FORECASTING AND TIME SERIES MODEL TYPES OF ECONOMIC I/I TIME SERIES UTEXAS A AND M UNIV COLLEGE STATION INST OF STATISTICS H J NEWTON ET AL JAN 83 TR-N-36 F/G 12/1
FORECASTING AND TIME SERIES MODEL TYPES OF 111

ECONOMIC TIME SERIES

by

H. Joseph Newton
Institute of Statistics
Texas A&M University

Emanuel Parzen
Institute of Statistics
Texas A&M University

January 1983

Texas A&M Research Foundation
Project No. 4226T

"Multiple Time Series Modeling and
Time Series Theoretic Statistical Methods"

Sponsored by the Office of Naval Research

Professor Emanuel Parzen, Principal Investigator

Approved for public release; distribution unlimited.
Forecasting and Time Series Model Types of I11 Economic Time Series

H. Joseph Newton and Emanuel Parzen

Texas A&M University
Institute of Statistics
College Station, TX 77843

January 1983

36

Approved for public release; distribution unlimited.

NA

Forecasting, ARARMA time series models, time series memory, economic time series analysis.

"Is it possible to put an end to the argument of what forecasting methods are better and under what circumstances?" Makridakis has organized a "forecasting competition" to which various forecasting experts would contribute forecasts of I11 economic and business time series which he has collected. This paper reports the results of our analysis of these series. An appendix describes the theory of univariate time series modeling and forecasting used in this study. The main text summarizes the diverse models which are encompassed by our approach, and which arise in the study of the I11 time series being forecasted.

The joint paper did not explicitly draw any conclusions concerning which methods performed best. Commentaries on the joint paper (to appear in 1983 in the *Journal of Forecasting*) seem to acknowledge the excellence of the forecast errors obtained by Parzen and Newton. David J. Pack points out the desirability of increasing the numeracy of the joint paper's Table 2(b), which provides MAPE measures of how well each forecasting method performed for the entire 111 series sample [reproduced in Pack's Exhibit 1]. Pack's Exhibit 2 is the same table with methods ordered to the "average of forecasting horizons 1-12" column, and all MAPE's divided by 13.4, the minimum MAPE in the ordering column.

We reproduce Pack's Exhibits 1 and 2. Readers must draw their own conclusions concerning the superiority of the forecasting methods used by Parzen and Newton. Our contribution to the commentaries on the joint paper is printed at the end of this report with the title "How to Learn from the JoF Competition."
Exhibit 1: The Table of Forecasting Models

<table>
<thead>
<tr>
<th>Methods</th>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>1-4</th>
<th>1-6</th>
<th>1-8</th>
<th>1-12</th>
<th>1-15</th>
<th>1-18</th>
<th>M(NAX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>13.9</td>
<td>13.2</td>
<td>17.3</td>
<td>20.1</td>
<td>18.6</td>
<td>22.9</td>
<td>21.5</td>
<td>27.0</td>
<td>14.5</td>
<td>31.9</td>
<td>14.9</td>
<td>17.3</td>
<td>19.2</td>
<td>20.7</td>
<td>19.9</td>
<td>20.4</td>
<td>22.3</td>
<td>111</td>
</tr>
<tr>
<td>AVEG</td>
<td>12.9</td>
<td>13.1</td>
<td>16.0</td>
<td>18.1</td>
<td>16.3</td>
<td>21.7</td>
<td>21.9</td>
<td>27.9</td>
<td>14.5</td>
<td>31.9</td>
<td>14.9</td>
<td>17.3</td>
<td>19.2</td>
<td>20.7</td>
<td>19.9</td>
<td>20.4</td>
<td>22.3</td>
<td>111</td>
</tr>
<tr>
<td>SINGLE</td>
<td>13.2</td>
<td>14.0</td>
<td>17.3</td>
<td>20.3</td>
<td>18.6</td>
<td>22.9</td>
<td>21.5</td>
<td>27.0</td>
<td>14.5</td>
<td>31.9</td>
<td>14.9</td>
<td>17.3</td>
<td>19.2</td>
<td>20.7</td>
<td>19.9</td>
<td>20.4</td>
<td>22.3</td>
<td>111</td>
</tr>
<tr>
<td>LB1</td>
<td>12.6</td>
<td>13.0</td>
<td>16.0</td>
<td>18.2</td>
<td>16.3</td>
<td>21.7</td>
<td>21.8</td>
<td>27.3</td>
<td>14.5</td>
<td>31.9</td>
<td>14.9</td>
<td>17.3</td>
<td>19.2</td>
<td>20.7</td>
<td>19.9</td>
<td>20.4</td>
<td>22.3</td>
<td>111</td>
</tr>
<tr>
<td>LB2</td>
<td>12.7</td>
<td>13.0</td>
<td>16.1</td>
<td>18.2</td>
<td>16.3</td>
<td>21.8</td>
<td>21.8</td>
<td>27.3</td>
<td>14.5</td>
<td>31.9</td>
<td>14.9</td>
<td>17.3</td>
<td>19.2</td>
<td>20.7</td>
<td>19.9</td>
<td>20.4</td>
<td>22.3</td>
<td>111</td>
</tr>
<tr>
<td>LB3</td>
<td>13.5</td>
<td>14.0</td>
<td>17.3</td>
<td>20.3</td>
<td>18.6</td>
<td>22.9</td>
<td>21.5</td>
<td>27.0</td>
<td>14.5</td>
<td>31.9</td>
<td>14.9</td>
<td>17.3</td>
<td>19.2</td>
<td>20.7</td>
<td>19.9</td>
<td>20.4</td>
<td>22.3</td>
<td>111</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>12.7</td>
<td>13.1</td>
<td>16.0</td>
<td>18.1</td>
<td>16.3</td>
<td>21.7</td>
<td>21.8</td>
<td>27.3</td>
<td>14.5</td>
<td>31.9</td>
<td>14.9</td>
<td>17.3</td>
<td>19.2</td>
<td>20.7</td>
<td>19.9</td>
<td>20.4</td>
<td>22.3</td>
<td>111</td>
</tr>
</tbody>
</table>

Exhibit 2: The Table of Forecasting Models Ordered by Horizon 1-12 Average and Ratified to 13-4

<table>
<thead>
<tr>
<th>Methods</th>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>1-4</th>
<th>1-6</th>
<th>1-8</th>
<th>1-12</th>
<th>1-15</th>
<th>1-18</th>
<th>M(NAX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>9.9</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.0</td>
<td>1.2</td>
<td>1.0</td>
<td>2.0</td>
<td>0.9</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>SINGLE</td>
<td>9.9</td>
<td>0.6</td>
<td>0.2</td>
<td>1.0</td>
<td>0.0</td>
<td>1.2</td>
<td>1.0</td>
<td>2.0</td>
<td>0.9</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>LB1</td>
<td>9.7</td>
<td>0.8</td>
<td>0.2</td>
<td>0.4</td>
<td>0.0</td>
<td>1.2</td>
<td>1.0</td>
<td>2.0</td>
<td>0.9</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>LB2</td>
<td>9.7</td>
<td>0.8</td>
<td>0.2</td>
<td>0.4</td>
<td>0.0</td>
<td>1.2</td>
<td>1.0</td>
<td>2.0</td>
<td>0.9</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>LB3</td>
<td>9.7</td>
<td>0.8</td>
<td>0.2</td>
<td>0.4</td>
<td>0.0</td>
<td>1.2</td>
<td>1.0</td>
<td>2.0</td>
<td>0.9</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>9.7</td>
<td>0.5</td>
<td>1.0</td>
<td>1.2</td>
<td>1.3</td>
<td>1.6</td>
<td>1.3</td>
<td>1.9</td>
<td>1.6</td>
<td>1.4</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>
FORECASTING AND TIME SERIES MODEL TYPES OF 111 ECONOMIC TIME SERIES

by

H. JOSEPH NEWTON
and
EMANUEL PARZEN

1. Introduction

"Is it possible to put an end to the argument of what forecasting methods are better and under what circumstances?", is the question raised by Professor Spyros Makridakis in several stimulating papers (1976), (1978), (1979). He has organized a "forecasting competition" to which various forecasting experts would contribute forecasts of 111 economic and business time series which he has collected. This paper reports the results of our analysis of these series, based on the general approach to time series modeling, spectral analysis, and forecasting developed by Parzen, with the collaboration of Newton.

An appendix describes the theory of univariate time series modeling and forecasting used in this study. The main text summarizes the diverse models which are encompassed by our approach, and which arise in the study of the 111 time series being forecasted.

The methods of time series modeling and forecasting applied in this paper can be applied automatically but they are not rote formulas, since they are based on a flexible philosophy which provides several models for consideration and diverse diagnostics for qualitatively and quantitatively checking the fit of a model (see Parzen (1979), (1980), (1981)). The models considered are called ARARMA models because the model computed adaptively for a time series is based on sophisticated time series analysis of ARMA schemes (a short memory model) fitted to residuals of simple extrapolation (a long memory model obtained by parsimonious "best lag" non-stationary autoregression).

A consumer of time series forecasting and/or modeling methods must evaluate the value of a proposed procedure in the context of the actual time series with which he, or she, is concerned. Our approach aims to be applicable in all the diverse fields to which time series analysis is being applied.

A major problem of time series forecasting is whether long range forecasting and short range forecasting require different methods to obtain satisfactory forecasts. This paper describes iterated models which provide qualitative diagnostics as to the possibility of long range forecasts (by diagnosing whether the time series is long memory). Both long range and short range forecasts are provided by a model obtained by fitting a parsimonious non-stationary autoregression whose residuals Y(t) are modeled by a
stationary autoregression.

The modeling procedure is both automatic and flexible. In particular, two model orders are determined for $Y(t)$ and we would recommend computing and comparing forecasts from both models.

This paper aims to illustrate the results one obtains by typical graphs, and to describe the time series model types that one should expect to encounter when dealing with many economic time series.

2. Iterated Models Approach to Time Series Analysis

The problem of forecasting future values of a time series from observations of its past values has an extensive literature which propose many different approaches. The approach adopted here aims to fit automatically to a time series sample not one but several models. The class of models considered is suitable for time series modeling, spectral analysis, and forecasting and for time series encountered by researchers in the physical sciences, engineering sciences, biological sciences, and medicine, as well as to the social sciences, economics, and management sciences.

A time series may be predictable for a long time in the future or only over a limited future. We say the former has "long memory" and the latter "short memory". A time series with long memory requires a "non-stationary" model with periodic, cycle, and trend components. A time series with short memory requires a "stationary" model which is a linear filter relating the time series to its innovations or random shocks. The linear filter is an AR, MA, or ARMA filter (autoregressive, moving average, or mixed autoregressive-moving average).

The model we fit to a time series $Y(.)$ is an iterated model

$$Y(t) \rightarrow Y(t) - \phi_{1} Y(t-1) - \phi_{2} Y(t-2)$$

If needed to transform a long memory series Y to a short memory series \tilde{Y}, $Y(t)$ is chosen to satisfy one of the three forms

$$\tilde{Y}(t) = Y(t) - \phi Y(t-\tau), \quad (1)$$

$$\tilde{Y}(t) = Y(t) - \phi_{1} Y(t-1) - \phi_{2} Y(t-2). \quad (2)$$

$$\tilde{Y}(t) = Y(t) - \phi_{1} Y(t-\tau-1) - \phi_{2} Y(t-\tau). \quad (3)$$

Usually $\tilde{Y}(t)$ is short memory; then it is transformed to a white noise, or no memory, time series $\epsilon(t)$ by an approximating autoregressive scheme AR(m) whose order m is chosen by an order determining criterion (we use CAT, introduced by Parzen (1974), (1977)).

In the present study, $\tilde{Y}(t)$ was found to be always short memory. It is then modeled by a stationary autoregressive scheme. T^* is argued by Parzen that approximating AR schemes suffice for spectral analysis and forecasting. Only for model interpretation is it desirable to fit an ARMA scheme. In the present study not more than 15 percent of the time series could be regarded as requiring an ARMA scheme.
To determine the best lag \(\hat{\tau} \), we use non-stationary autoregression; either fix a maximum lag \(M \) and choose \(\hat{\tau} \) as the lag minimizing over all \(\tau \)
\[
\sum_{t=M+1}^{T} \{ Y(t) - \phi(\tau) Y(t-\tau) \}^2
\]
or choose \(\hat{\tau} \) as the lag minimizing over all \(\tau \)
\[
\sum_{t=T+1}^{T} \{ Y(t) - \phi(\tau) Y(t-\tau) \}^2 + \sum_{t=M+1}^{T} Y^2(t)
\]
For each \(\tau \), one determines \(\phi(\tau) \), and then one determines \(\hat{\tau} \) (the optimal value of \(\tau \)) as the value minimizing
\[
\text{Err}(\tau) = \sum_{t=M+1}^{T} \{ Y(t) - \phi(\tau) Y(t-\tau) \}^2 + \sum_{t=T+1}^{T} Y^2(t)
\]

The decision as to whether the time series is long memory or not is based on the value of \(\text{Err}(\hat{\tau}) \). An adhoc rule we use is if \(\text{Err}(\hat{\tau}) < B/T \), the time series is considered long memory. In the present study all time series were judged to be long memory by this criterion. When this criterion fails one often seeks transformations of the form of (2) or (3), using semi-automatic rules described in the appendix.

For the maximum lag \(M \) of non-stationary autoregression, the following rules were adopted in this study: \(M = 2 \) for yearly series, \(M = 5 \) for quarterly series, \(M = 15 \) for monthly series.

3. Forecasting Formulas

For forecasting purposes it suffices to adopt for \(\dot{Y}(t) \) a stationary autoregressive model of suitable order \(m \) whose coefficients \(a_1, \ldots, a_m \) are estimated by Yule Walker equations in the correlation function \(\rho(v) \) of \(Y(t) \). In this paper the model adopted for all time series was of the form
\[
\dot{Y}(t) = Y(t) - \phi(\tau) Y(t-\tau) + a_1 \dot{Y}(t-1) + \ldots + a_m \dot{Y}(t-m) = \epsilon(t)
\]
The residual variances are denoted
\[
\text{RVY} = \sum_{t=M+1}^{T} \dot{Y}^2(t) + \sum_{t=M+1}^{T} Y^2(t)
\]
\[
\text{RVYT} = \sum_{t=T+1}^{T} \epsilon^2(t) + \sum_{t=T+1}^{T} \dot{Y}^2(t)
\]
The last 18 points of the graphs of \(Y \) and \(\dot{Y} \) represent not observed values of these series but forecasted values of horizons \(h = 1 \) to 18. The mathematical procedure by which they are derived is as follows.
Let
\[Y(t+h|t) = \mathbb{E}(Y(t+h) | Y(t), Y(t-1), \ldots) \]
denote the predictor of \(Y(t+h) \) given values \(Y(t), Y(t-1), \ldots \).
From the equation
\[Y(t+h) = \phi(t) Y(t-h) + \epsilon(t+h) \]
one obtains, by conditioning with respect to \(Y(t), Y(t-1), \ldots \).
\[Y^\mu(t+h|t) = \phi(t) Y^\mu(t-h|t) + \epsilon^\mu(t+h|t) \]

To obtain a formula for forecasts of \(Y \) when we have fitted an AR\((m)\) to \(Y \):
\[Y(t) + a_1 Y(t-1) + \ldots + a_m Y(t-m) = \epsilon(t) \]
write
\[\tilde{Y}(t+h) + a_1 \tilde{Y}(t+h-1) + \ldots + a_m \tilde{Y}(t+h-m) = \epsilon(t+h) \]
\[Y^\mu(t+h|t) + a_1 Y^\mu(t+h-1|t) + \ldots + a_m Y^\mu(t+h-m|t) = 0 \]

One can now compute \(Y^\mu(t+h|t) \) recursively for \(h = 1, 2, \ldots \), using the fact that
\[\tilde{Y}^\mu(t+j|t) = \tilde{Y}(t+j) \text{ if } j \leq 0 \]
For example,
\[-\tilde{Y}^\mu(t+1|t) = a_1 Y(t) + \ldots + a_m Y(t-m+1) \]
Then one can compute \(Y^\mu(t+h|t) \) recursively for \(h = 1, 2, \ldots \) using the fact that
\[Y^\mu(t+j|t) = Y(t+j) \text{ if } j \leq 0 \]
For large values of \(h \), one expects \(\tilde{Y}^\mu(t+h|t) = 0 \). Then
\[Y^\mu(t+h|t) = \phi(t) Y^\mu(t+h-1|t) \]
When \(\phi(t) > 1 \), this does not damp down to zero, and provides the long term predictability apparent in many of the series.

4. Summary of Iterated Models Fitted to 111 Time Series

Table I describes the lags of the most significant lag non-stationary scheme for \(Y(t) \). For 60\% of the monthly series, the annual period (9 = 12) was most important; only 26\% of the quarterly series had an annual period (9 = 4).

The AR character of the residual series \(\tilde{Y}(t) \) are described in Table II. Order \(m = 0 \) indicates white noise (or'no memory); 60\% of the yearly series obey the "naive" model \(\tilde{Y}(t) = \epsilon(t) \), white noise.

Table III lists the names of 33 series arbitrarily chosen from the set of 111 series to represent typical series. We select this small number of series to discuss in detail. The different types of time series which can be diagnosed by our approach to time
Table I. Lag of Non-stationary AR

<table>
<thead>
<tr>
<th>τ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Yearly</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23 Quarterly</td>
<td>15</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>68 Monthly</td>
<td>24</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>41</td>
</tr>
</tbody>
</table>

Range of "non-stationary" Coefficients ϕ(τ)

<table>
<thead>
<tr>
<th></th>
<th>.99 < ϕ(τ) < 1.01</th>
<th>ϕ(τ) > 1.01</th>
<th>ϕ(τ) < .99</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Yearly</td>
<td>4</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>23 Quarterly</td>
<td>.11</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>68 Monthly</td>
<td>27</td>
<td>27</td>
<td>14</td>
</tr>
</tbody>
</table>

Table II. AR Orders Determined by CAT and Innovation Variances

<table>
<thead>
<tr>
<th>m</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Yearly</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>23 Quarterly</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>68 Monthly</td>
<td>12</td>
<td>18</td>
<td>13</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

σ_m^2

<table>
<thead>
<tr>
<th></th>
<th>.1</th>
<th>.2</th>
<th>.3</th>
<th>.4</th>
<th>.5</th>
<th>.6</th>
<th>.7</th>
<th>.8</th>
<th>.9</th>
<th>.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Yearly</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>23 Quarterly</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>68 Monthly</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>12</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

σ_m^2 means range .1 < σ_m^2 < .2; similarly for .2 to .9
series modeling and forecasting are illustrated by the results in Table IV and the graphs of \(Y \) and \(\hat{Y} \) for the series listed in Table III.

Table IV summarizes the basic model diagnostics of a time series \(Y(t) \). These are length, most significant non-stationary autoregressive lag, and coefficients \(\phi(t) \); the residual variance \(RVY \) of this non-stationary AR scheme; the best orders (denoted CAT 1 and CAT 2) of approximating AR schemes for \(Y(t) \), their horizons \(HOP \) 1 and \(HOP \) 2, and the residual variance \(RVYT \) of the best approximating AR Scheme.

Some ARMA models for quarterly time series were:

- \(OA \ Y = (I-1.04L^4)Y, (I-.74L)\hat{Y} = (I-.85L^4)\epsilon \)
- \(OB \ Y = (I-1.02L)Y, (I-.29L^4)\hat{Y} = (I-.38L^3)\epsilon \)
- \(MA \ Y = (I-1.02L)^{12}Y, (I-.41L+.32L^{12})\hat{Y} = (I-.42L+.31L^5)\epsilon \)
- \(MF \ Y = (I-.97L)Y, (I+.31L^{10})\hat{Y} = (I-.49)\epsilon \)
- \(MJ \ Y = (I-1.08L)Y, (I-.75L-.21L^3)\hat{Y} = (I-.54L^{12})\epsilon \)
- \(MN \ Y = (I-1.04L^{12})Y, (I-.29L^2-.28L^3-.27L^{11}+.30L^{13})\hat{Y} = (I-.42L^{12})\epsilon \)
- \(MR \ Y = (I-1.05L^{12})Y, (I-.21L^2-.41L^6)\hat{Y} = (I-.55L^{12})\epsilon \)

Table III. Typical Series for Detailed Discussion
\((Y,O,M) \) are the prefixes of Yearly, Quarterly and Monthly Series Respectively.

- \(YA \) Machinery and Equipment (YAC 17)
- \(YB \) National Product and Expenditure-Residential Construction (YAC 26)
- \(YC \) Population Movement Male Death (YAD 6)
- \(YD \) Crude Birth Rates (YAD 15)
- \(YE \) Deaths, Analysis by Age and Sex, All Ages, United Kingdom (YAD 24)
- \(OA \) Industrial Production: Textiles (ONI1)
- \(QB \) Industry Germany (ONI10)
- \(OC \) Company Data Germany (ONM15)
- \(OD \) Company Data (ONM6)
- \(OF \) Industrial Production: Durable Manufactures (QRC13)
- \(QF \) Industrial Production: Total Austria (QRC22)
- \(QG \) Value of Manufacturer's New Orders for Consumer Goods (QRC4)
- \(OH \) Per Capita GNP in Current Dollars (QRG13)
- \(QT \) Total Industrial Production (ORG4)
- \(MA \) Company Data (MNB11)
- \(MB \) Company Data (MNB2)
- \(MC \) Company Data (MNB20)
- \(MD \) Company Data (MNB29)
- \(ME \) Company Data USA (MNB 38)
- \(MF \) Company Data UK (MNB47)
- \(MG \) Company Data (MNB56)
- \(MH \) Company Data (MNB65)
- \(MI \) Textiles - Quoted at Paris Stock Exchange (MNC17)
- \(MJ \) General Index of the Industrial Production (MNC26)
- \(MK \) Reserves - Denmark (MNC35)
- \(ML \) New Private Housing Units Started Total USA (MNC44)
- \(MM \) Industrial Production Spain (MNG28)
- \(MN \) Industrial Production: Finished Investment
Goods Austria (MNG37)
MO Aluminium Production Netherlands (MNI103)
MP Lead Production Canada (MNI122)
MO Production Tin Thailand (MNI122)
MR Industrie France(MNI13)
MS Motor Vehicles Production Canada (MNI131)
<table>
<thead>
<tr>
<th>Series</th>
<th>Length</th>
<th>τ</th>
<th>$\phi(\tau)$</th>
<th>RVY</th>
<th>CAT 1</th>
<th>CAT 2</th>
<th>HOR 1</th>
<th>HOR 2</th>
<th>RVYT</th>
</tr>
</thead>
<tbody>
<tr>
<td>YA 13</td>
<td>1</td>
<td>1.040</td>
<td>0.007</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
<td>.66</td>
</tr>
<tr>
<td>YB 13</td>
<td>1</td>
<td>1.066</td>
<td>0.007</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>YC 39</td>
<td>1</td>
<td>1.003</td>
<td>0.009</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td></td>
<td>.58</td>
</tr>
<tr>
<td>YD 9</td>
<td>1</td>
<td>.990</td>
<td>0.000</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>YE 13</td>
<td>2</td>
<td>1.010</td>
<td>0.001</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>QA 32</td>
<td>4</td>
<td>1.038</td>
<td>0.008</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td></td>
<td>.32</td>
</tr>
<tr>
<td>QB 57</td>
<td>4</td>
<td>1.023</td>
<td>0.003</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td></td>
<td>.27</td>
</tr>
<tr>
<td>QC 24</td>
<td>1</td>
<td>1.004</td>
<td>0.001</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>QD 20</td>
<td>1</td>
<td>.994</td>
<td>0.037</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>13</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>QE 36</td>
<td>1</td>
<td>1.012</td>
<td>0.001</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>.86</td>
</tr>
<tr>
<td>QF 56</td>
<td>2</td>
<td>1.030</td>
<td>0.001</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td></td>
<td>.62</td>
</tr>
<tr>
<td>QQ 52</td>
<td>1</td>
<td>1.011</td>
<td>0.009</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>QH 52</td>
<td>1</td>
<td>1.018</td>
<td>0.000</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>4</td>
<td></td>
<td>.68</td>
</tr>
<tr>
<td>QI 56</td>
<td>1</td>
<td>1.013</td>
<td>0.000</td>
<td>5</td>
<td>2</td>
<td>14</td>
<td>3</td>
<td></td>
<td>.65</td>
</tr>
<tr>
<td>Series</td>
<td>Length</td>
<td>τ</td>
<td>$\phi(\tau)$</td>
<td>RVY</td>
<td>CAT 1</td>
<td>CAT 2</td>
<td>HOR 1</td>
<td>HOR 2</td>
<td>RVYT</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>MA 79</td>
<td>12</td>
<td>1.024</td>
<td>.016</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>24</td>
<td>.66</td>
<td></td>
</tr>
<tr>
<td>MB 30</td>
<td>12</td>
<td>1.065</td>
<td>.103</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>MC 54</td>
<td>1</td>
<td>.973</td>
<td>.057</td>
<td>2</td>
<td>24</td>
<td>4</td>
<td>31</td>
<td>.76</td>
<td></td>
</tr>
<tr>
<td>MD 57</td>
<td>1</td>
<td>1.004</td>
<td>.001</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>ME 32</td>
<td>12</td>
<td>1.261</td>
<td>.050</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>MF 80</td>
<td>1</td>
<td>.968</td>
<td>.063</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>5</td>
<td>.65</td>
<td></td>
</tr>
<tr>
<td>MG 64</td>
<td>12</td>
<td>1.154</td>
<td>.010</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td>MH 52</td>
<td>1</td>
<td>.999</td>
<td>.000</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>MI 42</td>
<td>1</td>
<td>.993</td>
<td>.002</td>
<td>1</td>
<td>14</td>
<td>2</td>
<td>16</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>MJ 90</td>
<td>12</td>
<td>1.076</td>
<td>.003</td>
<td>13</td>
<td>19</td>
<td>12</td>
<td>28</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>MK 5</td>
<td>1</td>
<td>.979</td>
<td>.055</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>.89</td>
<td></td>
</tr>
<tr>
<td>ML126</td>
<td>1</td>
<td>1.003</td>
<td>.005</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>.85</td>
<td></td>
</tr>
<tr>
<td>MM 43</td>
<td>12</td>
<td>.995</td>
<td>.010</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td>MN102</td>
<td>12</td>
<td>1.037</td>
<td>.002</td>
<td>14</td>
<td>3</td>
<td>24</td>
<td>4</td>
<td>.60</td>
<td></td>
</tr>
<tr>
<td>MO 65</td>
<td>1</td>
<td>1.006</td>
<td>.003</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>.79</td>
<td></td>
</tr>
<tr>
<td>MP 66</td>
<td>1</td>
<td>.949</td>
<td>.100</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>13</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>MQ 62</td>
<td>3</td>
<td>.973</td>
<td>.029</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>.57</td>
<td></td>
</tr>
<tr>
<td>MR120</td>
<td>12</td>
<td>1.053</td>
<td>.004</td>
<td>16</td>
<td>13</td>
<td>19</td>
<td>19</td>
<td>.63</td>
<td></td>
</tr>
<tr>
<td>MS 66</td>
<td>12</td>
<td>.989</td>
<td>.029</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>.81</td>
<td></td>
</tr>
</tbody>
</table>
References

Appendix
UNIVARIATE TIME SERIES MODELING AND FORECASTING
AUTOMATIC APPROACHES USING ARARMA MODELS

The model we propose fitting in general to a time series $Y(t)$ is an iterated model (with symbolic transfer functions G and g).

$$Y(t) \xrightarrow{G} \hat{Y}(t) \xrightarrow{g} \epsilon(t) \text{ white noise}$$

where $\hat{Y}(t)$ is the results of a "memory shortening" transformation chosen to transform a long memory time series to a short memory one, and g is an innovation filter which is either an approximating AR filter or an ARMA filter. Parzen (1982) introduces the terminology ARARMA scheme for the iterated time series model with G determined by a non-stationary autoregressive estimation procedure; an ARIMA scheme, introduced by Box and Jenkins (1970), corresponds to a pure differencing operator for G. Autoregressive analysis by Yule-Walker equations yields a stationary autoregressive scheme; a non-stationary autoregressive scheme is one which is fit by estimating its coefficients by ordinary least squares.

To identify the final model, or "overall whitening filter", of a time series, one should determine its model memory type, and identify an iterative model for the time series:

<table>
<thead>
<tr>
<th>IDENTIFY TIME SERIES MEMORY TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Memory (White Noise) (Unpredictable)</td>
</tr>
</tbody>
</table>

- Identify Gentle Transformation to Short Memory Time Series \tilde{Y}
- Estimate Parameters
- Model \tilde{Y} by Whitening Filter
- No Memory Residuals ϵ

A confirmatory theory of statistical inference is available only for short memory time series (which are ergodic). The modeling of a short memory time series by a whitening filter can be regarded as a science, and it can be made semi-automatic. Given a sample of short memory stationary time series $\tilde{Y}(t)$, our modeling procedure in the time domain is to compute approximating autoregressive schemes.
1. Form the sample correlation function

\[\beta(v) = \frac{1}{T} \sum_{t=1}^{T} Y(t)Y(t+v) = \sum_{t=1}^{T} Y^2(t) \]

but do not base any decision upon it, or upon the partial correlations. Rather, compute approximating autoregressive schemes.

2. Solve successive order \(m = 1, 2, \ldots \) Yule Walker equations for autoregressive coefficients \(\alpha_1, \alpha_2, \ldots, \alpha_m \) and residual variance \(\sigma_m^2 \).

3. Use an autoregressive order determining criterion (either CAT or AIC) to determine \(\hat{m}(1) \) and \(\hat{m}(2) \), the best and second best orders of approximating autoregressive schemes.

4. Compute \(\text{PVH}(h) \), the prediction variance horizon function for the insight it provides on the memory type and ARMA type of the time series. Compute horizons \(\text{HOR} \) using approximating AR schemes of orders \(\hat{m}(1) \) and \(\hat{m}(2) \).

5. Compute a subset AR model.

6. Compute a subset ARMA model.

One can also compute various spectral density functions and spectral distribution functions if one would like the additional insight of the spectral domain.

The diagnosis of a time series as being long memory can be made semi-automatic. Many criteria are available to diagnose time series memory type, using (1) correlations, (2) spectral densities, (3) autoregressive prediction variances, (4) prediction variance horizon function, (5) spectral distribution functions, and (6) S-PLAY diagnostics. The definitions below are given in terms of population parameters, assuming a stationary time series. In practice, the diagnosis is based on sample analogues of these parameters.

The prediction variance horizon \(\text{PVH}(h) \), \(h = 1, 2, \ldots \), is defined in terms of the normalized mean square prediction error of infinite memory prediction \(h \) steps ahead:

\[\sigma^2_{h,\infty} = E \left(|Y^2(t+h|t)|^2 \right) \leq E \left(Y^2(t), Y^2(t+h|t) \right) - Y^2(t+h|t), \]

\[Y^2(t+h|t) = E[Y(t+h)|Y(t), Y(t-1), \ldots] \]

A formula for \(\sigma^2_{h,\infty} \) is obtained by introducing the MA (\(= \)) representation of \(Y(t) = \epsilon(t) + \beta_1 \epsilon(t-1) + \ldots \). Then

\[\sigma^2_{h,\infty} = \sigma^2 \left(1 + \beta_1^2 + \ldots + \beta_{h-1}^2 \right) \]

The graph of \(\sigma^2_{h,\infty} \) increases monotonically from \(\sigma^2_{\infty} \) at \(h = 1 \) to 1 as \(h \) tends to \(\infty \). We define

\[\text{PVH}(h) = 1 - \sigma^2_{h,\infty}, \quad h = 1, 2, \ldots \]

and define horizon \(\text{HOR} \) to be the smallest value of \(h \) for which \(\text{PVH}(h) \leq 0.05 \) (whence \(\sigma^2_{h,\infty} \geq 0.95 \)).
The infinite moving average coefficients a_k are estimated by inverting the transfer function $g_m(z)$ of an approximating autoregressive scheme to obtain, for $k = 1, 2, \ldots$

$$a_0^k a_k + a_1^k a_{k-1} + \ldots + a_k^0 = 0$$

The classification of memory type by prediction horizon HOR is:

<table>
<thead>
<tr>
<th>No Memory</th>
<th>Short Memory</th>
<th>Long Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$HOR = 0$</td>
<td>$0 < HOR < \infty$</td>
<td>$HOR = \infty$</td>
</tr>
</tbody>
</table>

By $HOR = \infty$, we mean HOR is comparatively large: experiments lead us to conclude that one should compare HOR with the order ORD of the approximating autoregressive scheme. Let HOR/ORD denote the ratio of HOR to ORD; identify time series as follows: If $HOR/ORD \leq 1$, then $MA(q)$, with $q \leq HOR-1$. If $HOR/ORD \geq 4$ (say) and PVH decays slowly, then long memory. If PVH declines smoothly and exponentially, then an $AR(p)$ is indicated. If PVH has "bends", then ARMA. If PVH has many level stretches with period T, then an ARMA model is indicated of the form

$$Y(t) = \frac{I+\beta_1L+\beta_2L^2+\ldots+\beta_qL^q}{I-\alpha_tL^T} \epsilon(t)$$

The final identification of the orders p and q should be by parameter estimation or by use of S-arrays.

The determination of most appropriate "gentle" transformation of Y to Y', where Y is long memory and Y' is short memory must inevitably involve the physical nature of the observed time series. A semi-automatic approach can be developed by considering the following examples of long memory time series.

A time series $Y(t)$, $t = 0, 1, \ldots$, is called periodic with period τ, if

$$Y(t+\tau) - Y(t) = 0, \text{ all } t.$$

It follows a linear trend $Y(t) = a + bt$, if for all t

$$Y(t+1) - Y(t) = b, \text{ a constant}$$

It is a pure harmonic of period τ if for all t

$$Y(t) - \phi Y(t-1) + Y(t-2) = 0, \phi = 2 \cos \frac{2\pi}{\tau}.$$

Then

$$Y(t) = A \cos \frac{2\pi}{\tau} t + B \sin \frac{2\pi}{\tau} t.$$

As gentle memory shortening transformations, it is natural to consider

$$\hat{Y}(t) = Y(t) - \phi(t) Y(t-\tau), \quad (1)$$
\[\hat{Y}(t) = Y(t) - \phi_1 Y(t-1) - \phi_2 Y(t-2) \]
\[\hat{Y}(t) = Y(t) - \phi_1 Y(t-(m-1)) - \phi_2 Y(t-m) \]
whose coefficients \(\tau, \phi_1, \phi_2 \) are determined adaptively from the data. Our first choice is \((1) \); the lag \(\tau \) is chosen to minimize over \(\tau \)
\[\text{Err}(\tau) = \frac{1}{T} \sum_{t=\tau+1}^{T} (Y(t) - \phi(t) Y(t-\tau))^2 \]
and \(\phi(t) \) is chosen to minimize over \(\phi(t) \)
\[\frac{1}{T} \sum_{t=\tau+1}^{T} (Y(t) - \phi(t) Y(t-\tau))^2 \]
The stationary correlation function \(\rho(\tau) \) of \((Y(t), t = 1, 2, \ldots, T) \) is defined by
\[\rho(\tau) = \frac{\sum_{t=1}^{T} Y(t) Y(t+\tau)}{\sum_{t=1}^{T} Y^2(t)} \]
Define
\[\text{SSQ}(v) = \sum_{t=1}^{V} Y^2(t) \]
One can show that
\[\phi(t) = \beta(t) \frac{\text{SSQ}(T)}{\text{SSQ}(T-\tau)} \]
\[\text{Err}(\tau) = 1 - \left| \phi(t) \right|^2 \frac{\text{SSQ}(T-\tau)}{\text{SSQ}(T)-\text{SSQ}(\tau)} \]
The most significant lag \(\tau \) is defined as the value minimizing \(\text{Err}(\tau) \).

We propose three possible actions at the initial stage of analysis of a time series \((Y(t), t = 1, \ldots, T) \):

L. Declare time series to be long memory, and form \(\hat{Y}(t) \) by \((1) \)

M. Declare time series to be moderately long memory, and form \(\hat{Y}(t) \) by \((2) \).

S. Declare time series to be short memory, and form \(\hat{Y}(t) = Y(t) \) or \(\hat{Y}(t) = Y(t) - \bar{Y} \)
where \(\bar{Y} \) is the sample mean. After computing \(\hat{Y} \), one performs a naive test to decide if it should be set equal to 0; a naive test is \(|\hat{Y}| \leq 2 \sigma / \sqrt{T} \) where \(\sigma \) is the sample standard deviation.

1. Compute and print \(\phi(t) \) and \(\text{Err}(\tau) \) for \(\tau = 1, 2, \ldots, M \), where \(M \) is suitably chosen (15 for yearly, quarterly, or monthly data):

2. Determine \(\tau \). If \(\text{Err}(\tau) \leq 8/T \), go to L.

3. If \(\phi(\tau) \geq .9 \), and \(\tau > 2 \), go to L.

4. If \(\phi(\tau) > .9 \) and \(\tau = 1 \) or 2 determine the best fitting non-stationary \(\text{AR}(2) \) scheme minimizing.
\[T \sum_{t=3}^{T} (Y(t) - \phi_1 Y(t-1) - \phi_2 Y(t-2))^2 \]

Let \(\phi_1, \phi_2 \) denote the minimizing values of \(\phi_1 \) and \(\phi_2 \). Then go to \(J' \).

5. If \(\phi'(t) < .9 \) go to \(S \).

6. If \(\phi'(t) \) is approximately 1 for some \(r \), one may set this value of \(r \) equal to \(t \) and go to \(L \). One compares the stationary analysis of this choice of memory shortening transformation with that determined by the value of \(r \) minimizing \(\text{Err}(t) \).

7. Non-stationary prediction analysis of a time series in general finds coefficients \(\phi_1, ..., \phi_m \) minimizing (for a specified memory \(m \))

\[T \sum_{t=m+1}^{T} (Y(t) - \phi_1 Y(t-1) - ... - \phi_m Y(t-m))^2 \]

We recommend a subset regression solution which attempts to determine the most significant lags \(j_1, ..., j_m \) minimizing

\[T \sum_{t=m+1}^{T} (Y(t) - \phi_{j_1} Y(t-j_1) - ... - \phi_{j_n} Y(t-j_n))^2 \]

and determines the solution for a specified set of lags \(j_1, ..., j_n \). One may take \(n = 2 \), and \(j_1 \) and \(j_2 \) are two adjacent lags \((m-1 \text{ and } m) \) for which \(\phi'(r) \) is approximately 1; one then obtains the transformation of type (3).

A model frequently fitted to monthly economic time series is the so-called "airline" model (see Parzen (1979)):

\[(I-L)(I-L^{12}) Y(t) = (I-\theta_1 L)(I-\theta_{12} L^{12}) e(t) \]

It seems doubtful that this model would be judged adequate by our criteria, which proposes,

\[\tilde{Y}(t) = (I-\phi(12) L^{12}) Y(t) \]

\[g_{13}(L) \tilde{Y}(t) = e(t) \]

If one desires a parsimonious ARMA model for \(\tilde{Y}(t) \) it may be given by

\[\tilde{Y}(t) + \alpha_1 \tilde{Y}(t-1) + \alpha_{12} \tilde{Y}(t-12) + \alpha_{13} \tilde{Y}(t-13) = e(t) \]

or

\[\tilde{Y}(t) + \alpha_1 \tilde{Y}(t-1) + \alpha_2 \tilde{Y}(t-2) = e(t) + \beta_{12} e(t-12) \]

It should be noted that double differencing is not recommended by us as a memory shortening transformation. When the need for double differencing arises, it appears as a situation in which long memory components continue to be present even after several iterations; then the final iterated model is of the form

\[Y(t) \rightarrow \tilde{Y}^{(1)}(t) \rightarrow \tilde{Y}^{(2)}(t) \rightarrow e(t) \]
An iterated filter model provides not only forecasts and spectral analysis, but also model interpretation.

Classification of a Time Series into Memory Types

<table>
<thead>
<tr>
<th></th>
<th>No Memory</th>
<th>Short Memory</th>
<th>Long Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation function</td>
<td>$\bar{p} = \sum_{v=1}^{\infty}</td>
<td>p(v)</td>
<td>$</td>
</tr>
<tr>
<td>Spectral density</td>
<td>$M = \frac{\max f(\lambda)}{\min f(\lambda)}$</td>
<td>$\log M = 0$</td>
<td>$0 < \log M < \infty$</td>
</tr>
<tr>
<td>Residual variance</td>
<td>σ^2</td>
<td>$\sigma^2 = 1$</td>
<td>$0 < \sigma^2 < 1$</td>
</tr>
<tr>
<td>Prediction horizon</td>
<td>HOR</td>
<td>HOR = 0</td>
<td>$0 < \text{HOR} < \infty$</td>
</tr>
<tr>
<td>Spectral distribution</td>
<td>$F(\lambda)$</td>
<td>$F(\lambda)$</td>
<td>$F(\lambda)$ has continuous sharp jumps</td>
</tr>
<tr>
<td>S-PLAY</td>
<td>S-array of Gray</td>
<td>Infinities in column 1</td>
<td>ARMA(p,q) if Constant row 1 (trend) Alternating constant row p, constant column q, (seasonal) Infinity column $-q+1$</td>
</tr>
</tbody>
</table>
Graphs of Y and \tilde{Y} (denoted YT) for the 33 times series listed in Table III. The break in the graphs indicates the end of the observed values of the time series and the beginning of predictions of the next 18 values.
Deaths, Analysis by Age & Sex, All Ages, UK (YAD 24)

Deaths, Analysis by Age & Sex, All Ages, UK (YAD 24)

Crude Birth Rates (YAD 15)

Crude Birth Rates (YAD 15)
Value of Manufacturer's New Orders for Consumer Goods (QRC 4)

Industrial Production: Total Austria (QRC 22)

Industrial Production: Durable Manufactures (QRC 13)
Industrial Production: Durable Manufactures (QRC 13)

Company Data (QNM 6)

Company Data Germany (QNM 15)
Industrial Production: Finished Investment Goods Austria (MNG37)

Industrial Production: Finished Investment Goods Austria (MNG37)

Industrial Production: Spain (MNG28)

Industrial Production: Spain (MNG28)

Foreign Trade Exports Switzerland
"HOW TO LEARN FROM THE JOF COMPETITION"

by

Emanuel Parzen and H. J. Newton

Institute of Statistics
Texas A&M University

The significance of the "forecasting competition" is best illustrated by comparing it to horse racing. One may distinguish two main types of people at the race track. Type A are bettors; they go to the track to bet on the outcomes of the races and are concerned only with predicting winners. Type B are lovers of knowledge; they go to enjoy the beauty of the horses (and perhaps believe that the purpose of horse-racing is improvement of the breed!), and are satisfied with watching the race.

From a forecasting competition, Type A people want to know who won, which was not explicitly reported in Makridakis et al (1982). The JoF Competition merits publication as a report of raw summaries of the results. Realistically, the authors are not likely to take any action which implies that half of its members are below average. It is appropriate, and desirable, to have subsequent papers that analyze and interpret the results of the forecasting competition. We thank the authors who have provided commentaries in this issue for the enlightenment that they have provided.

Our approach to the forecasting process is based on the belief that a forecasting procedure should, in addition to forecasts, provide knowledge about the "information" in the time series. Important aspects of information are modern versions of the classic idea that a time series can be usefully decomposed into trend, seasonal, and covariance-stationary irregular. Parzen (1981) states that the first step in analysis of a time series is to determine its "memory". "Short memory" corresponds to a covariance-stationary time series for which there are available semi-automatic model identification criteria for fitting AR, MA, and ARMA schemes which transform the "short memory" time series to a "no memory" time series (white noise). "Long memory" contains trend and seasonal components which one seeks to model by regression (on other series or on deterministic functions) or non-stationary autoregression on its past (the first AR in ARARMA).

It is our experience that the transformation of a long memory time series to its "no memory form" has the following "uniqueness" property: if $\varepsilon_1(t)$ and $\varepsilon_2(t)$ are the white noise residual time series of two different methods of decomposition, then $\varepsilon_1(t)$ and $\varepsilon_2(t)$ are approximately identically distributed. One usually can conceive of several ways of transforming long memory time

Research supported in part by the Office of Naval Research
series to a short memory time series; the optimal transformation is not a statistical matter, but depends on how the final overall model is to be applied and interpreted.

Automatic AR and ARMA model identification algorithms can be used to generate analytically several models (called "best" and "second best"), and, thus, forecasts, based on the information contained in past data.

Forecasters should devise systems for comparisons of forecasts generated by different procedures on the time series of interest to their organization, rather than relying on comparisons of other time series. The publication of such case studies should be encouraged.

Our approach to time series analysis is used in the TIMESBOARD library of time series analysis mainline programs and computer subroutines (Newton (1982)). TIMESBOARD provides tools for a decision-maker seeking forecasting models developed by identifying the information and memory in the time series. Our program DTFORE produces several sets of forecasts for each time series. Each set is optimal in a statistical sense, depending on how the forecaster desires to interpret the diagnostics concerning information and memory of the series. For example, faced with the problem of forecasting a series that is undergoing explosive growth, one can obtain a set of forecasts for continued growth, for leveling off, and for decline. The forecaster, together with the decision maker, can decide which method to use. Of course, the rules of the competition demanded that we produce a single set of forecasts for each series. This was done automatically.

The question remains, then, how to improve the results of the JoF Competition. We have two suggestions.

First, produce plots of the various forecasts appended one above the other, together with the true future values. Obviously, publishing such a graph for 1001 series is impractical. However, a representative sample of each type could be published.

Secondly, forecasting methods are, in our opinion, best compared by forming the time series of forecast errors and studying them. An approach to studying distributions of errors are the quantile and functional statistical inference methods being developed by Parzen (1979) that compute medians, inter-quartile ranges, and various measures of distributional shape.
REFERENCES

