PARAMETER SURVEY FOR COLLISIONLESS COUPLING IN A LASER SIMULATION OF HANE

R.A. Smith* and J.D. Huba

Naval Research Laboratory
Washington, D.C. 20375

Defense Nuclear Agency
Washington, D.C. 20305

Contract OR Grant Numbers

PERIOD COVERED
Interim report on a continuing NRL problem.

DISTRIBUTION STATEMENT
Approved for public release; distribution unlimited.

ABSTRACT

We present a set of criteria for collisionless coupling of debris-air plasmas via the magnetized ion-ion instability (MII) for conditions relevant to the NRL DNA laser experiment. The criteria are based upon (1) a transit time of ions across the coupling shell sufficiently long to allow significant momentum exchange between the debris and air ions; (2) non-stabilization of the MII by electromagnetic effects; (3) a system size $\rightarrow\infty$.

(Continues)
sufficiently large to contain at least a target mass of background gas; and (4) allowance for a high-β expansion (i.e., super-Alfvenic expansion). A series of figures are presented which display these criteria graphically and indicate the coupling regime for parameters pertinent to the NRL experiment. We conclude that the proposed NRL upgraded facility (e.g., stronger magnetic field and larger target chamber) should be adequate to test the collisionless coupling criteria set forth in Lampe et al. (1975).
CONTENTS

I. INTRODUCTION .. 1

II. COUPLING INSTABILITIES 3
 A. Unmagnetized ion-ion instability 4
 B. Magnetized ion-ion instability 6
 C. Modified two stream instability 7

III. COUPLING CRITERIA 8
 A. Definition of the coupling criteria 9
 B. Quantitative evaluation of the criteria 10
 C. Graphical presentation of coupling criteria 14

IV. DISCUSSION ... 16

ACKNOWLEDGMENTS .. 25

REFERENCES .. 25
PARAMETER SURVEY FOR COLLISIONLESS COUPLING IN A
LASER SIMULATION OF HANE

I. INTRODUCTION

It is well known that a high altitude nuclear explosion (HANE) can significantly disturb the natural ionosphere by producing large-scale, long-lasting ionization irregularities. These irregularities can have an adverse effect on radar and communication systems (e.g., scintillations). Thus, in order to understand and aid the operation of such systems in a nuclear environment, it is crucial to determine the behavior of the ionosphere following a HANE. To this end, DNA has supported an extensive research effort, both experimental and theoretical, to investigate the dynamics of the debris-air interaction and the subsequent evolution of the plasmas. The experimental research has involved laboratory experiments in the early 1970's (NRL, AVCO) and plasma cloud releases in the ionosphere; the theoretical research has been directed at developing advanced computer codes to model a HANE, and using naturally occurring and man-made ionospheric phenomena as a test bed for the HANE theories and codes.

Recently, renewed interest in the laboratory simulation of a HANE has been stimulated in the DNA community (Vesecky et al., 1980; Cornwall et al., 1981). Longmire et al. (1981) have examined the scaling of a HANE to a laboratory experiment in which a target is "exploded" using a laser. One of the purposes of such an experiment would be to simulate the early-time phase of a HANE, and to determine whether or not collisionless coupling between the debris and air, via plasma microturbulence, is an important process. Longmire et al. (1981) concluded that such an experiment is feasible although non-trivial. Tsai et al. (1982) have re-examined the scaling laws involved between a HANE and a laser simulation. They have found that a "faithful" simulation of early-time phenomena is not possible in the laboratory as it would require extremely large magnetic fields ($B \sim \text{few} \times 10^6 \text{ G}$) and densities ($n \sim \text{solid state}$). However, they derive a set of "approximate" scaling laws which are amenable to laboratory conditions, and which should allow insight into the physics of the debris-air interaction. They conclude that the experimental facilities at NRL are adequate to perform such a simulation.

The purpose of this report is to examine the plasma conditions necessary (and hopefully achievable) for collisionless debris-air coupling to occur in the NRL experiment. The primary use of this work will be for

Manuscript approved March 28, 1983.
the experimentalists to use as a rough guide in choosing the appropriate parameters for the experiment (e.g., density, magnetic field, laser energy, targets and background gas). Thus, we present a series of graphs which indicate expected coupling regimes, based upon the magnetized ion-ion instability, as a function of laser energy, background gas density and atomic mass, and magnetic field strength. The important coupling physics issues used in this analysis are the following.

1. Magnetized ion-ion instability: We believe that the dominant instability that will lead to debris-air coupling is the magnetized ion-ion instability. The requirement for instability that may pose a problem in the simulation is $V_{da} < \alpha V_{Aa}$ where α is a parameter of order unity and is a function of the plasma conditions, V_{da} is the relative debris-air velocity in the radial direction and V_{Aa} is the Alfven velocity.

2. System size: We require that the size of the experiment be greater than a mass radius, i.e., $L_s > R_w$ where L_s is the size of the experiment and R_w is the mass radius defined by $(4\pi/3)\rho_a R_w^3 = M_d$. Here, ρ_a is the background gas density and M_d is the debris mass.

3. Coupling time: We require that the instability occurs on a sufficiently fast time scale so that coupling can occur, i.e., $\nu_c \tau_{tr} > 1$ where ν_c is the effective collision frequency, $\tau_{tr} = A/V_{da}$ is the transit time of an air ion in the debris, and A is the width of the coupling shell.

4. Magnetic field compression: We incorporate magnetic field compression in the criteria which depend upon the field. The relationship used is $B_c/B_0 = R/2A$ where B_c is the compressed field, B_0 is the ambient field, R is the expansion radius of the debris shell, and A is the width of the debris shell (Wright, 1972).

The organization of the paper is as follows. In the next section, we discuss in greater detail the important physics issues upon which we base our analysis and which we believe are relevant to the NRL laser simulation. In Section III we discuss our results as they apply to the simulation and present figures indicating "coupling regimes." In the final section we discuss the implications of this work, as well as the limitations of the theory. Throughout the paper we use the expressions target and debris interchangeably, as well as background gas and air. We
conclude that there exist parameter regimes, which will be accessible to the NRL laser facility, in which collisionless coupling should occur.

II. COUPLING INSTABILITIES

In the mid-1970s, the NRL theory group studied a variety of plasma microinstabilities within the context of HANE (Lampe et al., 1975). The purpose of this research was to describe physical processes which could couple the debris-air plasmas, and provide a mechanism to heat the plasmas. The basic physical process involved is the "scattering" of particles from collective, fluctuating fields, associated with the instabilities, which can provide "anomalous transport coefficients" substantially larger than classical transport coefficients. We now give a brief overview of the instabilities considered by Lampe et al. (1975) which can lead to debris-air coupling and discuss their potential importance in regard to the laser simulation.

Prior to discussing the various instabilities, we first present Figs. 1 and 2 in order to indicate the geometry and the sources of free energy necessary to drive the plasma instabilities. In Fig. 1a we show the debris-air shell in the electron frame of reference. The debris is streaming in the radial (or x) direction; relative to the debris, the air plasma is streaming opposite to the debris (the −r or −x direction). Thus, in the radial (or x) direction there are three relative streaming velocities which can provide energy for an instability. They are (1) the relative debris-air velocity \((V_{da} = V_d - V_a)\); (2) the relative debris-electron velocity \((V_{de} = V_d)\); and (3) the relative air-electron velocity \((V_{ae} = V_a)\). There are also azimuthal currents (in the \(\theta\) or y direction) which are set up to support the magnetic field gradients shown in Fig. 1b. These currents are driven by electron flow so that only a relative electron-ion drift exists in this direction \(J = -ne\mathbf{e}_\theta\) in this direction.

The slab geometry and plasma configuration appropriate to early-time is shown in Fig. 2. The ambient magnetic field and plasma parameters (density \((n)\) and temperature \((T)\)) are functions of \(r\) or \(x\). The flows for the ions and electrons are, respectively,

\[
V_{d} = (V_d - V_a)e_{r,x}
\]
Strictly speaking, both V_i and V_e are also functions of x in the coupling shell; these inhomogeneities were ignored in Lampe et al. (1975) and will also be neglected in the present analysis. However, we note that such velocity inhomogeneities may affect the plasma instabilities under consideration. We defer such an analysis to a future report.

It is clear that two generic types of instabilities may exist in the early-time debris-air interaction: ion-ion streaming instabilities and electron-ion streaming instabilities. The ion-ion instabilities (i.e., magnetized ion-ion and unmagnetized ion-ion) occur only in the radial (or x) direction and can provide momentum transfer between the debris and air (i.e., coupling) and can heat the ions (Papadopoulos et al., 1971). The electron-ion instabilities (i.e., modified two stream, beam cyclotron, ion acoustic) can occur in both the radial (or x) and azimuthal (or y) directions. These instabilities primarily heat electrons, although the radial modified two stream instability can provide debris-air coupling (McBride et al., 1972). The azimuthal electron-ion instabilities limit the size of the magnetic field gradients and can cause radial diffusion of the magnetic field, density and temperature. Since the main emphasis of the laser simulation is on debris-air coupling, we restrict our attention to those instabilities which occur in the radial (or x) direction and can provide debris-air coupling: the unmagnetized and magnetized ion-ion instabilities, and the modified two stream instability.

A. Unmagnetized ion-ion instability

The turn-on conditions for the unmagnetized ion-ion instability (UII) is given by (Lampe et al., 1975)

\[
\frac{v_{ij}}{v_j} > 4 \alpha_{ij}^{-1/3}
\]

and

\[
\frac{v_{ij}}{v_i} > 2
\]
where

\[a_{ji} = \frac{n_j Z_j^2 m_i}{n_i Z_i^2 m_j} \leq 1, \]

(5)

\[V_{ji} = |V_j| - |V_i| \]

is the relative streaming velocity between the ion species (i.e., debris and air), \(v \) is the thermal velocity, \(n \) is the density, \(Z \) is the charge, and \(m \) is the mass of each species accordingly.

In the laser simulations to date, it appears that these conditions are easily satisfied since \(V_{da}/v_d \sim 8 \) and \(V_{da}/v_a \sim 10 \) (B. Ripin, private communication).

However, in order to prevent the instability from being stabilized by electron shielding it is necessary that

\[V_{ji} < 1.5 c_1 (1 + a_{ji}^{1/3} 3/2) \]

(6)

where

\[c_1 = \left(\frac{n_i Z_i^2 r_e}{n_e m_i} \right)^{1/2}. \]

(7)

Assuming \(a = i, d = j, n_a/n_e \sim 1/2, Z_{da} \sim 3/2, \) and \(V_{da} \sim 6 \times 10^7 \text{cm/sec}, \) we find that

\[T_e > 550 \frac{A_e}{Z_a} \text{eV} \]

(7)

where \(A_e \) and \(Z_a \) are the atomic mass and charge state of the background gas. It is believed that the electron temperature in the laser simulation is \(T_e \sim 100 \text{eV} \) in the debris shell shortly after the laser pulse has been terminated (B. Ripin, private communication), so that it is unlikely that the unmagnetized ion-ion instability will occur (this is especially true for an air background).
B. Magnetized ion-ion instability

The turn-on conditions for the magnetized ion-ion instability (MII) are the same as in the case of the unmagnetized ion-ion instability (Eqs. (3) and (4)) and these criteria should be satisfied in the laser experiment. On the other hand, in order to avoid electromagnetic stabilization of the instability, it is required that

\[v_{ji} < \alpha_0 V_{Ai} \]

(9)

where \(\alpha_0 \sim 0(1) \) and is

\[\alpha_0 = 1.2 \left(\frac{n_i}{n_e} \right)^{1/2} (1 + a_{ji}^{1/3})^{3/2} (1 + \beta_e)^{1/2}. \]

(10)

Here, \(\beta_e = 8\pi n_e T_e / B^2 \) and \(V_{Ai} = B/(4\pi n_i m_i)^{1/2} \).

Another criterion for instability discussed in Lampe et al. (1975) is

\[L_s > \frac{V_{di}}{\alpha_1 n_p} \]

(11)

where \(L_s \) is the system size and \(\alpha_1 \sim 0(1) \) and is

\[\alpha_1 = 4.4 \left(\frac{n_i n_j Z_i Z_j}{n_e} \right)^{1/2} (1 + a_{ji}^{1/3})^{3/2} \]

(12)

Also, \(n_p = e B/m_c \) and \(m_p \) is the proton mass. Equation (11) is a statement that the parallel wavelength associated with the instability is small enough to fit into the system. As a rough estimate of \(L_s \) for the simulation, we assume \(V_{di} \approx 6 \times 10^7 \) cm/sec and \(B = 2 \times 10^3 \) so that \(L_s > 3 \) cm is required. We note that this system size will be achievable in the NRL experiment. We also comment that Eq. (11) may not be required since the magnetized ion-ion instability is insensitive to the particle dynamics parallel to the field. A careful treatment of the influence of parallel wave effects on the instability in a magnetic field profile appropriate to a HANE and the experiment is needed. Thus, we do not consider this criterion as a major obstacle to the experiment.
C. Modified two stream instability

The turn-on condition for the modified two stream is

\[V_{ie} > 2v_i \] \hspace{1cm} (13)

where \(V_{ie} = V_d \) or \(V_a \), depending upon which ion species is being considered and \(v_i \) is the corresponding thermal velocity of the ions. This condition is likely to be met in the NRL simulation. In order to avoid electromagnetic stabilization of this instability, it is required that

\[V_{ie} < a_2 V_{Ai} \] \hspace{1cm} (14)

where \(a_2 \sim 0(1) \) and is

\[a_2 = \frac{n_i}{n_e} Z_i (1 + \beta_e)^{1/2} \] \hspace{1cm} (15)

where \(g \) is a function of order unity (Lampe et al., 1975 - see p. 10 and 11).

Finally, there is also a condition on the size of the system given roughly by

\[L_s > 2\pi a_3 \frac{V_{ie}}{\omega_{Hi}} \left(\frac{m_i}{m_e} \right)^{1/2} \] \hspace{1cm} (16)

where \(a_3 = 1/0(1 + \Theta) \), \(\Theta \sim 0(1) \) and \(\omega_{Hi} = \omega_{pi} / (1 + \omega_{pe}^2 / \beta_e^2)^{1/2} \). We note that Eq. (16) is an important consideration for the modified two stream instability since the instability relies upon the electron dynamics parallel to the magnetic field. Assuming \(V_{ie} \sim 3 \times 10^7 \) cm/sec and \(B \sim 2 \times 10^3 \) G, we find \(L_s > 6 \) cm which is somewhat more restrictive than the magnetized ion-ion condition.

Based upon the criteria outlined for the various ion-ion coupling instabilities, and the expected operating conditions of the NRL laser experiment, we believe the most likely and the most important coupling instability to be excited is the magnetized ion-ion instability. The unmagnetized ion-ion instability will only be excited if the electrons can be heated to high temperatures \((T_e > 1 \) keV) which is not expected to occur
in the experiment after the laser beam is terminated. The modified two stream instability is more restricted by the system size than the magnetized ion-ion instability. The modified two stream instability may be excited in the experiment, but the coupling criteria are similar to those of the magnetized ion-ion instability. Thus, in estimating the appropriate parameters to be used in laser experiment, we base our analysis on the criteria associated with the magnetized ion-ion instability. Aside from the turn-on conditions associated with the MII instability, the remaining crucial parameter to be stated is the effective collision frequency (or anomalous collision frequency) produced by this instability. This collision frequency is (Lampe et al., 1975)

\[\nu_{ij} = 0.15 \omega_{Hi} \frac{\rho_i}{\rho} f(\alpha_{ji}) \]

where \(\omega_{Hi} = \omega_{pi}/(1 + \omega_{pe}/\omega_{ei})^{1/2} \), \(\rho \) is the mass density, and

\[f(\alpha_{ji}) = a_{ji}^{2/3} + (3^{1/2}/2^{1/3}) (a_{ji}^{1/3} - a_{ji}^{2/3}). \]

III. COUPLING CRITERIA

The theory of the various instabilities of interest, even in the simplified local form presented by Lampe et al. (1975), involves many parameters that vary in a complicated manner, both in time and space, during the early-time expansion. Thus, detailed theoretical predictions of the coupling are difficult, and so our approach is to attempt to relate the local description of the instability condition of Lampe et al. (1975), through some simplifying heuristic criteria, to initial conditions and parameters which are controllable in the experiment. Examples of such parameters are the ambient magnetic field strength \(B_0 \), the expansion velocity \(V_d \), the ambient background density \(n_a \), the kinetic yield of the target \(W \), and so forth. We may then hope to provide, as initial guidance for the experiment design, parameter envelopes within which short-scale-length coupling might be expected to occur.
We stress that such estimates are approximate. Moreover, we have not yet attempted to relate the resulting parameter spaces to the scaling criteria developed by other authors, e.g., Longmire et al. (1981) or Tsai et al. (1982), for several reasons. First, we expect that the experimental phenomenology will still be of interest to HANE so long as qualitative scaling is preserved, i.e., most dimensionless ratios which are small, of order unity, or large in HANE are, respectively, small, of order unity, or large in the experiment, without necessarily translating the exact scaling (Tsai et al., 1982). Second, it may be desirable or even necessary to suppress certain effects in the experiment in order to provide an unambiguous test of short-scale-length coupling theory by isolating the parameter regime in which it is expected to dominate. For example, collisions and charge exchange can only provide complicating effects which may mask the conclusions regarding short-scale-length coupling, especially insofar as some of the chemical reactions which may enter at higher density (such as ternary reactions) do not scale correctly.

A. Definition of the coupling criteria

The basic criteria we adopt are the following:

1. Transit-time criterion

 We require that a parcel of air (or background gas) spend at least one momentum-transfer time constant in traversing the coupling shell. The coupling shell thickness is denoted by $\Delta(R)$ at some expansion radius R and has a nominal expansion velocity $V_d(R)$ through a stationary background gas (i.e., $V_a = 0$). Denoting the anomalous collision frequency for momentum transfer from the debris to the ambient gas by v_{ad}, we then have

 $v_{ad} T_{tr} = \frac{v_{ad} \Delta}{V_d} > 1. \quad (19)$

 We adopt (19) as a physically reasonable estimate since the wave turbulence to produce coupling primarily occurs in the coupling shell. Also, we evaluate Eq. (19) at $R = R_w$ since collisionless coupling is strongest at roughly R_w (R. Clark, private communication).
2. Non-stabilization by electromagnetic effects

The magnetized ion-ion instability is stabilized by electromagnetic effects unless Eq. (9) is satisfied.

3. System-size criterion

Assuming that coupling occurs near the radius at a target mass R_w, we require

$$R_w \ll L,$$ \hspace{1cm} (20)

where L is the characteristic system dimension, i.e., the size of the laser target chamber.

4. High-beta expansion criterion

In order that the debris not expend a major fraction of its energy in field compression (which may then be mistaken for short-scale-length coupling) we require

$$R_w \ll R_B$$

where R_B is the radius of a volume containing magnetic energy equal to the kinetic yield:

$$R_B = \left(\frac{6W}{B_0^2} \right)^{1/3}$$ \hspace{1cm} (22)

Note that because of the R^3 dependence of a spherical expansion, inequality (22) is already strong for $R_w \lesssim R_B/2$.

B. Quantitative evaluation of the criteria

The initial parameters that may be easily controlled experimentally, i.e., those which may be varied over the widest range, are the ambient background gas density n_a and the kinetic yield W. We shall cast the coupling criteria outlined above into inequalities relating these two quantities. Eventually, the experimentalists will have control over the ambient magnetic field and we will also present results with this quantity as a control variable.
In order to evaluate the coupling criteria, several quantities need to be calculated: (1) $\Delta(R_w)$ - the coupling shell width at a mass radius; (2) n_d/n_a - the ratio of the debris density to the background gas density; and (3) B_c/B_0 - the ratio of the compressed magnetic field to the ambient magnetic field. We now discuss each of these quantities.

We approximate the shell thickness Δ by

$$\Delta(R) = V_d \tau_L + \frac{\Delta V_d}{V_d} R$$

where τ_L is the length of the laser pulse, ΔV_d is the thermal spread in the velocity of the debris, V_d is the expansion velocity, and R is the position of the coupling shell. Taking typical values for the NRL experiment, we assume $\tau_L \sim 4 \times 10^{-9}$ sec, $n_d \equiv \Delta V_d/V_d \sim 0.25$, $V_d \sim 4 \times 10^7$ cm/sec (B. Ripin, private communication), and $R = R_w$ so that

$$\Delta(R_w) = 0.16 + 0.25 R_w \text{ cm.}$$

Again, for typical experimental conditions we note that

$$R_w \gg V_d \tau_L / n_d,$$

so Eq. (23) becomes

$$\Delta(R_w) = n_d R_w = R_w/4.$$

The ratio of the debris density to the background gas density is a function of position in the coupling shell. Rather than consider a variety of values, we use the average debris density in the coupling shell. This is a simplifying assumption and our results are not overly sensitive to this parameter. The average debris density in the coupling shell is given by

$$\bar{n}_d \sim \frac{M_d}{4\pi R_w^2} \sim \frac{M_d}{4\pi n_d R_w \bar{m}_d}$$

where M_d is the target mass and m_d is the mass of a debris ion. Making use of the definition of R_w (i.e., $(4\pi/3) \rho a R_w^3 = M_d$) we find that
Based on Eq. (27), we note that

\[\alpha_{da} = \frac{z_d^2 A_a^2}{z_a^2 A_d^2} \frac{1}{3n_d} \]

(28)

where \(m_a,d = A_a,d m_p \) and \(m_p \) is the proton mass. Similarly, \(\alpha_{ad} \) is defined

\[\alpha_{ad} = \frac{z_a^2 A_d^2}{z_d^2 A_a^2} \frac{3n_d}{2} \]

Finally, we also need an estimate of the magnetic field compression in the coupling shell. A simple estimate based on the conservation of flux, as in the Longmire coupling shell model, gives the compressed field \(B_c \) (in the equatorial plane of the expansion) in terms of the ambient field \(B_0 \) as

\[\frac{B_c}{B_0} \sim \frac{R_w}{2R} \sim \frac{1}{2n_d} \]

(29)

We note that for \(n_d < 1/4 \) the field compression in the NRL experiment is expected to be modest, i.e., \(B_c/B_0 \sim 2 \), which is consistent with experimental results thus far (S. Kacenjar, private communication).

Based on the coupling criteria outlined in Section III.A and the quantities defined above, we now present a set of quantitative conditions required for collisionless coupling via the magnetized ion-ion instability in the NRL DNA laser experiment. We first define the following quantities to be used in our results:

\[f(a_{j1}) = a_{j1}^{2/3} + (3^{1/2}/2^{1/3}) (a_{j1}^{1/3} - a_{j1}^{2/3}) \]

(30)

\[K_{j1} = f^{-1}(a_{j1}) \left[1 + \frac{n_1 A_1}{n_1 A_1} \right] (A_1/Z_1)^{1/2} \left[1 + \frac{Z_1}{n_1 A_1} \right]^{1/2} \]

(31)

\[H_{da} = \frac{1}{n_d A_a} \left[1 + \frac{A_a Z_{dA}}{3n_d A_d Z_a} \right]^{-2} \left[1 + \left(\frac{1}{3n_d A_d Z_a} \right)^{2} \right]^{1/3} \]

(32)

\[H_{ad} = \frac{3}{n_d A_a} \left[1 + 3n_d \frac{Z_{aA}}{Z_{dA}} \right]^{-2} \left[1 + \left(\frac{3n_d}{A_a Z_a} \right)^{1/3} \right]^{3} \]

(33)

12
Equations (34) - (36) are the debris velocity, ambient magnetic field, and background gas density, respectively, normalized to numerical values relevant to the experiment.

The coupling criteria are as follows.

1. Transit time criterion (τ_{tr})

\[
W \geq 1.17 \times 10^{-4} A v^5 \frac{n_{a14}}{B_{03}^3} \left\{ \begin{array}{l}
K_{da}^3 \ ; \ \alpha_{da} < 1 \\
K_{ad}^3 \ ; \ \alpha_{ad} < 1
\end{array} \right.
\]

(37)

where W is the kinetic yield of the debris measured in joules.

2. Non-stabilization by electromagnetic effects (em)

\[
n_{a14} \leq 1.50 A v^2 \frac{B_{03}^2}{v_d^2} \left\{ \begin{array}{l}
H_{da} \ ; \ \alpha_{da} < 1 \\
H_{ad} \ ; \ \alpha_{ad} < 1
\end{array} \right.
\]

(38)

3. System size criterion (L)

\[
W \leq 0.90 A v^2 n_{a14} L^3
\]

(39)

Note that Eqs. (37) and (39) combine to give a minimum system length

\[
L \geq 0.71 \frac{K_{j1}}{(A n_{a14})^{1/2}} \ ; \ \alpha_{j1} < 1
\]

(40)

4. High beta expansion (β)

\[
n_{a14} \geq 4.80 \frac{B_{03}^2}{A v^2 v_d}
\]

(41)
C. Graphical presentation of coupling criteria

We now present a series of figures for various experimental parameters, such as target materials, background gases, debris velocities, and system sizes, as a function of kinetic yield, background gas density, and ambient magnetic field. These figures should serve as a guide to the experimentalists and be useful in designing experiments to test collisionless coupling of the debris-air plasmas via the magnetized ion-ion instability.

Schematically, the figures presented will correspond to those shown in Fig. 3 and are obtained as follows. First, the quantities A_a, A_d, Z_a, and Z_d are fixed at some specified values. A_a and A_d are the atomic masses (in proton units) of the background gas and the target material, respectively, and are known for each run. Z_a and Z_d are the charge states of the background and target plasmas, respectively, and are not well-known. We anticipate that many charge states will coexist and vary in time within the coupling shell. For the purpose of obtaining approximate coupling regimes we make the simplifying assumption of an average charge state for each ion species. The values chosen are based upon previous theoretical work (R. Clark, private communication) and experimental work (J. Grun, private communication). Second, the parameters B_0 and V_d (Fig. 3a) or n_a and V_d (Fig. 3b) are fixed at some relevant values, and conditions (37) - (41) are plotted as functions of kinetic yield W (in joules) versus the density n_a (Fig. 3a) or the ambient magnetic field B_0 (Fig. 3b). The boundary lines for each condition are denoted by τ_{tr} [Eq. (37)], em [Eq. (38)], L [Eq. (40)], and β [Eq. (41)], and are based upon solving these conditions as equalities. The shading indicates the side of the line for which the inequalities hold and indicate the parameters (W and n_a or W and B_0) needed for coupling. In both Figs. 3a and 3b, it is found that there is a coupling regime defined by a "box" or "window" in the parameter space (W, n_a) or (W, B_0). Figures 4 - 7 show some examples for parameters accessible (or eventually accessible) to the NRL laser facility.

Figures 4 and 5 are for an aluminum target ($A_d = 29$) with an average charge state of 10 ($Z_d = 10$), and a nitrogen background gas ($A_a = 14$) with an average charge state of 3 ($Z_a = 3$). Figure 4 displays kinetic yield W versus background density n_a for two sets of debris velocity and ambient
magnetic field values: (a) $V_d = 2 \times 10^7$ cm/sec and $B_0 = 800$ G and (b) $V_d = 4 \times 10^7$ cm/sec and $B_0 = 4000$ G. The first set of parameters is achievable with the present NRL laser facility. For this set, very low densities are required for coupling, 6×10^{12} cm$^{-3} < n_a < 4 \times 10^{13}$ cm$^{-3}$, and a larger system size ($L > 5$ cm) than is presently available ($L < 3$ cm). The second set of parameters uses a significantly larger ambient magnetic field $B_0 = 4000$ G (which should be obtainable in the experiment in the near future). It is found that coupling can occur for higher density plasmas 5×10^{13} cm$^{-3} < n_a < 4 \times 10^{14}$ cm$^{-3}$ and smaller system sizes ($L > 2$ cm) than the previous case. Figure 5 is a plot a kinetic yield W versus the ambient magnetic field B_0. The species and charge states are the same as in Fig. 4 but a higher debris velocity is used ($V_d = 6 \times 10^7$ cm/sec) and the system size is taken, for illustration, to be 10 cm. The coupling regimes are shown for three sets of densities: $n_a = 10^{14}, 10^{15},$ and 10^{16} cm$^{-3}$. We note that as the density increases, the range of W and the magnitude of the ambient magnetic field required for coupling both increase. Since the ambient magnetic field in the NRL experiment will be such that $B_0 < 10$ kG, the experiment will require low density background plasmas ($n_a < 10^{15}$ cm$^{-3}$) to obtain coupling for an Al-N system. Thus, from Figs. 4 and 5 we find that the NRL DNA laser experiment should be able to achieve collisionless coupling via the MII instability using an aluminum target and a nitrogen background gas in future experiments using an upgraded magnetic field and target chamber. The present facility ($B_0 = 800$ G and $L < 3$ cm) is inadequate to obtain coupling based upon our criteria.

In Figs. 6 and 7 we present the coupling regimes analogous to Figs. 4 and 5 but using a carbon target ($A_d = 12$) with an average charge state of 4 ($Z_d = 4$) and a hydrogen background ($A_a = 1$) with a charge state of 1 ($Z_a = 1$). In Fig. 6 we plot W versus n_a for $V_d = 3 \times 10^7$ cm/sec, and $B_0 = 800$ G and 4000 G. It should be noted that for $B_0 = 800$ G, the required densities 3.5×10^{13} cm$^{-3} < n_a < 2.8 \times 10^{14}$ cm$^{-3}$ are somewhat higher than those of the Al-N system (Fig. 4). However, larger kinetic yields are also required so that the coupling regime is somewhat smaller the Al-N system. Also, a large system size ($L > 5.5$ cm) is needed, greater than what is presently available. On the other hand, for $B_0 = 4000$ G, the densities required are in the range 8×10^{14} cm$^{-3} < n_a < 6 \times 10^{15}$ cm$^{-3}$, and the system size is $L > 1.1$ cm. In Fig. 7 we show W versus B_0 for $V_d = 6 \times 10^7$ cm/sec and $L = 10$
cm for three values of density: \(n_a = 10^{14}, 10^{15}, \text{ and } 10^{16} \text{ cm}^{-3} \). The qualitative behavior of these curves are similar to Fig. 5. However, the quantitative behavior is more favorable to coupling in the upgraded NRL laser facility in that a larger range of densities is accessible for coupling in the regime \(B_0 < 10 \text{ kG} \), i.e., \(n_a < 10^{16} \text{ cm}^{-3} \) rather than \(n_a < 10^{15} \text{ cm}^{-3} \) for the Al-N system (Fig. 5).

IV. DISCUSSION

We have presented a set of criteria for collisionless coupling of debris-air plasmas via the magnetized ion-ion instability (Lampe et al., 1975) for conditions relevant to the NRL DNA laser experiment. The criteria are defined by Eqs. (37) - (41) and are based upon (1) a transit time of ions across the coupling shell sufficiently long to allow significant momentum exchange between the debris and air ions; (2) non-stabilization of the MII because of electromagnetic effects; (3) a system size (i.e., target chamber) sufficiently large to contain at least a target mass of background gas; and (4) allowance for a high \(\beta \) expansion, i.e., super-Alfvénic expansion. A series of figures (Figs. 4 -7) are presented which display these criteria graphically and which indicate coupling regimes for parameters pertinent to the NRL experiment. We have specifically considered experiments using both an aluminum target with a nitrogen background, and a carbon target with a hydrogen background. In general, lighter target and background gases provide a broader (more easily accessible) range of experimental parameters for which collisionless coupling can occur. We conclude that the present NRL laser facility (\(B_0 = 800 \text{ G} \) and \(L < 4 \text{ cm} \)) is inadequate to allow collisionless coupling to occur, but that the proposed, upgraded facility (\(B_0 < 10 \text{ kG} \) and \(L < 10 \text{ cm} \)) is adequate to test the collisionless coupling criteria set forth in this analysis (Lampe et al., 1975).

Finally, we emphasize that this report has considered an idealized situation: several simplifying assumptions have been made in the analysis. First, we consider constant, average charge states of each ion species although it is clear that multiple charge states may exist that vary in time in the experiment (J. Grun, private communication). Second,
we consider fully ionized plasmas and ignore any collisional effects. Again, this assumption is an over-simplification and collisional effects need to be carefully addressed for interpretation of experimental results. For example, the pre-ionization of the background gas due to the initial radiation "flash" appears to be small (< a few percent at a mass radius) (Hyman et al., 1983), so that the expanding debris shell may collisionally ionize the background gas. And finally, we note that the chemistry and radiation physics associated with the experiment is critically dependent upon the types of targets and background gases used. It may be worthwhile in running experiments to use materials which have relatively simple chemistry and radiation physics (e.g., use a helium background gas instead of hydrogen). Nonetheless, we believe our results are a useful guide to the experimentalists as a first step in designing experiments to study collisionless coupling.
Figure 1

Schematic of relative drift velocities and magnetic field strength in the coupling shell following a HANE.
Figure 2

Slab geometry of the coupling shell region.
Figure 3

Schematic of coupling regime figures. The interior of the trapezoids (shaded side) indicate the parameters necessary for collisionless coupling. Here, τ_{tr}, em, L, and β denote the criteria defined by Eqs. (37) - (40), respectively. (a) Schematic of kinetic yield W versus background density n_a; B_0 and V_d must be specified. (b) Schematic of kinetic yield W versus ambient magnetic field B_0; n_a and V_d must be specified. In both (a) and (b), A_a, A_d, Z_a, and Z_d must be specified.
Figure 4

Plot of kinetic yield W (joules) versus background density n_a (cm^{-3}) for an aluminum target ($A_d = 29$) with an average charge state of 10 ($Z_d = 10$), and a nitrogen background gas ($A_a = 14$) with an average charge state of 3 ($Z_a = 3$). Two cases are considered: (1) $V_d = 2 \times 10^7$ cm/sec and $B_0 = 800$ G with $L = 6$ and 10 cm, and (2) $V_d = 4 \times 10^7$ cm/sec and $B_0 = 4000$ G with $L = 2$ and 4 cm.
Figure 5

Plot of kinetic yield W (joules) versus ambient magnetic field B_0 (G) for the same target/gas as Fig. 4. We take $V_d = 6 \times 10^7$ cm/sec, $L = 10$ cm, and $n_a = 10^{14}, 10^{15}$, and 10^{16} cm$^{-3}$.
Plot of kinetic yield W (joules) versus background density n_a (cm$^{-3}$) for a carbon target ($A_d = 12$) with an average charge state of 4 ($Z_d = 4$), and a hydrogen background gas ($A_a = 1$) with a charge state of 1 ($Z_a = 1$). Two cases are considered: (1) $V_d = 3 \times 10^7$ cm/sec and $B_0 = 800$ G with $L = 6$ and 10 cm, and (2) $V_d = 3 \times 10^7$ cm/sec and $B_0 = 4000$ G with $L = 2$ and 4 cm.
Figure 7

Plot of kinetic yield \(W \) (joules) versus ambient magnetic field \(B_0 \) (G) for the same target/gas as Fig. 6. We take \(V_d = 6 \times 10^7 \) cm/sec, \(L = 10 \) cm, and \(n_a = 10^{14}, 10^{15}, \) and \(10^{16} \) cm\(^{-3}\).
ACKNOWLEDGMENTS

We thank Barry Ripin, Steve Kacenjar, and Jacob Grun for discussions of current experimental results and future plans, and Bob Clark and Dennis Papadopoulos for discussions regarding the coupling instabilities. We also thank Barry Ripin for a critical reading of the manuscript.

This research has been supported by the Defense Nuclear Agency.

REFERENCES

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, OMD, CONT 7 INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
02CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN SYVL
04CY ATTN TITIL
01CY ATTN DDST
03CY ATTN RAAS

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
01CY ATTN FCPR

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NB 68113
01CY ATTN JLTW-2
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPR

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

WMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-ED F. NILES
OTHER GOVERNMENT

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, D.C. 20234

(IN ALL CORRESP: ATTN SEC OFFICER FOR)

01CY ATTN R. MOORE

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS & INFO ADMIN
BOULDER, CO 80303

01CY ATTN A. JEAN (UNCLASS ONLY)
01CY ATTN U. UTLAUT
01CY ATTN D. CROMBIE
01CY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302

01CY ATTN R. GRUBB
01CY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 92957
LOS ANGELES, CA 90009

01CY ATTN I. GARFUNKEL
01CY ATTN T. SALMI
01CY ATTN V. JOSEPHSON
01CY ATTN S. BOWER
01CY ATTN D. OLSON

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803

01CY ATTN RADIO SCIENCES

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701

01CY ATTN J. WORKMAN
01CY ATTN C. PRETTIK
01CY ATTN S. BREET

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124

01CY ATTN G. KEISTER
01CY ATTN D. MURRAY
01CY ATTN G. HALL
01CY ATTN J. KENNEY

CALIFORNIA AT SAN DIEGO, UNIV OF
P.O. BOX 6049
SAN DIEGO, CA 92106

CHARLES STARK DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139

01CY ATTN D.B. COX
01CY ATTN J.P. GILMORE

COMSAT LABORATORIES
LINTHICUM ROAD
CLARKSBURG, MD 20734

01CY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850

01CY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080

01CY ATTN H. LOGSTON
01CY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
606 Wilshire Blvd.
Santa Monica, Calif 90401

01CY ATTN C.B. GABBARD

ESL, INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086

01CY ATTN J. ROBERTS
01CY ATTN JAMES MANSALL

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101

01CY ATTN M.H. BORTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P.O. BOX 1122
SYRACUSE, NY 13201

01CY ATTN F. REIBERT

GENERAL ELECTRIC TECH SERVICES CO., INC.
WES
COUNT STREET
SYRACUSE, NY 13201

01CY ATTN G. MILLER