \mathbf{v}_e (a^2 \cos^2 \mathbf{v}_r + b^2 \sin^2 \mathbf{v}_r)}^{1/2} \]

\[t_z = \frac{a \sin \mathbf{v}_r \cos \mathbf{v}_e}{c\cos \mathbf{v}_e + \sin \mathbf{v}_e (a^2 \cos^2 \mathbf{v}_r + b^2 \sin^2 \mathbf{v}_r)}^{1/2} \]

\[\sin t_c \cos t_t = \frac{-a \cos \mathbf{v}_e \cos \mathbf{v}_r}{R_t} \] \hspace{1cm} (1)
\[t_y = \frac{b \cos \theta \cos^3(a^2 \sin^2 \theta + c^2 \cos \theta)}{a^2 b^2 \sin^2 \theta + c^2 \cos^2 \theta (a^2 \sin^2 \theta + b^2 \cos^2 \theta)^{1/2}} \cdot \]
\[\cdot \left(c^2 \cos^2 \theta + \sin^2 \theta (a^2 \cos^2 \theta + b^2 \sin^2 \theta)^{1/2} \right)^{1/2} \]
\[- \frac{b \sin \theta \sin \theta \sin \theta}{a^2 b^2 \sin^2 \theta + c^2 \cos^2 \theta (a^2 \sin^2 \theta + b^2 \cos^2 \theta)^{1/2}} \]
\[\cdot \frac{b \sin \theta \sin \theta}{a^2 b^2 \sin^2 \theta + c^2 \cos^2 \theta (a^2 \sin^2 \theta + b^2 \cos^2 \theta)^{1/2}} \]
\[= \frac{\sin t \sin t - R_t \cos \theta \sin \theta}{R_t} \quad . \tag{2} \]

\[t_z = \frac{c (b^2 - a^2) \sin \theta \cos \theta \sin \theta}{a^2 b^2 \sin^2 \theta + c^2 \cos^2 \theta (a^2 \sin^2 \theta + b^2 \cos^2 \theta)^{1/2}} \cdot \]
\[\cdot \left(c^2 \cos^2 \theta + \sin^2 \theta (a^2 \cos^2 \theta + b^2 \sin^2 \theta)^{1/2} \right)^{1/2} \]
\[+ \frac{c \cos \theta \sin \theta}{a^2 b^2 \sin^2 \theta + c^2 \cos^2 \theta (a^2 \sin^2 \theta + b^2 \cos^2 \theta)^{1/2}} \]
\[\cdot \frac{c \cos \theta \sin \theta}{a^2 b^2 \sin^2 \theta + c^2 \cos^2 \theta (a^2 \sin^2 \theta + b^2 \cos^2 \theta)^{1/2}} \]
\[= \frac{\cos \gamma - R_t \sin \theta}{R_t} \quad . \tag{3} \]

When the source is located at the off-mid section (z ≠ 0 in Figure 1), the ellipsoid is modeled by a perturbed elliptic cone. The associated unfolded surface is shown in Figure 2(b). If γ and θ denote the angle between \(\hat{t} \) and \(\hat{t}_1 \) at \(Q' \) and \(Q \), respectively, it is seen that \(\gamma = \theta - \theta \). With some manipulation, one can show that the perturbed geodesic path can be expressed as follows:
Figure 2. Geodesic path on a developed elliptic cone.
\[r_e \cos (\gamma - \alpha) = r_s \cos \gamma \]

\text{(4)}

where

\[a(V_r) = \frac{V_r}{r_s} \left(\frac{a_s^2 b_s^2 + Z_s^2 \cot^4 V_e (a_s^2 \sin^2 V' + b_s^2 \cos^2 V')} {a_s^2 \cos^2 V'_r + b_s^2 \sin^2 V'_r + Z_s^2 \cot^4 V_e} \right)^{1/2} \, dV_r, \]

\[a_s = \acos V_e, \quad b_s = \bcos V_e, \quad Z_s = \csin V_e, \]

\[r_s = (a_s^2 \cos^2 V_r + b_s^2 \sin^2 V_r + Z_s^2 \cot^4 V_e)^{1/2}, \]

\[r_e = (a_s^2 \cos^2 V_r + b_s^2 \sin^2 V_r + Z_s^2 \cot^4 V_e)^{1/2} - S_e, \]

and

\[S_e = \int_{V_e}^{V_r} \left(c^2 \cos^2 V'_e + (a^2 \cos^2 V_r + b^2 \sin^2 V_r) \sin^2 V'_e \right)^{1/2} dV'_e. \]

Now, \([t_x (-b \sin V_r) + t_y a \cos V_r]\) yields

\[\frac{a b \cos (\gamma - \alpha) [c^2 \cos^2 V_e + \sin^2 V_e (a^2 \cos^2 V_r + b^2 \sin^2 V_r)]^{1/2}} {c^2 \cos^2 V_e + a^2 b^2 \sin^2 V_e + c^2 \cos^2 V_e (a^2 \sin^2 V_r + b^2 \cos^2 V_r)^{1/2}} \]

\[= \frac{\sin \alpha_t (\acos V_r \sin \alpha_t - b \sin V_r \cos \alpha_t)} {0}. \]

\text{(5)}

Next, \([t_x b \cos V_r + t_y a \sin V_r] \cos V_e + t_z \alpha \sin V_e^1\) yields
\[
\begin{align*}
\text{absinVe} \cos \theta_t + \text{csin} \theta_t \cos \text{Ve} (\text{asin} \theta_t \sin \text{Ve} + \text{bcos} \theta_t \cos \text{Ve}) \\
\text{abc} = 0. \\
\end{align*}
\]

(6)

Three functions can, then, be constructed as follows from Equations (4)-(6):

\[
F(\text{Ve}, \text{Ve}, \gamma) = r_e \cos (\gamma - \alpha) - r_5 \cos \gamma = 0. \\
\]

(7)

\[
G(R_t, \alpha_t, \beta_t, \text{Ve}, \text{Ve}, \gamma) \\
= D \text{abcos} (\gamma - \alpha)[c^2 \cos^2 \text{Ve} + \sin^2 \text{Ve} (a^2 \cos^2 \text{Ve} + b^2 \sin^2 \text{Ve})]^{1/2} \\
- \sin \alpha_t (\text{asin} \alpha \cos \text{Ve} - \text{bcos} \alpha \sin \text{Ve}) \\
- [a^2 b^2 \sin^2 \text{Ve} + c^2 \cos^2 \text{Ve} (a^2 \sin^2 \text{Ve} + b^2 \cos^2 \text{Ve})]^{1/2} \\
= 0. \\
\]

(8)

Further, one finds that

\[
H(R_t, \alpha_t, \beta_t, \text{Ve}, \text{Ve}) \\
= \text{absin} \text{Ve} \cos \gamma_t + \text{csin} \gamma_t \cos \text{Ve} (\text{asin} \gamma_t \sin \text{Ve} + \text{bcos} \gamma_t \cos \text{Ve}) \\
- \text{abc} = 0. \\
\]

(9)
Provided that one has obtained a diffraction point \((V_e, V_r)\) for a
receiver location \((R_t, \theta_t, \phi_t)\), a numerical technique can now be
developed from Equations (7), (8), and (9) to solve for \((V_e + \Delta V_e, V_r + \Delta V_r)\) associated with a new receiver location \((R_t + \Delta R_t, \theta_t + \Delta \theta_t, \phi_t + \Delta \phi_t)\). Assuming that the \(i\)th set of \((R_t, \theta_t, \phi_t, V_e, V_r)\) is first known to satisfy \(F_i = H_i = G_i = 0\), or at least approximately so, the next set
\((R_t + \Delta R_t, \theta_t + \Delta \theta_t, \phi_t + \Delta \phi_t, V_e + \Delta V_e, V_r + \Delta V_r)\) is obtained by
enforcing \(F_{i+1} = H_{i+1} = G_{i+1} = 0\), such that

\[
\begin{align*}
F_{i+1} &= F_i + F_{Ve} \Delta V_e + F_{Vr} \Delta V_r + F_Y \Delta \gamma = 0, \\
G_{i+1} &= G_i + G_{Ve} \Delta V_e + G_{Vr} \Delta V_r + G_Y \Delta \gamma \\
&\quad + G_t \Delta \theta_t + G_\phi \Delta \phi_t + G_{Rt} \Delta R_t = 0
\end{align*}
\]

and

\[
\begin{align*}
H_{i+1} &= H_i + H_{Ve} \Delta V_e + H_{Vr} \Delta V_r + H_t \Delta \theta_t \\
&\quad + H_\phi \Delta \phi_t + H_{Rt} \Delta R_t = 0
\end{align*}
\]

In matrix form, it is given by

\[
\begin{bmatrix}
F_{Ve} & F_{Vr} & F_Y \\
G_{Ve} & G_{Vr} & G_Y \\
H_{Ve} & H_{Vr} & 0
\end{bmatrix}
\begin{bmatrix}
\Delta V_e \\
\Delta V_r \\
\Delta \gamma
\end{bmatrix}
=
\begin{bmatrix}
-F_i \\
-G_i \\
-H_i
\end{bmatrix}
-
\begin{bmatrix}
-G_\theta \Delta \theta_t - G_\phi \Delta \phi_t - G_{Rt} \Delta R_t \\
H_\theta \Delta \theta_t - H_\phi \Delta \phi_t - H_{Rt} \Delta R_t
\end{bmatrix}
\]

\[(10) \]
Note that the partial derivations are given by the following:

\[F_{Ve} = -[c^2 \cos^2 V_e + (a^2 \cos^2 V_r + b^2 \sin^2 V_r) \sin^2 V_e]^{1/2} \cos(\gamma - \alpha) \]

\[F_{Vr} = (b^2 - a^2) \sin V_r \cos V_r \frac{\cos^2 V_e}{(a^2 \cos^2 V_r + b^2 \sin^2 V_r + z_s^2 \cot^2 V_e)^{1/2}} \]

\[- \int_{V_e}^{V_{es}} \sin^2 V_e \frac{dV_e}{[c^2 \cos^2 V_e + (a^2 \cos^2 V_r + b^2 \sin^2 V_r) \sin^2 V_e]^{1/2}} \cos(\gamma - \alpha) \]

\[+ r_s \sin(\gamma - \alpha) \frac{a^2 b^2 + z_s^2 \cot^4 V_e}{a_s^2 \cos^2 V_r + b_s^2 \sin^2 V_r + z_s^2 \cot^4 V_e} \]

\[F_\gamma = r_s \sin \gamma - r_e \sin(\gamma - \alpha) \]

\[G_{Ve} = \frac{Dab(a^2 \cos^2 V_r + b^2 \sin^2 V_r - c^2) \sin V_e \cos V_e \cos(\gamma - \alpha)}{[c^2 \cos^2 V_e + (a^2 \cos^2 V_r + b^2 \sin^2 V_r) \sin^2 V_e]^{1/2}} \]

\[- \sin^2 \zeta \frac{(a \sin \zeta \cos V_r - b \cos \zeta \sin V_r) [a^2 b^2 - (a^2 \sin^2 V_r + b^2 \cos^2 V_r) c^2] \sin V_e \cos V_e}{[(a^2 \sin^2 V_r + b^2 \cos^2 V_r) c^2 \cos^2 V_e + a^2 b^2 \sin^2 V_e]^{1/2}} \]

\[+ \frac{abc \cos(\gamma - \alpha)}{D} \frac{c^2 \cos^2 V_e + (a^2 \cos^2 V_r + b^2 \sin^2 V_r) \sin^2 V_e}{R_t^2} \]

\[+ \sin^2 \frac{\gamma_c \sin V_e (a \cos \zeta \cos V_r + b \sin \zeta \sin V_r) - c \cos \zeta \cos V_e}{R_t} \]
\[G_r = \frac{Dab \cos(y - \alpha)(b^2 - a^2) \sin V_r \cos V_r \sin^2 V_e}{[c^2 \cos^2 V_e + (a^2 \cos^2 V_r + b^2 \sin^2 V_r) \sin^2 V_e]^{1/2}} \]

\[+ Dab[c^2 \cos^2 V_e + (a^2 \cos^2 V_r + b^2 \sin^2 V_r) \sin^2 V_e]^{1/2} \sin(y - \alpha) \cdot \]

\[\frac{[a^2 h^2 + 2 \cot^4 V_e (a^2 \sin^2 V_r + b^2 \cos^2 V_r)]^{1/2}}{a^2 \cos^2 V_r + b^2 \sin^2 V_r + 2 \cot^4 V_e} \]

\[+ \sin^2 \alpha (a \sin^2 V_r - b \cos^2 V_r)(b^2 - a^2) \sin V_r \cos V_r c^2 \cos^2 V_e \]

\[[(a^2 \sin^2 V_r + b^2 \cos^2 V_r) c^2 \cos^2 V_e + a^2 h^2 \sin^2 V_e]^{1/2} \]

\[+ \sin^2 \alpha (a \sin^2 V_r + b \cos^2 V_r)(a^2 \sin^2 V_r + b^2 \cos^2 V_r) \cdot \]

\[- c^2 \cos^2 V_e + a^2 h^2 \sin^2 V_e]^{1/2} \]

\[+ \frac{abcd(y - \alpha)}{D} c^2 \cos^2 V_e + (a^2 \cos^2 V_r + b^2 \sin^2 V_r) \sin^2 V_e]^{1/2} \cdot \]

\[\cdot \frac{(b^2 - a^2) \sin V_r \cos V_r \cos^2 V_e - \sin \alpha \cos V_r (b \sin \alpha \cos V_r \sin \alpha \cos V_r)}{R_t^2} \]

\[- \frac{a}{R_t} \cos \alpha \sin V_r \}

\[G_r = -Dab \sin(y - \alpha)[c^2 \cos^2 V_e + (a^2 \cos^2 V_r + b^2 \sin^2 V_r) \sin^2 V_e]^{1/2} \]
$$G_{0 t} = - \cos \theta_t (a \sin \phi_r \cos \psi - b \cos \phi_t \sin \psi_r) \cdot$$

$$[(a^2 \sin^2 \psi_r + b^2 \cos^2 \psi_r) c^2 \cos^2 \psi_e + a^2 b^2 \sin^2 \psi_e]^{1/2}$$

$$+ ab \cos (\gamma - \theta) \left[c^2 \cos^2 \psi_e + (a^2 \cos^2 \psi_r + b^2 \sin^2 \psi_r) \sin^2 \psi_e \right]^{1/2} \cdot$$

$$\cdot \left[\frac{c}{R_t} \sin \theta, \sin \psi_e - \cos \theta_t \cos \psi_r \left(\frac{a}{R_t} \cos \phi_r + \frac{b}{R_t} \sin \phi_r \sin \psi_r \right) \right]^{1/2} \cdot$$

$$G_{\phi t} = - \sin \theta_t (a \cos \phi_r \cos \psi + b \sin \phi_t \sin \psi_r) \cdot$$

$$[(a^2 \sin^2 \psi_r + b^2 \cos^2 \psi_r) c^2 \cos^2 \psi_e + a^2 b^2 \sin^2 \psi_e]^{1/2}$$

$$+ ab \cos (\gamma - \theta) \left[c^2 \cos^2 \psi_e + (a^2 \cos^2 \psi_r + b^2 \sin^2 \psi_r) \sin^2 \psi_e \right]^{1/2} \cdot$$

$$\cdot \left[\sin \phi_t \cos \psi_e \left(\frac{a}{R_t} \sin \phi_r + \frac{b}{R_t} \cos \phi_r \sin \psi_r \right) \right]^{1/2} \cdot$$

$$G_{\psi r} = ab \cos (\gamma - \theta) \left[c^2 \cos^2 \psi_e + (a^2 \cos^2 \psi_r + b^2 \sin^2 \psi_r) \sin^2 \psi_e \right]^{1/2} \cdot$$

$$\cdot \left[\sin \phi_t \cos \psi_e \left(a \cos \phi_r \cos \psi_r + b \sin \phi_t \sin \psi_r \right) + c \cos \phi_t \sin \psi_r \right]^{1/2} \cdot$$

$$= \left[\cos^2 \psi_e (a^2 \cos^2 \psi_r + b^2 \sin^2 \psi_r) + c^2 \sin^2 \psi_e \right]^{1/2} \cdot$$
\[H_V = ab \cos V \cos \theta_t - c \sin V \sin \theta_t (a \sin \theta_t \sin V_r + b \cos \theta_t \cos V_r) \]
\[H_V = c \cos V \sin \theta_t (a \sin \theta_t \cos V_r - b \cos \theta_t \sin V_r) \]
\[H_r = 0 \]
\[H_\beta = -ab \sin V \sin \theta_t + c \cos V \cos \theta_t (a \sin \theta_t \sin V_r + b \cos \theta_t \cos V_r) \]
\[H_{\alpha t} = c \cos V \sin \theta_t (a \cos \theta_t \sin V_r - b \sin \theta_t \cos V_r) \]

and
\[H_R = \frac{abc}{R^2} \]

It is seen that one can solve for \((V_e, V_r, \gamma_y)\), for a known \((\alpha R_t, \alpha^\prime_t, \gamma_t)\), using Equation (10). To obtain a diffraction point \((V_e, V_r)\) for a given receiver location \((R_t, \theta_t, \phi_t)\), one can always assume the first diffraction point is at the source \((V_e, V_r) = (V_s, V_{rs})\) with the radiation direction \((\alpha_f, \phi_f = \frac{\pi}{2})\) for the positive ray (in \(Y\) direction) or \((\gamma_f, \phi_f = \frac{3\pi}{2})\) for negative ray (in \(-Y\) direction), and gradually add the increments \((\Delta R_t, \Delta \theta_t, \Delta \phi_t)\) until the final radiation direction \((\alpha_t, \phi_t)\) is reached as shown in Figure 3. More detail on this topic is provided in Reference [4]. One need not start out from the source every time, but obtains the new diffraction point directly from Equation (10), provided that the new receiver location does not deviate greatly from the previous direction.

After the geodesic path is determined, various other parameters associated with actual field calculation must be found. The Fock parameter \(r\) was calculated in Reference [2] as follows:
Figure 3. Illustration of the diffraction point finding for a given receiver location.
\[z = r_s \cos \gamma \left(\frac{V_r}{V_{es}} \frac{1}{\sin \theta} \frac{k_2 q^{1/3}}{z' r} \right)^{1/3} \left(\frac{1}{\cos^2(\gamma - \alpha)} \right) \frac{dS_e}{dV_r} \frac{dV'}{dV_e} \\
\]

where

\[\frac{dV_r}{dV_e} = \frac{[a^2 x^2 + z^2 \cot V_{es} (a^2 \sin^2 V_r + b^2 \cos^2 V_r)]^{1/2}}{a^2 \cos^2 V_r + b^2 \sin^2 V_r + z^2 \cot^2 V_{es}} \]

or

\[\frac{V_s}{V_{es}} \frac{1}{\phi} \frac{k_2 q^{1/3}}{z' r} \frac{1}{\sin(\gamma - \alpha)} \frac{dS_e}{dV_r} \frac{dV'}{dV_e} \]

Note that \(\phi = \frac{1}{k_1 \cos^2 \alpha + k_2 \sin^2 \alpha} \) and \(k_1 \) and \(k_2 \) are two principal curvatures.

Next, the ray divergence factor \(\sqrt{\frac{d\phi(Q')}{d\phi(Q)}} \) is defined as the change in the separation of adjacent surface rays as shown in Figure 4. Since the ellipsoid simulating the aircraft fuselage will be long and slender, it is assumed that the ray divergence factor is unity in the analysis.

This completes the elliptic cone perturbation solution for the antenna mounted on the off-mid section of an ellipsoid.
Figure 4. Illustration of the divergence factor $\left(\sqrt{\frac{d\psi_0}{d\psi}}\right)$ terms.
III. RESULTS

The solutions presented in the previous chapter are employed to compute the near field radiation patterns for short monopoles or slots mounted on an ellipsoid.

To examine different conical pattern cuts, a cartesian coordinate system \((x',y',z')\) originally defining the ellipsoid geometry is now rotated into a new system \((x,y,z)\) as shown in Figure 5. Note that the new cartesian coordinates are found by first rotating about the \(z'\)-axis a angle \(\gamma_c\) and then about the \(y\)-axis a angle \(\Phi_c\). The pattern is, then, taken in the \((x,y,z)\) coordinate system with \(\gamma_p\) fixed and \(\Phi_p\) varied.

To show the validity of the elliptic cone perturbation solution, some typical sources, i.e., short monopole, axial slot and circumferential slot, and various source locations are chosen as shown in Figure 6.

For each case the following typical radiation patterns are obtained:

a) \(\gamma_c = 0^\circ, \gamma_c = 90^\circ, \gamma_p = 90^\circ\) (roll plane pattern)
b) \(\gamma_c = 30^\circ, \gamma_c = 90^\circ, \gamma_p = 90^\circ\)
c) \(\gamma_c = 60^\circ, \gamma_c = 90^\circ, \gamma_p = 90^\circ\)
d) \(\gamma_c = 90^\circ, \gamma_c = 90^\circ, \gamma_p = 90^\circ\) (elevation plane pattern)
e) \(\gamma_c = 90^\circ, \gamma_c = 0^\circ, \gamma_p = 90^\circ\) (azimuth plane pattern).

The radiation patterns obtained by the ellipsoid program, which uses an ellipsoid to simulate the aircraft fuselage, are compared to those obtained using the spheriod solution [5] in each case.
Figure 5: Definition of pattern axis.
Figure 6. Various source locations tested.
It is noted that the geodesic tracing method of the ellipsoid program for the side mounted antennas (Figures 9, 10, 11, 14, 15, 18, 19) is different from that of the spheroid program because the ellipsoid is not a surface of revolution.

The exact agreement between the results of the ellipsoid program and the spheroid program as shown in Figures 7-19 gives one confidence about the validity of the elliptic cone technique.

Next, the ellipsoid program is employed to calculate the radiation patterns due to antennas mounted on an ellipsoid surface. The typical ellipsoid geometry (2λ x 4λ x 10λ) is chosen and examined for various sources and source locations.

The cone boundary shown in Figure 32 is used in determining whether one or two rays are used in the solution. Note that γ_2 is defined automatically by determining the caustic angle in the elevation pattern (γ_c) and adding a few additional degrees to that value, i.e., $\gamma_2 = \gamma_c + \Delta$ where $2^\circ < \Delta < 10^\circ$. One would expect to observe slight discontinuities somewhere, because various numbers of rays are included in different regions.

IV. CONCLUSIONS

The object of this study has been to develop an efficient numerical solution for the high frequency radiation patterns of an ellipsoid-mounted antenna. The UTD is used in this study to calculate the radiation patterns, and the elliptic cone perturbation method is applied
to simulate the geodesic paths on the ellipsoid, which in turn can be used to model an aircraft or missile fuselage. For a given radiation direction in the shadow region, the geodesic path and final diffraction point on the ellipsoid can, then, be found via an efficient numerical approach.

The exact agreement of the radiation patterns from two different programs confirms that this elliptic cone perturbation solution is very useful in predicting the high frequency radiation patterns for antennas mounted on the off-mid section of an ellipsoid.

This numerical solution will be employed, along with flat plates to construct a general solution for calculating radiation patterns due to airborne antennas.
Figure 7. Comparison of radiation patterns for $R_t = 15\lambda$ for a short monopole mounted at $\phi_s = 0^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 10\lambda$ spheroid.
(d) $\theta_c = 90^\circ$, $\phi_c = 90^\circ$, $\theta_p = 90^\circ$

(e) $\theta_c = 90^\circ$, $\phi_c = 0^\circ$, $\theta_p = 90^\circ$

Ellipsoid Program
Spheroid Program

Figure 7. (continued)
Figure 8. Comparison of radiation patterns for a short monopole mounted at $\phi_s = 0^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 10\lambda$ spheroid.
Figure K. (continued)
(a) $\theta_c = 0^\circ$, $\phi_c = 90^\circ$, $\theta_p = 90^\circ$

(b) $\theta_c = 30^\circ$, $\phi_c = 90^\circ$, $\theta_p = 90^\circ$

(c) $\theta_c = 60^\circ$, $\phi_c = 90^\circ$, $\theta_p = 90^\circ$

Ellipsoid Program
Spheroid Program

Figure 9. Comparison of radiation patterns for a short monopole mounted at $\phi_c = 30^\circ$, $\theta_c = 60^\circ$ on a $2\lambda \times 10\lambda$ spheroid.
(d) $\theta_c = 90^\circ, \phi_c = 90^\circ, \theta_p = 90^\circ$

(e) $\theta_c = 90^\circ, \phi_c = 0^\circ, \theta_p = 90^\circ$

Ellipsoid Program

Spheroid Program

Figure 9. (continued)
Figure 10. Comparison of radiation patterns for a short monopole mounted at $\phi_s = 30^\circ$, $\theta_s = 30^\circ$ on a 2$\lambda \times$ 10λ spheroid.
Figure 10. (continued)
Figure 11. Comparison of radiation patterns for a short monopole mounted at $\phi_5 = 30^\circ$, $\theta_5 = 120^\circ$ on a $2\lambda \times 10\lambda$ spheroid.
(d) $\theta_c = 90^\circ, \phi_c = 90^\circ, \theta_p = 90^\circ$

(e) $\theta_c = 90^\circ, \phi_c = 0^\circ, \theta_p = 90^\circ$

Ellipsoid Program Spheroid Program

Figure 11. (continued)
Figure 12. Comparison of radiation patterns for an axial slot mounted at $\phi_s = 0^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 10\lambda$ spheroid.
(d) \(\theta_c = 90^\circ, \phi_c = 90^\circ, \theta_p = 90^\circ\)

(e) \(\theta_c = 90^\circ, \phi_c = 0^\circ, \theta_p = 90^\circ\)

Ellipsoid Program

Spheroid Program

Figure 17. (continued)
Figure 13. Comparison of radiation patterns for an axial slot mounted at $\gamma_s = 0^\circ$, $\gamma_s = 30^\circ$ on a $2\lambda \times 10\lambda$ spheriod.
Figure 13. (continued)
Figure 14. Comparison of radiation patterns for an axial slot mounted at $\psi_s = 30^\circ$, $\phi_s = 60^\circ$ on a $2 \times 10\lambda$ spheriod.
[d] $\theta_c = 90^\circ, \phi_c = 90^\circ, \theta_p = 90^\circ$

[e] $\theta_c = 90^\circ, \phi_c = 0^\circ, \theta_p = 90^\circ$

Ellipsoid Program

Spheroid Program

Figure 14. (continued)
Figure 15. Comparison of radiation patterns for an axial slot mounted at $\phi_s = 30^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 10\lambda$ spheriod.
(d) $\theta_c = 90^\circ, \phi_c = 90^\circ, \theta_p = 90^\circ$

(e) $\theta_c = 90^\circ, \phi_c = 0^\circ, \theta_p = 90^\circ$

Ellipsoid Program

Spheroid Program

Figure 15. (continued)
Figure 16. Comparison of radiation patterns for a circumferential slot mounted at $\phi_s = 0^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 10\lambda$ spheroid.
(d) $\theta_c = 90^\circ, \phi_c = 90^\circ, \theta_p = 90^\circ$

(e) $\theta_c = 90^\circ, \phi_c = 0^\circ, \theta_p = 90^\circ$

Ellipsoid Program Spheroid Program

Figure 16. (continued)
Figure 17. Comparison of radiation patterns for a circumferential slot mounted at $\phi_s = 0^\circ$, $\phi_s = 30^\circ$ on a $2\lambda \times 10\lambda$ spheroid.

(a) $\theta_c = 0^\circ$, $\phi_c = 90^\circ$, $\theta_p = 90^\circ$

(b) $\theta_c = 30^\circ$, $\phi_c = 90^\circ$, $\theta_p = 90^\circ$

(c) $\theta_c = 60^\circ$, $\phi_c = 90^\circ$, $\theta_p = 90^\circ$
(d) $\theta_c=90^\circ$, $\phi_c=90^\circ$, $\theta_p=90^\circ$

(e) $\theta_c=90^\circ$, $\phi_c=0^\circ$, $\theta_p=90^\circ$

Ellipsoid Program

Spheroid Program

Figure 17. (continued)
Figure 18. Comparison of radiation patterns for a circumferential slot mounted at $\phi_s = 30^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 10\lambda$ spheroid.
Figure 18. (continued)

(d) $\theta_c = 90^\circ, \phi_c = 90^\circ, \theta_p = 90^\circ$

(e) $\theta_c = 90^\circ, \phi_c = 0^\circ, \theta_p = 90^\circ$

Ellipsoid Program Spheroid Program
Figure 19. Comparison of radiation patterns for a circumferential slot mounted at $\phi_s = 30^\circ$, $\theta_s = 30^\circ$ on a $2\lambda \times 10\lambda$ spheroid.
Figure 19. (continued)
Figure 20. Radiation patterns for $R_e = 15\lambda$ for a short monopole mounted at $\psi_5 = 0^\circ$, $\phi_5 = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 21. Radiation patterns for a short monopole mounted at $\theta_s = 0^\circ$, $\phi_s = 30^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 22. Radiation patterns for a short monopole mounted at $\phi_s = 30^\circ$, $\lambda_s = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 23. Radiation patterns for a short monopole mounted at $\phi_s = 30^\circ$, $\eta_s = 30^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 24. Radiation patterns for an axial slot mounted at $\phi_s = 0^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 24. Radiation patterns for an axial slot mounted at $\theta_c = 0^\circ$, $\phi_c = 30^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 26. Radiation patterns for an axial slot mounted at $\phi_s = 30^\circ$, $\theta_s = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 27. Radiation patterns for an axial slot mounted at $\theta_s = 30^\circ$, $\phi_s = 30^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 28. Radiation patterns for a circumferential slot mounted at $\phi_s = 0^\circ$, $\eta_s = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 29. Radiation patterns for a circumferential slot mounted at \(\theta_s = 0^\circ \), \(\phi_s = 30^\circ \) on a 2\(\lambda \times 4\lambda \times 10\lambda \) ellipsoid.
Figure 30. Radiation patterns for a circumferential slot mounted at $\theta_s = 30^\circ$, $\phi_s = 60^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 31. Radiation patterns for a circumferential slot mounted at $\phi_s = 30^\circ$, $\eta_s = 30^\circ$ on a $2\lambda \times 4\lambda \times 10\lambda$ ellipsoid.
Figure 32. Cone boundary used to define terms to be included in the shadow region.
REFERENCES

