**Title:** An Evaluation of Possible Effects of Modulated 76 Hz Electric Fields on Behavior and EEG of Monkeys. Phase 2: Frequency Modulation

**Author:** R. Medici, G. Lesser, S.H. Bevin, W.R. Aday, M. Wakefield, P.M. Sagan and A.R. Sheppard

**Performing Organization Name and Address:** University of California, Los Angeles, Los Angeles, California

**Contract or Grant Number:** NO0014-75-C-1094

**Report Date:** June 1980

**Number of Pages:** 101

**Distribution Statement:** Unlimited

This document has been approved for public release and sale; its distribution is unlimited.

---

**Abstract:** In 1969 a long series of studies were initiated aimed at exploring the possible effects of weak ELF fields on behavior of monkeys in the laboratory. It seemed obvious, at the outset, that low frequency fields at levels of 1-100 V/m p-p were not likely to produce dramatic, sudden onset, behavioral changes. Fields at those levels are routinely encountered in the home around 60 Hz devices. It was taken as a challenge to find a (1) highly sensitive but reliable behavioral assay that could, in principle, (2) detect thresholds and...
would allow (3) long exposure durations. For example, it seemed vain to think
that five minutes of exposure to a 45 Hz field at 10 V/m would affect any
behavior at all. A final requirement, based on repeated references in the
literature to reaction time, circadian rhythms, etc., was that the task
involve some kind of (4) timing behavior. These four requirements all
seemed to be met by employing an interresponse time schedule of reinforcement
(IRT task) in which an animal is reinforced for pressing a lever once every
N sec within a specified period ("limited hold"). If the animal presses too
early or too late, the timer recycles. In these studies, the animal was
reinforced with a tiny squirt of apple juice for pressing the lever every
5 sec within a 2.5 sec limited hold. Exposures were four hours long and test
periods were three hours long. In approximately 300 experiments, four 4-hour
replications of each field exposure plus an intermingled no-field tests were
done for each of five monkeys. Evidence was discovered for a shift in the
direction of shorted inter-response times in the presence of fields of a given
frequency and voltage within a range from 1-100 V/m and 7 to 75 Hz.

Four major conclusions were drawn from this study:

(1) Frequency-specificity. The evidence for a low threshold for 7 Hz is
most interesting. Analogous frequency-specificity changes in calcium
eflux (Δ) in in vitro neonatal chick brains have been observed in
our laboratory.

(2) Voltage. The data suggest some degree of dose-dependency. Results at
100 V/m p-p were inconclusive and suggest either a voltage-window of the
kind observed by Kalmijn (and in the calcium efflux studies) or a 24-hour
carryover effect.

(3) Duration of exposure. Relatively long exposure durations appear to have
contributed to the systematic array of results.

(4) Behavioral assay. The question of external stimulus control. The IRT task
apparently was adequately sensitive and reliable. A comparison of our
results with those of other negative primate studies revealed that in
the negative studies, behavioral assays included more traditional tasks,
including reaction time tests, fixed interval tests, match-to-sample
tests, etc., typically administered in 15-minute intervals. Animals
were deprived of food and water and exposed to a variety of light and
sound cues regulating the various tasks. In the IRT task, the monkeys
were isolated; they were not deprived during testing; there were no sound
or light cues regulating their behavior. It might be said that the
animals were forced, by the nature of the timing task, to pay attention
to their own internal milieu.
"AN EVALUATION OF POSSIBLE EFFECTS OF MODULATED 76 Hz ELECTRIC FIELDS ON BEHAVIOR AND EEG OF MONKEYS. PHASE 2: FREQUENCY MODULATION"

ONR FINAL REPORT
Contract No. N00014-75-C-1094


Brain Research Institute
University of California - Los Angeles

June 1980
I. INTRODUCTION

Over the past several years, there have been some dramatic results reported in observational studies (as contrasted with laboratory studies) of the role of weak ELF fields in affecting the survival behavior of certain species. One example of such a study is that of Kalmijn (1) in which he demonstrated that sharks use weak, ELF fields to detect their prey. In an ingenious series of experiments, Kalmijn demonstrated that sharks detected a flat fish buried in sand at the bottom of a large hold tank on the basis of the weak ELF field emitted by the flat fish. Kalmijn estimated this field to be on the order of .2uV/cm and to cause slowing of respiratory rhythms. When non-electric cues were systematically eliminated by the use of an agar chamber, the shark continued to dive immediately to the buried flat fish. However, the introduction of a thick polyethylene film placed around the prey attenuated the electric field and succeeded in confusing the shark. When the natural field of the flat fish was simulated with a .4uV/cm field at 5 Hz produced by two electrodes buried in sand at the bottom of the tank, the shark dove immediately to the location of the electrodes. In later experiments, Kalmijn observed a voltage window; i.e., the effect was not observed if a substantially higher voltage simulation was used. Special receptors, the ampullae of Lorenzini, were discovered to account for the shark's perception of the weak fields.

Other observational studies have been done on the homing and migration of birds. The study of Keeton (2) is especially interesting. Although this study employed weak magnetic fields rather than electric fields, it is described briefly here because of an important methodological point. Keeton strapped tiny magnets on the backs of homing pigeons and observed that their flight was, consequently, disoriented but only on cloudy days. He concluded that if the sun were present as a salient cue, the pigeons could only be observed when strong external cues guiding their behavior were absent.

New evidence for disruption of migration by weak ELF fields has recently been offered by Williams, Williams, Larkin and Sutherland (3). They have observed that migratory birds showed a deviation in flight direction of 5° to 25° around the Seafarer antenna, when the N-S axis was energized. Indications were that flight direction was rapidly corrected. This field was estimated to be .17 V/m rms at 10 meters, perpendicular to the antenna.

These observational studies raise the question of whether they represent merely isolated peculiarities of nature or whether they point towards some fundamental property of nervous systems that extends throughout the animal kingdom, including man.

In 1969, we began a long series of studies (Gavalas, Walter, Hamer and Adey (4), Gavalas-Medici and Day-Magdaleno (5)) aimed at
exploring the possible effects of weak ELF fields on behavior of monkeys in the laboratory. It seemed obvious, at the outset, that low frequency fields at levels of 1-100 V/m p-p were not likely to produce dramatic, sudden onset, behavioral changes. Fields at those levels are routinely encountered in the home around 60 Hz devices.

It was taken as a challenge to find a 1) highly sensitive but reliable behavioral assay that could, in principle, 2) detect thresholds and would allow 3) long exposure durations. For example, it seemed vain to think that five minutes of exposure to a 45 Hz field at 10 V/m would affect any behavior at all. A final requirement, based on repeated references in the literature to reaction time, circadian rhythms, etc., was that the task involve some kind of 4) "timing" behavior. These four requirements all seemed to be met by employing an interresponse time schedule of reinforcement (IRT task) in which an animal is reinforced for pressing a lever once very N sec within a specified period ("limited hold"). If the animal presses too early or too late, the timer recycles. In these studies, the animal was reinforced with a tiny squirt of apple juice for pressing the lever every 5 sec within a 2.5 sec limited hold. Exposures were four hours long and test periods were three hours long. In approximately 300 experiments, four 4-hour replications of each field exposure plus intermingled no-field tests were done for each of five monkeys. Evidence was discovered for a shift in the direction of shorted inter-response times in the presence of fields of a given frequency and voltage within a range from 1-100 V/m and 7 to 75 Hz.

Figure 1 shows the kind of IRT distributions that were observed for a single 4-hour exposure for a given field condition for one monkey and compares that distribution with a control, no-field test for the same monkey. Note the larger sample of responses in each distribution and the increasing separation of the distributions as voltage is increased from 1 to 56 V/m p-p.

Figure 2 summarizes the result of all of the experiments over all monkeys within the voltage range from 1 to 56 V/m p-p. The X-axis shows changes in average interresponse times, the Y-axis shows the three voltage levels tested (1, 10 and 56 V/m; the different bars represent frequencies tested). It may be seen that at 1 V/m, all differences are in the direction of shortened IRT's but none is statistically significant. At 10 V/m there is evidence for a threshold change for 7 Hz but not 45 Hz or 75 Hz. This may represent the biological relevance of this frequency; it is within the range of hippocampal theta for the monkey. At 56 V/m, IRT differences are much larger and significant for both 7 Hz and 75 Hz. Studies of EEG in two implanted monkeys in this series pointed towards a reduction of power in the range of 1-3 Hz and shift towards higher power in the middle EEG ranges of 5-16 Hz. Such data are compatible with heightened arousal and shorter IRT's.

Four major conclusions may be drawn from this study:

2.
1) Frequency-specificity. The evidence for a low threshold for 7 Hz is most interesting. Analogous frequency-specificity changes in calcium efflux (6) in *in vitro* neonatal chick brains have been observed in our laboratory.

2) Voltage. The data suggest some degree of dose-dependency. Results at 100 V/m p-p were inconclusive and suggest either a voltage-window of the kind observed by Kalmijn (and in the calcium efflux studies) or a 24-hour carryover effect.

3) Duration of exposure. Relatively long exposure durations appear to have contributed to the systematic array of results.

4) Behavioral assay: The question of external stimulus control. The IRT task apparently was adequately sensitive and reliable. A comparison of our results with those of other negative primate studies revealed that in the negative studies, behavioral assays included more traditional tasks, including reaction time tests, fixed interval tests, match-to-sample tests, etc., typically administered in 15-minute intervals. Animals were deprived of food and water and exposed to a variety of light and sound cues regulating the various tasks. In the IRT task, the monkeys were isolated; they were not deprived during testing; there were no sound or light cues regulating their behavior. It might be said that the animals were forced, by the nature of the timing task, to pay attention to their own internal milieu.

A quick reminder note that this is quite analogous to Keeton's interpretation of the pigeon homing data. This general finding might be paraphrased as follows: behavioral effects, if any, of weak electric fields are more likely to be observed in the absence of strong external stimulus control.

A similar interpretation has been made in a number of studies in the area of behavioral toxicology. Figure 3 shows the results of a study (7) of the effects of amphetamine on a DRL (differential reinforcement of low rates) schedule of reinforcement. This schedule is similar to the IRT schedule, but lacks a limited hold. This schedule revealed a substantial effect of 1 mg/K of amphetamine on both number of responses and number of reinforcements. When the experiment was modified so that a single external stimulus cue (a light) was added to the onset of correct interval, the effects of amphetamine were completely obliterated.

Similarly, data from Lacies (8) is presented in Figures 4 and 5. This study demonstrates that a pigeon worked on a FCHS (fixed consecutive number) schedule of reinforcement showed extremely variable performance following administration of methyl mercury. However, the addition of a light cue, indicating when the animal should shift to the reinforcement key, resulted in "normalizing" his behavior so that the effects of the methyl mercury could no longer be observed.
The subsequent removal of the light revealed that the behavior once again appeared perturbed—and implied that the effects of the mercury were still present. Ogden Lindsley (8) has aptly labeled the use of such cues a "behavioral prostheses."

Finally, a similar example of the effect of external stimuli control was reported in a recent issue of the Journal of Comparative and Physiological Psychology by Braggio and Ellen (9). In studies of brain lesions in the septum, hippocampus, dorsomedial nuclei of the thalamus and dorsoventral thalamus they found that behavior on a DRL schedule is disrupted (over-responding occurs). The authors note that adding a light as a timing cue attenuated the symptom and "...eliminates the appearance of any difference between operated and normal animals during the cued training period" (p. 701).

The present series of studies utilized the methodological principles described above to assay possible behavioral and EEG changes associated with the presence of weak frequency-modulated ELF fields that closely simulated those of Project Seafarer. The techniques, description of the facilities, etc. have been described in detail in an earlier ONR Technical Report (Contract No. N0001469A02004037, April 1975) entitled "An Evaluation of Possible Effects of 45 Hz, 60 Hz and 75 Hz Electric Fields on Neurophysiology and Behavior of Monkeys. Phase I: Continuous Wave" by R. Gavalas-Medici and S. R. Magdaleno.

II. METHODS

A. Field Simulation. Two double bronze screened exposure chambers were used. Parallel field plates (1 meter square) were spaced 50 centimeters apart in each chamber. A closed circuit TV camera was mounted inside each enclosure with monitor and equipment located outside. There were no AC devices inside the chambers except for the well-shielded camera and cables. All blowers, generators, etc., were kept outside the chamber. The rooms were illuminated with DC light. "Inside" and "outside" temperatures could be read remotely.

Monkeys were trained and tested in Foringer monkey chairs that had been modified so that as much metal as possible was eliminated (and replaced with specially fabricated plastic parts).

The frequency-modulated signal was generated by a special device designed and fabricated by IITRI. The frequency-modulated signal varied from 72 Hz to 80 Hz with a center frequency of 76 Hz. This frequency modulated field was tested at .2 V/m p-p, 10 V/m p-p and 56 V/m p-p. Additional testing was done with the same field with 10 V/m p-p of 60 Hz added on, to simulate the ambient 60 Hz field that might occur in the region of Project Seafarer. Other tests were made at 76 Hz CW so that possible effects could be compared with and without the frequency modulation. Tests at 7 Hz CW had been made in the 1975 studies and those results suggested a distinctly
lower threshold for this biologically relevant frequency (it is within the range of hippocampal theta for the monkey).

The electric fields were measured before and after the experiments by ITTRI, utilizing their specially developed high impedance electric field probe and magnetic field probe. The presence of the field was continuously monitored during testing. At the beginning of the experiments, this was done by recording the signal on the Grass EEG recorder (used to record EEG data from implanted monkeys). However, this produced a high-pitched, faintly audible noise from the recording pens when the higher frequencies (76 Hz, 76 mK) were used. Consequently, the presence of the field was monitored with an oscilloscope to prevent possible auditory detection of the field by the monkeys. This change in procedure resulted in the inadvertent grounding of one of the field plates and a resultant imbalance in the electric fields between the plates. Measurements and mapping of the field were made by ITTRI at the conclusion of the experiment.

The voltage levels in the center of the chamber were only slightly affected by the imbalance. Field levels were measured at ± 10% of the expected value in the region between the plates where the monkey was positioned.

Conducted current measurements in a phantom monkey indicated that these values were substantially higher in the imbalanced field than in the balanced field condition (e.g., 8.3 nanoamps at 10 V/m p-p vs. 0.35 nanoamps). The overall lack of significant behavioral changes described later in this report suggests that, in any case, these increased current values did not produce spurious false positive results.

A detailed description of the chambers and the field measurements is included in Appendix II ("Electromagnetic Field Measurements in Support of Primate Behavioral and EEG Studies" by Gauger, J.R. and Robertson, N.C.).

B. Experimental Design - Behavior. Behavioral protocols have been described in the ONR 1975 Technical Report and in related publications (see References at end of this report). The rationale for the use of the interresponse time schedule of reinforcement as a behavioral assay has been discussed in Appendix B, "Behavioral Assays of Possible Weak ELF Effects: Comments and Recommendations" in a 1977 report of the "Biologic Effects of Electric and Magnetic Fields Associated with Proposed Project Seafarer" by the National Research Council, National Academy of Sciences. (See Appendix III, this Report.)

Briefly, this schedule of reinforcement entails training the monkey to press a lever once every N sec (5 sec) within a specified time "window" (2.5 sec). As in the CW studies reported in 1975, animals were trained for approximately 100 days for three hours per day at the same time everyday until performance levels reached about
correct. Animals were maintained on a standard laboratory diet (monkey chow pellets, fruit and water) and correct responses on the IRT task were reinforced with small squirts of apple juice. Animals were tested in adapted Foringer monkey chairs five days a week and returned to their home cages over the weekend.

Six animals (two implanted with EEG electrodes and four implanted) were tested in a counterbalanced series of tests at 10 V/m p-p. One implanted animal died of causes unrelated to the experiment and the remaining five were tested at an array of frequencies at 56 V/m. Testing at 56 V/m and 10 V/m was counterbalanced for the five animals. At the conclusion of these experiments, four animals (two implanted and two unimplanted) were retrained to the criterion of 80% and then tested at .2 V/m p-p, a level chosen to correspond to field levels measured near the Project Seafarer antenna. Frequencies tested at all three voltage levels included 76 Hz frequency modulated, 76 Hz frequency modulated with 10 V/m p-p of 60 Hz added in, 76 Hz CW and 7 Hz CW. Control (no-field) tests were interspersed with field tests in a counterbalanced design and no-field "carry-over" tests followed every day of field exposure. Monday was routinely considered a practice day. In all cases, monkeys were exposed to the fields for four hours and tested in the behavioral task during hours two, three and four. On control tests, the animals simply sat in the chamber for one hour before testing began. The protocol for these experiments differed from the protocol for the CW studies in three ways: 1) "Carry-over" tests were done in this series of tests and not in the CW tests, 2) only two replications of each field condition were performed rather than four, 3) conditions were randomly assigned in the CW study and counterbalanced in the present study.

In addition, preliminary training of the monkeys was done in a modified version of the 7.5 sec IRT >5 sec task. An attempt was made to make the task more sensitive to possible field effects by pretraining the animals on an 18 sec <IRT>12 sec task and testing them on a 15 sec <IRT> 12 sec task. It was hypothesized that the relatively wide training "window" could allow the animals a larger margin of improvement (markedly shorter IRT's) under appropriate field conditions. However, this technique produced too much variability in responding and was discontinued. All animals were then retrained in the 7.5 sec <IRT>5 sec task used in the 1975 CW studies. This fact may be of special significance because IRT values were substantially smaller in the present study for all conditions, including control conditions, than in the CW study.

For all conditions behavioral data were recorded on an FR 1260 Ampex tape recorder. The analog tapes were digitized and then analyzed. Each response of the animal was tallied as a function of time elapsed since the immediately preceding response. Bin width for analysis was set at .1 sec and 175 bins were counted. Histograms were printed for the total three hour sessions and for consecutive 15-minute sessions. Means, medians, modes and standard deviations were routinely calculated for each experiment.
C. Experimental Design - EEG. Two of the animals were implanted with an array of bipolar EEG electrodes (see the April 1975 report for a complete description of techniques).

EEG data for all experiments at 10 V/m and 56 V/m were tape recorded, digitized and analyzed. Time did not allow for analysis of EEG data at .2 V/m. Data were sampled from the last hour of the experiment for a set of 12 or more correct and 12 or more incorrect responses.

The EEG data were analyzed from the end of the last response pulse to the onset of the correct or incorrect response pulse to be analyzed. Samples were drawn from the end of the exposure period. All available samples were used in the analysis with the exception of a few with obvious large movement artifacts. Spectral analysis was done for each response segment; resolution was set at 1 Hz and covered the range 1-32 Hz. The subsets of correct and incorrect responses were merged for each experiment and then merged across replications of a given field condition or a control condition. This resulted in a sample of approximately 24 or more correct and approximately 24 or more incorrect responses for each experimental condition and approximately 48 or more of each response for the control condition. These merged spectra were plotted as percentages of total power, in order to provide an index of possible changes in total power over time.

Brain structures assayed included for animal A: the right hippocampus, left hippocampus, and right amygdala at 10 V/m. At 56 V/m, the right amygdala and right and left centre median were recorded. For animal G: the right hippocampus, right superior colliculus, and right temporal lobe were recorded for both 10 and 56 V/m.

Because recordings were made from only two animals, no inferential statistics were calculated. Instead, the complete data set of percent power graphs is presented in Appendix I.

III. RESULTS

A. Behavior. Mean IRT’s, standard deviations, number of responses, and percent correct are presented for each voltage level tested in Tables 1-6. In all cases, the mean IRT for each replication is weighted by the number of responses in that replication. The means and standard deviations therefore represent weighted means across replications for each condition for each animal. There is no obvious ordering of effects at .2 V/m p-p. It may be seen that the control condition (0/0 c) falls in rank 1 (the shortest IRT) in two cases and in ranks 3 and 4 in the other two cases.

At 10 V/m (Table 3) there is some indication of a possible effect for the 76 Hz frequency-modulated field (76 m) since the mean IRT for this condition falls in rank 1 for four of the six animals. However, this consistency is not apparent in the measurements of variability.
At 56 V/m it may be noted that the 7 Hz CV field is associated with a shorter-than-control mean IRF for each of the five animals. The associated standard deviation is smaller for four of the five animals.

Descriptive t statistics for no-field minus field mean IRF values across animals are presented in Table 7. It may be seen that the only statistically significant difference occurs at 10 V/m for the 76 Hz frequency-modulated condition. However, in view of the large array (15) of t tests and the lack of any effect at 56 V/m, this finding may well be due to chance. It is surprising that so many negative values appear for the .2 V/m tests. This may be due to the fact that this test series followed the others in time. The animals were exceedingly well trained at this point and their average control value was 5.25 sec as compared with a control value of 5.37 for the 56 V/m tests and 5.51 for the 10 V/m tests.

More positive differences appear at the higher voltage levels than the lower levels, suggesting some "dose dependency" in the array. The 7 Hz condition is associated with relatively large positive differences at 10 V/m and 56 V/m; these differences approach but do not reach statistical significance. This finding would seem to be in general agreement with the 1975 CV studies which indicated an effect for 7 Hz at 10 V/m and an even larger effect at 56 V/m (see Table 8). The robustness of these earlier findings may well be due to the greater number of replications (4 vs. 2) in the 1975 study. If the 10 V/m data for 7 Hz are combined across the two studies, the average difference is .082, the standard error is .044, and the t is 1.876 and significant at the .05 level (one-tailed). Similarly, if data for 7 Hz at 56 V/m p-p are combined across the two studies, $\bar{D}$ is .172, $S_{D1}^2 - S_{D2}^2 = .077$, $t$ is 2.234 and significant at the .01 level.

Extensive analysis of variance across different subsets of the present data set present few surprises.

A simple one-way analysis of variance within voltage levels (Table 9) reveals no significant F's at any level. The largest F is associated with frequency of the field at 10 V/m ($f = 1.43$) and reflects the t statistic reported for the 76 Hz frequency-modulated field at that level.

Two-way analyses of variance are shown in Table 10 where field frequency and the subgroups of implanted monkeys A and G versus unimplanted monkeys are considered within voltage levels. A relatively high F (7.88) occurs for implanted vs. unimplanted animals at the highest voltage level (56 V/m p-p). All means reveal that the two implanted monkeys have a longer IRF (5.314 sec) and the unimplanted have a shorter average IRF (5.294 sec).

Results of three-way analyses of variance (comparing field frequency, implanted vs. unimplanted and two voltage levels) are shown in Table 11.
No significant effects are observed for 0.2 V/m vs. 10 V/m or for 0.2 V/m vs. 56 V/m. When 10 V/m is contrasted with 56 V/m, a significant interaction is observed for field frequency and whether or not the monkey is implanted. This, again, reflects the fact that the two implanted animals appear to be relatively "slow" responders in this experiment. At 10 V/m, the average IRT for the 76 Hz modulated condition is 5.770 for implanted monkeys and 3.127 for unimplanted monkeys. The N's involved in these comparisons are very small (2 vs. 3 and 2 vs. 4). Therefore, these results should not be over-interpreted.

During the long test series, the field was inadvertently unbalanced, as described earlier. Two monkeys (A and G) had already been tested in the balanced field mode at 10 V/m and one monkey (J) had been tested in the balanced field at 56 V/m. As a precaution, some analyses of variance were done on the larger (unbalanced mode group) to be sure that this procedural change had not markedly affected performance. Table 12 summarizes these data. Data at .2 V/m are identical since all monkeys were run in the same mode. At 10 V/m p-p, field frequency produces a significant F (3.42). This undoubtedly reflects the shorter IRT's associated with the 76 Hz modulated field that were described earlier.

At 56 V/m, the analyses of variance results are approximately the same with or without the one balanced-field monkey included.

Additional analyses of variance were done with only those monkeys exposed to the unbalanced field. These results are similar to those observed when all animals are included in the analysis. A relatively high, but not significant, F is observed for implanted vs. unimplanted monkeys at 56 V/m, with implanted monkeys showing slower scores; this result also appeared in the complete data set.

In summary, the data at this point indicate that the frequency-modulated fields have no effect on monkeys' performance on the IRT task. A possible exception to this is suggested by the t test reported for the 76 Hz frequency-modulated field at 10 V/m. However, the lack of any other corroborating evidence makes it rather unlikely that this is more than a chance occurrence.

There is weak evidence for frequency specificity with relatively large field-control differences being observed for the 7 Hz condition, as they were in the 1975 study. The weakness of this effect may be due to the decreased number of replications (2 vs. 4) or it may be due to the overall faster performance of the monkeys in the present experimental series. Figure 6 shows a comparison of average control values and 7 Hz field values for the 1975 and 1978 studies. It is possible that the animals in the present study were performing close to an asymptotic level of performance (i.e., near the start of the reward period) so that further shortening of IRT's would cause the animal to begin to press too early and lose reinforcements. A rank
order correlation of control IRT's and observed 7 Hz field-produced difference scores is shown in Table 14. When the 1975 and 1978 data are combined, the Rho is .62 and significant at the .05 level. This lends support to the notion that large field-produced differences could be less likely to be seen in the present series where animals had been extensively pretrained.

In a June 31, 1978 quarterly report, a series of studies on field related calcium efflux from neonatal chick brains (S. M. Bavin and W. R. Adey) have been described. As in the 1975 behavioral CW study, ELF frequencies within EEG range (6 and 16 Hz in the case of the chick, 7 Hz for the monkey) resulted in statistically significant changes. For the monkeys, behavioral changes were observed at 7 Hz, 10 V/m and larger changes were observed at 7 Hz, 56 V/m. For the chicks, a significant decrease in calcium efflux was observed for 6 and 16 Hz at 10 V/m. Differences of about the same magnitude were observed at 56 V/m p-p (see Table 15).

Similar calcium studies were undertaken with the same array of frequency-modulated fields described in the present behavioral studies. The results are remarkably comparable to those observed with the IRT task. None of the modulated fields produced a significant effect on calcium efflux. The largest change observed was for the 76 Hz frequency-modulated field with voltage level set at 10 V/m (see Table 16). This field condition also resulted in the largest perturbation of behavior in the monkey studies.

B. EEG Results. In earlier studies, changes in hippocampal activity had been noted for some field conditions. In the present study, there is evidence for somewhat more activity in the 4-16 Hz range for both animals for all field conditions, relative to the control condition. This suggests a nonspecific heightened arousal during field exposure similar to that described in the 1975 study.

Behavioral changes in this study were observed during exposure to the 10 V/m 76 Hz frequency-modulated condition. The EEG graphs indicate a peak at about 4 Hz for Animal A (R. hippocampus) at 10 V/m. However, this peak does not appear for Animal C.

Other brain structures tested do not present marked changes during field exposure. Small changes relative to the control condition appear to be attributable to chance. They are not consistent across voltage levels nor across animals.

IV. SUMMARY AND CONCLUSIONS

A. Frequency-Modulated Fields. With one exception, none of the 76 Hz frequency-modulated fields (either with or without 10 V/m p-p of 60 Hz added on) produced any significant change in behavior as measured by an interresponse time schedule of reinforcement.
Voltage levels of .2 V/m, 10 V/m and 56 V/m p-p were assayed. The possible exception is a reduced interresponse time for the 76 Hz modulated field at 10 V/m p-p. However, the effect does not appear at either lower or higher voltage levels (see Figure 7) and, indeed, the observed difference is in the opposite direction in those tests. Furthermore, analyses of variance data at 10 V/m do not show a field frequency effect.

Data from the calcium efflux studies are remarkably compatible with the behavioral results. No significant changes are observed for any of the frequency-modulated fields at any voltage level. As in the monkey studies, the largest difference observed is for the 76 Hz frequency-modulated field at 10 V/m p-p.

Taken together, these data essentially present a picture of no effect for the frequency-modulated fields. The possibility of a borderline, near-threshold effect at 10 V/m suggests that more testing (both behavioral and neurochemical) might be performed at that level. However, that is well above expected field levels around Project Seafarer (.2 V/m p-p).

B. CW Fields. An extensive series of studies on CW fields and interresponse time behavior was reported by this laboratory in 1975. These studies indicated a frequency-specific effect; namely, a low threshold for a CW field within EEG range of the performing monkey (see Figure 8). In the present study, the 7 Hz field produced relatively large positive changes at both 10 V/m p-p and 56 V/m p-p. These differences approached but did not achieve statistical significance. It has been suggested that 1) pretraining of the animals and 2) reduced number of replications may have lowered the value of the observed differences. If data are combined for the 1975 and 1978 studies, results remain significant at both voltage levels.

Studies of calcium efflux in neonatal chick brains, again, show a very good concordance with the behavioral results. Systematic decreases in calcium efflux were observed at 10 V/m p-p and 56 V/m p-p for EEG range CW field frequencies (6 Hz and 16 Hz) for the chicks.

In conclusion, both the behavioral and neurochemical studies suggest that the frequency-modulated fields are not likely to perturb behavior or calcium efflux at the frequencies and voltages tested. The maximal effect observed was a borderline change at 10 V/m p-p for the 76 Hz frequency-modulated field.

The CW studies interpreted in the context of the earlier studies (1970 and 1975) support the general hypothesis of frequency specificity and suggest that ELF fields that are biologically relevant; i.e., within EEG range, may have substantially lower thresholds than either CW fields outside that frequency range or frequency-modulated fields outside that range.
REFERENCES


Additional references on weak ELF fields from this laboratory:


<table>
<thead>
<tr>
<th>Animal A</th>
<th>Animal B</th>
<th>Animal J (u)</th>
<th>Animal N (u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond.</td>
<td>$\bar{X}$</td>
<td>Cond.</td>
<td>$\bar{X}$</td>
</tr>
<tr>
<td>76 M</td>
<td>5.14</td>
<td>0/Oc</td>
<td>5.15</td>
</tr>
<tr>
<td>74</td>
<td>5.17</td>
<td>76/60</td>
<td>5.18</td>
</tr>
<tr>
<td>0/Oc</td>
<td>5.20</td>
<td>0/Ox</td>
<td>5.20</td>
</tr>
<tr>
<td>7</td>
<td>5.25</td>
<td>7</td>
<td>5.22</td>
</tr>
<tr>
<td>0/Ox</td>
<td>5.26</td>
<td>76M</td>
<td>5.22</td>
</tr>
<tr>
<td>76/60</td>
<td>5.39</td>
<td>73</td>
<td>5.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cond. $\sigma$</th>
<th>Cond. $\sigma$</th>
<th>Cond. $\sigma$</th>
<th>Cond. $\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>.83</td>
<td>0/Oc</td>
<td>.80</td>
</tr>
<tr>
<td>76M</td>
<td>.84</td>
<td>76M</td>
<td>.83</td>
</tr>
<tr>
<td>76</td>
<td>.91</td>
<td>0/Ox</td>
<td>.90</td>
</tr>
<tr>
<td>0/Ox</td>
<td>.97</td>
<td>7</td>
<td>.96</td>
</tr>
<tr>
<td>76/60</td>
<td>1.03</td>
<td>76</td>
<td>1.07</td>
</tr>
<tr>
<td>0/Oc</td>
<td>1.04</td>
<td>76/60</td>
<td>1.10</td>
</tr>
</tbody>
</table>

(u) indicates unimplanted animal
Table 2.

OMR-HSK .2 V/m
RANK ORDER NUMBER OF RESPONSES (N)
AND PERCENT CORRECT (X)

<table>
<thead>
<tr>
<th>Animal A</th>
<th>Animal J (u)</th>
<th>Animal N (u)</th>
<th>Animal G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond.</td>
<td>N</td>
<td>Cond.</td>
<td>N</td>
</tr>
<tr>
<td>0/Ox</td>
<td>1149</td>
<td>0/Ox</td>
<td>605</td>
</tr>
<tr>
<td>76</td>
<td>988</td>
<td>76</td>
<td>574</td>
</tr>
<tr>
<td>7</td>
<td>947</td>
<td>0/Oc</td>
<td>434</td>
</tr>
<tr>
<td>76M</td>
<td>787</td>
<td>76M</td>
<td>402</td>
</tr>
<tr>
<td>0/Oc</td>
<td>780</td>
<td>7660</td>
<td>388</td>
</tr>
<tr>
<td>7660</td>
<td>734</td>
<td>7</td>
<td>385</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cond.</th>
<th>X</th>
<th>Cond.</th>
<th>X</th>
<th>Cond.</th>
<th>X</th>
<th>Cond.</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>7660</td>
<td>88</td>
<td>0/Ox</td>
<td>87</td>
<td>76</td>
<td>78</td>
<td>7</td>
<td>82</td>
</tr>
<tr>
<td>76</td>
<td>82</td>
<td>76M</td>
<td>84</td>
<td>76M</td>
<td>78</td>
<td>76M</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>81</td>
<td>76</td>
<td>81</td>
<td>0/Ox</td>
<td>76</td>
<td>76</td>
<td>80</td>
</tr>
<tr>
<td>0/Oc</td>
<td>81</td>
<td>0/Oc</td>
<td>81</td>
<td>0/Oc</td>
<td>72</td>
<td>0/Ox</td>
<td>77</td>
</tr>
<tr>
<td>76M</td>
<td>80</td>
<td>7660</td>
<td>81</td>
<td>7</td>
<td>70</td>
<td>0/Ox</td>
<td>77</td>
</tr>
<tr>
<td>0/Ox</td>
<td>77</td>
<td>7</td>
<td>77</td>
<td>7660</td>
<td>69</td>
<td>7660</td>
<td>76</td>
</tr>
</tbody>
</table>

(u) indicates unimplanted animal
Table 3.

**OMR-M6K IC V/m**

*Rank Order Weighted Mean IRT and Standard Deviation*  
*(Entire Experiment - Last Bin Excluded)*

<table>
<thead>
<tr>
<th>Animal A (Cond.)</th>
<th>Animal G (X)</th>
<th>Animal J(u) (Cond.)</th>
<th>Animal N(u) (X)</th>
<th>Animal K(u) (Cond.)</th>
<th>Animal L(u) (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/0m 5.88</td>
<td>76 5.29</td>
<td>76M 5.29</td>
<td>76M 5.19</td>
<td>76M 4.90</td>
<td>76M 5.31</td>
</tr>
<tr>
<td>7 5.89</td>
<td>7 5.34</td>
<td>0/Ox 5.34</td>
<td>0/Oc 5.23</td>
<td>7660 5.01</td>
<td>7660 5.31</td>
</tr>
<tr>
<td>76M 5.91</td>
<td>0/Ox 5.37</td>
<td>0/Oc 5.38</td>
<td>0.0x 5.26</td>
<td>0.0c 5.20</td>
<td>7 5.41</td>
</tr>
<tr>
<td>0/Ox 6.00</td>
<td>0/Om 5.45</td>
<td>7 5.41</td>
<td>7 5.27</td>
<td>0/Ox 5.24</td>
<td>76 5.51</td>
</tr>
<tr>
<td>0/Oc 6.13</td>
<td>7660 5.55</td>
<td>7660 5.51</td>
<td>7660 5.28</td>
<td>7 5.33</td>
<td>0/Oc 5.51</td>
</tr>
<tr>
<td>7660 6.14</td>
<td>0/Oc 5.62</td>
<td>76 5.57</td>
<td>76 5.31</td>
<td>76 5.36</td>
<td>0/Ox 5.51</td>
</tr>
<tr>
<td>76 6.26</td>
<td>76M 5.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cond.</th>
<th>σ</th>
<th>Cond.</th>
<th>σ</th>
<th>Cond.</th>
<th>σ</th>
<th>Cond.</th>
<th>σ</th>
<th>Cond.</th>
<th>σ</th>
<th>Cond.</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.37</td>
<td>76</td>
<td>.89</td>
<td>76M</td>
<td>1.12</td>
<td>7</td>
<td>.75</td>
<td>76</td>
<td>1.55</td>
<td>7660</td>
<td>1.2</td>
</tr>
<tr>
<td>0/Oc</td>
<td>1.55</td>
<td>7660</td>
<td>.99</td>
<td>0/Ox</td>
<td>1.12</td>
<td>76M</td>
<td>.77</td>
<td>7</td>
<td>1.73</td>
<td>0/Ox</td>
<td>1.3</td>
</tr>
<tr>
<td>0/Ox</td>
<td>1.55</td>
<td>76M</td>
<td>1.08</td>
<td>0/Oc</td>
<td>1.14</td>
<td>0/Oc</td>
<td>.81</td>
<td>0/Oc</td>
<td>1.80</td>
<td>0/Oc</td>
<td>1.4</td>
</tr>
<tr>
<td>76</td>
<td>1.59</td>
<td>0/Ox</td>
<td>1.11</td>
<td>7</td>
<td>1.24</td>
<td>76</td>
<td>.90</td>
<td>76M</td>
<td>1.85</td>
<td>76</td>
<td>1.5</td>
</tr>
<tr>
<td>76M</td>
<td>1.63</td>
<td>0/Om</td>
<td>1.11</td>
<td>7660</td>
<td>1.37</td>
<td>7660</td>
<td>.93</td>
<td>0/Ox</td>
<td>1.86</td>
<td>76M</td>
<td>1.5</td>
</tr>
<tr>
<td>7660</td>
<td>1.64</td>
<td>7</td>
<td>1.17</td>
<td>76</td>
<td>1.55</td>
<td>0/Ox</td>
<td>1.02</td>
<td>7660</td>
<td>1.99</td>
<td>7</td>
<td>1.5</td>
</tr>
<tr>
<td>0/Om</td>
<td>1.66</td>
<td>0/Oc</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend

7 = 7 Hz  
76 = 76 Hz CW  
76M = 76 Hz frequency modulated  
7660 = 76 Hz frequency modulated plus 60 Hz @ 10 V/m p-p  
0/Om = Monday  
0/Oc = Control  
0/Ox = Carry-over day  
u = unimplanted animal
Table 4.

GMR-MSK 10 V/m
RANK ORDER NUMBER OF RESPONSES (N) AND PERCENT CORRECT (X)
(Entire Experiment - Last Bin Included)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>445</td>
<td>7660</td>
<td>7660</td>
<td>7660</td>
<td>7660</td>
</tr>
<tr>
<td>0/0x</td>
<td>512</td>
<td>7660</td>
<td>7660</td>
<td>7660</td>
<td>7660</td>
</tr>
<tr>
<td>7</td>
<td>319</td>
<td>0/0c</td>
<td>0/0c</td>
<td>76</td>
<td>7660</td>
</tr>
<tr>
<td>0/0m</td>
<td>521</td>
<td>0/0m</td>
<td>0/0c</td>
<td>76</td>
<td>7660</td>
</tr>
<tr>
<td>0/0c</td>
<td>540</td>
<td>0/0x</td>
<td>7660</td>
<td>76</td>
<td>7660</td>
</tr>
<tr>
<td>76M</td>
<td>596</td>
<td>7660</td>
<td>7660</td>
<td>7660</td>
<td>7660</td>
</tr>
<tr>
<td>7660</td>
<td>631</td>
<td>7660</td>
<td>7660</td>
<td>7660</td>
<td>7660</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cond. X</th>
<th>Cond. X</th>
<th>Cond. X</th>
<th>Cond. X</th>
<th>Cond. X</th>
<th>Cond. X</th>
</tr>
</thead>
<tbody>
<tr>
<td>76M</td>
<td>68</td>
<td>76</td>
<td>76</td>
<td>7660</td>
<td>7660</td>
</tr>
<tr>
<td>7660</td>
<td>70</td>
<td>0/0x</td>
<td>0/0x</td>
<td>0/0x</td>
<td>0/0x</td>
</tr>
<tr>
<td>0/0m</td>
<td>71</td>
<td>7</td>
<td>76</td>
<td>76</td>
<td>7660</td>
</tr>
<tr>
<td>0/0c</td>
<td>79</td>
<td>0/0c</td>
<td>76</td>
<td>76</td>
<td>7660</td>
</tr>
<tr>
<td>7</td>
<td>81</td>
<td>76M</td>
<td>76</td>
<td>7</td>
<td>0/0c</td>
</tr>
<tr>
<td>76</td>
<td>83</td>
<td>7660</td>
<td>7660</td>
<td>76</td>
<td>0/0c</td>
</tr>
</tbody>
</table>

Legend

7 = 7 Hz
76 = 76 Hz CW
76M = 76 Hz frequency modulated
7660 = 76 Hz frequency modulated plus 60 Hz @ 10 V/m p-p
0/0m = Monday
0/0c = Control
0/0x = Carry-over day
u = unimplanted animal
Table 5.

**OMR-MSK 36 V/m**

**RANK ORDER WEIGHTED MEAN IRT AND STANDARD DEVIATION**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond. X</td>
<td>Cond. X</td>
<td>Cond. X</td>
<td>Cond. X</td>
<td>Cond. X</td>
</tr>
<tr>
<td>7660 5.34</td>
<td>0/0z 5.40</td>
<td>7 5.31</td>
<td>7660 5.18</td>
<td>7 5.15</td>
</tr>
<tr>
<td>0/0z 5.37</td>
<td>7 5.47</td>
<td>7660 5.32</td>
<td>7 5.21</td>
<td>76M 5.18</td>
</tr>
<tr>
<td>7 5.38</td>
<td>0/0c 5.49</td>
<td>0/0c 5.34</td>
<td>0/0c 5.21</td>
<td>76 5.20</td>
</tr>
<tr>
<td>75 5.42</td>
<td>76 5.63</td>
<td>76 5.35</td>
<td>76 5.25</td>
<td>0/0x 5.20</td>
</tr>
<tr>
<td>76M 5.50</td>
<td>7660 5.75</td>
<td>0/0x 5.42</td>
<td>76M 5.26</td>
<td>0/0x 5.43</td>
</tr>
<tr>
<td>0/0c 5.61</td>
<td>76M 5.81</td>
<td>76M 5.44</td>
<td>0/0x 5.28</td>
<td>7660 5.51</td>
</tr>
<tr>
<td>0/0m 5.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cond. σ</th>
<th>Cond. σ</th>
<th>Cond. σ</th>
<th>Cond. σ</th>
<th>Cond. σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 .75</td>
<td>0/0z .89</td>
<td>76 .74</td>
<td>7 .65</td>
<td>7 1.52</td>
</tr>
<tr>
<td>76M .81</td>
<td>0/0c .93</td>
<td>7 .77</td>
<td>0/0c .71</td>
<td>0/0c 1.69</td>
</tr>
<tr>
<td>0/0x .87</td>
<td>76 1.02</td>
<td>0/0c 1.02</td>
<td>76M .71</td>
<td>76 1.71</td>
</tr>
<tr>
<td>0/0c 1.15</td>
<td>7 1.16</td>
<td>7660 1.10</td>
<td>76 .76</td>
<td>7660 1.71</td>
</tr>
<tr>
<td>7660 1.19</td>
<td>76M 1.22</td>
<td>0/0x 1.12</td>
<td>7660 .80</td>
<td>76M 1.79</td>
</tr>
<tr>
<td>76 1.23</td>
<td>7660 2.05</td>
<td>76M 1.15</td>
<td>0/0x .85</td>
<td>0/0x 1.81</td>
</tr>
<tr>
<td>0/0m 1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6.

ONR-MSK 36 V/m
RANK ORDER NUMBER OF RESPONSES (N) AND PERCENT CORRECT (%)  

<table>
<thead>
<tr>
<th>Animal A</th>
<th>Animal G</th>
<th>Animal J(u)</th>
<th>Animal N(u)</th>
<th>Animal K(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76M</td>
<td>516</td>
<td>76M</td>
<td>240</td>
<td>76M</td>
</tr>
<tr>
<td>7</td>
<td>393</td>
<td>7</td>
<td>515</td>
<td>0/Om</td>
</tr>
<tr>
<td>7660</td>
<td>602</td>
<td>7660</td>
<td>582</td>
<td>7</td>
</tr>
<tr>
<td>76</td>
<td>634</td>
<td>76</td>
<td>797</td>
<td>0/Ox</td>
</tr>
<tr>
<td>0/Oc</td>
<td>638</td>
<td>0/Ox</td>
<td>886</td>
<td>0/Oc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cond.</th>
<th>X</th>
<th>Cond.</th>
<th>X</th>
<th>Cond.</th>
<th>X</th>
<th>Cond.</th>
<th>X</th>
<th>Cond.</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>7660</td>
<td>80</td>
<td>7660</td>
<td>64</td>
<td>7660u</td>
<td>66</td>
<td>76</td>
<td>78</td>
<td>76M</td>
<td>66</td>
</tr>
<tr>
<td>76</td>
<td>82</td>
<td>76M</td>
<td>76</td>
<td>0/Om</td>
<td>67</td>
<td>7660</td>
<td>78</td>
<td>0/Oc</td>
<td>67</td>
</tr>
<tr>
<td>0/Ox</td>
<td>85</td>
<td>7</td>
<td>79</td>
<td>0/Oc</td>
<td>69</td>
<td>7</td>
<td>79</td>
<td>7</td>
<td>68</td>
</tr>
<tr>
<td>0/Oc</td>
<td>87</td>
<td>0/Ox</td>
<td>79</td>
<td>0/Ox</td>
<td>73</td>
<td>0/Oc</td>
<td>79</td>
<td>76</td>
<td>68</td>
</tr>
<tr>
<td>76M</td>
<td>88</td>
<td>0/Oc</td>
<td>81</td>
<td>7</td>
<td>73</td>
<td>0/Ox</td>
<td>81</td>
<td>7660</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>89</td>
<td>76</td>
<td>84</td>
<td>76M</td>
<td>73</td>
<td>76M</td>
<td>86</td>
<td>0/Ox</td>
<td>70</td>
</tr>
<tr>
<td>76</td>
<td>77</td>
<td>76</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.

DESCRIPTIVE STATISTICS ACROSS FREQUENCIES
(No-field INT (X1)sec - Field INT (X2)sec)
(Two-tailed tests used for all negative differences)

<table>
<thead>
<tr>
<th></th>
<th>.2 V/m</th>
<th>10 V/m</th>
<th>56 V/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \bar{D} )</td>
<td>- .075</td>
<td>.075</td>
<td>.066</td>
</tr>
<tr>
<td>( S_{x_1-x_2} )</td>
<td>.638</td>
<td>.068</td>
<td>.042</td>
</tr>
<tr>
<td>t</td>
<td>1.975</td>
<td>1.105</td>
<td>1.587</td>
</tr>
<tr>
<td>p</td>
<td>.20&lt;p&gt;.10</td>
<td>.20&lt;p&gt;.15</td>
<td>.10&lt;p&gt;.05</td>
</tr>
</tbody>
</table>

|        |        |        |        |
| 76 Hz  |        |        |        |
| \( \bar{D} \) | - .095 | - .028 | 0.0    |
| \( S_{x_1-x_2} \) | .065  | .034  |        |
| t      | 1.462  | .826  |        |
| p      | .30<p>.20 | .50<p>.40 | N.S.   |

|        |        |        |        |
| 76 Hz  |        |        |        |
| \( \bar{D} \) | - .020 | .138  | - .067 |
| \( S_{x_1-x_2} \) | .051  | .049  | .072   |
| t      | .391   | 2.816  | .917   |
| p      | .80<p>.70 | .05<p>.01* | .50 p .40 |

|        |        |        |        |
| 76 Hz  |        |        |        |
| \( \bar{D} \) | - .078 | .037  | .050   |
| \( S_{x_1-x_2} \) | .069  | .089  | .106   |
| t      | 1.161  | .410  | .470   |
| p      | .40<p>.30 | .35<p>.30 | .35<p>.30 |

|        |        |        |        |
| 76 Hz  |        |        |        |
| \( \bar{D} \) | - .023 | .057  | .010   |
| \( S_{x_1-x_2} \) | .019  | .047  | .081   |
| t      | 1.165  | 1.217  | .124   |
| p      | .40<p>.30 | .15<p>.10 | p>.90  |

20.
<table>
<thead>
<tr>
<th></th>
<th>1 V/m</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\bar{x}$</td>
<td>$\sigma$</td>
<td>$\bar{x}$</td>
<td>$\sigma$</td>
<td>$\bar{x}$</td>
</tr>
<tr>
<td>70 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of diff.</td>
<td>.070</td>
<td>.012</td>
<td>.118</td>
<td>.160</td>
<td>.288</td>
</tr>
<tr>
<td>$t$</td>
<td>1.007</td>
<td>1.1232</td>
<td>2.4613</td>
<td>3.0769</td>
<td>2.2749</td>
</tr>
<tr>
<td>$p$</td>
<td>&lt;.20</td>
<td>&lt;.50</td>
<td>&lt;.05</td>
<td>&lt;.025</td>
<td>&lt;.05</td>
</tr>
<tr>
<td>45 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of diff.</td>
<td>.55</td>
<td>.28</td>
<td>.55</td>
<td>.10</td>
<td>---</td>
</tr>
<tr>
<td>$t$</td>
<td>.4074</td>
<td>.2692</td>
<td>.9016</td>
<td>.2439</td>
<td>---</td>
</tr>
<tr>
<td>$p$</td>
<td>&lt;.40</td>
<td>&lt;.45</td>
<td>&lt;.25</td>
<td>&lt;.45</td>
<td>---</td>
</tr>
<tr>
<td>60 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of diff.</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$t$</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.0401</td>
</tr>
<tr>
<td>$p$</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>&lt;.50</td>
</tr>
<tr>
<td>75 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of diff.</td>
<td>.094</td>
<td>.020</td>
<td>0</td>
<td>.012</td>
<td>.290</td>
</tr>
<tr>
<td>$t$</td>
<td>1.5285</td>
<td>.31</td>
<td>---</td>
<td>.1132</td>
<td>4.0111</td>
</tr>
<tr>
<td>$p$</td>
<td>&lt;.15</td>
<td>&lt;.40</td>
<td>---</td>
<td>&lt;.50</td>
<td>&lt;.025</td>
</tr>
</tbody>
</table>
### Table 9.

**ONE-WAY ANALYSIS OF VARIANCE WITHIN VOLTAGE LEVELS**

**ANALYSIS OF VARIANCE FOR 1-ST DEPENDENT VARIABLE - X(1) X(2) X(3) X(4) X(5) X(6)**

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>SUM OF SQUARES</th>
<th>DEGREES OF FREEDOM</th>
<th>MEAN SQUARE</th>
<th>F</th>
<th>TAIL PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 V/m Mean Mean</td>
<td>673.10027</td>
<td>1</td>
<td>673.10027</td>
<td>4444.70</td>
<td>0.0000</td>
</tr>
<tr>
<td>P-P Error</td>
<td>0.45432</td>
<td>3</td>
<td>0.15144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Frequency</td>
<td>0.03018</td>
<td>5</td>
<td>0.00604</td>
<td>0.67</td>
<td>0.6520</td>
</tr>
<tr>
<td>Error</td>
<td>0.13508</td>
<td>15</td>
<td>0.00901</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ANALYSIS OF VARIANCE FOR 1-ST DEPENDENT VARIABLE - X(3) X(4) X(5) X(6) X(7) X(8)**

<table>
<thead>
<tr>
<th>10 V/m Mean Mean</th>
<th>107.82407</th>
<th>1</th>
<th>1076.82407</th>
<th>1864.53</th>
<th>0.0900</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-P Error</td>
<td>2.88766</td>
<td>5</td>
<td>0.57753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Frequency</td>
<td>0.10826</td>
<td>5</td>
<td>0.02165</td>
<td>1.43</td>
<td>0.2476</td>
</tr>
<tr>
<td>Error</td>
<td>0.37816</td>
<td>25</td>
<td>0.01513</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ANALYSIS OF VARIANCE FOR 1-ST DEPENDENT VARIABLE - X(1) X(2) X(3) X(4) X(5) X(6)**

<table>
<thead>
<tr>
<th>56 V/m Mean Mean</th>
<th>868.97757</th>
<th>1</th>
<th>868.97757</th>
<th>7205.25</th>
<th>0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-P Error</td>
<td>0.48241</td>
<td>4</td>
<td>0.12060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Frequency</td>
<td>0.05624</td>
<td>5</td>
<td>0.01125</td>
<td>0.84</td>
<td>0.5395</td>
</tr>
<tr>
<td>Error</td>
<td>0.26903</td>
<td>20</td>
<td>0.01345</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Table 10.

### Two-Way Analysis of Variance: Field Frequency and Implanted vs. Unimplanted Across Voltage Levels

#### Analysis of Variance for 1st Dependent Variable – X(3) X(4) X(5) X(6) X(7) X(8)

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>Degrees of Freedom</th>
<th>Mean Square</th>
<th>F</th>
<th>Tail Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>673.10027</td>
<td>1</td>
<td>673.10027</td>
<td>3733.57</td>
<td>0.0003</td>
</tr>
<tr>
<td>G - (I) vs. (U)</td>
<td>0.09375</td>
<td>1</td>
<td>0.09375</td>
<td>0.52</td>
<td>0.5457</td>
</tr>
<tr>
<td>Error</td>
<td>0.36057</td>
<td>2</td>
<td>0.18028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H - Field Frequency</td>
<td>0.03018</td>
<td>5</td>
<td>0.00604</td>
<td>0.48</td>
<td>0.7810</td>
</tr>
<tr>
<td>HG</td>
<td>0.01035</td>
<td>5</td>
<td>0.00207</td>
<td>0.17</td>
<td>0.9695</td>
</tr>
<tr>
<td>Error</td>
<td>0.12473</td>
<td>10</td>
<td>0.01247</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Analysis of Variance for 1st Dependent Variable – X(3) X(4) X(5) X(6) X(7) X(8)

| Mean                            | 982.94376      | 1                  | 982.94376   | 2917.51 | 0.2494           |
| G - (I) vs. (U)                 | 1.54001        | 1                  | 1.54001     | 4.57   | 0.0993           |
| Error                           | 1.34765        | 4                  | 0.33691     |       |                  |
| H - Field Frequency             | 0.09099        | 5                  | 0.01820     | 1.45   | 0.2494           |
| HG                              | 0.12748        | 5                  | 0.02550     | 2.03   | 0.1172           |
| Error                           | 0.25068        | 20                 | 0.01253     |       |                  |

#### Analysis of Variance of 1st Dependent Variable – (X3) (X4) (X5) (X6) (X7) (X8)

| Mean                            | 841.06112      | 1                  | 841.06112   | 18963.75 | 0.0000           |
| G - (I) vs. (U)                 | 0.34936        | 1                  | 0.34936     | 7.88    | 0.0675           |
| Error                           | 0.13305        | 3                  | 0.04435     |       |                  |
| H - Field Frequency             | 0.06492        | 5                  | 0.01298     | 1.07    | 0.4134           |
| HG                              | 0.08763        | 5                  | 0.01753     | 1.45    | 0.2638           |
| Error                           | 0.18140        | 15                 | 0.01209     |       |                  |

**Legend**
- (I) = Implanted
- (U) = Unimplanted
Table 11.
THREE-WAY ANALYSIS OF VARIANCE: VOLTAGE LEVEL, FIELD FREQUENCY, IMPLANTED VS. UNIMPLANTED

.2 vs. 10 V/m - no significant effects
.2 vs. 56 V/m - no significant effects
10 V/m vs. 56 V/m:

ANALYSIS OF VARIANCE FOR 1ST DEPENDENT VARIABLE - X(3) X(4) X(5) X(6) X(7) X(8) X(12) X(13) X(14)

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>SUM OF SQUARES</th>
<th>DEGREES OF FREEDOM</th>
<th>MEAN SQUARE</th>
<th>F</th>
<th>TAIL PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1718.93923</td>
<td>1</td>
<td>1718.93923</td>
<td>10601.79</td>
<td>0.0000</td>
</tr>
<tr>
<td>I - Implanted vs. unimplanted</td>
<td>1.76540</td>
<td>1</td>
<td>1.76540</td>
<td>10.89</td>
<td>0.0457</td>
</tr>
<tr>
<td>Error</td>
<td>0.48641</td>
<td>3</td>
<td>0.16214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Level</td>
<td>0.19928</td>
<td>1</td>
<td>0.19928</td>
<td>0.69</td>
<td>0.4683</td>
</tr>
<tr>
<td>VI</td>
<td>0.24284</td>
<td>1</td>
<td>0.24284</td>
<td>0.64</td>
<td>0.4280</td>
</tr>
<tr>
<td>Error</td>
<td>0.87178</td>
<td>3</td>
<td>0.29059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H - Field Frequency</td>
<td>0.07364</td>
<td>5</td>
<td>0.01473</td>
<td>1.30</td>
<td>0.3171</td>
</tr>
<tr>
<td>HI</td>
<td>0.16634</td>
<td>5</td>
<td>0.03327</td>
<td>2.93</td>
<td>0.0486</td>
</tr>
<tr>
<td>Error</td>
<td>0.17047</td>
<td>15</td>
<td>0.01136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VH</td>
<td>0.07591</td>
<td>5</td>
<td>0.01518</td>
<td>0.98</td>
<td>0.4609</td>
</tr>
<tr>
<td>VHI</td>
<td>0.05463</td>
<td>5</td>
<td>0.01093</td>
<td>0.71</td>
<td>0.6279</td>
</tr>
<tr>
<td>Error</td>
<td>0.23213</td>
<td>15</td>
<td>0.01548</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 V/m: IRT $\bar{X}$, 76 Modl., implanted = 5.770
IRT $X$, 76 Modl., unimplanted = 5.127
Table 12.

ANALYSIS OF VARIANCE FOR ANIMALS EXPOSED TO UNBALANCED FIELD MODE

.2 V/m same as Table 9. All monkeys tested in unbalanced mode.

10 V/m (Monkeys A & G omitted):

ANALYSIS OF VARIANCE FOR 1-ST DEPENDENT VARIABLE – X(1) X(2) X(3) X(4) X(5) X(6)

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>SUM OF SQUARES</th>
<th>DEGREES OF FREEDOM</th>
<th>MEAN SQUARE</th>
<th>F</th>
<th>TAIL PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>680.00251</td>
<td>1</td>
<td>680.00251</td>
<td>6725.02</td>
<td>0.0000</td>
</tr>
<tr>
<td>Error</td>
<td>0.30335</td>
<td>3</td>
<td>0.10112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H - Field Frequency</td>
<td>0.14377</td>
<td>5</td>
<td>0.02875</td>
<td>3.42</td>
<td>0.0291</td>
</tr>
<tr>
<td>Error</td>
<td>0.12598</td>
<td>15</td>
<td>0.00840</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

56 V/m (Monkey J omitted):

ANALYSIS OF VARIANCE FOR 1-ST DEPENDENT VARIABLE – X(1) X(2) X(3) X(4) X(5) X(6)

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>SUM OF SQUARES</th>
<th>DEGREES OF FREEDOM</th>
<th>MEAN SQUARE</th>
<th>F</th>
<th>TAIL PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>695.94958</td>
<td>1</td>
<td>695.84958</td>
<td>4334.50</td>
<td>0.0000</td>
</tr>
<tr>
<td>Error</td>
<td>0.48161</td>
<td>3</td>
<td>0.16054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H - Field Frequency</td>
<td>0.05417</td>
<td>5</td>
<td>0.01083</td>
<td>0.64</td>
<td>0.6755</td>
</tr>
<tr>
<td>Error</td>
<td>0.25541</td>
<td>15</td>
<td>0.01703</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 13.
SPEARMAN RANK-ORDER CORRELATION COEFFICIENT BETWEEN
CONTROL IRT's AND CONTROL-7 Hz MEAN IRT DIFFERENCE SCORES
(CW and Present Studies Combined)

<table>
<thead>
<tr>
<th>Animal</th>
<th>Mean Control IRT's</th>
<th>Rank</th>
<th>Diff. Scores</th>
<th>Rank</th>
<th>D</th>
<th>D²</th>
</tr>
</thead>
<tbody>
<tr>
<td>K (u)</td>
<td>5.20</td>
<td>1</td>
<td>-.13</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N (u)</td>
<td>5.23</td>
<td>2</td>
<td>-.04</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>J (u)</td>
<td>5.37</td>
<td>3</td>
<td>-.08</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E (u)*</td>
<td>5.44</td>
<td>4</td>
<td>.01</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>L (u)</td>
<td>5.53</td>
<td>5</td>
<td>.13</td>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>D*</td>
<td>5.58</td>
<td>6</td>
<td>.21</td>
<td>9</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>G</td>
<td>5.62</td>
<td>7</td>
<td>.28</td>
<td>11</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>B*</td>
<td>5.87</td>
<td>8</td>
<td>.15</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C (u)*</td>
<td>6.03</td>
<td>9</td>
<td>.00</td>
<td>4</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>A</td>
<td>6.13</td>
<td>10</td>
<td>.23</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A*</td>
<td>6.58</td>
<td>11</td>
<td>.12</td>
<td>6</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

Rho = .62
N = 11, p = .05

*From 1976 CW study
Table 14.

ASYMPTOTIC PERFORMANCE: Comparison of 1976 (N=5) and 1978 (N=6) Control Values in 10 V/m Study (Mann-Whitney U-Test)

<table>
<thead>
<tr>
<th></th>
<th>1976 Mean</th>
<th>U-Rank</th>
<th>1978 Mean</th>
<th>U-Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.58</td>
<td>11</td>
<td>6.13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6.03</td>
<td>9</td>
<td>5.62</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5.87</td>
<td>8</td>
<td>5.53</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5.58</td>
<td>6</td>
<td>5.38</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5.44</td>
<td>4</td>
<td>5.23</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.20</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

U = 7; P = .089

<table>
<thead>
<tr>
<th></th>
<th>1976 σ</th>
<th>U-Rank</th>
<th>1978 σ</th>
<th>U-Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.73</td>
<td>10.5</td>
<td>1.73</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>1.28</td>
<td>7</td>
<td>1.54</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td>3.5</td>
<td>1.37</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td>3.5</td>
<td>1.24</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0.89</td>
<td>2</td>
<td>1.15</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.75</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

U = 11; P = .268
Table 15. ONR-MSK

EFFECTS OF ELF FIELDS ON $^{45}$Ca$^{2+}$ EFFLUX FROM THE CHICK FOREBRAIN

<table>
<thead>
<tr>
<th>Field (V/m)</th>
<th>m ± SEM (Field)</th>
<th>m ± SEM (Control)</th>
<th>No. Paired Samples</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Hz</td>
<td>0.923 ± 0.036</td>
<td>1.000 ± 0.036</td>
<td>30</td>
<td>1.450</td>
<td>NS</td>
</tr>
<tr>
<td>16 Hz</td>
<td>0.935 ± 0.041</td>
<td>1.000 ± 0.041</td>
<td>27</td>
<td>1.144</td>
<td>NS</td>
</tr>
<tr>
<td>32 Hz</td>
<td>0.945 ± 0.041</td>
<td>1.000 ± 0.041</td>
<td>27</td>
<td>0.974</td>
<td>NS</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Hz</td>
<td>0.943 ± 0.041</td>
<td>1.000 ± 0.038</td>
<td>26</td>
<td>1.021</td>
<td>NS</td>
</tr>
<tr>
<td>6 Hz</td>
<td>0.866 ± 0.029</td>
<td>1.000 ± 0.037</td>
<td>26</td>
<td>3.069</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>16 Hz</td>
<td>0.849 ± 0.026</td>
<td>1.000 ± 0.031</td>
<td>38</td>
<td>3.726</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>32 Hz</td>
<td>0.913 ± 0.038</td>
<td>1.000 ± 0.037</td>
<td>27</td>
<td>1.633</td>
<td>NS</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Hz</td>
<td>1.028 ± 0.042</td>
<td>1.000 ± 0.038</td>
<td>26</td>
<td>0.515</td>
<td>NS</td>
</tr>
<tr>
<td>6 Hz</td>
<td>0.882 ± 0.031</td>
<td>1.000 ± 0.030</td>
<td>37</td>
<td>2.681</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>16 Hz</td>
<td>0.889 ± 0.035</td>
<td>1.000 ± 0.034</td>
<td>36</td>
<td>2.489</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>32 Hz</td>
<td>0.942 ± 0.038</td>
<td>1.000 ± 0.038</td>
<td>26</td>
<td>1.518</td>
<td>NS</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Hz</td>
<td>0.928 ± 0.028</td>
<td>1.000 ± 0.029</td>
<td>36</td>
<td>1.735</td>
<td>NS</td>
</tr>
<tr>
<td>16 Hz</td>
<td>0.995 ± 0.037</td>
<td>1.000 ± 0.037</td>
<td>28</td>
<td>0.092</td>
<td>NS</td>
</tr>
<tr>
<td>Field</td>
<td>$m \pm \text{SEM (Field)}$</td>
<td>$m \pm \text{SEM (Control)}$</td>
<td>No. of Paired Samples</td>
<td>$t$</td>
<td>$P$</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>76/10</td>
<td>1.054 ± 0.037</td>
<td>1.000 ± 0.027</td>
<td>49</td>
<td>1.184</td>
<td>NS</td>
</tr>
<tr>
<td>7660/10</td>
<td>1.034 ± 0.038</td>
<td>1.000 ± 0.028</td>
<td>46</td>
<td>0.710</td>
<td>NS</td>
</tr>
<tr>
<td>76/56</td>
<td>1.008 ± 0.036</td>
<td>1.000 ± 0.031</td>
<td>47</td>
<td>0.168</td>
<td>NS</td>
</tr>
<tr>
<td>7660/56</td>
<td>0.982 ± 0.032</td>
<td>1.000 ± 0.030</td>
<td>48</td>
<td>0.411</td>
<td>NS</td>
</tr>
<tr>
<td>16/10</td>
<td>0.888 ± 0.019</td>
<td>1.000 ± 0.026</td>
<td>73</td>
<td>3.560</td>
<td>.01</td>
</tr>
</tbody>
</table>
IRT (interresponse time) histograms are shown for a single subject (Macaca nemestrina) are shown for field (filled circles) and no-field, control, (open circles) sessions at 1, 10 and 56 V/m p-p with a 7 Hz modulation frequency. Each histogram was constructed from the data from a single experimental session. The vertical bars indicate the means of each distribution. Reproduced from (5).
The average IRT difference between field and control sessions is plotted as a function of field strength in V/m. Reproduced from (5).
The effects of external stimulus control, in the form of a "behavioral prosthesis," on performance on a DRL schedule are illustrated. The effects of the administration of d-amphetamine are abolished when the external stimulus indicating reinforcement availability is introduced. Reproduced from (8).
FIGURE 4.

Effects of methylmercury on the performance of a pigeon working on a fixed-consecutive-number (FCN) schedule in which only runs of eight and nine responses served to make possible reinforcement for a single response on a second key. (We mimicked changes in the reinforcement schedule for a single response on a second key.) The dark bars indicate reinforced runs. Four 200-runs sessions occurred each week. Dosage regimen: 2.0 mg Hg/kg by mouth daily Monday through Friday for 2 wk and 2.2 mg Hg/kg Monday and Friday thereafter.

The effects of methyl mercury on pigeons working on an FCN 8 or 9 schedule. Reproduced from (8), data from (7).
The effects of an external discriminative stimulus (SD) on performance on an FNC or 9 schedule following administration of methyl mercury. In this extension of Figure 4, it can be seen that the introduction of an external discriminative stimulus leads to the abolition of the measured effects of the methyl mercury and the removal of the external discriminative stimulus leads to their reappearance. Reproduced from (8).
Figure 7.

VOLTS/METER p-p

FASTER RESPONDING

Control (no-field) Value

SLOWER RESPONDING

76 Hz Frequency-Modulated +60 Hz

76 Hz Frequency-Modulated

76 Hz

7 Hz

* p = <.05

AVERAGE INTERRESPONSE TIME DIFFERENCE (tenth/sec) DURING EXPOSURE TO FIELDS OF INCREASING VOLTAGE
Figure 8.

Volts/meter p-p vs. Average interresponse time difference (tenth/sec) during exposure to fields of increasing voltage.

- Faster responding
- Slower responding

Control (no-field) Value

$P < 0.03**$
$P < 0.05**$

$60 \text{ Hz}$
$45 \text{ Hz}$
$75 \text{ Hz}$
$7 \text{ Hz}$
## APPENDIX I.

### EEG POWER SPECTRA

<table>
<thead>
<tr>
<th>Animal A</th>
<th>R. Hippocampus</th>
<th>L. Hippocampus</th>
<th>R. Amygdala</th>
<th>RCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Correct, Incorrect 10 V/m Series</td>
<td>1</td>
<td>Control</td>
<td>Correct, Incorrect 10 V/m Series</td>
</tr>
<tr>
<td>7 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
<td>2</td>
<td>7 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
</tr>
<tr>
<td>76 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
<td>3</td>
<td>7 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
</tr>
<tr>
<td>MSK (76 Hz, frequency-modulated)</td>
<td>Correct, Incorrect 10 V/m Series</td>
<td>4</td>
<td>76 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
</tr>
<tr>
<td>MSK + 60 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
<td>5</td>
<td>MSK</td>
<td>Correct, Incorrect 10 V/m Series</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Animal A</th>
<th>R. Hippocampus</th>
<th>L. Hippocampus</th>
<th>R. Amygdala</th>
<th>RCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Correct, Incorrect 10 V/m Series</td>
<td>1</td>
<td>Control</td>
<td>Correct, Incorrect 10 V/m Series</td>
</tr>
<tr>
<td>7 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
<td>2</td>
<td>7 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
</tr>
<tr>
<td>76 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
<td>3</td>
<td>7 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
</tr>
<tr>
<td>MSK (76 Hz, frequency-modulated)</td>
<td>Correct, Incorrect 10 V/m Series</td>
<td>4</td>
<td>76 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
</tr>
<tr>
<td>MSK + 60 Hz</td>
<td>Correct, Incorrect 10 V/m Series</td>
<td>5</td>
<td>MSK</td>
<td>Correct, Incorrect 10 V/m Series</td>
</tr>
</tbody>
</table>

*Data lost.*
76 Hz: Correct, Incorrect 56 V/m Series
MSK: Correct, Incorrect 56 V/m Series
MSK + 50 Hz: Correct, Incorrect 56 V/m Series

LCM
Control: Correct, Incorrect 56 V/m Series
7 Hz: Correct, Incorrect 56 V/m Series
76 Hz: Correct, Incorrect 56 V/m Series
MSK: Correct, Incorrect 56 V/m Series
MSK + 60 Hz: Correct, Incorrect 56 V/m Series

Animal G. R. Hippocampus
Control: Correct, Incorrect 10 V/m Series
Control: Correct, Incorrect 56 V/m Series
7 Hz: Correct, Incorrect 10 V/m Series
7 Hz: Correct, Incorrect 56 V/m Series
76 Hz: Correct, Incorrect 10 V/m Series
76 Hz: Correct, Incorrect 56 V/m Series
MSK: Correct, Incorrect 10 V/m Series
MSK: Correct, Incorrect 56 V/m Series
MSK + 60 Hz: Correct, Incorrect 10 V/m Series
MSK + 60 Hz: Correct, Incorrect 56 V/m Series

R. Superior Colliculus
Control: Correct, Incorrect 10 V/m Series
Control: Correct, Incorrect 56 V/m Series
7 Hz: Correct, Incorrect 10 V/m Series
7 Hz: Correct, Incorrect 56 V/m Series
76 Hz: Correct, Incorrect 10 V/m Series
76 Hz: Correct, Incorrect 56 V/m Series
MSK: Correct, Incorrect 10 V/m Series
MSK: Correct, Incorrect 56 V/m Series
MSK + 60 Hz: Correct, Incorrect 10 V/m

*Data Lost.
**R. Temporal Lobe**

<table>
<thead>
<tr>
<th>Condition</th>
<th>Series</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control: Correct, Incorrect 10 V/m</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Control: Correct, Incorrect 6 V/m</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>7 Hz: Correct, Incorrect 10 V/m</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>7 Hz: Correct, Incorrect 56 V/m</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>76 Hz: Correct, Incorrect 10 V/m</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>76 Hz: Correct, Incorrect 56 V/m</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>MSK: Correct, Incorrect 10 V/m</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>MSK: Correct, Incorrect 56 V/m</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>MSK + 60 Hz: Correct, Incorrect 10 V/m</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>MSK + 60 Hz: Correct, Incorrect 56 V/m</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>
SUMSP = 140519
R.HIPP

SUMSP = 96494
R.HIPP

Animal A 10 V/M
Control Correct
49 cases

Animal A 10 V/M
Control Incorrect
38 cases
SUMSP == 89627
R.HIPP

SUMSP == 106689
R.HIPP

Animal A: 10 V/N
7 hits Correct
26 cases

Animal A: 10 V/N
7 hits Incorrect
24 cases
Animal A 10 V/M Correct
49 cases

Animal A 10 V/M Incorrect
38 cases
Animal A 10 V/M
7 Hz  Correct
26 cases

Animal A 10 V/M
7 Hz  Incorrect
24 cases
Animal A 10 V/M
76 Hz Correct
28 cases

Animal A 10 V/M
76 Hz Incorrect
22 cases
Animal A 10 V/M
MSK+60 Hz Correct
28 cases

Animal A 10 V/M
MSK+60 Hz Incorrect
21 cases
Animal A 10 V/N Correct 49 cases
Control 38 cases
Animal A 10 V/N Incorrect
Animal A 10 V/M
7 Hz Correct
26 cases

Animal A 10 V/M
7 Hz Incorrect
24 cases
SUMSP :: 3159
R.AMYG.

SUMSP :: 2561
R.AMYG.

Animal A  56 V/N
7 Hz Correct
24 cases

Animal A  56 V/N
7 Hz Incorrect
24 cases
SUMSP = 8378
R.AMYG

SUMSP = 20927
L.AMYG

Animal A 10 V/M 76 Hz 22 cases Correct
Animal A 10 V/M 76 Hz 22 cases Incorrect

28 cases
SUMSP: 373/3793
R.AMYG.

Animal A
MSK
24 cases
Correct

Animal A
MSK
15 cases
Incorrect
SUMSP = 2671
R.AMYG.

SUMSP = 3174
R.AMYG.

Animal A 56 V/M
NSK+60 Hz Correct
25 cases

Animal A 56 V/M
NSK+60 Hz Incorrect
23 cases
SUMSP :: 1511
RCM

SUMSP :: 1053
RCM

Animal A  56 V/M
Correct
MSK
24 cases

Animal A  56 V/M
Incorrect
MSK
15 cases
SUMSP = 890
R.C.M.

SUMSP = 1598
R.C.M.

Animal A 56 V/M
NSK+60 l/x Correct
25 cases

Animal A 56 V/M
NSK+60 l/x Incorrect
23 cases
Animal A
7 Hz
56 V/M
Correct
24 cases

Animal A
7 Hz
56 V/M
Incorrect
24 cases
Animal A 56 V/M
MSK+60 Hz Correct
25 cases

Animal A 56 V/M
MSK+60 Hz Incorrect
23 cases
SUMSP = 9073
R.HIPP

Animal G 10 V/m
Control Correct
47 cases

SUMSP = 9266
R.HIPP

Animal G 10 V/m
Control Incorrect
47 cases
SUMSP = 7973
R.HIPP

SUMSP = 8133
R.HIPP

Animal G 56 V/M
Control Correct
37 cases

Animal G 56 V/M
Control Incorrect
40 cases
Animal G 56 V/M
7 Hz Correct
12 cases

Animal G 56 V/M
7 Hz Incorrect
12 cases
SUMSP = 7277
R.HIPP

SUMSP = 6749
R.HIPP

Animal G 56 V/M
76 Hz Incorrect
23 cases

Animal G 56 V/M
76 Hz Correct
24 cases
Animal G 10 V/M
MSK Correct
24 cases

Animal G 10 V/M
MSK Incorrect
24 cases
SUMSP = 9161
R.HIPP

SUMSP = 10180
R.HIPP

Animal G 10 V/M
MSK+60 Hz Correct
24 cases

Animal G 10 V/M
MSK+60 Hz Incorrect
24 Cases
Animal G 56 V/M
MSK+60 Hz Correct
24 cases

Animal G 56 V/M
MSK+60 Hz Incorrect
24 cases
Animal G 10 V/M
76 Hz Correct
24 cases

Animal G 10 V/M
76 Hz Incorrect
24 cases
Animal G  56 V/M
76 Hz  Correct
21 cases

Animal G  56 V/M
76 Hz  Incorrect
23 cases
Animal G 10 V/H
MSK Correct
24 cases

Animal G 10 V/H
MSK Incorrect
24 cases
SUMSP = 3148
R.SUPC

SUMSP = 3457
R.SUPC

Animal G 56 V/M
MSK Correct
21 cases

Animal G 56 V/M
MSK Incorrect
13 cases
SUMSP = 6330
R.TEMP

SUMSP = 7056
R.TEMP

Animal G 10 V/M
Control Correct
47 cases

Animal G 10 V/M
Control Incorrect
47 cases
Animal G 10 V/H
7 Hz Correct
22 cases

Animal G 10 V/H
7 Hz Incorrect
23 cases
Animal G 56 V/H
7 Hz Correct
12 cases

Animal G 56 V/H
7 Hz Incorrect
12 cases
Animal G 10 V/M
76 Hz Correct
24 cases

Animal G 10 V/M
76 Hz Incorrect
24 cases
SUMSP = 790
R. TEMP

SUMSP = 724
R. TEMP

Animal G  56 V/M
76 Hz  Correct
24 cases

Animal G  56 V/M
76 Hz  Incorrect
23 cases
Animal G 10 V/M
MSK Correct
24 cases

Animal G 10 V/M
MSK Incorrect
24 cases
SUMSP: 5928
R TEMP

SUMSP: 3336
R TEMP

Animal G 56 V/N
NSK Correct
21 cases

Animal G 56 V/N
NSK Incorrect
13 cases
Animal G 10 V/M
MSK+60 Hz Correct
24 cases

Animal G 10 V/M
MSK+60 Hz Incorrect
24 cases
Animal G  S6 V/M
MSK+60 Hz  Correct
24 cases
APPENDIX II.
ELECTROMAGNETIC FIELD MEASUREMENTS IN SUPPORT
OF PRIMATE BEHAVIORAL AND EEG STUDIES

J.R. GAUGER and N.C. ROBERTSON
APPENDIX III.

REPRINTS OF PUBLISHED MATERIAL


