OPTIMUM FOREBODY SHAPING FOR AXISYMMETRIC SUBMERSIBLES
WITH TURBULENT BOUNDARY LAYERS AND BLC AFTERBODIES

by

Benjamin J. Neumann

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

AVIATION AND SURFACE EFFECTS DEPARTMENT
RESEARCH AND DEVELOPMENT REPORT

July 1983

DTNSRDC-83/055
MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

DTNSRDC

COMMANDER 00
TECHNICAL DIRECTOR 01

OFFICER-IN-CHARGE CARDEROCK 05

SYSTEMS DEVELOPMENT DEPARTMENT 11

SHIP PERFORMANCE DEPARTMENT 15

STRUCTURES DEPARTMENT 17

SHIP ACOUSTICS DEPARTMENT 19

SHIP MATERIALS ENGINEERING DEPARTMENT 28

OFFICER-IN-CHARGE ANNAPOLIS 04

AVIATION AND SURFACE EFFECTS DEPARTMENT 16

COMPUTATION, MATHEMATICS AND LOGISTICS DEPARTMENT 18

PROPULSION AND AUXILIARY SYSTEMS DEPARTMENT 27

CENTRAL INSTRUMENTATION DEPARTMENT 29
Optimum Forebody Shaping for Axisymmetric Submersibles with Turbulent Boundary Layers and BLC Afterbodies

Author(s): Benjamin J. Neumann

Performing Organization Name and Address:
David Taylor Naval Ship Research and Development Center
Bethesda, MD 20084

Controlling Office Name and Address:
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Security Class. (of this report): UNCLASSIFIED

Distribution Statement (of this report): APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Abstract:
One objective of the Advanced Undersea Vehicle (AUV) program is to design a low drag vehicle. The approach to this objective in this investigation is boundary layer control by means of an annular suction slot located on the afterbody. Although wind tunnel data showed significant reduction in propulsive power over conventional shapes, an attempt was made to achieve further reduction by means of forebody shaping. Two methods were used to vary the...
geometric parameters for this analysis. The direct method, based on the mathematical development of the Series 58 bodies, allows the definition of a shape by a fifth-order polynomial based on the four fundamental parameters of fineness ratio, nose radius of curvature, location of maximum thickness, and prismatic coefficient. The inverse method allows various velocity distributions to define the body shape. The shapes derived by this method have flat velocity distributions and show similar trends to the polynomial shapes (about 3-percent reduction in propulsive power). The range of fineness ratios analyzed was from 1 to 10 at a volume-based Reynolds number of 3.2 million. In the range of 2.5 to 8, fineness ratio did not affect propulsive power more than 6 percent. A maximum improvement of 3 percent was shown by varying the meridian section.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>NOTATION</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>ADMINISTRATIVE INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>EVALUATION CRITERIA</td>
<td>4</td>
</tr>
<tr>
<td>GEOMETRY DEVELOPMENT</td>
<td>6</td>
</tr>
<tr>
<td>DIRECT METHOD</td>
<td>10</td>
</tr>
<tr>
<td>INVERSE METHOD</td>
<td>11</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>18</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX - FIFTH-ORDER POLYNOMIAL DERIVATION</td>
<td>27</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>33</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

1. Component Schematic of Boundary Layer Control Model Installed in Wind Tunnel 3
2. Pressure Distribution over Wind Tunnel Model .. 7
3. Energy Content versus Mass Flow in Boundary Layer .. 8
4. Boundary Layer Rake Schematic ... 9
5. Envelope Curve of Prismatic Coefficient and Nose Radius of Curvature Defined by Zero Slope Condition ... 12
6. Boundary Curves Defined by No-Inflection-Point and Positive y Condition 13
LIST OF TABLES

1 - Correlation Between TAPS Prediction and Wind Tunnel Data 10
2 - Propulsive Power as a Function of Prismatic Coefficient and Nose Radius of Curvature 21
3 - Tabulated Results of Power Coefficient versus Fineness Ratio 23
NOTATION

A The surface area of a frustum, ft\(^2\)
C Maximum radius of a body, ft, C = d/2
C\(_D\) Drag coefficient
C\(_H\) Head coefficient, H/q\(_o\)
C\(_Q\) Mass flow coefficient
C\(_p\) Pressure coefficient
C\(_p^*\) Ideal forebody power coefficient
C\(_V\) Prismatic coefficient, fraction of usable volume contain by the body, C\(_V\) = \(\frac{4V}{\pi d^2 l}\)
d Maximum diameter of body, ft
H Fluid total head, lb/ft\(^2\) gage
K\(_1\) Maximum velocity ratio
K\(_2\) Final velocity ratio
L,\(\lambda\) Body length, ft
\(\lambda/d\) Fineness ratio
M Fraction of body length where body is thickest
n Exponent used in velocity curve fit
P Power, ft-lb/sec
P\(_s\) Static pressure
q Dynamic pressure, lb/ft\(^2\), q = 1/2p \(v^2\)
R\(_o\) Radius of curvature at the nose, ft
r\(_o\) Nondimensional radius of curvature at the nose, r\(_o\) = R\(_o\) \(*\) \(\lambda/d^2\)
r\(_1\) Body radius at the location of the boundary layer rake, ft
Re\(_V\) Reynolds number based on volume raised to the one third power, Re\(_V\) = \(\frac{V_0/3}{v}\)
S Surface distance, ft
V Velocity, \text{ft/sec}

y Height, \text{ft}

\delta Boundary layer height, \text{ft}

V Volume, \text{ft}^3, (for BLC bodies, the portion of the body volume upstream of the inlet location; otherwise total body volume)

\theta Angle between normal to body surface and the vertical, \text{degrees}

\rho Density, \text{slugs/ft}^3

\nu Kinematic viscosity, \text{ft}^2/\text{sec}

Subscripts

i Value at heights normal to body, \(y_i\)

1 Local conditions at station 1, the assumed inlet location

0 Free-stream conditions

te Trailing edge of the body
ABSTRACT

One objective of the Advanced Undersea Vehicle (AUV) program is to design a low drag vehicle. The approach to this objective in this investigation is boundary layer control by means of an annular suction slot located on the afterbody. Although wind tunnel data showed significant reduction in propulsive power over conventional shapes, an attempt was made to achieve further reduction by means of forebody shaping. Two methods were used to vary the geometric parameters for this analysis. The direct method, based on the mathematical development of the Series 58 bodies, allows the definition of a shape by a fifth-order polynomial based on the four fundamental parameters of fineness ratio, nose radius of curvature, location of maximum thickness, and prismatic coefficient. The inverse method allows various velocity distributors to define the body shape. The shapes derived by this method have flat velocity distributions and show similar trends as the polynomial shapes (about 3-percent reduction in propulsive power). The range of fineness ratios analyzed was from 1 to 10 at a volume-based Reynolds number of 3.2 million. In the range of 2.5 to 8, fineness ratio did not affect propulsive power more than 6 percent. A maximum improvement of 3 percent was shown by varying the meridian section.

ADMINISTRATIVE INFORMATION

This work was performed by the New Vehicle Office (Code 1603) of the Aviation and Surface Effects Department at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC). The project was funded by the Defense Advanced Research Projects Agency (DARPA) under Program Element 62702E, DTNSRDC Work Unit 1603-604.

INTRODUCTION

One aspect of the Advanced Undersea Vehicle (AUV) program addresses the development of low-power requirements for an axisymmetric turbulent flow hydrodynamic body. The present concept uses the ingestion of the boundary layer fluid and the reenergization of the fluid to propel the vehicle. By ingesting the fluid at the proper location and with proper afterbody shaping, flow separation can be
avoided even with very full afterbodies. The ability to design full afterbodies without a power penalty has resulted in high prismatic coefficient bodies \((C_y > 0.8)\) with low-power requirements. Analytical studies have been performed to develop body shapes for experimental verification in a wind tunnel.\(^1\) The body shape selected for this experiment uses a Reichardt nose and parallel mid-bodies which varied the body length-to-diameter ratio (4, 5, and 6); see Figure 1. The full afterbody shape was selected based on a preliminary design for the propulsor and shroud.

The three designs were experimentally evaluated in a wind tunnel\(^2\) in an unpowered condition using a fan mounted downstream of the model connected by a duct to provide the suction air simulating the propulsor. Pressure measurements provided data to determine the power coefficients for the bodies at various suction flow rates. One of the many observations during the wind tunnel investigation was that the body with a fineness ratio 6 (i.e., length-to-maximum-diameter ratio) performed better than the lower fineness ratio bodies. This study was undertaken to verify the wind tunnel results and to determine if another shape could perform even better than the shapes selected for the wind tunnel experiments.

One way of assessing the performance of a vehicle is by calculating the power required to propel the vehicle at a constant speed, that is, propulsive power. An attempt was made to reduce propulsive power on the wind tunnel model by means of forebody shaping. It was believed that an efficient means of accelerating the fluid over the forebody such that boundary layer growth would be controlled would result in a reduction in required power. Forebody shaping to reduce drag had been investigated a number of times, but the feasibility of efficient afterbody boundary

\(^{*}\)A complete listing of references is given on page 33.
Figure 1 - Component Schematic of Boundary Layer Control Model Installed in Wind Tunnel
layer control, which was demonstrated earlier in the program, provides two new considerations that suggest a separate study. First, because separation is avoided, i.e., no form drag, the primary component of drag to be considered is skin friction. In addition, since an afterbody is required for boundary layer control, the analysis of the skin friction should be conducted only from the nose of the body to a point where an inlet would be placed. Second, only turbulent flow is of interest in this study whereas some other studies dealt with laminar flow. These two issues justified proceeding with a forebody shaping program at DTNSRDC. (See References 3 and 4 for details of other studies.)

EVALUATION CRITERIA

It is assumed that with a properly developed BLC aftbody the form drag will be negligible, external aftbody friction will be very small and its dependence on forebody geometry can be neglected, and the internal efficiency with which boundary layer fluid can be ingested, reenergized and exhausted is also independent of forebody geometry. These assumptions greatly simplify the problem of comparing the merits of different overall body geometries since they can be compared on the basis of boundary layer properties at an assumed propulsor inlet location and the details of aftbody internal and external shaping need not be considered.

The inlet location was selected as a point slightly upstream from the occurrence of boundary layer separation as determined from a calculation of the boundary layer development under the influence of the calculated potential-flow pressure distribution. By choosing to nondimensionalize results in terms of the body volume upstream of the chosen inlet location, it was found that the effect of small variations in the exact choice of inlet location was made negligible. (This choice
of reference volume was necessary in any case in order to avoid having to deal with the details of aftbody geometry.)

The quantity chosen as the measure of relative merit of the various body geometries is ideal forebody power coefficient, C_p^*, a nondimensional measure of the power required by an ideal propulsor to restore the boundary layer fluid at the chosen inlet location to free-stream total head.

This coefficient is defined as:

$$C_p^* = \frac{P^*}{q_o V_o V_{o}^{2/3}}$$

(1)

where

$$P^* = \int_0^\delta V_i (q_o - H_i) \, dA_i$$

(2)

$$dA_i = 2\pi (r_i + y_i \cos \theta) \, dy$$

(3)

But

$$V_i \, dA_i = V_o V_{o}^{2/3} \, dC_Q$$

(4)

Hence

$$C_p^* = \int_0^\delta (1 - C_H) \, dC_Q$$

(5)

The requisite boundary layer information, namely C_H as a function of C_Q, was obtained from the Transition Analysis Program System (TAPS)5,6 which was also one of the primary tools used in the analysis and development of the earlier wind tunnel configurations. Correlation between TAPS and actual wind tunnel data has, to some degree, been completed. Very good comparisons between the
TAPS potential solution and pressure coefficient, \(\frac{p_{s1} - p_{s0}}{q_o} \), measurements have been found. In Figure 2, a sample plot shows the pressure distribution over the wind tunnel model \(\frac{d}{d} = 6 \) with the TAPS prediction. Also, good agreement has been found between the predicted energy content of the fluid just upstream of the inlet and the measured energy (head profile). Predicted head profile is compared with the measured head profile in Figure 3. The head profile is presented by a head coefficient versus a mass flow coefficient; the latter is similar to the stream function concept, that is, the mass flow is constant between streamlines. This method of presentation is essential because the experimental data revealed significant variation of static pressure across the boundary layer. Since TAPS assumes uniform static pressure across the boundary layer, comparisons of \(H \) vs \(y \) and \(V \) vs \(y \) separately would suggest very poor correlation even though the actual correlation in terms of flow quantities needed for this study is excellent.

The wind tunnel model geometries were also analyzed by TAPS at the same conditions as the wind tunnel data points so that further correlation could be made between predictions and actual measurements. The wind tunnel models had a 13-tube rake of which 11 tubes were for total pressure and 2 were for static pressure measurements (Figure 4). This rake, located just forward of the inlet, is referred to as the boundary layer rake. The boundary layer rake measurements were integrated, as shown in Equations (1) through (5), in order to correlate the analysis with actual data. The results of this correlation showed very good agreement, as indicated in Table 1.

GEOMETRY DEVELOPMENT

In order to compare the different shapes and to understand their variation in performance, a method was sought which would allow the variation of geometric
Figure 2 - Pressure Distribution Over Wind Tunnel Model
Figure 4 - Boundary Layer Rake Schematic
parameters. These parameters include fineness ratio, prismatic coefficient, nose radius of curvature, and the location of maximum thickness. Two approaches are available to accomplish this. The first approach, the direct method, is to define a geometry based on the four parameters and then analyze its flow characteristic. The second approach, the inverse method, is to prescribe a velocity distribution and find the geometry that matches.

DIRECT METHOD

The direct method is a modification to the work done by Gertler and Landweber\(^7\) in 1950. The problem simply stated: A polynomial is desired which defines the geometry of a body of revolution. It is desired that four parameters be available for the user to vary, thereby generating a family of geometrically similar bodies. The parameters are fineness ratio, prismatic coefficient, nose radius for curvature, and the location of maximum thickness. The equation takes the form:

\[
y^2(x) = 2 r_o R(x) + C^2 Q(x) + C_V P(x) \quad (6)
\]

where \(R(x), Q(x),\) and \(P(x)\) are fifth-order polynomials.

The one parameter that is not apparent, but of major importance, is the location of maximum thickness of the body, \(M\). Due to the mathematical limitations of Equation (6), \(M\) was chosen to be 0.7 of the body length for all geometries.

TABLE 1 - CORRELATION BETWEEN TAPS PREDICTION AND WIND TUNNEL DATA

<table>
<thead>
<tr>
<th>Wind Tunnel Model, (4/d)</th>
<th>Predicted (C_{p#})</th>
<th>Measured (C_{p#})</th>
<th>Variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.0201</td>
<td>0.0206</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>0.0202</td>
<td>0.0200</td>
<td>1.1</td>
</tr>
<tr>
<td>4</td>
<td>0.0195</td>
<td>0.0193</td>
<td>1.0</td>
</tr>
</tbody>
</table>
analyzed. The derivation of R(x), Q(x), and P(x) is shown in the appendix and is similar to the method presented in Reference 7.

The major portion of this study was done with geometries generated by the direct method. Certain restrictions are imposed in Equation (6) in order to ensure a smooth body. An example of these limitations is shown in Figures 5 and 6. Figure 5 shows a region within which only one point of zero slope exists on the body contour. This alone does not ensure a realistic geometry nor a smooth one. Figure 6 shows regions in which y < 0 or y'' > 0, which would indicate a nonrealistic geometry and a geometry with inflection points, respectively. An example of a polynomial generated body is shown in Figure 7 for a fineness ratio 5 body.

For a fineness ratio of 4, a range of prismatic coefficients and radii of curvature were tested. The investigation of fineness ratio 4 geometries was done to understand the influence that the prismatic coefficient and nose radius of curvature have on the power required to self-propel the bodies.

The very nature of this method enables it to be converted easily to a computer program. After conversion, a systematic procedure was developed to start with a geometry and result in a final \(C_p^* \). This method was also extended from a fifth-order to a sixth-order polynomial. As no significant improvement was shown, this was not pursued.

Inverse Method

Included in the TAPS package is an inverse potential flow program developed by James\(^8\) and the McDonnell-Douglas Corporation\(^9,10\). Input to the program is a velocity distribution, and by means of iteration a resulting geometry is output.
Figure 5 - Envelope Curve of Prismatic Coefficient and Nose Radius of Curvature Defined by Zero Slope Condition
Figure 6 - Boundary Curves Defined by No-Inflexion-Point and Positive y Condition
The following are sample input:

\[
\left(\frac{v_1}{v} \right)^2 = K_1 \cdot S^{1/n} \quad 0 \leq S < 1
\]

\[
\left(\frac{v_1}{v} \right)^2 = K_2 \quad 1 < S \leq S_{te}
\]

where \(S = 1 \) at the location of the inlet, and \(S = 0 \) at the nose.

By varying \(K_1 \), \(K_2 \), \(n \), and \(S_{te} \) a family of velocity distributions can be generated (Figure 8).

A number of attempts were made using the TAPS inverse code, but the approach was discontinued due to unsatisfactory results. Subsequent analysis of an output geometry did not compare with the input velocity distribution. The failure of the TAPS inverse method is believed due to the convergence logic and its particular coding; therefore, a second inverse method was developed. This method, based on a surface discrete vortex distribution, was originally coded on a Tektronix terminal.
for two-dimensional flow. Later, the method was developed for an axisymmetric flow and finally coded in FORTRAN for use on the CDC-6600-type computers.

The program receives as input a function for the body length. The function used was a series of straight lines; see Figure 9. The broken line in the figure results in a cusp-type of afterbody and is similar in shape to the velocity distribution for such a body. The solid line represents a symmetric velocity distribution (the type of input used in this analysis). The resulting geometry is symmetrical, which would change in shape based on changes in the slopes in the fore and aft input distribution. The resulting geometries were checked in the TAPS potential flow code to verify a flat velocity distribution. A sample result is shown in Figure 10.

![Figure 9 - Typical Input Function for Inverse Code](image)

A number of other geometries were analyzed to put the final results in perspective. The laminar flow forebody shape of Goldschmied11 was analyzed along with the wind tunnel model of fineness ratios of 4, 5, and 6.
Figure 10 - Resulting Geometry and Corresponding Pressure Distribution from Inverse Code
RESULTS AND DISCUSSION

At low fineness ratios, the component of drag due to flow separation (residual drag) becomes more important. This phenomenon is seen in Figure 11 where the total drag of a typical Series 58 body is shown along with the components of drag, skin friction, and residual. Note that at the low fineness ratios the residual drag controls the shape of the total drag curve. By applying afterbody boundary layer control, the residual drag component can be eliminated, and the optimum fineness ratio for reducing propulsive power can be found based on a tradeoff of skin friction drag alone.

When attempting to reduce the skin friction of a body of revolution, there is a distinct tradeoff. By reducing fineness ratio, the wetted area required to enclose a given body is reduced as shown in Figure 12. This should reduce skin friction drag. However, reducing fineness ratio also increases the flow velocities over the surface, increasing skin friction drag. An analysis was conducted, using the methods previously described, to define the fineness ratio which optimizes the reduction in wetted area with the increase in surface velocity. (An assessment of a low drag spherical submersible was conducted at DTNSRDC in 1981.*)

The analysis was conducted as a two-step process. First, for a single fineness ratio, \((L/d = 4)\), the influence of prismatic coefficient and nose radius of curvature was determined. The results in Table 2 show a range of less than 2 percent. Despite such a small range, it was apparent that the higher prismatic coefficient and nose radius of curvature bodies resulted in the lower power coefficients. This was the assumption used for the other fineness ratios.

*As documented by Leitner and McCabe in a report of higher classification.
Figure 11 - Drag Coefficient versus Fineness Ratio for Series 58 Bodies
Figure 12 - Influence of Fineness Ratio on Wetted Area
The second step was to determine the influence of fineness ratio. The results of this analysis are shown in Figure 13 and Table 3. The primary method used was the polynomial generated shapes which make up the base-line curve. The polynomial shapes range from fineness ratios of 1 up to 10. Figure 13 also includes the various geometries used in the program analysis. The wind tunnel model with the Reichardt nose displays somewhat lower values than the base line. A third family of geometric shapes is shown with still lower propulsive power coefficient. These shapes, representing a flat pressure distribution, show an improvement of approximately 3 percent from the base line with a smaller improvement over the wind.

Table 2 - Propulsive Power as a Function of Prismatic Coefficient and Nose Radius of Curvature

<table>
<thead>
<tr>
<th>(C_p^*)</th>
<th>(C_v)</th>
<th>(r_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01907</td>
<td>0.55</td>
<td>0.005</td>
</tr>
<tr>
<td>0.01897</td>
<td>0.60</td>
<td>0.005</td>
</tr>
<tr>
<td>0.01893</td>
<td>0.65</td>
<td>0.015</td>
</tr>
<tr>
<td>0.01894</td>
<td>0.65</td>
<td>0.005</td>
</tr>
<tr>
<td>0.01887</td>
<td>0.70</td>
<td>0.005</td>
</tr>
<tr>
<td>0.01883</td>
<td>0.70</td>
<td>0.015</td>
</tr>
<tr>
<td>0.01897</td>
<td>0.75</td>
<td>0.030</td>
</tr>
<tr>
<td>0.01882</td>
<td>0.75</td>
<td>0.035</td>
</tr>
</tbody>
</table>

(\(\tau /d = 4 \))
Figure 13 - Forebody Power Coefficient versus Fineness Ratio
tunnel model. The characteristic pressure distributions of these four geometries are shown in Figure 14.

TABLE 3 - TABULATED RESULTS OF POWER COEFFICIENT VERSUS FINENESS RATIO

<table>
<thead>
<tr>
<th>(\frac{t}{d})</th>
<th>(C_p^*)</th>
<th>Geometry Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02765</td>
<td>Polynomial geometry</td>
</tr>
<tr>
<td>2</td>
<td>0.02137</td>
<td>Polynomial geometry</td>
</tr>
<tr>
<td>3</td>
<td>0.01920</td>
<td>Polynomial geometry</td>
</tr>
<tr>
<td>4</td>
<td>0.01880</td>
<td>Polynomial geometry</td>
</tr>
<tr>
<td>5</td>
<td>0.01880</td>
<td>Wind tunnel model</td>
</tr>
<tr>
<td>6</td>
<td>0.01910</td>
<td>Wind tunnel model</td>
</tr>
<tr>
<td>7</td>
<td>0.01955</td>
<td>Symmetric body</td>
</tr>
<tr>
<td>8</td>
<td>0.01990</td>
<td>Symmetric body</td>
</tr>
<tr>
<td>10</td>
<td>0.02055</td>
<td>Wind tunnel model</td>
</tr>
<tr>
<td>4.4</td>
<td>0.01850</td>
<td>Wind tunnel model</td>
</tr>
<tr>
<td>5</td>
<td>0.01860</td>
<td>Symmetric body</td>
</tr>
<tr>
<td>6</td>
<td>0.01895</td>
<td>Goldschmied</td>
</tr>
<tr>
<td>2.8</td>
<td>0.01870</td>
<td>Goldschmied</td>
</tr>
<tr>
<td>3.5</td>
<td>0.01830</td>
<td>Goldschmied</td>
</tr>
<tr>
<td>4.9</td>
<td>0.01835</td>
<td>Goldschmied</td>
</tr>
<tr>
<td>3</td>
<td>0.01950</td>
<td>Goldschmied</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Although the optimum fineness ratio appears to be 4, the curve is quite flat. An important consequence of this is that other design issues, which may necessitate changes in the vehicle's length or diameter, can be accommodated with impunity over a range of fineness ratios (2.5 to 8). (In practical terms, this relative
Figure 14 - Pressure Distribution of Various Geometries
insensitivity might extend to even lower fineness ratio bodies since the imposition of transition to turbulent flow at 10 percent body length may be overconservative for them. The sphere, for example, has a powerful favorable pressure gradient extending much further than 10 percent of length which might maintain a significantly greater region of laminar flow even in rather unfavorable practical conditions.)

For a constant fineness ratio, the different shapes varied by at most about 4 percent of C_p^*. Relative to the Reichardt shape selected for the wind tunnel model improvements of 1.5 percent were obtained.

By application of boundary layer control to underwater submersibles, a low-power vehicle can be designed with a fineness ratio of 2.5 and still have a high prismatic coefficient.
APPENDIX
FIFTH-ORDER POLYNOMIAL DERIVATION

The form of equation \(v^2(x) = 2r_0 R(x) + C_V P(x) + C^2 Q(x) \), which is the sectional area curve, is of the fifth order. The resultant meridian section can be easily defined by taking the square root of \(v^2 \). Substituting, \(f(x) \) for \(v^2(x) \) gives the following boundary conditions:

\(a. \ f(x = 0) = 0 \)
\(b. \ f(x = 1) = 0 \)
\(c. \ \frac{df}{dx} (x = 0) = 2r_o \)
\(d. \ f (x = M) = C^2 \)
\(e. \ \frac{df}{dx} (x = M) = 0 \)
\(f. \ \int_0^1 f(x) \ dx = C^2 \ C_V \)

where \(M \) = location of maximum thickness.

Since \(f(0) = 0 \), regardless of the values of \(r_o, C, \) and \(C_V \),
\[R(0) = P(0) = Q(0) = 0 \] (1)

Similarly, Equations (1) through (6) are obtained from:

Condition b
\[R(1) = P(1) = Q(1) = 0 \] (2)

Condition c
\[R'(0) = 1, \ P'(0) = Q'(0) = 0 \] (3)

where the prime denotes differentiation with respect to \(x \).

Condition d
\[R(M) = P(M) = 0, \ Q(M) = 1 \] (4)

Condition e
\[R'(M) = P'(M) = Q'(M) = 0 \] (5)
Condition if
\[\int_0^1 R(x) \, dx = \int_0^1 Q(x) \, dx = 0, \quad \int_0^1 P(x) \, dx = C^2 \]
(6)

The values of \(R(x) \), \(P(x) \), and \(Q(x) \) are derived on the basis of the relation in Equations (1) through (6).

EVALUATION OF R(x)

Since \(R(0) = R(M) = R'(M) = R(1) = 0 \), and \(R(x) \) is a polynomial of the fifth degree, Equation (7) becomes

\[R(x) = x(x - 1) (x-M)^2 (a_o + a_1 x) \]
(7)

The terms \(a_o \) and \(a_1 \) are solved from Equations (3) and (6). Substituting Equation (7) into Equation (3), \(R'(0) = 1 \),

\[a_o = - \frac{1}{M^2} \]
(8)

Equation (7) can be written as

\[R(x) = a_o \left[x^4 - x^3 (2M + 1) + x^2 (M^2 + 2M) - xM^2 \right] \]
+ \[a_1 \left[x^5 - x^4 (2M + 1) + x^3 (M^2 + 2M) - x^2M^2 \right] \]
(9)

Using this form of \(R(x) \) and applying Equation (6),

\[\int_0^1 R(x) \, dx = a_o \left[\frac{1}{5} - \frac{1}{4} \left(2M + 1 \right) + \frac{1}{3} \left(M^2 + 2M \right) - \frac{1}{2} M^2 \right] \]
+ \[a_1 \left[\frac{1}{6} - \frac{1}{5} \left(2M + 1 \right) + \frac{1}{4} \left(M^2 + 2M \right) - \frac{1}{3} M^2 \right] = 0 \]
(10)

Then, applying Equation (8) and solving for \(a_1 \),

\[a_1 = \frac{-10M + 10M - 3}{M^2 (-5M^2 + 6M - 2)} \]
(11)
EVALUATION OF $P(x)$

Since $P(0) = P'(0) = P(M) = P'(M) = P(1) = 0$, and since $P(x)$ is a polynomial of the fifth degree, Equation (12) takes the form

$$P(x) = x^2 (x - M)^2 (x - 1) \beta_0$$ \hspace{1cm} (12)

The term β_0 is solved from Equation (6). By expanding Equation (12),

$$P(x) = \beta_0 [x^5 - x^4 (2M + 1) + x^3 (M^2 + 2M) - x^2 M^2]$$ \hspace{1cm} (13)

substituting into Equation (6),

$$\int_0^1 P(x) dx = C^2$$

$$= \beta_0 \left[\frac{1}{6} - \frac{1}{5} (2M + 1) + \frac{1}{4} (M^2 + 2M) - \frac{1}{3} M^2 \right]$$ \hspace{1cm} (14)

Solving for β_0,

$$\beta_0 = C^2 \sqrt{\frac{1}{6} - \frac{1}{5} (2M + 1) + \frac{1}{4} (M^2 + 2M) - \frac{1}{3} M^2}$$ \hspace{1cm} (15)

EVALUATION OF $Q(x)$

Since $Q(0) = Q'(0) = Q(1) = 0$, and $P(x)$ is a polynomial of the fifth degree, Equation (16) becomes

$$Q(x) = x^2 (x-1) (\gamma_0 + \gamma_1 x + \gamma_2 x^2)$$ \hspace{1cm} (16)

The terms γ_0, γ_1, and γ_2 are solved from Equations (4), (5), and (6). From Equation (4), $Q(M) = 1$, and

$$\gamma_0 M^2 (M - 1) + \gamma_1 M^3 (M - 1) + \gamma_2 M^4 (M - 1) = 1$$ \hspace{1cm} (17)

Also, from Equation (5), $Q'(M) = 0$, and

$$\gamma_0 M (3M - 2) + \gamma_1 M^2 (4M - 3) + \gamma_2 M^3 (5M - 4) = 0$$ \hspace{1cm} (18)

Equation (16) can be written as

$$Q(x) = \gamma_0 (x^3 - x^2) + \gamma_1 (x^4 - x^3) + \gamma_2 (x^5 - x^4)$$ \hspace{1cm} (19)
Finally, from Equation (6), \[\int_0^1 Q(x)dx = 0, \] and Equation (19),

\[\int_0^1 Q(x)dx = \gamma_0 \left(\frac{1}{4} - \frac{1}{3} \right) + \gamma_1 \left(\frac{1}{5} - \frac{1}{4} \right) + \gamma_2 \left(\frac{1}{6} - \frac{1}{5} \right) = 0 \]

(20)

From Equations (17), (18), and (20), the system of three equations and three unknowns can be simplified and solved simultaneously for \(\gamma_0, \gamma_1, \) and \(\gamma_2. \) The resulting values are

\[\gamma_0 = \frac{1 - 2.5M^2}{(1 - 1.5M)M} + \frac{12.5M^2 - 10M^2 - 3M + 2}{7.5M^3 - 6M^2 - 4M + 3} \]

(21)

\[\gamma_1 = \frac{1 - \gamma_0 (1 - 2.5M^2) (M - 1) M^2}{M^3 (M - 1) (1 - 1.5M)} \]

(22)

\[\gamma_2 = -(2.5 \gamma_0 + 1.5 \gamma_1) \]

(23)

The set of equations to describe an axisymmetric body by means of a fifth-order polynomial can be summarized as

\[y^2 = 2r_0 R(x) + C_v P(x) + C^2 Q(x) \]

(24)

where

\[R(x) = x(x - 1) (x - M)^2 (\alpha_0 + \alpha_1 x) \]

\[P(x) = x^2(x - M)^2 (x - 1) \beta_0 \]

(25)

\[Q(x) = x^2(x - 1) (\gamma_0 + \gamma_1 x + \gamma_2 x^2) \]

and

\[\alpha_0 = -\frac{1}{M^2} \]

\[\alpha_1 = \frac{-10M^2 + 10M - 3}{M^2 (-5M^2 + 6M - 2)} \]

30
\[B_o = C^2 \left[\frac{1}{6} - \frac{1}{5} (2M + 1) + \frac{1}{4} (M^2 + 2M) - \frac{1}{3} M^2 \right] \]

\[\gamma_0 = \frac{1 - 2.5M^2}{(1-1.5M)M} + \frac{12.5M^3 - 10M^2 - 3M + 2}{7.5M^3 - 6M^2 - 4M + 3} \]

\[\gamma_1 = \frac{1 - \gamma_0 (1 - 2.5M^2) (M - 1)M^2}{M^3(M - 1)(1 - 1.5M)} \]

\[\gamma_2 = -(2.5\gamma_0 + 1.5\gamma_1) \]

As noted, not all combinations of \(r_o, C_v, C, \) and \(M \) define shapes that are either realistic or smooth. To ensure a satisfactory shape, equations have been defined that must be satisfied. These restrictions, which are the same as those imposed in Reference 7, include the existence of a single maxima between the nose and tail of the body and at a prescribed location, \(M \). Also, \(y \) must always be greater than zero, and the slope of the body must continuously be decreasing as \(x \) goes from nose to tail.
REFERENCES

INITIAL DISTRIBUTION

<table>
<thead>
<tr>
<th>Copies</th>
<th>Institution</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>DARPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Program Management/Mgt Info Systems</td>
<td>012.3</td>
<td>D. Jewell</td>
</tr>
<tr>
<td></td>
<td>3 Strategic Tech Office/R. Leitner</td>
<td>012.4</td>
<td>H. Jacobs</td>
</tr>
<tr>
<td>1</td>
<td>NRL</td>
<td>014</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NAVSEASYSCOM</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEA-63R31/T. Peirce</td>
<td>1544</td>
<td>R. Boswell</td>
</tr>
<tr>
<td>1</td>
<td>NUSC</td>
<td>1556</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DTIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Penn State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Res Lab/R. Henderson</td>
<td>1843</td>
<td>H. Haussling</td>
</tr>
<tr>
<td>1</td>
<td>TACTEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The Charles Stark Draper Laboratory, Inc./M. O'Brien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>RAMCOR, Inc./P. Georgallis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CENTER DISTRIBUTION

<table>
<thead>
<tr>
<th>Copies</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>012</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>014</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1544</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1556</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1603</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1606</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1606</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1843</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1920</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5211</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>522</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>522</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>012</td>
<td>D. Jewell</td>
</tr>
<tr>
<td>014</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>R. Boswell</td>
</tr>
<tr>
<td>1544</td>
<td></td>
</tr>
<tr>
<td>1556</td>
<td></td>
</tr>
<tr>
<td>1603</td>
<td>B. Neumann</td>
</tr>
<tr>
<td>1606</td>
<td>C. Applegate</td>
</tr>
<tr>
<td>1606</td>
<td>Aerodynamics Collection</td>
</tr>
<tr>
<td>1843</td>
<td>H. Haussling</td>
</tr>
<tr>
<td>1920</td>
<td>R. Biancardi</td>
</tr>
<tr>
<td>5211</td>
<td>Reports Distribution</td>
</tr>
<tr>
<td>522</td>
<td>Unclassified Library (C)</td>
</tr>
<tr>
<td>522</td>
<td>Unclassified Library (A)</td>
</tr>
<tr>
<td>93</td>
<td>Patent Counsel</td>
</tr>
</tbody>
</table>

35
1. "OFTHELIC REPORTS, A FORMAL FORM, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSPECTIVE ALPHANUMERICAL IDENTIFICATION ASSOCIATED WITH THEIR CLASSIFICATION IN THE VARIOUS DEPARTMENTS.

2. "DEPARTMENTAL REPORTS, A SEMIFORMAL DESIGN, CONTAIN INFORMATION OF A FURTHER, TECHNICAL OR PROPRIETARY NATURE OR OF MINOR INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. "INTERNAL REPORTS, AN INFORMAL DESIGN, CONTAIN INFORMATION OF LIMITED USE AND INTEREST. THEY ARE USUALLY WORKING PAPERS INTEGRALED FOR INTERNAL USE. SUCH REPORTS ARE INTENDED ONLY FOR USE WITHIN THE ORGANIZATIONAL UNITS OF THE EMPLOYER. ANY DISTRIBUTION OUTSIDE THIS UnTS MUST BE AUTHORIZED BY THE HEAD OF THE ORGANIZATIONAL UNIT AND A COPY STORED THERE.