PROJECT SCHEDULING USING CRITICAL PATH METHOD AND CHARTING TECHNIQUES FOR (U) CORPS OF ENGINEERS ST PAUL MN ST PAUL DISTRICT D D GRANSBERG ET AL. 09 MAY 83
REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**
2. **GOVT ACCESSION NO.**
 - AD-A13-7682
3. **RECIPIENT'S CATALOG NUMBER**
4. **TITLE (and Subtitle)**
 - PROJECT SCHEDULING USING CRITICAL PATH METHOD AND CHARTING TECHNIQUES FOR HARRIS COMPUTERS (*CPM*); User's manual.
5. **AUTHOR(s)**
 - Douglas D. Gransberg
 - Robert C. Stackowiak
6. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 - U.S. Army Engineers, St. Paul District
 - 1135 USPO & Custom House
 - St. Paul, MN 55101
7. **CONTRACT OR GRANT NUMBER(s)**
8. **PROJECT NUMBER**
9. **PERIOD COVERED**
10. **TYPE OF REPORT & PERIOD COVERED**
11. **PERFORMING ORG. REPORT NUMBER**
12. **DECLASSIFICATION/DOWNGRADING SCHEDULE**
13. **REPORT DATE**
 - May 1983
14. **NUMBER OF PAGES**
 - 63
15. **SECURITY CLASS. (of this report)**
16. **DISTRIBUTION STATEMENT (of this report)**
 - Approved for public release; distribution unlimited.
17. **DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)**
18. **SUPPLEMENTARY NOTES**
19. **KEY WORDS**
 - Computer applications
 - Data management
 - Management information systems
20. **ABSTRACT**
 The user's manual is designed for the *CPM* system to provide non-ADP personnel with the information necessary to use the system effectively. A brief overview of critical path method (CPM) theory is provided, and illustrates the computations made by the program. The purpose of the program is to perform CPM calculations and provide an automated system for integrated multiple project scheduling and resource evaluation.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General</td>
<td></td>
</tr>
<tr>
<td>1.1 Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Origin of the Program</td>
<td>1</td>
</tr>
<tr>
<td>1.3 References</td>
<td>1</td>
</tr>
<tr>
<td>1.4 Limitations of the Program</td>
<td>2</td>
</tr>
<tr>
<td>1.5 Definitions and Abbreviations</td>
<td>3</td>
</tr>
<tr>
<td>2. Summary</td>
<td>4</td>
</tr>
<tr>
<td>2.1 System Application</td>
<td>4</td>
</tr>
<tr>
<td>2.2 System Operation</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Configuration</td>
<td>5</td>
</tr>
<tr>
<td>2.4 Organization</td>
<td>5</td>
</tr>
<tr>
<td>2.5 Performance</td>
<td>7</td>
</tr>
<tr>
<td>3. Staff Functions</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Initiation</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Staff Input Requirements</td>
<td>7</td>
</tr>
<tr>
<td>3.2.1 Input Formats</td>
<td>7</td>
</tr>
<tr>
<td>3.3 Output Requirements</td>
<td>7</td>
</tr>
<tr>
<td>4. CPM Theory</td>
<td>7</td>
</tr>
<tr>
<td>4.1 General</td>
<td>7</td>
</tr>
<tr>
<td>4.2 Network Development</td>
<td>8</td>
</tr>
</tbody>
</table>
Table of Contents (cont.)

4.3 CPM Computations 8
4.4 Resource Leveling Computations 10

5. Input Development 13
5.1 General 13
5.2 Single Project Example 13
5.3 Multiple Project Example 13

6. Output Displays 22
6.1 General 22
6.2 Single Project Example 23
6.3 Multiple Project Example 33

7. RA/PM Interface 33

Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2-1</td>
<td>Activity on the arrow network for Project AAA</td>
<td>9</td>
</tr>
<tr>
<td>5.2-1</td>
<td>Input file created by option 1</td>
<td>14</td>
</tr>
<tr>
<td>5.2-2</td>
<td>Print program input file created by option 3</td>
<td>15</td>
</tr>
<tr>
<td>5.2-3</td>
<td>Calendar file created by option 4</td>
<td>17</td>
</tr>
<tr>
<td>5.3-1</td>
<td>Network for Project BBB</td>
<td>18</td>
</tr>
<tr>
<td>5.3-2</td>
<td>Network for Project CCC</td>
<td>19</td>
</tr>
<tr>
<td>5.3-3</td>
<td>Combined networks for multiple project analysis</td>
<td>20</td>
</tr>
<tr>
<td>5.3-4</td>
<td>Input file created by option 1 for multiple project analysis</td>
<td>21</td>
</tr>
<tr>
<td>6.2-1</td>
<td>CPM printed output file generated by option 5</td>
<td>24</td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.2-2</td>
<td>Plot file developed in option 5 for single project example</td>
<td>27</td>
</tr>
<tr>
<td>6.2-3</td>
<td>Single project Gantt Chart</td>
<td>28</td>
</tr>
<tr>
<td>6.2-4</td>
<td>Daily cost file created in option 6 for single project example (partial listing)</td>
<td>30</td>
</tr>
<tr>
<td>6.2-5</td>
<td>Single project resource histogram</td>
<td>31</td>
</tr>
<tr>
<td>6.2-6</td>
<td>Accumulated daily cost curve for single project example</td>
<td>32</td>
</tr>
<tr>
<td>6.3-1</td>
<td>Option 5 CPM printed output file for multiple project example</td>
<td>34</td>
</tr>
<tr>
<td>6.3-2</td>
<td>Option 5 plot file for multiple project example</td>
<td>35</td>
</tr>
<tr>
<td>6.3-3</td>
<td>Option 6 Gantt Chart for multiple project example</td>
<td>36</td>
</tr>
<tr>
<td>6.3-4</td>
<td>Option 6 resource histogram for multiple project example</td>
<td>41</td>
</tr>
<tr>
<td>6.3-5</td>
<td>Accumulated daily cost curve for multiple project example</td>
<td>42</td>
</tr>
</tbody>
</table>

Appendix A - User's Guide - CRT Displays and Answers
ELECTRONIC COMPUTER PROGRAM ABSTRACT

TITLE OF PROGRAM
CPM

PREPARING AGENCY
St. Paul District (See remarks)

AUTHOR
Douglas D. Gransberg
Robert C. Stackowiak
(See remarks)

DATE PROGRAM COMPLETED
9 May 1983

A. PURPOSE OF PROGRAM

To perform Critical Path Method (CPM) calculations and provide an automated system for integrated multiple project scheduling and resource evaluation.

B. PROGRAM SPECIFICATIONS

This is an interactive program.

C. METHODS

The program computes all CPM start and finish time, slack, activity costs, and resource requirements. When used in conjunction with an external heuristic program, resource leveling can be accomplished.

D. EQUIPMENT DETAILS

Harris Version, Tektronix Graphics

E. INPUT-OUTPUT

Input entered interactively.
Output directly on CRT, or stored in file and listed later.

F. ADDITIONAL REMARKS

This program is based on programs developed by Messrs. Noullet and Lambrecht of Pittsburgh and Mobile Districts, respectively. Modifications were added by Mr. Stackowiak from theory developed by CPT. Gransberg.
SECTION 1. GENERAL

1.1 Purpose

The objective of this user's manual for the CPM system is to provide non-ADP personnel with the information necessary to use the system effectively. Although section 3 of the manual contains a brief overview of critical path method (CPM) theory and illustrates the computations made by the program, it is assumed that the user has a reasonable knowledge of CPM.

1.2 Origin of the Program

The program was originally written in 1971 by Mr. Noullet of Pittsburgh District. In 1980, additions were made by Mr. Lambrecht of the Mobile District. In January 1983, CPT Douglas D. Gransberg of the St. Paul District was assigned the project of developing an automated system to simultaneously schedule multiple projects. At that time, he and Mr. Robert Stackowiak incorporated modifications and additions to the program.

1.3 References

a. Network analysis systems in general and their particular applicability to the work of the Corps of Engineers are explained in ER 1-1-11, 1 March 1973.

b. The technical report "Integrated Multiple Project Scheduling System" by CPT Gransberg explains the use of the program with multiple projects. The report has been filed with and is available through the Defense Technology Information Center.

c. The following is a list of suggested references for those who wish to learn more about CPM:

1.4 Limitations of the Program

Program capacity limitations are shown below. These limitations will probably not constrain the analysis of a single project. However, the user must be very careful to ensure that the limitations are not exceeded when using the program in a multi-project mode.

a. The maximum number of activities is 3,000. This includes dummies.

b. Every activity must have a unique I–J (event) number. Therefore, projects with a great number of parallel paths will have a large number of dummies, which may reduce the total usable capacity for real activities. The J number of an activity must always be greater than its I number.

c. The program can only calculate closed networks. Therefore, individual project networks must be linked together at the beginning and end by dummies for multiple project analysis. This creates false start and stop events and makes output interpretation on a project-by-project basis somewhat tricky. However, some familiarity with the output makes accurate analysis possible. Use of the project sort can expedite this process.

d. Assembly of a large initial calendar file is required to ensure that the available "time window" is great enough for the network to occupy. The calendar file can be reduced after the initial run.

e. Strict coding of activity descriptions is required to allow project and organizational sorting. The project code and organization code must each have three digits, and they must appear as the first item of the activity description (i.e., ABC-FE1, Interior Drainage).

f. Activity durations must be in calendar days.

g. The amount of output requires a 132-character display. However, a cathode ray tube (CRT) can usually only display 80 characters per line. This causes the output to be "wrapped" on the screen, making data interpretation on the CRT tedious.

h. The search option can search for a maximum of 10 codes through a maximum of 1,250 activities.
1.5 Definitions and Abbreviations

Algorithm: A set of rules for solving a problem in a finite number of steps.

AS: Actual start date - the date an activity is actually started.

Bar Chart: A scaled, graphical representation of a schedule.

CPM: Critical path method.

CRT: Cathode ray tube.

Dummy Arrow: An activity shown by a dotted line used to establish a technological precedence relationship which has no duration or cost.

EF: Early finish - the earliest time an activity can be completed.

ES: Early start - the earliest time an activity can be started.

Gantt Chart: A bar chart which shows slack.

Heuristics: A set of rules which serve to indicate the arrival at a desired solution.

Histogram: A graph of frequency distribution.

I Number: The event number at the tail of an activity arrow.

J Number: The event number at the head of an activity arrow.

LF: Late start - the latest time an activity can be finished.

LS: Late start - the latest time an activity can be started.

MS: Milestone - the date on which an activity must be completed.

Precedence Networking: A system of networking, similar to CPM, which allows activities to overlap.

RA/PM: Resource Allocation/Project Management.

RS: Remaining slack - the amount of slack remaining in an activity after it has actually been started.

Sort: An organization of data in a specific format.

TS: Total slack, the difference between the LF and EF of an activity.
SECTION 2. SUMMARY

2.1 System Application

The CPM system enables the user to run network analyses and trace the critical path with a Harris minicomputer. The programs in the system are interactive and prompt the user for data entries, file names, etc.

2.2 System Operation

The following chart illustrates the system's basic operations and relationships.
2.3 Configuration

All programs in the system are run on a Harris minicomputer. Plots are done on a Tektronix plotter.

2.4 Organization

The system comprises the three following major elements:

a. The CPM Macro. This macro controls the execution of the programs in the system. It displays a menu of options from which the terminal operator may select any of ten programs or view a brief history of this CPM or instructions on its use.

b. Options.

01 Data Entry Program: prompts the user to enter I-J numbers, descriptions, cost, duration, etc., and builds the task list file which becomes input to the next program.

02 Compute CPM Network: computes the network and critical path. If the program should abort (e.g., because it discovered a loop in the network), it prints error messages. It builds the CPM file.

03 Sort CPM File: sorts the CPM file into I-J order, late start order, early start order, etc. It produces the sorted CPM file.

04 Calendar Program: prompts the user to enter the project starting date ("NTP ACK DATE") and builds a project calendar which begins with this date. All subsequent dates (e.g., late start, early finish), are based on this date, and the actual dates (as opposed to the formula "starting date + duration -...") are extracted from the calendar file.

05 Print Program and Plot File Builder: prints the sorted CPM file and creates the plot file.

06 Activity/Cost Tektronix Plot Program: plots activity versus date and average daily cost versus date. The user may also generate a file containing average daily costs. Note: this option must be run on a device with Tektronix graphics capability.

07 Update Task List: offers the user the opportunity to update the task list file. It prompts for the file name, for an indication of whether the updating action is to be an addition, change, or deletion, and for the new data when appropriate. This option may be used to add actual start date,
percent complete, or milestone date. The updated task list file may then be entered as input to option 02, thus creating a new network.

08 Search for Organization/Project Codes: writes selected tasks from the sorted CPM network file (option 03) into a new file which may then be used as input to the print program (option 05).

09 Organization/Project Codes: Index: allows the user to create a new file of codes and their descriptions, search an existing index file for organization and/or project codes, or add codes and their descriptions to an existing index file.

10 CPM-RA/PM Interface Program: allows the user to convert a CPM sorted network file (option 03) into RA/PM input.

97 CPM History: provides the user with the names of CPM source program files, where and when they were developed, and the language they are written in.

98 CPM Instructions: provides the user with brief instructions on how to use the options.

99 Terminate CPM: returns the user to job control.

c. Files.

The system uses the following files:

(1) Task list file - I-J nodes, duration, cost, etc.
(2) CPM file - the network, unsorted and without dates.
(3) Sorted CPM file - sorted in the following orders:
 I-J SORT
 LATE START SORT
 EARLY START SORT
 EARLY FINISH SORT
 LATE FINISH SORT
 TOTAL SLACK SORT
(4) Calendar file - starting date to ending + 15%.
(5) Plot file - the CPM data and calendar files formatted for input to the activity/cost Tektronix plot program.
(6) RA/PM file - sorted network file formatted for input to RA/PM.
2.5 Performance

The CPM system interactively performs fast and accurate network analyses, plots the activities and costs, and updates its files.

2.6 General description

a. Input. Input to the programs comes from the operator's responses to prompts and from files built by other programs.

b. Processing. The CPM data are processed by both FORTRAN and COBOL programs.

c. Output. Sorted network lists, daily costs, Tektronix plots of activities and daily costs, and RA/PM input.

SECTION 3. STAFF FUNCTIONS

3.1 Initiation

After normal sign-on procedures, the user enters *CPM and depresses the ENTER or RETURN (depending on the type of terminal) key. The CPM macro then takes control and displays a menu of options and the numeric codes which must be entered to execute them.

3.2 Staff Input Requirements

All input requirements are controlled by the system. The CPM macro displays a menu of programs, and the programs guide the user's entries by prompting and by error messages when appropriate.

3.2.1 Input Formats

The system displays all formats required for data entry.

3.3 Output Requirements

Output files may be printed in ADP by entering CO, file name, :6,NC. Plotting is done on the Tektronix.

SECTION 4. CPM THEORY

4.1 General

This section provides a brief review of CPM theory, highlighting the important areas for use in the *CPM program. It is assumed that the user is generally familiar with CPM and its uses. If this is not the case, the user should refer to the literature cited in paragraph 1.3.
4.2 Network Development

The program is designed to be used with an "Activity on the Arrow" network such as that shown in figure 4.2-1. To assemble such a network, the user must first list all activities required for project completion. These activities must be shown on the network on the basis of their technological precedence. CPM requires that one activity end before another can begin. Therefore, the possibility of overlapping technologically related activities is eliminated.

Dummy arrows are used to show technological precedence relationships where an activity's completion relates to the start of two or more activities on parallel paths. Because each activity must have a unique I-J number, dummies are also used when two or more activities start and end on the same nodes. Additionally, dummies are required to connect the initial and final nodes of each project to a common start and finish node to use the program for multi-project analysis.

4.3 CPM Computations

Once the network has been drawn, computations can be made to determine the critical path through the network. The critical path algorithm is based on a series of computations made using the durations of the activities. It follows each possible path through the network. The algorithm follows (definitions and abbreviations are found in paragraph 1.5).

a. Make a forward pass through the network from beginning to end computing the ES and EF times of each activity. The EF of an activity \((x)\) equals its ES time plus its duration \((d)\) or

\[
EF(x) = ES(x) + d(x) \quad \text{Equation 1.}
\]

The ES of all activities emanating from a node equals the greatest EF of all activities terminating at that node. For example, if an activity is the initial activity in the network and has a duration of 12 calendar days, its ES would equal 0, its EF would equal 12, and the ES of all activities which emanate from its ending node would be 12.

b. Make a backward pass through the network from end to beginning, using the greatest EF time for any activity terminating at the final node as the LF time at that node. Compute the LF and LS times for each activity using the following equation:

\[
LS(x) = LF(x) - d(x) \quad \text{Equation 2.}
\]
Figure 4.2-1: Activity on the arrow network for Project AAA.
c. Compute the total slack (TS) for each activity using Equation 3 or 4.

\[TS(x) = LF(x) - EF(x) \quad \text{ Equation 3.} \]
\[TS(x) = LS(x) - ES(x) \quad \text{ Equation 4.} \]

d. Those activities whose TS = 0 are on the critical path.

*CPM has the ability to constrain the theoretical network to reality through the use of actual start dates (AS) and milestone (MS) dates. This requires a slight divergence from classical CPM theory. Generally, when a network is constrained by start and finish dates, the slack computations must be revised to give an accurate picture of which activities are truly critical. The concept of remaining slack (RS) must therefore be introduced.

\[RS(x) = LS(x) - AS(x) \quad \text{ Equation 5.} \]

If an activity has an AS, the program will replace its ES with the AS.
(Note: Students of CPM should not confuse this concept with the theoretical concepts of free slack or interfering slack. The program does not make these computations.)

Additionally, the input of an MS also affects the activity's slack. If an activity has an MS, the program will replace the LF of the activity with the MS and recompute the TS.

\[TS(x) = MS(x) - EF(x) \quad \text{ Equation 6.} \]

It is entirely possible to get a negative number for either RS or TS. If RS is negative, the activity was started after its late start date. If TS is negative, the activity cannot be finished before its milestone date. It is obvious that the appearance of negative slack in a network can give a project manager some very valuable information about the status of his project.

4.4 Resource Leveling Computations

To allow resource leveling decisions to be made, the program converts the CPM network into a Gantt Chart and vertically sums the resource requirement of each activity that occurs on a given day. Those total daily costs are then plotted as a histogram. The goal of this exercise is to distribute the total workload as evenly as possible across the selected period of time. This is done by comparing the ES and LF resource histograms with the ES bar chart. Before this operation can be explained in detail, the comparison criteria must be understood. The resource requirement is measured in dollars per day and is determined for an individual activity by dividing
the activity's total cost (the organization's project budget) by its duration. This operation assumes that the money allocated for a single activity is uniformly expended throughout its duration. Consequently, the total resource requirement for any one day will be the sum of the individual activity resource requirements that are scheduled for that day. That sum can then be compared to the maximum amount of dollars that the parent organization can expend on any given day to determine if the parent organization will be over or under committed on that particular day. For purposes of this report, parent organization is defined as the aggregate of functional elements over which it has control. This theory can be reduced to the following equations:

\[r_x = \frac{c_x}{d_x} \quad \ldots \quad \text{Equation 7.} \]

\[R_i = \sum_{x=1}^{n} r_x(i) \quad \ldots \quad \text{Equation 8.} \]

Where: \(r_x \) = Resource requirement for activity "x" ($/day)

\(c_x \) = Total cost for activity "x" ($)

\(d_x \) = Duration of activity "x" (Days)

And: \(R_i \) = Total resource requirement on day "i" ($)

\(i \) = Day

\(R_{max} \) = Maximum daily resource capacity for parent organization

Therefore:

If: \(R_{max} < R_i \) \text{Equation 9.}

Then: The parent organization is over committed

If: \(R_{max} = R_i \) \text{Equation 10.}

Then: The parent organization is fully committed

If: \(R_{max} > R_i \) \text{Equation 11.}

Then: The parent organization is under committed
Resource leveling can now begin, using this theory and the updating option of *CPM. A simple heuristic program is used iteratively until a satisfactory solution is reached. The program is based on four rules (heuristics):

a. Allocate resources serially in time (i.e., start with ES schedule).

b. Give preference to activities with the least slack.

c. Reschedule non-critical activities to free resources for critical activities.

d. If using the program for multi-project analysis, schedule activities by project priority as determined by executive group.

The heuristic program is applied using the following sequence of events:

a. Locate times in which \(R_i > R_{\text{max}} \) on ES resource histogram.

b. Check corresponding times on ES Gantt Chart to determine which activities have slack and which activities do not (i.e., critical activities).

c. Add the resource requirement for those activities with no slack. If this amount is greater than \(R_{\text{max}} \), the parent organization will be over-committed unless a means to shorten the duration of critical activities can be found.

d. Attempt to schedule activities with slack at a point between their ES and LS date where \(R_i < R_{\text{max}} \). Call these dates tentative actual start dates.

e. Using the LF Gantt Chart, the LF resource histogram and the TS sort, identify which milestones are most heavily limiting the overall system. Select tentative new milestones, if possible, for super-critical activities. A super-critical activity is defined as one which cannot meet its milestone.

f. Update the master file with newly determined tentative actual start dates, tentative new milestones, revised durations, and other changes.

g. Run newest update. Analyze that output and repeat the process until a satisfactory solution is reached.

It is doubtful that a level resource histogram can be derived. Therefore, the best possible solution will contain times when the parent organization is both over committed and under committed.
SECTION 5. INPUT DEVELOPMENT

5.1 General

The input for the program comes directly off the network diagram. A form listing the pertinent information for each activity in the following order would be helpful:

a. I number.
b. J number.
c. Cost ($).
d. Duration (calendar days).
e. Three-digit project code; three-digit organization code.
f. Activity description.
g. Milestone date (month, day, year).
h. Actual start date (month, day, year).
i. Percentage of completion.

Examples of how input is developed for both single and multiple project analysis are shown in the following paragraphs.

5.2 Single Project Example

The network shown in figure 4.2-1 will be analyzed in this example. Figure 5.2-1 is a copy of the input file created in option 1 of *CPM. Figure 5.2-2 is the print program input file created in option 3. Figure 5.2-3 is the calendar file created by option 4. It should be noted that when creating the calendar file, the user should input the day before the first day of the time period to be analyzed. For example, if the user wanted to analyze FY 84, the proper response to the prompt "NTP ACK DATE (MMDDYY):" would be "093083" (30 September 1983). This would make the first day of the calendar file 1 October 1983.

5.3 Multiple Project Example

Developing input for multiple project analysis is generally the same as for single project analysis. However, because the program and CPM theory are designed to analyze one network at a time, multiple projects must be tied together at the beginning and end with dummies. This example will add two networks to the one shown in figure 4.2-1. These are pictured in figures 5.3-1 and 5.3-2. Figure 5.3-3 shows how they are tied together. The input file created in option 1 is shown in figure 5.3-4. The same calendar file will be used.
EXAMPLE FOR *CPM
USERS MANUAL OF A SINGLE PROJECT/NETWORK AND ITS INPUT AND OUTPUT FILES

1010 1015 90 25000.AAA-EHO HYDROLOGY
1010 1020 30 25000.AAA-EGB GEOTECH BORINGS
1015 1020 0 DUMMY
1020 1025 90 65000.AAA-EHA HYDRAULIC DES
1020 1030270 40000.AAA-EGD GEOTECH DES
1025 1030 0 DUMMY
1025 1035 90 70000.AAA-EGE GENERAL ENGR
1030 1035 90 30000.AAA-EDS STRUCTURAL DES
1035 1040 60 10000.AAA-EDD PLANS
1035 1045 60 20000.AAA-ESP SPECIFICATIONS
1040 1045 0 DUMMY
1045 1050 30 5000.AAA-EDE ESTIMATE
-999 -999

Figure 5.2-1: Input file created by option 1.
TOTAL SLACK SORT
001010001015 90 0 25000. AAE-END HYDROLOGY
001015001020 0 0 0.DUMMY
001020001027 0 0 40000. AAE-EDG GEOTECH DES
001025001035 90 0 30000. AAE-EDS STRUCTURAL DES
001030001040 60 0 10000. AAE-EDD PLANS
001035001045 60 0 20000. AAE-ESP SPECIFICATIONS
001040001050 30 0 0.DUMMY
001045001050 30 0 50000. AAE-EDE ESTIMATE
001050001050 30 0 25000. AAE-EGB GEOTECH BORINGS
001055001025 90 0 65000. AAE-EHA HYDRAULIC DES
001060001030 0 0 0.DUMMY
001065001035 90 0 70000. AAE-EDE GENERAL ENGR

EDF...
EDF...
EDF...

Figure 5.2-2: Print program input file created by option 3 (continued).
Figure 5.2-3: Calendar file created by option 4.
Figure 5.3-1: Network for Project BBB.
Figure 5.3-2: Network for Project CCC.
Figure 5-3-3: Combined networks for multiple project analysis.
Figure 5.3-4: Input file created by option 1 for multiple project analysis.
SECTION 6. OUTPUT DISPLAYS

6.1 General

The output from *CPM consists of sorted CPM computations, Gantt Charts, a resource histogram based on the Gantt Chart, and an accumulated daily cost curve based on the resource histogram. *CPM will compute the following elements from the network input data:

a. Early start date (ES).
b. Early finish date (EF).
c. Late start date (LS).
d. Late finish date (LF).
e. Total slack (TS).
f. Remaining slack (RS).
g. Total project cost.

From updated input data, the program can perform the following functions:

a. Compute total cost to date for each project activity and show total project cost to date.
b. Show percentage of completion for each project activity.
c. Replace ES and LS dates with actual start date and alter slack calculations to show how critical the activities are.
d. Replace LF date with milestone date, alter slack calculations, and determine if milestone can be met.
e. If a milestone cannot be met, a warning statement is printed, and TS is shown as a negative number which indicates the number of days that the activity will be late if neither the duration nor the milestone is changed.

The program has the ability to sort the output and list it in several orders. The various sorts and their management uses are as follows:

a. I-J Sort - Activities are listed in numerical order of their I-J (event) numbers. Analysis of this sort allows the logic of the total network to be checked and the level of input accuracy to be quickly determined.
b. Early Start Sort - Activities are listed in chronological order by their ES dates. This sort shows which activities can be started chronologically if resources are available.

c. Early Finish Sort - Activities are listed chronologically by their EF dates. This sort shows how soon activities can be finished if resources are available.

d. Late Start Sort - Activities are listed chronologically by their LS dates. This sort shows when activities must be started to remain on schedule.

e. Late Finish Sort - Activities are listed chronologically by their LF date. This is one of the most important sorts from a management standpoint. It shows which activities must be completed to avoid missing milestones. In the final output, the LF dates will be replaced by the activity milestone date. Therefore, this sort could be labeled the milestone sort.

f. Total Slack Sort - Activities are listed in ascending numerical order by their amounts of total slack. This is the most important management sort because it shows the critical activities and near-critical activities.

g. Project Sort - Activities are listed in the order specified by any of the above five basic sorts for one specific project. This allows project managers to get information on a particular project.

h. Organization Sort - All the activities of a specific organization are listed in the order specified by any of the six basic sorts. This provides specific information on the work schedule of a particular organization to allow evaluation of bottlenecks and analysis of staffing levels.

6.2 Single Project Example

Figure 6.2-1 shows the output generated by option 5 sorted in the six basic sorts discussed above. Figure 6.2-2 is the plot file developed in option 5. Figure 6.2-3 is the Gantt Chart generated in option 6 from the option 5 plot file. A daily cost file is created in option 6 (figure 6.2-4), and these data are used to generate a resource histogram (figure 6.2-5) and an accumulated daily cost curve (figure 6.2-6). The resource histogram shows two situations:

a. The resource requirement if every activity is scheduled to begin on its ES date (shown by a solid line).

b. The resource requirement if every activity is scheduled to begin on its LS date (shown by a dashed line). The accumulated daily cost curve shows the same two situations.
Figure 6.2-1: CPM printed output file generated by option 5.
Figure 6.2-1: CPM printed output file generated by option 5 (continued).
I	J	ACTION	1015	1015	90 AAA-EDS HYDROLOGY	1010	1020	90 AAA-EDS GEOTECH BORINGS	1020	1020	270 AAA-EDS GEOTECH BORINGS	1020	1025	90 AAA-EDS HYDRAULIC DES	1025	1030	90 AAA-EDS GENERAL ENGR	1025	1035	90 AAA-EDS STRUCTURAL DES	1035	1040	60 AAA-EDS PLANS	1035	1045	60 AAA-ESP SPECIFICATIONS	1040	1045	0 DUMMY	1045	1050	30 AAA-EDS ESTIMATE	
0	0	TOTAL	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000
8 INDICATES ACTUAL START	**2** INDICATES MILESTONE DATE																																
1	0	TOTAL SLACK SORT	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000	0	0	290000

TOTAL COST OF WORK: 290000.
TOTAL COST OF WORK COMPLETED: 0.

3. **2** INDICATES ACTUAL START
4 INDICATES MILESTONE DATE

Figure 6.2-1: CPM printed output file generated by option 5 (continued).
EXAMPLE FOR *CPM

USERS MANUAL OF A SINGLE PROJECT NETWORK AND ITS INPUT AND OUTPUT FILES

<table>
<thead>
<tr>
<th>Task Code</th>
<th>File Description</th>
<th>File Numbers</th>
<th>Input Numbers</th>
<th>Output Numbers</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA-EHO</td>
<td>HYDROLOGY</td>
<td>10 18312308310 183123083</td>
<td>25000.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>AAA-EGO</td>
<td>GEOTECH BORINGS</td>
<td>10 183109189113909123083</td>
<td>25000.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>DUMMY</td>
<td></td>
<td>123083123083123083123083</td>
<td>0.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>AAA-EHA</td>
<td>HYDRAULIC DES</td>
<td>129083 32904 6284 92504</td>
<td>65000.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>AAA-EGD</td>
<td>GEOTECH DES</td>
<td>123083 92504123083 92504</td>
<td>40000.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>DUMMY</td>
<td></td>
<td>32904 32904 92504 92504</td>
<td>0.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>AAA-EDE</td>
<td>GENERAL ENGR</td>
<td>32904 6284 92504122484</td>
<td>70000.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>AAA-EDO</td>
<td>STRUCTURAL DES</td>
<td>92504122484 92504122484</td>
<td>30000.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>AAA-EDD</td>
<td>PLANS</td>
<td>122484 22285122484 22285</td>
<td>10000.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>AAA-ESP</td>
<td>SPECIFICATIONS</td>
<td>122484 22285122484 22285</td>
<td>20000.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>DUMMY</td>
<td></td>
<td>22285 22285 22285 22285</td>
<td>0.</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>AAA-EDE</td>
<td>ESTIMATE</td>
<td>22285 32485 22285 32485</td>
<td>5000.</td>
<td>0.</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 6.2-2: Plot file developed in option 5 for single project example.](image-url)
Figure 6.2-3: Single project Gantt Chart.
Figure 6.2-3: Single project Gantt Chart (continued).
AVERAGE DAILY COST SUMMARY

<table>
<thead>
<tr>
<th>DATE</th>
<th>EARLY START/FINISH</th>
<th>LATE START/FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>100189</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>100289</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>100389</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>100489</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>100589</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>100683</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>100783</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>100883</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>100983</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>101083</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>101183</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>101283</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>101383</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>101483</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>101583</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>101683</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>101783</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>101883</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>101983</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>102083</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>102183</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>102283</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>102383</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>102483</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>102583</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>102683</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>102783</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>102883</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>102983</td>
<td>1111.</td>
<td>278.</td>
</tr>
<tr>
<td>103083</td>
<td>278.</td>
<td>278.</td>
</tr>
<tr>
<td>103183</td>
<td>278.</td>
<td>278.</td>
</tr>
<tr>
<td>103283</td>
<td>278.</td>
<td>278.</td>
</tr>
<tr>
<td>103383</td>
<td>167.</td>
<td>167.</td>
</tr>
<tr>
<td>103483</td>
<td>167.</td>
<td>167.</td>
</tr>
<tr>
<td>103583</td>
<td>167.</td>
<td>167.</td>
</tr>
<tr>
<td>103683</td>
<td>167.</td>
<td>167.</td>
</tr>
<tr>
<td>103783</td>
<td>167.</td>
<td>167.</td>
</tr>
<tr>
<td>103883</td>
<td>167.</td>
<td>167.</td>
</tr>
<tr>
<td>103983</td>
<td>167.</td>
<td>167.</td>
</tr>
<tr>
<td>104083</td>
<td>167.</td>
<td>167.</td>
</tr>
</tbody>
</table>

MAXIMUM DAILY EARLY START/FINISH COST IS $1,111. ON 100189.

MAXIMUM DAILY LATE START/FINISH COST IS $1,111. ON 113083.

Figure 6.2-4: Daily cost file created in option 6 for single project example (partial listing).
Figure 6.2-5: Single project resource histogram.
Figure 6.2-6: Accumulated daily cost curve for single project example.
Resources are leveled by iterating through options 2, 3, 5, 6, and 7 and assigning actual start dates and changing milestones to move activities back and forth through time.

6.3 Multiple Project Example

Figure 6.3-1 shows the I-J sort of the CPM printed output file generated by option 5. Figure 6.3-2 is the plot file created in option 5. Figures 6.3-3, 6.3-4, and 6.3-5 are all generated using option 6.

SECTION 7. RA/PM INTERFACE

To avoid maintaining two separate data bases for the same information, option 10 of the *CPM (an interface program) takes the option 3 output file and reconfigures its format to create a RA/PM input file. To do this, the user must use option 8 in the project code search mode and create an individual input file for each project. These files are then run through option 3 to create an output file, and this file is run through option 10, where additional administrative input is added and the file's format is reconfigured. Once this has been done, the option 10 output file can be used for input directly into the RA/PM system.
Figure 6.3-1: Option 5 CPM printed output file for multiple project example.
EXAMPLE OF MULTIPLE PROJECT ANALYSIS FOR CPMS USERS MANUAL

DUMMY 10 18910 18910 18910 189 0.
DUMMY 10 18910 18910 18910 189 0.
AAA-EDG HYDROLOGY 10 1891308310 189123083 25000.
AAA-EDG GEOTECH BORING 10 189103103103103083123083 25000.
DUMMY 123083123083123083123083 0.
AAA-EGD HYDRAULIC DESIGN 123083 32984 62784 92584 65000.
AAA-EGD GEOTECH DESIGN 123083 92584123083 92584 40000.
DUMMY 32984 32984 92584 92584 0.
AAA-ECH GENERAL ENGR 32994 62794 92594122484 70000.
AAA-EDS STRUCTURAL DESIGN 92584122484 92584122484 30000.
AAA-EDS PLANS 122484 22285122484 22285 10000.
AAA-ESP SPECIFICATIONS 122484 22285122484 22285 20000.
DUMMY 22285 22285 22285 22285 0.
ESTIMATE 22285 32485 32485 32485 5000.
DUMMY 32485 32485 32485 32485 0.
BBB-EGB GEOTECH BORING 10 189103103103103083123083 25000.
BBB-EGO GEOTECH DESIGN 103893 72784123083 92584 40000.
BBB-EDS STRUCTURAL DESIGN 103893113003 91084101084 10000.
DUMMY 72784 72784101084 101084 0.
BBB-EGE GENERAL ENGR 72784102584 92584122484 70000.
BBB-EDS STRUCTURAL DESIGN 72784 9258410108412 984 20000.
BBB-EDN NON-STRUCTURAL DESIGN 72784 92584122484 984 10000.
DUMMY 92584 92584122484 984 984 0.
BBB-EDD PLANS 72784102584 92584122484 122484 22285 10000.
BBB-ESP SPECIFICATIONS 122484 22285122484 22285 20000.
DUMMY 22285 22285 22285 22285 0.
BBB-EDN ESTIMATE 122484 12985 22285 32485 5000.
DUMMY 12985 12985 32485 32485 0.
CCC-EDG HYDROLOGY 10 1891308310 189123083 25000.
CCC-EGE GEOTECH BORING 10 189103103103103083123083 25000.
DUMMY 123083123083123083123083 0.
CCC-EGD GEOTECH DESIGN 123083 92584123083 92584 40000.
CCC-EGA HYDRAULIC DESIGN 123083 32984 62784 92584 65000.
DUMMY 92584 92584 92584 92584 0.
CCC-EGE GENERAL ENGR 92584122484 92584122484 70000.
CCC-EDS PLANS 122484 22285122484 22285 10000.
CCC-ESP SPECIFICATIONS 122484 22285122484 22285 20000.
DUMMY 22285 22285 22285 22285 0.
CCC-EDN ESTIMATE 22285 32485 32485 32485 5000.
DUMMY 32485 32485 32485 32485 0.

EOT..

Figure 6.3-2: Option 5 plot file for multiple project example.
Figure 6.3-3: Option 6 Gantt Chart for multiple project example (continued).
Figure 6.3-3: Option 6 Gantt Chart for multiple project example (continued).
Figure 6.3-3: Option 6 Gantt Chart for multiple project example (continued).
Figure 6.3-3: Option 6 Gantt Chart for multiple project example (continued).
Figure 6.3-4: Option 6 resource histogram for multiple project example.
Figure 6.3-5: Accumulated daily cost curve for multiple project example.
APPENDIX A

TERMINAL USER'S GUIDE

INTRODUCTION

This appendix shows how to use *CPM and all its options. Each option on the *CPM macro menu and its variations are shown on the following pages. Items which appear in quotation marks (i.e., "1,2") are examples of input. Please note the punctuation or lack thereof within the quotation marks to avoid input interpretation errors.
Option 00 - CRT Display

*CPM
WELCOME TO THE NETWORK ANALYSIS SYSTEM (CPM)

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS):

00

PROCESSING OPTION

<table>
<thead>
<tr>
<th>LIST CPM PROCESSING OPTIONS</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPM DATA ENTRY PROGRAM</td>
<td>01</td>
</tr>
<tr>
<td>CPM PROGRAM Computes CPM NETWORK--I-J ORDER</td>
<td>02</td>
</tr>
<tr>
<td>CPM SORTS CPM FILE CREATING PRINT PROGRAM INPUT FILE</td>
<td>03</td>
</tr>
<tr>
<td>CPM PROGRAM TO WRITE CALENDAR FILE FOR PRINT PROGRAM</td>
<td>04</td>
</tr>
<tr>
<td>CPM PRINT PROGRAM AND PLOT FILE BUILDER</td>
<td>05</td>
</tr>
<tr>
<td>CPM ACTIVITY/COST TEKTRONIX PLOT PROGRAM</td>
<td>06</td>
</tr>
<tr>
<td>CPM UPDATE OF TASK LIST FILE FROM OPTION 03</td>
<td>07</td>
</tr>
<tr>
<td>(USE FOR INPUT OF ACTUAL START DATE, % COMPLETE, MILESTONE DATE)</td>
<td></td>
</tr>
<tr>
<td>CPM SEARCH FOR ORGANIZATION/PROJECT CODES</td>
<td>08</td>
</tr>
<tr>
<td>CPM ORGANIZATION/PROJECT CODES INDEX</td>
<td>09</td>
</tr>
<tr>
<td>CPM-RA/PM INTERFACE PROGRAM</td>
<td>10</td>
</tr>
<tr>
<td>CPM HISTORY</td>
<td>97</td>
</tr>
<tr>
<td>CPM INSTRUCTIONS</td>
<td>98</td>
</tr>
<tr>
<td>TERMINATE CPM</td>
<td>99</td>
</tr>
</tbody>
</table>

This screen appears after you sign on and enter *CPM.
Select the task you want to perform and enter its number.
(Remember that two digits are required.) The CPM system will execute the function you have chosen and return to the task number prompt shown at the top of the screen when the task you have selected is finished. Enter 00 if you do not remember the task number, and *CPM macro menu will be displayed as shown above.
Option 01 - Initial Run CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS):

01

1. CONTINUATION OR INITIAL RUN?

I

2. FILE NAME:

JOB IDENT LINE LIMITS ARE FLAGGED BY A COLON (:)

3. IDENTIFICATION LINE 1?

IDENTIFICATION LINE 2?

IDENTIFICATION LINE 3?

4. I,J (0,0 FOR END):

5. COST?

6. DURATION?

7. DESCRIPTION?

I,J (0,0 FOR END):

0,0

8. ARE YOU GOING TO CONTINUE LATER?

STOP

1. Enter "C" or "I"; if "I" is entered, the above prompts will be displayed.

2. Enter your CPM input file name: "PROJ1".

3. These three identification lines will appear in the heading of all output. Suggest Line 1 = Project Name; Line 2 = Project Location; Line 3 = User Name.

4. Enter I,J number for activity: "1,2".

5. Enter cost of activity ($) : "25000".

6. Enter activity's duration (calendar days): "30".

7. Enter activity's description: "A.A-FEI Draft Preliminary Plans".

8. Enter "Y" or "N": If you enter "Y", the program will not run your file through the remaining options. You must enter "N" to compute this file.
Option 01 - Continuation CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED (ENTER 00 TO GET A LIST OF PROCESSING OPTIONS): 01

1. CONTINUATION OR INITIAL RUN? C
2. FILE NAME:
3. LAST RECORD ENTERED:
 \[i = J = \]
 \[DURATION = \]
 \[COST = \]
4. I, J (0.0 FOR END):
5. ARE YOU GOING TO CONTINUE LATER?
 STOP

1. Enter "C" or "I"; if "C" is entered, the above prompts will be displayed.
2. Enter file name from previous option 1 input: "PROJ1".
3. The computer will display the information for the last activity in the file.
4. Enter I, J number for next activity: "10, 12".
5. Enter "Y" or "N"; you must enter "N" if you want to compute from the contents of this file.
Option 02 - CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS):
02

1. ENTER DATA FILE NAME FROM OPTION 01 OR 07:
 AFTER STMT 590
 STOP

1. Enter the file name from either option 01 or the name of the updated file created in option 07. The program will now conduct the CPM calculations.
Option 03 - CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS): 03

1. WHAT DO YOU WANT TO CALL THE PRINT PROGRAM INPUT FILE?
2. FILE GENERATED

1. Enter the file name for print program input: "PROJ2".
2. The program will sort the option 2 output, read it into the new file, and display this statement when the file has been generated.
Option 04 - CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS):
04

1. NTP ACK DATE (MMDDYY) ?

2. END DATE (CONTRACT DAYS + 15%) MMDDYY?

3. ENTER IDENT LINE:

ENTER IDENT LINE:

ENTER IDENT LINE:

ENTER IDENT LINE:

JER =
STOP

1. Enter the day before the initial day of the period under analysis. For example, if you want the analysis to begin on 1 October 83, enter 30 September 83: "093083".

2. Enter the last day of the period under analysis: "093085".

3. Enter three identification lines to identify this calendar file.
Option 05 - CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS)

05

1. ENTER FILE NAME FOR INPUT (OPTION 03 OR 08 OUTPUT).

2. WHAT DO YOU WANT TO CALL YOUR CPM PRINTED OUTPUT FILE?

3. SUPRESS DUMMY (0=NO, 1=YES)?

4. I-J SORT, LATE START SORT,
 EARLY START SORT, EARLY FINISH SORT, LATE FINISH SORT
 TOTAL SLACK SORT, OR END?
 I-J SORT

5. WANT TO PLOT THESE COSTS/ACTIVITIES ON THE TEKTRONIX? (Y OR N)
 Y

6. WHAT DO YOU WANT TO CALL YOUR PLOT FILE?
 I-J SORT, LATE START SORT,
 EARLY START SORT, EARLY FINISH SORT, LATE FINISH SORT
 TOTAL SLACK SORT, OR END?
 END
 STOP

7. WANT CPM PRINT FILE COPIED TO PRINTER? (Y OR N)

1. Enter the name of the file created in option 03 or option 08: "PROJ1".
2. Enter the file name for the output created by this option: "PROJ3".
3. Enter "0" or "1". If "1" is entered, all dummy activities in network will not be printed into output if the first three characters of the activity description are "DUM".
4. Enter the name of the sort you want exactly as shown on display: "I-J SORT". If you want several sorts or all sorts, you must enter the names in the same order as shown in prompt - one sort per prompt.
5. Enter "Y" or "N".
6. Enter name for plot file: "PROJPLT".
7. Enter "Y" or "N"; if "Y", output will be copied on main printer.
Option 06 - CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS):

06

1. WHAT IS THE NAME OF YOUR PLOT FILE
GENERATED BY OPTION 05?

2. CHOOSE (1) ACTIVITIES PLOT ONLY, (2) COST PLOTS ONLY
OR (3) BOTH PLOTS.

3. DO YOU WANT TO SPECIFY STARTING AND ENDING DATES?
(Y OR N)

4. ENTER YOUR STARTING DATE IN 312 FORMAT (MMDDYY):

5. ENTER YOUR ENDING DATE IN 312 FORMAT (MMDDYY):

6. DO YOU WANT COST GRAPH TO HAVE GRIDS? (Y OR N)

7. DO YOU WANT TO CREATE A FILE CONTAINING DAILY COSTS?
(Y OR N)

8. WHAT DO YOU WANT TO CALL THE DAILY COST FILE?

9.

1. Enter plot file name created in option 05: "PROJPLOT".
2. Enter "1", "2", or "3": "1" will create a Gantt Chart from CPM
network; "2" will create a resource histogram; "3" will create
both.
3. Enter "Y" or "N"; "Y" allows you to only graph a selected portion
of data; "N" will graph all data.
4. Enter starting date for selected period: "100183".
5. Enter ending date for selected period: "093084".
6. Enter "Y" or "N".
7. Enter "Y" or "N" if you want the daily cost computations written
into a file.
8. Enter file name for cost file: "PROJCOST".
9. The graphics selected in item 2 will now be displayed on the
Tektronix plotter.
Option 07 - Additional CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS):
07

1. YOU HAVE SELECTED THE CPM FILE UPDATE PROGRAM
 ENTER THE NAME OF THE DATA FILE GENERATED BY OPTION 03.

2. WHAT DO YOU WANT TO CALL THE UPDATED FILE?

3. WHAT ACTION DO YOU WANT TO CALL THE UPDATED FILE?
 ACTION(?, ADD(A), CHANGE(C), DELETE(D), STOP(S) *

4. IMODE (?) ******
 JM mode (?) ******
 1. DESCRIPTION ****************************
 2. COST *******
 3. DURATION ***

1. Enter file name created in option 3: "PROJ2".

2. Enter name for updated file: "PROJUP".

3. Enter "A", "C", "D" or "S": if "A" is entered, the prompts
 shown above will be displayed.

4. Enter information on activity to be added to network:
 "4"
 "5"
 "AAA-FEL DRAINAGE"
 "25000"
 "30"
Option 07 - Change CPT Display

FILE NAME:
1. ACTION(7), ADD(A), CHANGE(C), DELETE(D), STOP(S) *
2. IMODE (?) ****
3. JMODE (?) ****

4. 1. DESCRIPTION ***
 2. COST ********
 3. DURATION ****
 4. START DATE ****
 (MMDDYY)
 5. % COMPLETE ****
 6. MILESTONE ****
 (MMDDYY)

5. ENTER 1, 2, 3, 4, 5, 6 OR (S) STOP =

1. Enter "A", "C", "D" or "S": if "C" is entered, the prompts shown above will be displayed.
2. Enter I number of activity to be changed (updated): "2".
3. Enter J number of activity to be changed (updated): "5".
4. Program will display current information on requested activity.
5. Enter "1", "2", "3", "4", "5", "6" or "S": program will display selected item. Enter updated information.
Option 07 - Delete CRT Display

FILE NAME:
1. ACTION(?),ADD(A),CHANGE(C),DELETE(D),STOP(S) *
0
2. IMODE (?) ******
3. JMODE (?) ******
4. 1. DESCRIPTION ************************************
2. COST *************
3. DURATION ******
4. START DATE *******
(MMDDYY)
5. % COMPLETE ******
6. MILESTONE *******
(MMDDYY)
5. IS THIS THE RECORD TO DELETE(Y OR N)? *
Y
FILE NAME:
6. ACTION(?),ADD(A),CHANGE(C),DELETE(D),STOP(S) *
5

CPM FILE UPDATE COMPLETE.
RETURN TO OPTION 02 AND 03 TO CREATE A NEW PRINT PROGRAM INPUT FILE.
(MAKE SURE YOUR CALENDAR FILE IS STILL VALID FOR NEW DATES)

1. Enter "A", "C", "D" or "S": if "D" is entered, the prompts shown above will be displayed.

2. Enter I number of activity to be deleted: "2".

3. Enter J number of activity to be deleted: "5".

4. Program will display current information on requested information.

5. Enter "Y" or "N".

6. When update is complete, enter "S".
Option 08 - CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS):

08

1. WHAT IS THE NAME OF THE FILE YOU WANT TO SEARCH?

2. WHAT DO YOU WANT TO CALL YOUR NEW PRINT PROGRAM INPUT FILE?

3. DO YOU WANT TO SEARCH FOR AN ORGANIZATION CODE, A PROJECT NAME CODE, OR BOTH? (ENTER OC, PNC, OR BOTH)

4. ENTER THE ORGANIZATION CODE YOU WISH TO SEARCH FOR:

5. ENTER THE PROJECT NAME CODE YOU WISH TO SEARCH FOR:

6. SEARCH COMPLETE... WANT TO PERFORM ANOTHER SEARCH?
(Y OR N)

N STOP

OPTION 08 COMPLETE.
ENTER OPTION 03 TO PRINT FILE AND CREATE NEW PLOT FILE.

1. Enter the file name for the file created in option 3: "PROJ2".

2. Enter the new file name: "PROJ5".

3. Enter "OC", "PNC", or "BOTH": if "BOTH" is entered, the prompts shown above will be displayed.

4. Enter the three-digit organization code: "FEI".

5. Enter the three-digit project code: "AAA".

6. Enter "Y" or "N".

NOTE: This option can be used only if the first seven digits of every activity description are the project code, a dash, and the organization code: "AAA-FEI".
Option 09 - Organization Code Search CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS):

09

1. ENTER: 1 TO SEARCH FOR ORGANIZATION CODE
 2 TO SEARCH FOR PROJECT CODE
 3 TO SEARCH FOR PROJECT AND ORGANIZATION
 4 TO ADD A PROJECT/ORGANIZATION
 99 TO STOP

 1

2. ENTER THE NAME OF YOUR PROJECT/ORG CODE FILE:

3. WANT TO SEND SEARCH RESULT TO A FILE? (Y OR N)
 Y

4. WHAT DO YOU WANT TO NAME THE FILE?

5. WHAT ORGANIZATION CODE DO YOU WISH TO SEARCH FOR?

6. WANT TO SEARCH FOR ANOTHER ORGANIZATION? (Y OR N)
 N

 ENTER: 1 TO SEARCH FOR ORGANIZATION CODE
 2 TO SEARCH FOR PROJECT CODE
 3 TO SEARCH FOR PROJECT AND ORGANIZATION
 4 TO ADD A PROJECT/ORGANIZATION
 99 TO STOP

NOTE: Option 09 is not a functional option. Its purpose is to create
and access a file containing all codes and their meanings.

1. Enter "1", "2", "3", "4" or "99": if "1" is entered, the prompts
 shown above will be displayed.

2. Enter the name of the file created in "4" of this option: "PROJCODE".

3. Enter "Y" or "N".

4. If "Y", enter file name: "CODE1".

5. Enter desired organization code: "FE1". The program will display
 all entries in file with "FE1".

6. Enter "Y" or "N".
Option 09 - Project Code Search CRT Display

1. ENTER: 1 TO SEARCH FOR ORGANIZATION CODE
 2 TO SEARCH FOR PROJECT CODE
 3 TO SEARCH FOR PROJECT AND ORGANIZATION
 4 TO ADD A PROJECT/ORGANIZATION
 99 TO STOP

2. ENTER THE NAME OF YOUR PROJECT/ORG CODE FILE:

3. WANT TO SEND SEARCH RESULT TO A FILE? (Y OR N)
 Y

4. WHAT DO YOU WANT TO NAME THE FILE?

5. WHAT PROJECT CODE DO YOU WISH TO SEARCH FOR?

1. through 4. Same as page A-14.

5. Enter project code: "AAA". Program will display all entries containing this project code.
Option 09 - Project and Organization Code Search CRT Display

ENTER: 1 TO SEARCH FOR ORGANIZATION CODE
 2 TO SEARCH FOR PROJECT CODE
 3 TO SEARCH FOR PROJECT AND ORGANIZATION
 4 TO ADD A PROJECT/ORGANIZATION
 ?? TO STOP

3

ENTER THE NAME OF YOUR PROJECT/ORG CODE FILE:

WANT TO SEND SEARCH RESULT TO A FILE? (Y OR N) N

WHAT ORGANIZATION CODE DO YOU WISH TO SEARCH FOR?

WHAT PROJECT CODE DO YOU WISH TO SEARCH FOR?

WANT TO SEARCH FOR ANOTHER PROJECT/ORGANIZATION? (Y OR N) N

Self-explanatory - combines previous two pages.
Option 09 - Project/Organization Code File CRT Display

1. ENTER: 1 TO SEARCH FOR ORGANIZATION CODE
 2 TO SEARCH FOR PROJECT CODE
 3 TO SEARCH FOR PROJECT AND ORGANIZATION
 4 TO ADD A PROJECT/ORGANIZATION
 ?? TO STOP

2. ENTER THE NAME OF YOUR PROJECT/ORG CODE FILE:

3. WHAT DO YOU WANT TO CALL YOUR NEW PROJECT CODE FILE?

4. ENTER THE PROJECT CODE (3 CHARACTERS OR LESS):

5. ENTER THE ORGANIZATION CODE (13 CHARACTERS OR LESS):

6. ENTER DESCRIPTION OF WORK (70 CHARACTERS MAXIMUM):

7. WANT TO ADD ANOTHER PROJECT/ORGANIZATION? (Y OR N) N

1. Enter "4".

2. Enter name of previous code file if applicable: "CODE".

3. Enter new code file name: "PROJCODE".

4. Enter first project code: "AAA".

5. Enter first organization code: "FEI".

6. Enter description: "INTERIOR DRAINAGE".

7. Enter "Y" or "N".
Option 10 - CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS)

10

1. WHAT IS THE NAME OF YOUR OPTION 05 INPUT FILE?

2. WHAT DO YOU WANT TO CALL YOUR FY1 RA/PM FILE?

3. ENTER THE PROJECT CODE (3 CHAR):

4. ENTER THE FIRST LINE OF THE PROJECT DESCRIPTION
 (20 CHAR):

5. ENTER THE SECOND LINE OF THE PROJECT DESCRIPTION
 (8 CHAR):

6. ENTER THE APPROPRIATION CODE (2 CHAR):

7. ENTER THE FA PROJECT CODE (3 CHAR):

8. ENTER THE A0P WORK CODE FOR INTERIOR DRAINS
 FISCAL YEAR = 84. CODE SHOULD HAVE 12 CHARACTERS.
 ENTER 0 IF CODE IS SAME AS FOR PREVIOUS ACTIVITY DURING SAME YEAR.

1. Enter the name of the file created in option 03: "PROJ2".

2. Enter file name: "PROJX1".

3-8. Make required entries.
Option 97 - CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED
(ENTER 00 TO GET A LIST OF PROCESSING OPTIONS):
97

CPM PROGRAM HISTORY

<table>
<thead>
<tr>
<th>OPTION</th>
<th>SOURCE (SORC*)</th>
<th>DATE WRITTEN</th>
<th>AUTHOR</th>
<th>DIST.</th>
<th>LANGUAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>560102A</td>
<td>4 AUG 80</td>
<td>LAMBRECHT</td>
<td>MOBILE</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>02</td>
<td>560102B</td>
<td>71</td>
<td>NOULLET</td>
<td>PT5BGH</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>03</td>
<td>560102C</td>
<td>18 OCT 72</td>
<td>NOULLET</td>
<td>PT5BGH</td>
<td>COBOL</td>
</tr>
<tr>
<td>04</td>
<td>560102G</td>
<td>6 NOV 73</td>
<td>--</td>
<td>PT5BGH</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>05</td>
<td>560102D</td>
<td>71</td>
<td>NOULLET</td>
<td>PT5BGH</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>06</td>
<td>560102H</td>
<td>MAR 83</td>
<td>STACKOWIAK</td>
<td>ST PAUL</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>07</td>
<td>560102F</td>
<td>JUN 82</td>
<td>--</td>
<td>MOBILE</td>
<td>COBOL</td>
</tr>
<tr>
<td>08</td>
<td>560102I</td>
<td>MAR 83</td>
<td>STACKOWIAK</td>
<td>ST PAUL</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>09</td>
<td>560102J</td>
<td>APR 83</td>
<td>STACKOWIAK</td>
<td>ST PAUL</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>10</td>
<td>560102P</td>
<td>MAY 83</td>
<td>STACKOWIAK</td>
<td>ST PAUL</td>
<td>FORTRAN</td>
</tr>
</tbody>
</table>

CONTACTS: MOBILE DISTRICT - GEORGE VELLA FTS 537-3330
ST PAUL DISTRICT- ROBERT STACKOWIAK FTS 725-7761

HIT RETURN TO CONTINUE...

A-19
Option 98 - CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED (ENTER 00 TO GET A LIST OF PROCESSING OPTIONS):
90

CPM INSTRUCTIONS

THIS PROGRAM USES THE CRITICAL PATH METHOD (CPM) TO ANALYZE NETWORKS. THE USER SHOULD BECOME FAMILIAR WITH THIS METHOD BEFORE USING THIS PROGRAM.

USE OPTION 01 TO INTERACTIVELY INPUT 3 PROJECT IDENTIFICATION LINES AND ACTIVITY I AND J NODES, COSTS, DURATIONS, AND DESCRIPTIONS. THE FIRST 7 CHARACTERS OF EACH DESCRIPTION SHOULD CONTAIN A PROJECT NAME (3 CHARACTERS) FOLLOWED BY A - FOLLOWED BY AN ORGANIZATION CODE (3 CHARACTERS). FOR EXAMPLE:

CHA-FE1 CHASKA HYDRAULICS STUDY
(NOTE: IF THE ACTIVITY IS A DUMMY, THE PROJECT NAME SHOULD BE DUM.)

AFTER YOU HAVE COMPLETED INPUT USING OPTION 01, USE OPTION 02 TO COMPUTE THE I-J ORDER. THEN USE OPTION 03 TO CREATE AN INPUT FILE FOR THE PRINT PROGRAM (OPTION 05). PRIOR TO RUNNING OPTION 05, YOU MUST ALSO RUN OPTION 04 TO CREATE A CALENDAR FILE CONTAINING THE DATES DURING WHICH THE PROJECT(S) WILL TAKE PLACE. A PERMANENT FILE NAMED CALENDAR WILL BE CREATED ON YOUR QUALIFIER.

HIT RETURN TO CONTINUE....

CPM INSTRUCTIONS CONTINUED

YOU MAY ADD ACTUAL START DATES, PERCENT COMPLETE, MILESTONE DATES, AND ADD, CHANGE, OR DELETE NODES FROM YOUR OPTION 03 PRINT PROGRAM INPUT FILE BY USING OPTION 07. OPTION 08 ALLOWS YOU TO SELECT PROJECT NAME AND/OR ORGANIZATION CODES FROM THE OPTION 03 PRINT PROGRAM INPUT FILE AND CREATE A NEW INPUT FILE.

OPTION 05 GENERATES A TABLE OF CPM ACTIVITIES, ACCUMULATED COSTS, AND COMPUTED EARLY AND LATE START/FINISH DATES AND SLACKS. IT MAY BE USED TO CREATE AN INPUT PLOT FILE FOR OPTION 06.

OPTION 06 IS A TEKTRONIX PLOT PROGRAM WHICH MAY BE USED TO GRAPHICALLY DISPLAY ACTIVITIES ALONG A DATE LINE AND/OR DAILY COST VERSUS DATE. IT CAN ALSO BE USED TO GENERATE AN AVERAGE DAILY COST SUMMARY TABLE.

OPTION 09 IS USED TO CREATE/MODIFY AN INDEX OF PROJECT AND ORGANIZATION CODES.

OPTION 10 IS USED TO CONVERT CPM PRINT PROGRAM INPUT INTO RA/PM INPUT.

THIS CONCLUDES THE INSTRUCTIONS. HIT RETURN TO CONTINUE.
Option 99 - CRT Display

ENTER THE PROCESSING OPTION NUMBER TO BE EXECUTED (ENTER 00 TO GET A LIST OF PROCESSING OPTIONS): 99

YOU HAVE LEFT THE CPM MACRO AND ARE NOW BACK AT YOUR CONTROL.