CONTRACTOR REPORT ARLCD-CR-83009

PROCESS ENERGY INVENTORY AT IOWA ARMY AMMUNITION PLANT
LINES 1, 2, AND 3A

DAVID W. THOMPSON
GARY L. HADENFELDT
ROBERT E. MCKAY
MASON & HANGER - SILAS MASON CO., INC.
IOWA ARMY AMMUNITION PLANT
MIDDLETOWN, IA 52638

EDWARD A. KRAJKOWSKI
PROJECT ENGINEER
ARRADCOM

APRIL 1983

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER
WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
A process energy audit was conducted at Iowa Army Ammunition Plant. Lines 1, 2, and 3A were surveyed. Energy consumption baselines were established for eight production items: the Hawk, Stinger, Chaparral, Dragon, Copperhead and Improved TOW Warheads, the M549A1 RA Projectile, and the M718/M741 AT Projectile. A number of potential energy conservation projects were defined to reduce present energy use.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>DATA ACQUISITION METHODOLOGY</td>
<td>6</td>
</tr>
<tr>
<td>ABBREVIATIONS AND CONVERSION FACTORS</td>
<td>8</td>
</tr>
<tr>
<td>YEARLY PRODUCTION RATES</td>
<td>8</td>
</tr>
<tr>
<td>M155, HE, GM WARHEAD (HAWK)</td>
<td></td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>9</td>
</tr>
<tr>
<td>ENERGY CONSUMPTION</td>
<td>11</td>
</tr>
<tr>
<td>M258, HE WARHEAD (STINGER)</td>
<td></td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>15</td>
</tr>
<tr>
<td>ENERGY CONSUMPTION</td>
<td>17</td>
</tr>
<tr>
<td>M250, HE, GM WARHEAD (CHAPARRAL)</td>
<td></td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>21</td>
</tr>
<tr>
<td>ENERGY CONSUMPTION</td>
<td>23</td>
</tr>
<tr>
<td>M225, HE, GM WARHEAD (DRAGON)</td>
<td></td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>27</td>
</tr>
<tr>
<td>ENERGY CONSUMPTION</td>
<td>29</td>
</tr>
<tr>
<td>M712, HE, GM WARHEAD (COPPERHEAD)</td>
<td></td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>33</td>
</tr>
<tr>
<td>ENERGY CONSUMPTION</td>
<td>35</td>
</tr>
<tr>
<td>M207E1, HE, WARHEAD (I-TOW)</td>
<td></td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>39</td>
</tr>
<tr>
<td>ENERGY CONSUMPTION</td>
<td>42</td>
</tr>
<tr>
<td>M549A1, 155MM, HE, RA PROJECTILE</td>
<td></td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>49</td>
</tr>
<tr>
<td>ENERGY CONSUMPTION</td>
<td>53</td>
</tr>
<tr>
<td>M718/M741 HE PROJECTILE (RAAMS)</td>
<td></td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>60</td>
</tr>
<tr>
<td>ENERGY CONSUMPTION</td>
<td>64</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Cont'd)

CONSERVATION PROJECTS

 INSULATE HAWK BATH AND SUPPLY TANK 74
 INSULATE KETTLES AND PROCESS PIPING 76
 AUTOMATICALLY CONTROL PROCESS HEAT 77
 RECLAIM HEAT FROM HIGH PRESSURE TRAPS 80
 INSULATE PRESSES 82

RECOMMENDATIONS 84

CONCLUSIONS 86

DISTRIBUTION LIST 87
<table>
<thead>
<tr>
<th>Chart</th>
<th>Process Description</th>
<th>Yearly Steam Consumption</th>
<th>Yearly Electrical Consumption</th>
<th>Yearly Air Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>M155, HE, GM Warhead (Hawk)</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>M258, HE Warhead (Stinger)</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>M250, HE, GM Warhead (Chaparral)</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>M225, HE, GM Warhead (Dragon)</td>
<td>28</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>M712, HE, GM Warhead (Copperhead)</td>
<td>34</td>
<td>36</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>M207E1, HE, Warhead (I-Tow)</td>
<td>40</td>
<td>43</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>M549A1, 155MM, HE, RA Projectile</td>
<td>51</td>
<td>54</td>
<td>56</td>
<td>58</td>
</tr>
</tbody>
</table>
M718/M741 HE PROJECTILE (RAAMS)

PROCESS DESCRIPTION 61
YEARLY STEAM CONSUMPTION 65
YEARLY ELECTRICAL CONSUMPTION 68
YEARLY AIR CONSUMPTION 71

TABLES

1. POTENTIAL ENERGY SAVINGS 5
INTRODUCTION

The objectives of this project were: (a) to conduct a comprehensive process energy audit of two (2) load lines at the Iowa Army Ammunition Plant and (b) to define potential process related energy saving measures and projects. Three load lines were actually monitored to include all major large caliber warheads and projectiles loaded at the IAAP. The load lines were IAAP Load Lines 1, 2 and 3A. During the course of this phase of the project, the production items audited were the M258 HE Warhead (STINGER), the M250 HE Warhead (CHAPARRAL), the M155 HE Warhead (HAWK), the M225 HE Warhead (DRAGON), the M712 HE Warhead (COPPERHEAD), the 155MM, M549 HE Rocket Assisted Projectile, the 155MM, M718/M741 HE Projectile (RAAMS) and the M207E1 HE Warhead (I-TOW).

This project determined that the L/A/P of the M155, HE, GM, Warhead (HAWK) will consume 1,430 MBTU per year at a production rate of 5,544 warheads per year as produced at the Iowa Army Ammunition Plant. This amounts to 257,937 BTU per warhead. Potential energy conservation projects described in this project would conserve approximately 904 MBTU per year. This would reduce the process energy consumption by 63.2% to 526 MBTU per year or 94,877 BTU per warhead.

The process energy consumed in the L/A/P of the M258, HE Warhead (STINGER) totaled 1,105 MBTU at a production rate of 5,040 warheads per year, as produced at the Iowa Army Ammunition Plant. This amounts to 219,246 BTU per warhead. Potential energy conservation projects described in this project
would save approximately 772 MBTU per year. This would reduce the process energy consumption by 69.9% to 333 MBTU per year or 66,071 BTU per warhead.

The process energy consumed in the L/A/P of the M250, HE, GM Warhead (CHAPARRAL) totaled 1,578 MBTU per year at a production rate of 12,096 warheads per year, as produced at the Iowa Army Ammunition Plant. This amounts to 130,456 BTU per warhead. Potential energy conservation projects described in this project would conserve approximately 1,087 MBTU per year. This would reduce the process energy consumption by 68.9% to 491 MBTU per year or 40,592 BTU per warhead.

The process energy consumed by the M225, HE, GM, Warhead (DRAGON) totaled 1,041 MBTU per year at a standard production rate of 12,000 warheads per year, as produced at the Iowa Army Ammunition Plant. Planned mobilization production of 21,600 warheads per year would consume 1,365 MBTU per year. This amounts to 86,750 BTU per warhead at standard production and 63,194 BTU at mobilization rates. The energy saving measures described in this report would save 584 MBTU per year. This would reduce standard production consumption by 56.1% to 457 MBTU per year or 38,083 BTU per warhead. Mobilization energy consumption would be reduced by 42.8% to 781 MBTU per year or 36,157 BTU per warhead.

The process energy consumed by the M712, HE, GM Warhead (COPPERHEAD) totaled 1,012 MBTU at a standard production rate of 9,576 warheads per year. Planned mobilization production of 19,200 warheads per year would consume 1,385 MBTU per year. This amounts to 105,681 BTU per warhead at standard production and 72,135 BTU per warhead at mobilization. The energy saving measures described in this project would save 584 MBTU per year. This would reduce standard production consumption by 57.7% to 428 MBTU per year or 44,695 BTU per warhead. Mobilization energy consumption would be reduced by 42.2% to 801 MBTU per year or 41,719 BTU per warhead.
The process energy consumed by the M549A1, 155MM, HE, RA Projectile totaled 5,108 MBTU at a production rate of 99,036 projectiles per year, as produced at the Iowa Army Ammunition Plant. This amounts to 51,572 BTU per projectile. Planned mobilization production of 585,600 projectiles per year would consume 28,417 MBTU. The energy saving measures described in this project would save 646 MBTU per year. This would reduce standard production consumption by 12.65% to 4,466 MBTU per year or 45,095 BTU per projectile. Mobilization energy consumption would be reduced by 2.27% to 27,771 MBTU per year or 47,423 BTU per projectile.

The process energy consumed by the M207E1, HE Warhead (I-TOW) totaled 1,797 MBTU at a standard production rate of 38,808 warheads per year as produced at the Iowa Army Ammunition Plant. This amounts to 46,297 BTU per warhead. Planned mobilization production of 54,000 warheads per year would consume 2,500 MBTU per year. The energy saving measures described in this project would save 48 MBTU per year. This would reduce standard production consumption by 2.67% to 1,749 MBTU per year or 45,068 BTU per warhead. Mobilization energy consumption would be reduced by 1.92% to 2,452 MBTU per year or 45,407 BTU per warhead.

The process energy consumed by the M718/M741, 155MM, AT Projectile totaled 2,895 MBTU per year at a standard production rate of 36,792 projectiles per year, as produced at the Iowa Army Ammunition Plant. This amounts to 78,694 BTU per projectile. Planned mobilization production of 60,000 projectiles per year would consume 4,722 MBTU per year. The energy saving measures described in this report would save 192 MBTU per year. This would reduce standard production consumption by 6.63% to 2,703 MBTU per year or 73,467 BTU per projectile. Mobilization energy consumption would be reduced by 4.07% to 4,530 MBTU per year or 75,500 BTU per projectile.
In addition to direct process energy savings, an additional 4,578 MBTU per year could be saved by utilizing waste building heat for process applications.

Table 1, which follows, graphically depicts this potential energy savings.

<table>
<thead>
<tr>
<th>PROD. ITEM</th>
<th>PRESENT CONSUMPTION (MBTU/YR)</th>
<th>AUTOMATIC CONTROL (MBTU/YR)</th>
<th>INSULATION (MBTU/YR)</th>
<th>POTENTIAL CONSUMPTION (MBTU/YR)</th>
<th>PERCENT REDUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAWK</td>
<td>1430*</td>
<td>315</td>
<td>589*</td>
<td>526</td>
<td>63.22</td>
</tr>
<tr>
<td>STINGER</td>
<td>1105*</td>
<td>503</td>
<td>269</td>
<td>333</td>
<td>69.86</td>
</tr>
<tr>
<td>CHAPARRAL</td>
<td>1578*</td>
<td>818*</td>
<td>269</td>
<td>491</td>
<td>68.88</td>
</tr>
<tr>
<td>DRAGON (STD)</td>
<td>1041*</td>
<td>315</td>
<td>269</td>
<td>503</td>
<td>51.68</td>
</tr>
<tr>
<td>DRAGON (MOB)</td>
<td>1365</td>
<td>315</td>
<td>269</td>
<td>781</td>
<td>42.78</td>
</tr>
<tr>
<td>COPPERHEAD (STD)</td>
<td>1012*</td>
<td>315*</td>
<td>269*</td>
<td>428</td>
<td>57.71</td>
</tr>
<tr>
<td>COPPERHEAD (MOB)</td>
<td>1385</td>
<td>315</td>
<td>269</td>
<td>801</td>
<td>42.17</td>
</tr>
<tr>
<td>M549A1 (STD)</td>
<td>5107*</td>
<td>377*</td>
<td>269*</td>
<td>4461</td>
<td>12.65</td>
</tr>
<tr>
<td>M549A1 (MOB)</td>
<td>28417</td>
<td>377</td>
<td>269</td>
<td>27771</td>
<td>2.27</td>
</tr>
<tr>
<td>M207E1 (STD)</td>
<td>1797*</td>
<td>**</td>
<td>48*</td>
<td>1749</td>
<td>2.67</td>
</tr>
<tr>
<td>M207E1 (MOB)</td>
<td>2500</td>
<td>**</td>
<td>48</td>
<td>2452</td>
<td>1.92</td>
</tr>
<tr>
<td>M718/M741 (STD)</td>
<td>2895*</td>
<td>**</td>
<td>192*</td>
<td>2703</td>
<td>6.63</td>
</tr>
<tr>
<td>M718/M741 (MOB)</td>
<td>4722</td>
<td>**</td>
<td>192</td>
<td>4530</td>
<td>4.07</td>
</tr>
</tbody>
</table>

| TOTALS | 15965 | 1510 | 1367 | | |

* INCLUDED IN TOTALS

** AUTOMATIC TIMERS PRESENTLY IN USE

RECLAIM HEAT FROM HIGH PRESSURE TRAPS IN MELT BUILDINGS ------- 4578 MBTU/YR*

GRAND TOTAL ------- 7455 MBTU/YR

- 5 -
DATA ACQUISITION METHODOLOGY

Steam:

Steam data was obtained using two different methods depending on certain situations.

1. Steam data was obtained by measuring condensate with a tared bucket, scale and stopwatch. Test lines were taken off condensate lines as soon after the trap as possible. Attempts were made to measure each individual unit independently, however, in a few cases, units were clustered to obtain the desired data.

2. A variable orifice steam flow meter was purchased and installed on the process steam line in Building 1-05-2. Building 1-05-2 is the primary melt building monitored in this project.

Electricity:

Electrical data was obtained using four different methods depending on certain situations.

1. A portable KW-HR meter was designed and built for utilization where possible. The meter was hooked in line with the particular machinery and monitored for a specific amount of time. The number of production items processed through this machine was monitored and unit energy consumption was determined using this data.

2. An industrial analyzer was purchased for utilization where possible. The meter was hooked in line with the machinery and monitored. The meter reads kilowatts, volts, amps and power factor. Using this data and engineering calculations, appropriate energy consumption figures were generated.

3. Where safety regulations prohibited the above methods, indirect methods were used. A clamp on ammeter was used at a building substation to determine average current draw. Energy consumption was calculated using these figures.
4. When none of the above methods was feasible, available utility consumption figures were used.

Air:

An investigation into the possibility of individual air flow meters determined this method to be too costly; therefore, available manufacturers' air consumption data was used to generate the appropriate energy consumption figures.

General:

Due to irregular production schedules, some data was calculated based on the first phase of this project. This method, although considered accurate, was used only when no other alternative was available.
Abbreviations and Conversion Factors Used in This Report:

KW-HR = Kilowatt-Hours
BTUH = BTU per Hour
PSIG = Pounds per Square Inch, Gauge
LF = Lineal Feet
MBTU = Mega - BTU
\(h_{fg} \) = Latent Heat of Vaporization
Electricity - 3,413 BTU/KW-HR
Air - 9.8 BTU/ft\(^3\) - air

<table>
<thead>
<tr>
<th>Yearly Production Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>M258 (STINGER)</td>
</tr>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>5040/yr</td>
</tr>
<tr>
<td>Mobilization</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>M250 (CHAPARRAL)</td>
</tr>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>12,096/yr</td>
</tr>
<tr>
<td>Mobilization</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>M155 (HAWK)</td>
</tr>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>5544/yr</td>
</tr>
<tr>
<td>Mobilization</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>M712 (COPPERHEAD)</td>
</tr>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>9576/yr</td>
</tr>
<tr>
<td>Mobilization</td>
</tr>
<tr>
<td>19,200/yr</td>
</tr>
<tr>
<td>M718/M714 (RAAMS)</td>
</tr>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>36,792/yr</td>
</tr>
<tr>
<td>Mobilization</td>
</tr>
<tr>
<td>60,000/yr</td>
</tr>
<tr>
<td>M549 (155MM)</td>
</tr>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>99,036/yr</td>
</tr>
<tr>
<td>Mobilization</td>
</tr>
<tr>
<td>585,600/yr</td>
</tr>
<tr>
<td>M207E1 (I-TOW)</td>
</tr>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>38,808/yr</td>
</tr>
<tr>
<td>Mobilization</td>
</tr>
<tr>
<td>54,000/yr</td>
</tr>
<tr>
<td>M225 (DRAGON)</td>
</tr>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>12,000/yr</td>
</tr>
<tr>
<td>Mobilization</td>
</tr>
<tr>
<td>21,600/yr</td>
</tr>
</tbody>
</table>

- 8 -
PROCESS DESCRIPTION

The M155 (HAWK) is a missile warhead filled with approximately 80 pounds of explosive. A standard production rate of 5,544 warheads per year has been used in this report. The M155 is not included in the latest IAAP mobilization schedule.

Explosive materials are received at service magazines, screened, weighed and transferred to the melt building. The warheads with S&A devices are received and transferred to the melt building for loading.

The explosive materials are melted and maintained at a temperature of 205°F ± 5°F. The melted explosive is then poured into the warheads. The loaded warheads are transferred to a conditioning bay where they are maintained in a bath water system at 130°F ± 5°F for a minimum of nine hours. After conditioning, they are allowed to cool for a minimum of eight hours. The booster pellets are then installed and the warhead is transferred to the x-ray building. The accepted warheads are transferred to the assembly building.

In the assembly building, the felt pad and pouring hole cover is installed, a center of gravity test is performed, and the warheads are weighed. The warheads are stenciled and packed into wooden crates. The warheads are then transferred for storage or shipping out of the plant.

The above description of the manufacturing process was extracted from the following Iowa Army Ammunition Plant Standing Operating Procedure:

S.O.P. No. 718, Rev. 1 - Load, Assemble and Pack Warhead Section, Guided Missile, HE, M155
PROCESS FLOW FOR MI55, WARHEAD, GM, HE HAWK

RECEIVE, SCREEN, WEIGH & TRANSFER POWDERED ALUMINUM
1-60, BAYS 'A' & 'C'

RECEIVE, REST STORE & TRANSFER COMPO B-4
1-06-1

PREPARE FOR MELT OPERATIONS
1-05-2, 2nd FLOOR BAY 'K'

WEIGH INGREDIENTS FOR BURSTING CHARGE
1-05-2, 2nd FLOOR BAY 'J'

MELT BURSTING CHARGE
1-05-2, 2nd FLOOR BAY 'K'

INSPECT & BAND EMPTY BOXES & LIDS
1-50 OR 1-60

PREPARE WARHEADS FOR LOADING
1-05-2, BAYS 'G', 'H', 'J', 'K'
1st FLOOR (FROM 1-40)

LOAD WARHEADS
1-05-2, 1st FLOOR, BAY 'K'

RECEIVE, REST STORE & TRANSFER INERT MATERIALS
1-71, 1-61, 1-64, 1-11, 1-05-2

RECEIVE & TRANSFER INERT MATERIALS
1-71, 1-11, 1-61, 1-64 OR 1-72
LOADING DOCK B-1-40

UNPACK WARHEAD METAL PARTS
1-40, BAY 'V' & NORTH HALL

ASSEMBLE S & A HOUSING TO SUMPED OUT WARHEADS
1-05-2, BAY 'G'

SUMP OUT REJECT WARHEADS
1-05-2, BAYS 'G' & 'H'
SUMP OUT ROOM

ASSEMBLE S & A HOUSING
1-05-2, 2nd FLOOR BAY 'K'

CONDITION WARHEADS
1-05-2, BAY 'H'

REMOVE FUNNELS, RISERS & CLEAN WARHEADS
1-05-2, BAYS 'G' & 'H'

TRANSFER & REST STORE BOOSTER PELLETS

ASSEMBLE BOOSTER CUP
ASSEMBLY
1-05-2, BAY 'G' OR 'H'

WEIGH WARHEADS
1-40, BAY 'V'

TRANSFER WARHEADS TO X-RAY
1-05-2, BAY 'G' & 'H' 1-100

TRANSFER WARHEADS TO TOUCH-UP PAINT
1-40, BAY 'D'

STENCIL WARHEADS & PACKING CRATES
1-40, BAY 'U'

PERFORM CENTER OF GRAVITY CHECK ON WARHEAD
1-40, BAY 'V'

PACK WARHEADS
1-40, BAY 'U'

WEIGHT WARHEADS
1-40, BAY 'V'

STENCIL PACKING CRATES
1-40, BAY 'U'

ASSEMBLE FELT PAD & POURING HOLE COVER
1-40, BAYS 'V', 'U', 'W', 1-07

SHIP WARHEADS
1-71

STENCIL WARHEADS & TOUCH-UP PAINT
1-40, BAY 'D'

ASSEMBLE FEEDER CUP
ASSEMBLY
1-05-2, BAY 'G', 'H', 'J'

PACK WARHEADS
1-40, BAY 'U'

INSPECT & BAND EMPTY BOXES & LIDS
1-50 OR 1-60

 condition warheads
1-05-2, bay 'h'

remove funnels, risers & clean warheads
1-05-2, bays 'g' & 'h'

transfer & rest store booster pellets

assemble booster cup
assembly
1-05-2, bay 'g' or 'h'

weigh warheads
1-40, bay 'v'

transfer warheads to x-ray
1-05-2, bay 'g' & 'h' 1-100

transfer warheads to touch-up paint
1-40, bay 'd'

stencil warheads & packing crates
1-40, bay 'u'

perform center of gravity check on warhead
1-40, bay 'v'

pack warheads
1-40, bay 'u'

weight warheads
1-40, bay 'v'

Stencil warheads & touch-up paint
1-40, bay 'd'

assemble felt pad & pouring hole cover
1-40, bays 'v', 'u', 'w', 1-07

Ship warheads
1-71

condition warheads
1-05-2, bay 'h'

remove funnels, risers & clean warheads
1-05-2, bays 'g' & 'h'

transfer & rest store booster pellets

assemble booster pellet
in cup
1-05-2, bays 'g', 'h', 'j'
Energy Consumption

The process energy consumed in the L/A/P of M155, HE, GM Warhead (HAWK) totaled 1430 MBTU per year at a production rate of 5,544 warheads per year, as produced at the Iowa Army Ammunition Plant. This amounts to 257,937 BTU per warhead.

The following charts show a breakdown of energy consumption by production step and form of energy.
YEARLY STEAM CONSUMPTION FOR
MI55, WARHEAD, GM, HE HAWK

NOTE:
STEAM CONSUMPTION IS GIVEN
IN MBTU BASED ON NORMAL
PRODUCTION OF 5544 WARHEADS PER YEAR.

TOTAL CONSUMPTION = 1212 MBTU
YEARNLY ELECTRICAL CONSUMPTION FOR
MI55, WARHEAD, GM, HE HAWK

- 13 -
YEARLY AIR CONSUMPTION FOR
MI55, WARHEAD, GM, HE
HAWK

RECEIVE, SCREEN, WEIGH
& TRANSFER POWDERED
ALUMINUM
1-60, BAYS 'A' & 'C'

RECEIVE, REST STORE &
TRANSFER COMP B-4
1-06-1

PREPARE FOR MELT
OPERATIONS
1-05-2, 2nd FLOOR BAY 'K'

WEIGH INGREDIENTS
FOR BURSTING CHARGE
1-05-2, 2nd FLOOR BAY 'V'

MELT BURSTING CHARGE
1-05-2, 2nd FLOOR BAY 'W'

PREPARE WARHEADS
FOR LOADING
1-05-2, BAYS 'V', 'W', 'K'
1st FLOOR (FROM 1-40)

LOAD WARHEADS
1-05-2, 1st FLOOR, BAY 'K'

RECEIVE, REST STORE &
TRANSFER INERT
MATERIALS
1-71, 1-61, 1-64, 1-11, 1-05-2

UNPACK WARHEAD METAL
PARTS
1-40, BAY 'V', B NORTH HALL

ASSEMBLE S & A HOUSING
TO SUMPED OUT WARHEADS
1-05-2, BAY 'G'

SUMP OUT REJECT WARHEADS
1-05-2, BAYS 'S' & 'W'
SUMP OUT ROOM

CONDITION WARHEADS
1-05-2, BAY 'H'

REMOVE FUNNELS, RISERS
& CLEAN WARHEADS
1-05-2, BAYS 'U' & 'W'

TRANSFER & REST STORE
BOOSTER PELLETS

ASSEMBLE BOOSTER CUP
ASSEMBLY
1-05-2, BAY 'G' OR 'H'

ASSEMBLE FELT PAD
& POURING HOLE COVER
1-40, BAYS 'V', 'W', 'K', 1-07

ASSEMBLE BOOSTER PELLET
IN CUP
1-05-2, BAYS 'U', 'W', 'V'

WEIGH WARHEADS
1-40, BAY 'V'

STENCIL WARHEADS
TO TOUCH-UP PAINT
1-40, BAY 'U'

STENCIL PACKING CRATES
1-40, BAY 'U'

PERFORM CENTER OF GRAVITY
CHECK ON WARHEAD
1-40, BAY 'V'

PACK WARHEADS
1-40, BAY 'U'

SHIP WARHEADS
1-71

NOTE:
AIR CONSUMPTION IS GIVEN IN
MBTU BASED ON NORMAL
PRODUCTION OF 5544 WARHEADS
PER YEAR.

TOTAL CONSUMPTION=64 MBTU
M258, HE, WARHEAD (STINGER)

PROCESS DESCRIPTION

The M258 (STINGER) is a missile warhead filled with approximately 1.5 pounds of HTA-3 explosive. A standard production rate of 5,040 warheads per year has been used in this report. The M258 is not included in the latest IAAP mobilization schedule.

The warhead metal parts are received at a load line storage building. The warheads are unpacked, prepared for loading and transferred to the melt building as needed. Explosive materials are received at various service magazines, then transferred to the melt building for processing as needed.

Warheads are preheated in an oven to 160°F to 180°F. HTA-3 is melted in a kettle with 15 psi steam to a temperature of 200°F. Approximately 1.5 pounds of HTA-3 is poured into the warheads and the warheads are allowed to cool for a minimum of four hours.

When cooled, the pellet cavity is drilled. The warheads are cleaned and transferred to x-ray. Accepted warheads are transferred to the assembly building. Rejects are returned to the melt building for sump out and reprocessing.

Accepted shells are cleaned, inspected and weighed. The booster pellets, felt pad and fuze are installed. The warheads are then stenciled, packed and shipped out.

The above description of the manufacturing process was extracted from the following Iowa Army Ammunition Plant Standing Operating Procedure:

S.O.P. No. 803 - Load, Assemble and Pack Warhead Section, GM, HE, M258
Energy Consumption

The process energy consumed in the L/A/P of the M258, HE Warhead (STINGER) totaled 1,105 MBTU per year at a production rate of 5,040 warheads per year, as produced at the Iowa Army Ammunition Plant. This amounts to 219,246 BTU per warhead.

The following charts show a breakdown of energy consumption by production step and form of energy.
YEARY STEAM CONSUMPTION FOR

M258, WARHEAD, GM, HE
STINGER

NOTE:
STEAM CONSUMPTION IS GIVEN IN MBTU BASED ON NORMAL PRODUCTION OF 5040 WARHEADS PER YEAR.
TOTAL CONSUMPTION = 903 MBTU
YEARLY ELECTRICAL CONSUMPTION FOR
M258, WARHEAD, GM, HE STINGER

- RECEIVE & REST STORE CALCIUM SILICATE
 I-11, I-05-2 3rd FLOOR

- WEIGH & TRANSFER CALCIUM SILICATE
 I-05-2 3rd FLOOR

- RECEIVE, REST STORE & TRANSFER OCTOL & TNT
 I-06-1 = I-50 = I-05-2

- MELT HTA-3
 I-05-2, BAY 'K'

- WEIGH OCTOL & TNT
 I-05-2, 2nd FLOOR, BAYS 'P' & 'Q'

- LOAD WARHEADS
 I-05-2, BAYS 'K' & 'L'

- REMOVE FUNNELS & RISERS, TRANSFER WARHEADS
 I-05-2, BAYS 'E' & 'F'

- FACE EXPLOSIVE SURFACE & DRILL PELLET CAVITY
 I-05-2, BAY 'N'

- CLEAN WARHEAD WITH ACETONE
 I-05-2, BAY 'P'

- SUMP OUT REJECT WARHEADS
 I-05-2 SUMP ROOM

- RECEIVE & TRANSFER INERT MATERIALS
 I-71, I-11, I-61, I-64 OR I-72
 LOADING DOCKS, I-40

- UNPACK & PREPARE WARHEAD METAL PARTS FOR LOADING
 I-40, BAY 'N' OR 'O'

- RECEIVE WARHEAD METAL PARTS, INSTALL FUNNELS
 & PREHEAT
 I-05-2 BAYS 'P' & 'Q'

- RE~/CE WARHEADS METAL PARTS
 & INSTALL FUNNELS
 I-05-2 BAYS 'P' & 'Q'

- INSTALL BOOSTER PELLET
 I-40 BAY 'M' OR 'N'

- INSTALL FELT PAD & FUZE
 I-40 BAY 'M' OR 'N'

- SHIP WARHEADS

- STENCIL WARHEADS
 I-40 BAY 'O'

- PACK WARHEAD SECTIONS
 GM, M258
 I-40 BAY 'M' OR 'O'

- CLEAN & INSPECT WARHEADS
 I-40, BAY 'B'

- WEIGH LOADED WARHEADS
 I-40, BAY 'N'

- INSTALL BOOSTER PELLET
 I-40 BAY 'M' OR 'N'

- PACK WARHEAD SECTIONS
 GM, M258
 I-40 BAY 'M' OR 'O'

- RECEIVING, CLEAN & INSPECT WARHEADS
 I-40, BAY 'B'

- INSTALL FELT PAD & FUZE
 I-40 BAY 'M' OR 'O'

- SHIP WARHEADS

NOTE:
ELECTRICAL CONSUMPTION IS GIVEN IN MBTU BASED ON NORMAL PRODUCTION OF 5040 WARHEADS PER YEAR.
TOTAL CONSUMPTION = 158 MBTU

- NOTE:
ELECTRICAL CONSUMPTION IS GIVEN IN MBTU BASED ON NORMAL PRODUCTION OF 5040 WARHEADS PER YEAR.
TOTAL CONSUMPTION = 158 MBTU
YEARLY AIR CONSUMPTION FOR
M258, WARHEAD, GM, HE, STINGER

RECEIVE & REST STORE
CALCIUM SILICATE
1-11, 1-05-2 3rd FLOOR

WEIGH & TRANSFER
1-05-2 3rd FLOOR

RECEIVE, SCREEN, WEIGH &
TRANSFER POWDERED ALUM
1-60, BAYS 'U' & 'V'

PREPARE FOR MELT
OPERATIONS
1-05-2, 1st FLOOR BAY 'K'

MELT HTA-3
1-05-2, BAY 'K'

LOAD WARHEADS
1-05-2, BAYS 'W' & 'E'

RECEIVE WARHEAD METAL
PARTS, INSTALL FUNNELS
& PREHEAT
1-05-2 BAYS 'E' & 'Y'

RECEIVE & TRANSFER INERT
MATERIALS
1-71, 1-11, 1-61, 1-64, OR 1-72
LOADING DOCKS, 1-40

UNPACK & PREPARE WARHEAD
METAL PARTS FOR LOADING
1-40, BAY 'W' OR 'O'

RECEIVE REST STORE &
TRANSFER EXPLOSIVE
COMPONENTS
1-71 OR 1-06-1, 1-40

LOAD WARHEAD METAL
PARTS, INSTALL FUNNELS
8 PREHEAT
1-05-2, BAYS 'E' & 'U'

RECEIVE, CLEAN & INSPECT
WARHEADS
1-40, BAY 'B'

WEIGH LOADED WARHEADS
1-40, BAY 'N'

STENCIL WARHEADS
1-40, BAY 'U' OR 'O'

PACK WARHEAD SECTIONS
GM, M258
1-40, BAY 'W' OR 'O'

SHIP WARHEADS

NOTE:
AIR CONSUMPTION IS GIVEN IN
MBTU BASED ON NORMAL PROD-
DUCTION OF 5040 WARHEADS
PER YEAR.
TOTAL CONSUMPTION = 44 MBTU

SUMP OUT REJECT WARHEADS
1-05-2, SUMP ROOM

X-RAY WARHEADS
1-100

INSTALL FELT PRIO & FUZE
1-40, BAY 'M' OR 'O'
M250, HE, GM, Warhead (CHAPARRAL)

PROCESS DESCRIPTION

The M250 (CHAPARRAL) is a missile warhead filled with approximately 1.5 pounds of Octol explosive. A standard production rate of 12,096 warheads per year has been used in this report. The M250 is not included in the latest IAAP mobilization schedule.

The warhead metal parts are received at a load line storage building. The warheads are unpacked and prepared for loading. The interiors of the warheads are painted and the warheads are transferred to the melt building as needed. Explosive materials are received at various service magazines, then transferred to the melt building for processing as needed.

The warheads are preheated in an oven to a minimum of 160°F. Octol is melted in a kettle with 15 psi steam to a temperature of 195°F ± 5°F. Approximately 1.5 pounds of Octol is poured into each warhead. The warheads are then probed with a 220°F minimum probe finger to a depth of 3/4 inch for one hour and 45 minutes. The warheads are allowed to cool for a minimum of two hours.

When cooled, the cushion cavity is drilled. The warheads are cleaned, weighed and transferred to x-ray. The accepted warheads are transferred to the assembly building, rejects are returned to the melt building for reprocessing.

The cushion, loading plug and inner ring to the warhead are assembled. The warheads are painted, stenciled and cleaned as required. The warheads are packed and shipped out.

The above description of the manufacturing process was extracted from the following Iowa Army Ammunition Plant Standing Operating Procedure:

S.O.P No. 795 - Load, Assemble and Pack Warhead, GM, HE, M250
Energy Consumption

The process energy consumed in the L/A/P of the M250, HE, CM Warhead (CHAPARRAL) totaled 1,578 MBTU per year at a production rate of 12,096 warheads per year, as produced at the Iowa Army Ammunition Plant. This amounts to 130,456 BTU per warhead.

The following charts show a breakdown of energy consumption by production step and form of energy.
YEARLY STEAM CONSUMPTION FOR
CHAPARRAL, GM, HE, M250

RECEIVE & REST STORE CALCIUM SILICATE
1-11 & 1-05-2 (3rd Floor)

ORY., WEIGH & TRANSFER CALCIUM SILICATE
1-05-2 (3rd Floor)

RECEIVE, REST STORE & TRANSFER OCTOL
1-06-1 → 1-50 → 1-05-2

INSPECT & WEIGH OCTOL
1-05-2 (2nd Floor, Bay 'X', 'Y')

MELT EXPLOSIVES
1-05-2 (Bay 'X' or 'Y')

WEIGH LOADED WARHEADS
(1-05-2 Bay 'E')

TRANSFER WARHEADS TO 1-100 FOR X-RAY

X-RAY (1-100)

TRANSFER TO 1-40

ASSEMBLE CUSHION, LOADING PLUS & INNER RING TO WARHEAD
1-40 Bay 'M' or ('V', 'V', 'O')

PAINT & STENCIL WARHEADS
1-40 Bay 'O'

LOAD WARHEADS
1-05-2 (Bay 'X' or 'Y')

PROBE WARHEADS
1-05-2 (Bay 'X' or 'Y')

REMOVE FUNNELS & RISERS
1-05-2 (Bays 'X' & 'Y')

DRILL CUSHION CAVITY IN WARHEAD
(1-05-2 Bay 'X')

CLEAN WARHEADS
(1-05-2 Bay 'Y')

SMALL CAVITATION REJECT

LARGE CAVITATION REJECT

CLEAN & CHECK WARHEADS AS REQUIRED
1-40 Bay 'M' or ('V', 'V', 'O')

PACK WARHEADS IN METAL CONTAINERS
1-40 Bay 'O' or ('V', 'V', 'O')

PACK METAL CONTAINERS IN WIREBOUND BOX
1-40 Bay 'M' or ('V', 'V', 'O')

TRANSFER TO 1-05-2 FOR DEEP DRILL & AOO POUR

TRANSFER TO 1-05-2 & SUMP OUT
TRANSFER TO 1-40

NOTE:
STEAM CONSUMPTION IS GIVEN IN MBTU BASED ON NORMAL PRODUCTION OF 12,096 WARHEADS PER YEAR.
TOTAL CONSUMPTION = 1,368 MBTU

UNPACK & PREPARE METAL PARTS FOR LOADING
1-40 Bay 'M' or ('V', 'V', 'O')

PAINT INTERIOR OF WARHEAD
1-40 Bay 'O'

TRANSFER TO 1-05-2

VISUALLY INSPECT & WEIGH EMPTY WARHEADS
1-05-2 (1st Floor Bay 'E')

INSTALL FUNNELS & PREHEAT EMPTY WARHEADS
1-05-2 Bay 'X'

TRANSFER TO 1-40

SHIP WARHEADS
1-40 → 1-71 or 1-07

NOTE:
STEAM CONSUMPTION IS GIVEN IN MBTU BASED ON NORMAL PRODUCTION OF 12,096 WARHEADS PER YEAR.
TOTAL CONSUMPTION = 1,368 MBTU

YEARLY STEAM CONSUMPTION FOR
CHAPARRAL, GM, HE, M250
NOTE:

ELECTRICAL CONSUMPTION IS GIVEN IN MBTU BASED ON NORMAL PRODUCTION OF 12,096 WARHEADS PER YEAR.

TOTAL CONSUMPTION = 163 MBTU
YEARLY AIR CONSUMPTION FOR
CHAPARRAL, GM, HE, M250

NOTE:
AIR CONSUMPTION IS GIVEN IN MBTU BASED ON NORMAL PRODUCTION OF 12,096 WARHEADS PER YEAR.
TOTAL CONSUMPTION = 47 MBTU
M225, HE, GM, Warhead (DRAGON)

PROCESS DESCRIPTION

The M225 (DRAGON) is a missile warhead filled with approximately 5 pounds of Octol and TNT explosive. A standard production rate of 12,000 warheads per year has been used in this report. The mobilization production rate according to the latest IAAP mobilization schedule is 21,600 warheads per year.

The warhead metal parts are received at a load line storage building. The warheads are unpacked, prepared for loading and transferred to the melt building as needed. Explosive materials are received at various service magazines, then transferred to the melt building for processing as needed.

Warheads are preheated in an oven to a minimum of 190°F. Octol and TNT are melted to a temperature of 210°F ± 5°F. Approximately 5 pounds of Octol and TNT are poured into each warhead. The warheads are conditioned in a conditioning chest with steam (15 psi) and hot water (125°F ± 10°F) for a total of 9½ hours.

When cooled, the pellet cavity is drilled and the booster pellet is installed.

The warheads are transferred to x-ray. Accepted warheads are transferred to the assembly building; rejects are returned to the melt building for reprocessing.

Accepted warheads are cleaned, inspected and painted. The nose crush switch and S&A device assemblies are attached to the warheads. The warheads are stenciled, packed and shipped.

The above description of the manufacturing process was extracted from the following Iowa Army Ammunition Plant Standing Operating Procedure:

S.O.P. No. 713 - Load Warhead Section, GM, HE, M225
Energy Consumption

The process energy consumed in the L/A/P of the M225, HP, GM Warhead (DRAGON) totaled 1,041 MBTU at a production rate of 12,000 warheads per year, as produced at the Iowa Army Ammunition Plant. Planned mobilization production of 21,600 warheads per year would consume 1,365 MBTU per year. This amounts to 86,750 BTU per warhead at standard production and 63,194 BTU per warhead at mobilization.

The following charts show a breakdown of energy consumption by production step and form of energy.
YEARLY STEAM CONSUMPTION FOR
M225, WARHEAD, GM, HE DRAGON

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 821 MBTU.
2. TOTAL CONSUMPTION (MOBILIZATION) = 966 MBTU.
3. STANDARD PRODUCTION FIGURES ARE UNDERLINED, MOBILIZATION FIGURES ARE IN SQUARES.
4. ALL FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 12,000 WARHEADS PER YEAR. MOBILIZATION FIGURES ARE BASED ON 21,600 WARHEADS PER YEAR.

- 30 -
RECEIVE, REST STORE & TRANSFER EXPLOSIVE COMPONENTS
1-71, 1-64 DOCK B, 1-07

RECEIVE, REST STORE & TRANSFER OCTOL, TNT & BOOSTER PELLETS [1-06-1] 1-71, 1-64 DOCK B, 1-07

TRANSFER EXPLOSIVES TO 1-05-2 VIA 1-50

WEIGH OCTOL & TNT 1-05-2, 2nd FLOOR, BAY 'P'

MELT OCTOL & TNT 1-05-2, 2nd FLOOR, BAY 'Q'

LOAD WARHEADS 1-05-2, BAY 'Q'

YEARLY ELECTRICAL CONSUMPTION FOR M225, WARHEAD, GM, HE DRAGON

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 185 MBTU.
2. TOTAL CONSUMPTION (MOBILIZATION) = 287 MBTU.
3. STANDARD PRODUCTION FIGURES ARE UNDERLINED, MOBILIZATION FIGURES ARE IN SQUARES.
4. ALL FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 12,000 WARHEADS PER YEAR. MOBILIZATION FIGURES ARE BASED ON 21,600 WARHEADS PER YEAR.

RECEIVE & TRANSFER INERT MATERIALS 1-71, 1-61, 1-64 DOCK B, 1-07

UNPACK B PREPARE METAL PARTS FOR LOADING 1-40, BAYS 'R' & 'T'

RECEIVE & INSTALL METAL PARTS IN CONDITIONINGS CHESTS 1-05-2, BAYS 'B', 'C' & 'O'

PREHEAT WARHEAD METAL PARTS 1-05-2, PROCESS CONTROL ROOM

CONDITION WARHEADS 1-05-2, BAYS 'K', 'C' & 'O' PROCESS CONTROL ROOM

REMOVE & CLEAN FUNNELS 1-05-2, BAY 'P'

DRILL BOOSTER CAVITY 1-05-2, BAY 'A'

INSTALL BOOSTER PELLET IN WARHEAD 1-05-2, BAY 'E'

Assemble Nose Crush Switch Assembly & Conduit to Warhead 1-40, BAY 'X'

PAINT WARHEADS 1-40, BAY 'D' OR 'J'

ASSEMBLE NOSE CRUSH SWITCH ASSEMBLY TO WARHEAD 1-40, BAY 'C'

ASSEMBLE S & A DEVICE 1-40, BAY 'D'

PREHEAT WARHEAD METAL PARTS 1-05-2, PROCESS CONTROL ROOM

PACK WARHEADS IN WOOD PACKING BOXES 1-40, BAY 'F'

MARK BARRIER BAG & PACKING CARTON 1-40, BAY 'I'

SHIP WARHEADS 1-71
YEARLY AIR CONSUMPTION FOR M225, WARHEAD, GM, HE DRAGON

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 85 MBTU.
2. TOTAL CONSUMPTION (MOBILIZATION) = 102 MBTU.
3. STANDARD PRODUCTION FIGURES ARE UNDERLINED, MOBILIZATION FIGURES ARE IN SQUARES.
4. ALL FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 12,000 WARHEADS PER YEAR. MOBILIZATION FIGURES ARE BASED ON 21,600 WARHEADS PER YEAR.
The M712 (COPPERHEAD) is a guided missile warhead filled with approximately 18 pounds of Composition B explosive. A standard production rate of 9,576 warheads per year has been used in this report. The mobilization production rate according to the latest IAAP mobilization schedule, is 19,200 warheads per year.

The warhead metal parts are received at a load line storage building. The warheads are unpacked, inspected, weighed and transferred to the melt building as needed. Explosive materials are received at various service magazines and transferred to the melt building as needed.

The warheads are preheated in a conditioning chest to a minimum of 125°F. Composition B is melted to a temperature of 193°F ± 4°F. Approximately 18 pounds of Composition B are poured into each warhead. The warheads are conditioned in a conditioning chest with steam (15 psi) and cooling water (90°F ± 3°F) for 9 hours.

When cooled, the fuze cavity is machined, the warheads cleaned and transferred to x-ray. Rejected warheads are transferred to the melt building for reprocessing. Accepted warheads are packed and shipped.

The above description of the manufacturing process was extracted from the following Iowa Army Ammunition Plant Standing Operating Procedure:

S.O.P. No. 807, Rev. 1 - Load, Assemble and Pack Warhead, GM, HE, M712 Copperhead
Energy Consumption

The process energy consumed in the L/A/P of the M712, HE, GM Warhead (COPPERHEAD) totaled 1,012 MBTU at a production rate of 9,576 warheads per year, as produced at the Iowa Army Ammunition Plant. Planned mobilization production of 19,200 warheads per year would consume 1,385 MBTU per year. This amounts to 105,681 BTU per warhead at standard production and 72,135 BTU per warhead at mobilization.

The following charts show a breakdown of energy consumption by production step and form of energy.
YEARLY STEAM CONSUMPTION FOR

M712, WARHEAD, GM, HE COPPERHEAD

<table>
<thead>
<tr>
<th>STEAM CONSUMPTION FOR</th>
<th>M712, WARHEAD, GM, HE COPPERHEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECEIVE & REST STORE & TRANSFER COMPOSITION B 2-06-2</td>
<td></td>
</tr>
<tr>
<td>PREPARE FOR MELT OPERATIONS 2-05-2, 2nd & 3rd FLOORS</td>
<td></td>
</tr>
<tr>
<td>VISUALLY INSPECT & MELT 2-05-2, 3rd FLOOR, BAY M</td>
<td></td>
</tr>
<tr>
<td>LOAD WARHEADS 2-05-2, BAY G</td>
<td></td>
</tr>
<tr>
<td>CONDITION WARHEADS 2-05-2, BAY E 84</td>
<td></td>
</tr>
<tr>
<td>REMOVE RISERS & CLEAN FUNNELS 2-05-2, BAY H-3 & BAY D</td>
<td></td>
</tr>
<tr>
<td>MACHINE FUZE CAVITY 2-05-2, BAY X-3</td>
<td></td>
</tr>
<tr>
<td>CLEAN WARHEADS WITH ACETONE 2-05-2, BAY D</td>
<td></td>
</tr>
<tr>
<td>INSPECT WARHEADS 2-05-2, BAY D OR BAY X-3</td>
<td></td>
</tr>
<tr>
<td>X-RAY WARHEADS 2-10</td>
<td></td>
</tr>
<tr>
<td>REPAIR CAST DEFECTS IN WARHEADS 2-05-2, BAY X-3</td>
<td></td>
</tr>
<tr>
<td>STENCIL WARHEADS 2-05-2, BAY C</td>
<td></td>
</tr>
<tr>
<td>PACK WARHEADS IN METAL PACKING CONTAINER 2-05-2, BAY C</td>
<td></td>
</tr>
<tr>
<td>SHIP WARHEADS 2-16-2, 2-05-1 DOCK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STEAM CONSUMPTION FOR</th>
<th>M712, WARHEAD, GM, HE COPPERHEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECEIVE & REST STORE INERT MATERIALS 2-01, 2-04, 2-16-2</td>
<td></td>
</tr>
<tr>
<td>UNPACK METAL PARTS 2-05-2, BAY C</td>
<td></td>
</tr>
<tr>
<td>INSPECT & WEIGH METAL PARTS 2-05-2, BAYS D & C</td>
<td></td>
</tr>
<tr>
<td>INSTALL WARHEAD METAL PARTS IN CONDITIONING CHESTS 2-05-2, BAY E</td>
<td></td>
</tr>
<tr>
<td>PREHEAT WARHEAD METAL PARTS 2-05-2, BAY E 71</td>
<td></td>
</tr>
<tr>
<td>SUMP OUT WARHEADS 2-05-2, SUMP ROOM</td>
<td></td>
</tr>
<tr>
<td>INSPECT SUMPED OUT WARHEADS 2-05-2, BAY D</td>
<td></td>
</tr>
<tr>
<td>PAINT WARHEAD INTERIOR 2-05-2, BAY C</td>
<td></td>
</tr>
<tr>
<td>LEAK TEST SUMPED OUT WARHEADS 2-05-2, BAY H-3</td>
<td></td>
</tr>
<tr>
<td>REPAIR WARHEADS FAILING LEAK TEST 2-05-2, BAY D</td>
<td></td>
</tr>
<tr>
<td>REPAIR WARHEADS WITH CHIPPED POTTING MATERIAL 2-05-2, BAY D</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 807 MBTU.
2. TOTAL CONSUMPTION (MOBILIZATION) = 975 MBTU.
3. STANDARD PRODUCTION FIGURES ARE UNDERLINED, MOBILIZATION FIGURES ARE IN SQUARES.
4. ALL FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 9,576 WARHEADS PER YEAR, MOBILIZATION FIGURES ARE BASED ON 19,800 WARHEADS PER YEAR.
RECEIVE, REST STORE & TRANSFER COMPOSITION B 2-06-2

PREPARE FOR MELT OPERATIONS 16 2-05-2, 2nd & 3rd FLOORS

VISUALLY INSPECT & MELT COMPOSITION B 16 2-05-2, 3rd FLOOR, BAY M

LOAD WARHEADS 2-05-2, BAY G

CONDITION WARHEADS 2-05-2, BAY E

REMOVE RISERS & CLEAN FUNNELS 2-05-2, BAY H-3 & BAY D

MACHINE FUZE CAVITY 2-05-2, BAY X-3

CLEAN WARHEADS WITH ACETONE 2-05-2, BAY D

INSPECT WARHEADS 2-05-2, BAY O OR BAY X-3

X-RAY WARHEADS 2-10 10

REPAIR CAST DEFECTS IN WARHEADS 2-05-2, BAY X-3

STENCIL WARHEADS 2-05-2, BAY C

PACK WARHEADS IN METAL PACKING CONTAINER 2-05-2, BAY C

SHIP WARHEADS 2-16-2, 2-05-1 DOCK

RECEIVE & REST STORE INERT MATERIALS 2-01, 2-04, 2-16-2

UNPACK METAL PARTS 2-05-2, BAY C

INSPECT & WEIGH METAL PARTS 2-05-2, BAYS O & C

INSTALL WARHEAD METAL PARTS IN CONDITIONING CHESTS 2-05-2, BAY E

PREHEAT WARHEAD METAL PARTS 2-05-2, BAY E

SUMP OUT WARHEADS 2-05-2, SUMP ROOM

INSPECT SUMPED OUT WARHEADS 2-05-2, BAY D

PAINT WARHEAD INTERIOR 2-05-2, BAY C

LEAK TEST SUMPED OUT WARHEADS 2-05-2, BAY H-3

REPAIR WARHEADS FAILING LEAK TEST 2-05-2, BAY O

REPAIR WARHEADS WITH CHIPPED POTTING MATERIAL 2-05-2, BAY O

YEARNLY AIR CONSUMPTION FOR M712, WARHEAD, GM, HE COPPERHEAD

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 43 MBTU.
2. TOTAL CONSUMPTION (MOBILIZATION) = 88 MBTU.
3. STANDARD PRODUCTION FIGURES ARE UNDERLINED, MOBILIZATION FIGURES ARE IN SQUARES.
4. ALL FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 9576 WARHEADS PER YEAR, MOBILIZATION FIGURES ARE BASED ON 19,200 WARHEADS PER YEAR.
PROCESS DESCRIPTION

The M207E1 (I-TOW) Warhead is a pressed billet containing approximately 4.5 pounds of LX-14-0 explosive. A standard production rate of 38,808 warheads per year has been used in this report. The mobilization production rate, according to the latest IAAP mobilization schedule, is 54,000 warheads per year.

The warhead inert materials are received at a load line storage building and are transferred to their designated storage location in the press building. Explosive materials are received at service magazines, then transferred to the press building for processing as needed.

LX-14-0 is preheated in electrically operated ovens to a temperature of 230°F. Press tooling is preheated by hot water to a temperature of 230°F. Billets are pressed and allowed to cool for a minimum of one shift, then are transferred to conditioning ovens. Conditioning cycle consists of alternating periods at 160°F and at ambient temperature, taking place over a two day span.

Conditioned billets are bonded to warhead body; initiation train is assembled to body. Warhead subassemblies are transferred to x-ray.

After x-ray, the warhead subassemblies are transferred to final assembly area, where fuze probe assembly is completed. Accepted warheads are stenciled, packed and shipped out.

This process description was extracted from IAAP Standing Operating Procedure No. 804, Press, Assemble, Pack and Ship I-TOW Warhead Section, GM, M207E1.
PROCESS FLOW FOR
M207E1, WARHEAD, GM, HE
ITOW

RECEIVE & TRANSFER
PBXN-5 POWDER
6-92, BAY 'K'
& LOADING DOCK

INSPECT PBXN-5 POWDER
6-18-1

PREPARE PRESS FOR
MAKING PELLETS
6-49, BAY 'G'

PREWEIGH & PREHEAT
PBXN-5 POWDER
6-49, BAY 'E'

PRESS BOOSTER PELLET
M207E1
6-49

PRESS PIC M207E1
6-49, BAY 'D'

SHIP PELLETS & PIC'S
FROM LINE
6-92 LOADING DOCK

RECEIVE & TRANSFER
INERT MATERIALS
6-92 DOCK, 6-49
PROCESS FLOW FOR
M207E1, WARHEAD, GM, HE
ITOW
Energy Consumption

The process energy consumed in the production of the M207E1, HE Warhead (I-TOW) totaled 1,797 MBTU per year at a production rate of 38,808 warheads per year as produced at the Iowa Army Ammunition Plant. This is equivalent to 46,297 BTU per warhead. Planned mobilization production of 54,000 warheads per year would consume 2,500 MBTU per year.

The following charts show a breakdown of energy consumption by production step and form of energy.

The energy required to air condition the billet press bays is 544 MBTU per year, which is equivalent to 14,022 BTU per warhead. This energy is not listed on the charts, but should be considered part of the process energy total because the cooling load imposed is from heated process equipment.
YEARLY STEAM CONSUMPTION FOR
M207EI, WARHEAD, GM, HE ITOW

RECEIVE & TRANSFER PBXN-5 POWDER 6-92, BAY W & LOADING DOCK

INSPECT PBXN-5 POWDER 6-18-1

PREPARE PRESS FOR MAKING PELLETS 6-49, BAY 'C'

PREWEIGH & PREHEAT PBXN-5 POWDER 6-49, BAY 'E'

PRESS BOOSTER PELLET M207EI 6-49

PRESS PIC M207EI 6-49, BAY 'D'

SHIP PELLETS & PIC'S FROM LINE 6-92 LOADING DOCK

RECEIVE & TRANSFER INERT MATERIALS 6-92 DOCK, 6-49

NOTE:
1. PROCESS STEAM IS NOT REQUIRED FOR PELLET PRESSING OPERATION.
YEARLY STEAM CONSUMPTION FOR M207E1, WARHEAD, GM, HE ITOW

1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 1122.25
2. TOTAL CONSUMPTION (MOBILIZATION) = 1561.87
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 38,809 WARHEADS PER YEAR. MOBILIZATION FIGURES ARE BASED ON 54,000 WARHEADS PER YEAR.

NOTES.
YEARLY ELECTRICAL CONSUMPTION FOR
M207EI, WARHEAD, GM, HE
ITOW

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 28.39
2. TOTAL CONSUMPTION (MOBILIZATION) = 39.50
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 38,808 WARHEADS PER YEAR. MOBILIZATION FIGURES ARE BASED ON 54,000 WARHEADS PER YEAR.
YEARLY ELECTRICAL CONSUMPTION FOR M207E1, WARHEAD, GM, HE ITOW

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 563.43
2. TOTAL CONSUMPTION (MOBILIZATION) = 785.99
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 38,808 WARHEADS PER YEAR. MOBILIZATION FIGURES ARE BASED ON 54,000 WARHEADS PER YEAR.
YEARY AIR CONSUMPTION FOR
M207EI, WARHEAD, GM, HE ITOW

RECEIVE & TRANSFER
PBXN-5 POWDER
6-92, BAY 'K' & LOADING DOCK

INSPECT PBXN-5 POWDER
6-18-1

PREPARE PRESS FOR
MAKING PELLETS
6-49, BAY 'G'

PREWEIGH & PREHEAT
PBXN-5 POWDER
6-49, BAY 'E'

PRESS BOOSTER PELLET M207EI
6-49

PRESS PIC M207EI
6-49, BAY 'D'

SHIP PELLETS & PIC'S FROM LINE
6-92 LOADING DOCK

RECEIVE & TRANSFER
INERT MATERIALS
6-92 DOCK, 6-49

NOTE:
1. COMPRIMBED AIR IS NOT REQUIRED FOR PELLET PRESSING OPERATION.
YEARLY AIR CONSUMPTION FOR
M207E1, WARHEAD, GM, HE
ITOW

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 82.61
2. TOTAL CONSUMPTION (MOBILIZATION) = 114.93
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 38,808 WARHEADS PER YEAR. MOBILIZATION FIGURES ARE BASED ON 54,000 WARHEADS PER YEAR.
M549A1, 155MM, HE, RA, PROJECTILE

PROCESS DESCRIPTION

The M549A1 is a rocket assisted projectile with a warhead containing approximately 18 pounds of TNT. A standard production rate of 99,036 projectiles per year was used in this report. The mobilization production rate, according to the latest IAAP mobilization schedule, is 585,600 projectiles per year.

Inert materials are received at load line storage buildings. Warheads are unpacked, prepared for loading, and transferred to the melt building as needed. Explosive materials are received at a service magazine and transferred to the melt building for processing as needed.

TNT is melted in a grid melt unit and mixed with TNT feather in a melt kettle, at a temperature of 190°F. Approximately 18 pounds of TNT are poured into the warheads, which are then loaded into the curing oven. After curing, the warheads are probed with a hot probe to remove cavities formed in the casting, and allowed to cool for ten minutes. Molten TNT is then added and the warheads are allowed to cool for a minimum of ten hours. The riser is then removed, and the warheads are probed again. This is followed by a second add pour. After the second add pour, the warheads are allowed to cool for a minimum of two hours, then are transferred to rest store. The warheads are cleaned and drilled, liners are inserted, and they are then x-rayed to check for defects. Accepted warheads are palletized and shipped intraplant to the post cyclic heating area, where they are maintained at 135 - 150°F for 12 - 18 hours, allowed to cool to no less than 70°F for 12 hours, and reheated to 135 - 150°F for 12 - 18 hours. After cooling, accepted warheads are shipped to the final assembly area.
The rocket motor bodies are assembled and attached to warheads. The projectiles are x-rayed, supplementary charges inserted, and the projectiles are weighed and stenciled. Accepted projectiles are then palletized and shipped out.

This process description was extracted from the following IAAP Standing Operating Procedures:

S.O.P No. 765 - TNT Load Warhead for Projectile, 155MM, HE, RA, M549A1
S.O.P. No. 699 - Assemble and Pack Projectile 155MM, HE, RA, M549 and M549A1
S.O.P. No. 764 - Line 3A Service Magazines, Screening Building and Second and Third Floor Melt Tower Operations.
S.O.P. No. 704 - Post Cyclic Heat, Projectiles and/or Warheads, Yard F
PROCESS FLOW FOR

M549 / M549AI, PROJECTILE
(LINE 3A POUR)

PREPARE FOR LOADING OPERATIONS
3A-05-1, 3A-20-2

PREPARE WARHEAD METAL PARTS FOR LOADING
3A-05-1, SOUTH RAMP

LOAD & CONDITION WARHEADS
3A-05-1

PROBE WARHEADS
3A-05-1

DRAW TNT FOR ADD-POUR
3A-05-1

ADD-POUR & COOL WARHEADS
3A-05-1

REMOVE FUNNELS, KNOCK OUT RISERS & REPOSITION
FUNNELS IN WARHEADS
3A-05-1

PROBE WARHEADS
3A-05-1

ADD-POUR WARHEADS, BLEND TNT & COOL WARHEADS
3A-05-1

REMOVE FUNNELS & KNOCK OUT RISERS
3A-05-1 OR 3A-20-2

REST STORE & TRANSFER WARHEADS
3A-05-2 OR 3A-20-2

REPAIR OR REWORK CASTS IN WARHEADS
3A-05-1 OR 3A-10-5

STEAM CLEAN WARHEADS
3A-05-2 SUMP

DRILL WARHEADS
3A-10-5, BAYS B & C

INSERT LINERS
3A-10-5 OR 3A-05-2

TRANSFER WARHEADS
3A-10-5, 3A-20-2, 3A-100

X-RAY WARHEADS
3A-100

PALETTE WARHEADS
3A-05-2, BAY A

POST CYCLIC HEAT YARD F

TRANSFER WARHEADS TO LINE 2

RECEIVE, REST STORE & TRANSFER FLAMMABLE MATERIALS
3A-03-1

RECEIVE & REST STORE INERT MATERIALS
3A-01 & 3A-04

PREPARE FOR OPERATIONS
3A-01 & 3A-04

PREPARE WARHEADS
3A-01 & 3A-04

CLEAN & TOUCH UP INTERIOR OF WARHEADS
3A-04

TRANSFER MATERIALS
3A-04

REPAIR OR REWORK CASTS IN WARHEADS
3A-05-1 OR 3A-10-5
PROCESS FLOW FOR

M549 / M549AI, PROJECTILE
(LINE 2 ASSEMBLY)
Energy Consumption

The process energy consumed in the production of the M549A1, HE, Projectile totaled 5,107 MRTU per year at a production rate of 99,026 projectiles per year as produced at the Iowa Army Ammunition Plant. This amounts to 51,572 BTU per projectile. Planned mobilization production of 585,600 projectiles per year would consume 29,417 MRTU per year.

The following charts show a breakdown of energy consumption by production step and form of energy.
YEARY STEAM CONSUMPTION FOR
M549 / M549AI , PROJECTILE
(LINE 3A POUR)

PREPARE FOR LOADING OPERATIONS
3A-05-1, 3A-20-2

PREPARE WARHEAD METAL PARTS FOR LOADING
3A-05-1, SOUTH RAMP

LOAD & CONDITION WARHEADS
3A-05-1

PROBE WARHEADS
1184.54 3A-05-1 [2220.04]

DRAW TNT FOR ADD-POUR
3A-05-1

ADD-POUR & COOL WARHEADS
3A-05-1

REMOVE FUNNELS, KNOCK OUT RISERS & REPOSITION FUNNELS IN WARHEADS
3A-05-1

PROBE WARHEADS
3A-05-1

ADD-POUR WARHEADS, BLEND TNT & COOL WARHEADS
3A-05-1

REMOVE FUNNLES & KNOCK OUT RISERS
3A-05-1 OR 3A-20-2

REST STORE & TRANSFER WARHEADS
3A-05-2 OR 3A-20-2

REPAIR OR REWORK CASTS IN WARHEADS
3A-05-1 OR 3A-10-5

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION)= 3945.76
2. TOTAL CONSUMPTION (MOBILIZATION) = 21547.16
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 99,036 PROJECTILES PER YEAR. MOBILIZATION FIGURES ARE BASED ON 585,600 PROJECTILES PER YEAR.

TRANSFER WARHEADS
3A-05-1

RECEIVE, REST STORE & TRANSFER FLAMMABLE MATERIALS
3A-03-1

RECEIVE & REST STORE INSERT MATERIALS
3A-01 & 3A-04

PREPARE FOR OPERATIONS
3A-01 & 3A-04

PREPARE WARHEADS
85.85 3A-01 & 3A-04 [504.65]

CLEAN & TOUCH UP INTERIOR OF WARHEADS
3A-04

TRANSFER MATERIALS
3A-04

STEAM CLEAN WARHEADS
365.34 3A-05-2 SUM[240.35]

DRILL WARHEADS
3A-10-5, BAYS B & C

INSERT LINERS
3A-10-5 OR 3A-05-2

TRANSFER WARHEADS
3A-10-5, 3A-20-2, 3A-100

X-RAY WARHEADS
3A-100

PALLELIZE WARHEADS
3A-05-2, BAY A

POST CYCLIC HEAT
390.01 YARO F [3862.05]

TRANSFER WARHEADS TO LINE 2

- 54 -
YEARY STEAM CONSUMPTION FOR
M549 / M549AI, PROJECTILE
(LINE 2 ASSEMBLY)

NOTE:
NO PROCESS STEAM REQUIRED FOR LINE 2 ASSEMBLY.
YEARLY ELECTRICAL CONSUMPTION FOR

M549 / M549AI, PROJECTILE
(LINE 3A POUR)

PREPARE FOR LOADING OPERATIONS
3A-05-1, 3A-20-2

PREPARE WARHEAD METAL PARTS FOR LOADING
3A-05-1, SOUTH RAMP
23.50 [50.82]

LOAD & CONDITION WARHEADS
373.30 3A-05-1 [2198.40]

PROBE WARHEADS
45.09 3A-05-1 [266.60]

DRAW TNT FOR ADD-POUR
3A-05-1

ADD-POUR & COOL WARHEADS
3A-05-1

REMOVE FUNNELS, KNOCK OUT RISERS & REPOSITION FUNNELS IN WARHEADS
3A-05-1

PROBE WARHEADS
45.09 3A-05-1 [266.60]

ADD-POUR WARHEADS, BLEN D TNT & COOL WARHEADS
3A-05-1

REMOVE FUNNELS & KNOCK OUT RISERS
12.23 3A-05-1 OR 3A-20-2 [72.94]

REST STORE & TRANSFER
12.23 WARHEADS [72.94]
3A-05-2 OR 3A-20-2

REPAIR OR REWORK CASTS IN WARHEADS
3A-05-1 OR 3A-10-5

STEAM CLEAN WARHEADS
3A-05-2 SUMP

DRILL WARHEADS
3A-10-5, BAYS B & C
72.31 [427.60]

INSERT LINERS
3A-10-5 OR 3A-05-2

TRANSFER WARHEADS
3A-10-5, 3A-20-2, 3A-100
12.23 [72.94]

X-RAY WARHEADS
36.71 3A-100 [217.07]

PALLETIZE WARHEADS
3A-05-2, BAY A

POST CYCLIC HEAT YARD F

TRANSFER WARHEADS
12.23 TO LINE 2 [72.94]

RECEIVE, REST STORE & TRANSFER FLAMMABLE MATERIALS
3A-05-1

RECEIVE & REST STORE INERT MATERIALS
12.23 3A-01 & 3A-04 [72.34]

PREPARE FOR OPERATIONS
3A-01 & 3A-04

PREPARE WARHEADS
6.03 3A-01 & 3A-04 [59.17]

CLEAN & TOUCH UP INTERIOR OF WARHEADS
12.23 3A-04 [72.34]

TRANSFER MATERIALS
12.23 3A-04 [72.34]

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) - 690.72
2. TOTAL CONSUMPTION (MOBILIZATION) - 4084.44
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 99,036 PROJECTILES PER YEAR. MOBILIZATION FIGURES ARE BASED ON 585,600 PROJECTILES PER YEAR.

- 56 -
YEARLY ELECTRICAL CONSUMPTION FOR

M549 / M549AI, PROJECTILE

(LINE 2 ASSEMBLY)

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 105.04
2. TOTAL CONSUMPTION (MOBILIZATION) = 621.31
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 99,036 PROJECTILES PER YEAR, MOBILIZATION FIGURES ARE BASED ON 585,600 PROJECTILES PER YEAR.
YEARLY AIR CONSUMPTION FOR
M549 / M549AI, PROJECTILE
(LINE 3A POUR)

PREPARE FOR LOADING OPERATIONS
3A-05-1, 3A-20-2

PREPARE WARHEAD METAL PARTS FOR LOADING
3A-05-1, SOUTH RAMP

LOAD & CONDITION WARHEADS
3A-05-1

PROBE WARHEADS
18.07 3A-05-1

DRAW TNT FOR ADD-POUR
3A-05-1

ADD-POUR & COOL WARHEADS
3A-05-1

REMOVE FUNNELS, KNOCK OUT RISERS & REPOSITION FUNNELS IN WARHEADS
3A-05-1

PROBE WARHEADS
26.78 3A-05-1

ADD-POUR WARHEADS, BLEND TNT & COOL WARHEADS
3A-05-1

REMOVE FUNNELS & KNOCK OUT RISERS
3A-05-1 OR 3A-20-2

REST STORE & TRANSFER
3A-05-1 or 3A-20-2

REPAIR OR REWORK CASTS IN WARHEADS
3A-05-1 OR 3A-10-5

STEAM CLEAN WARHEADS
3A-05-2 SUMP

INSERT LINERS
3A-10-5 OR 3A-05-2

TRANSFER WARHEADS
3A-10-5, 3A-20-2, 3A-100

X-RAY WARHEADS
3A-100

PALLETIZE WARHEADS
3A-05-2, BAY A

POST CYCLIC HEAT YARD F

TRANSFER WARHEADS TO LINE 2

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION)= 121.68
2. TOTAL CONSUMPTION (MOBILIZATION)= 719.58
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 39,036 PROJECTILES PER YEAR. MOBILIZATION FIGURES ARE BASED ON 385,600 PROJECTILES PER YEAR.
YEARLY AIR CONSUMPTION FOR

M549 / M549AI, PROJECTILE

(LINE 2 ASSEMBLY)

RECEIVE, REST STORE & TRANSFER PROPELLANT 2-15

RECEIVE, REST STORE & TRANSFER OELAY ASSEMBLY 2-15

ASSEMBLE GRAIN SUPPORT TO TRAP AS REQUIRED 2-1D, BAY G

CHECK MOTOR BODIES 2-10, BAYS G & H

ASSEMBLE OELAY ASSEMBLY TO MOTOR BODY 2-10, BAY G

ASSEMBLE ROCKET-OFF CAP TO MOTOR BODY 2-10, BAY G

ASSEMBLE AFT PROPELLANT GRAIN, CUSHION & GRAIN SUPPORT BONDING ASSEMBLY TO MOTOR BODY 2-10, BAY G

ASSEMBLE FORWARD PROPELLANT GRAIN 2-10, BAY G

RECEIVE, REST STORE & TRANSFER SUPPLEMENTARY CHARGES 2-17, 2-16, 2-10

RECEIVE & TRANSFER WARHEADS 2-12, 2-16-1, 2-10 BAYS F, H, M, N

INSTALL INSULATION ON WARHEAD AS REQUIRED 2-10, BAY I

PREPARE WARHEAD FOR ASSEMBLY 59.42, 2-10, BAY K (351.35)

ASSEMBLE WARHEAD TO ROCKET MOTOR 177.88, 2-10, BAY E (108.76)

X-RAY PROJECTILES 2-10

ASSEMBLE OBSTURATOR 3.80, 2-10, BAY D (20.72)

INSPECT FOR OBSTURATOR & TOUCH UP PAINT ON PROJECTILES 0.55, 2-10, BAY D (3.23)

INSERT SUPPLEMENTARY CHARGE & ZONE WEIGHT PROJECTILES 2-10, BAY D

STENCIL PROJECTILES 2-10, BAY D

STAKE ZONE SQUARES 0.97, 2-10, BAY O (5.74)

MACHINE STAMP WARHEAD METAL PARTS LOT NUMBER ON ROTATING BAND OF MOTOR BODY 2-10, BAY D

ASSEMBLE SPACER, GASKET & LIFTING PLUG 2-10, BAY O

TIGHTEN ROCKET-OFF CAP & LIFTING PLUG 2-10, BAY D

ASSEMBLE GROMMET TO PROJECTILE 2-10, BAY D

STENCIL PALLET TOPS 2-10, BAY K

RING GAGE & PALLETIZE PROJECTILES 2-10, BAY O

STRAP PALLETIES 1.94, 2-10, BAY O OR 131.46

SHIP PROJECTILES 2-10, 2-16-1, 2-12 OCK

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 244.26
2. TOTAL CONSUMPTION (MOBILIZATION) = 144.29
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 99,036 PROJECTILES PER YEAR. MOBILIZATION FIGURES ARE BASED ON 865,400 PROJECTILES PER YEAR.
M718/M741, 155MM, AT, PROJECTILE

PROCESS DESCRIPTION

The M718/M741 is a projectile containing 9 mines, each mine containing approximately 1.3 pounds of PBX explosive. A standard production rate of 36,792 projectiles per year was used in this report. The mobilization production rate, according to the latest IAAP mobilization schedule, is 60,000 projectiles per year.

Explosive materials are received at load line service magazines and transferred to pressing areas as required. Inert materials are received and transferred to assembly area as required for production.

PBX is processed as required for pressing boosters and main charges. Powder for main charges is preheated to a temperature of 200°F; press tooling is heated by steam to a minimum temperature of 175°F. After pressing, boosters and main charges are inspected and transferred to rest store until needed for mine assembly.

Mine electronic components are assembled and inspected, then are transferred to mine assembly area. Mine bodies are assembled, with boosters and main charges, and are cleaned and painted. Mines are cured in a steam heated curing oven for a minimum of 16 hours at a temperature of 125°F. Painted mines are rest stored and then transferred to final assembly building, where they are loaded into projectile bodies, stenciled, packed and shipped out.

This process description was extracted from IAAP Standing Operating Procedure No. 812, Press Boosters and Main Charges for Projectile, 155MM, AT, M718/M741 and Standing Operating Procedure No. 715, Load, Assemble and Pack Projectile, 155MM, AT, M718/M741.
PROCESS FLOW FOR
M718 / M741, PROJECTILE
PRESS CHARGES

PRESS BOOSTERS

RECEIVE, REST STORE & TRANSFER POWDER
1-60, 1-67-3

INSPECT & PREHEAT POWDER
1-67-3

SET UP PRESS
1-67-2

PRESS BOOSTERS
1-67-2, 1-67-3

TRANSFER & REST STORE BOOSTERS
1-67-3, 1-100-1, 1-67-1, 1-64-5

PERIODIC & END OF SHIFT
CLEAN-UP
1-67-2, 1-67-3

PRESS MAIN CHARGES

RECEIVE, REST STORE & TRANSFER POWDER
1-64-1, 1-64-2, 1-64-4

PREPARE POWDER FOR PRESSING
1-63-6 BAY 'C', 1-63-4, 1-63-5

PREHEAT MEASURED CHARGES
OF POWDER
1-63-4, 1-63-5

SET UP & PREPARE FOR PRESSING
1-63-4, 1-63-5

PRESS MAIN CHARGES
1-63-4, 1-63-5

REST STORE & TRANSFER MAIN CHARGES
1-63-4, 1-63-5, 1-100-1
1-65-1, 1-65-2

PERIODIC & END OF SHIFT
CLEAN-UP
1-63-5
PROCESS FLOW FOR

M718/ M74I PROJECTILE MINE ASSEMBLY

RECEIVE, REST STORE & TRANSFER EXPLOSIVE COMPONENTS
TRUCK DECK, 1-61 BAYS 'K', 'P'

FLUOROSCOPE S & A DEVICES
1-61 BAY 'Q'

ASSEMBLE ELECTRONIC LENS & A/MS PLATE SUBASSEMBLY
1-61 BAY 'S'

CODE MINE BODY
ASSEMBLE MINE BODY & ELECTRONIC LENS & A/MS PLATE SUBASSEMBLY
1-61 BAY 'P'

INSTALL 'O' RING & BOOSTER
APPLY ADHESIVE TO MINE BODY
1-61 BAY 'P'

ASSEMBLE MAIN CHARGE & UPPER 'O' RING
1-61 BAY 'P'

APPLY ADHESIVE TO MAIN CHARGE & ASSEMBLY PLATE IMPACT LENS & COVER
1-61 BAY 'W'

ASSEMBLE IMPACT LENS COVER & RETAINING RING
1-61 BAY 'P'

CLEAN & PAINT MINES
1-61 BAY 'P'

RECEIVE MINES FROM PAINT MACHINE & TRANSFER TO LOWER LEVEL
1-61 BAY 'O'

TRANSFER MINES TO 1-85-2
1-61 LOWER LEVEL

RECEIVE MINES FROM PAINT MACHINE & TRANSFER TO LOWER LEVEL
1-61 BAY 'O'

TRANSFER MINES TO 1-85-2
1-61 LOWER LEVEL

PERIODIC & END OF SHIFT CLEAN-UP
1-61

PREPARE TEST FIRE SAMPLES
1-61

PREPARE FOR ASSEMBLY OPERATIONS
1-61 UPPER LEVEL

TEST & PREPARE ELECTRONIC LENS ASSEMBLY
1-61 BAY 'S'

RECEIVE, REST STORE & TRANSFER INERT MATERIALS
1-61
PROCESS FLOW FOR
M718/M741 PROJECTILE
FINAL ASSEMBLY

1. Receive, rest store & transfer expulsion charges
 1-85-2 dock & bay 'C'

2. Load mines into projectile bodies
 1-85-2 bay 'A'

3. Preload mines, gage shim thickness, install shims & start base
 1-85-2 bay 'A'

4. Torque base to projectile subassembly
 1-85-2

5. Assemble expulsion charge cup & expulsion charge
 1-85-2 bay 'A'

6. Clean, touch-up paint & paint triangles on projectiles
 1-85-2 bay 'A'

7. Zone weigh projectile
 1-85-2 bay 'A'

8. Stencil projectile & stake zone squares
 1-85-2 bay 'A'

9. Assemble lifting lug
 1-85-2 bay 'A'

10. Ring gage & air test projectiles
 1-85-2 bay 'A'

11. Prepare projectile metal parts
 1-85-2 bay 'B'

12. Receive rest store & transfer enameled, flammable liquids & stencil inks

13. Receive rest store & transfer inert materials
 1-85-2

14. Prepare projectile metal parts
 1-85-2 bay 'B'

15. Assemble lifting lug
 1-85-2 bay 'A'

16. Periodic & end of shift clean-up
 1-85-2
Energy Consumption

The process energy consumed in the production of the M718/M741 Projectile totaled 2,895 MBTU per year at a production rate of 36,792 projectiles per year as produced at the Iowa Army Ammunition Plant. This is equivalent to 78,694 BTU per projectile. Planned mobilization production of 60,000 projectiles per year would consume 4,722 MBTU per year.

The following charts show a breakdown of energy consumption by production step and form of energy.

The energy required to air condition the main charge pressing areas amounted to 1,855 MBTU per year, which is equivalent to 50,416 BTU per projectile. This energy is not listed on the charts, but should be considered part of the process energy because the cooling load is from heated process equipment.
YEARLY STEAM CONSUMPTION FOR
M718/M741, PROJECTILE
PRESS CHARGES

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 1116.66
2. TOTAL CONSUMPTION (MOBILIZATION) = 1821.02
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 36,792
PROJECTILES PER YEAR. MOBILIZATION FIGURES ARE BASED
ON 60,000 PROJECTILES PER YEAR.
YEARLY STEAM CONSUMPTION FOR
M718 / M741 PROJECTILE
MINE ASSEMBLY

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 178.81
2. TOTAL CONSUMPTION (MOBILIZATION) = 283.61
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 36,792 PROJECTILES PER YEAR. MOBILIZATION FIGURES ARE BASED ON 60,000 PROJECTILES PER YEAR.
YEARY STEAM CONSUMPTION FOR
M718/M741, PROJECTILE
FINAL ASSEMBLY

NOTE:
NO PROCESS STEAM REQUIRED FOR FINAL ASSEMBLY.
YEARLY ELECTRICAL CONSUMPTION FOR
M718 / M741, PROJECTILE
PRESS CHARGES

PRESS BOOSTERS

RECEIVE, REST STORE & TRANSFER POWDER
18.06, 1-60, 1-67-3 [29.46]

INSPECT & PREHEAT POWDER
1-67-3

SET UP PRESS
1-67-2

PRESS BOOSTERS
1-67-2, 1-67-3 [0.72]

TRANSFER & REST STORE BOOSTERS
1-67-3, 1-100-1, 1-67-1, 1-64-5

PERIODIC & END OF SHIFT
CLEAN-UP
1-67-2, 1-67-3 [23.68]

PRESS MAIN CHARGES

RECEIVE, REST STORE & TRANSFER POWDER
18.06, 1-64-1, 1-64-2, 1-64-3 [29.46]

PREPARE POWDER FOR PRESSING
1-63-6 BAY 'C', 1-63-4, 1-63-5 [35.60]

PREHEAT MEASURED CHARGES OF POWDER
1-63-4, 1-63-5 [20.85]

SET UP & PREPARE FOR PRESSING
1-63-4, 1-63-5 [50.71]

PRESS MAIN CHARGES
1-63-4, 1-63-5 [1600.45]

REST STORE & TRANSFER MAIN CHARGES
1-63-4, 1-63-5, 1-100-1, 1-65-1, 1-65-2

PERIODIC & END OF SHIFT
CLEAN-UP
1-63-5

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 1177.86
2. TOTAL CONSUMPTION (MOBILIZATION) = 1920.88
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 36,782 PROJECTILES PER YEAR. MOBILIZATION FIGURES ARE BASED ON 60,000 PROJECTILES PER YEAR.
YEARLY ELECTRICAL CONSUMPTION FOR
M718 / M741 PROJECTILE
MINE ASSEMBLY

RECEIVE, REST STORE & TRANSFER EXPLOSIVE COMPONENTS
TRUCK DOCK, 1-61 BAYS 'K', 'P'

FLUORESCOPE 5 & A DEVICES
1-61 BAY 'Q'
18.78 [30.63]

ASSEMBLE ELECTRONIC LENS - S & A / MS PLATE SUBASSEMBLY
1-61 BAY 'S' [6.28]

CODE MINE BODY
ASSEMBLE MINE BODY & ELECTRONIC LENS - S & A / MS PLATE SUBASSEMBLY
1-61 BAY 'P'

INSTALL 'O' RING & BOOSTER
APPLY ADHESIVE TO MINE BODY
1-61 BAY 'P'

ASSEMBLE MAIN CHARGE & UPPER 'O' RING
1-61 BAY 'P'

APPLY ADHESIVE TO MAIN CHARGE & ASSEMBLY PLATE IMPACT LENS & COVER
1-61 BAY 'P' [15.15]

ASSEMBLE IMPACT LENS COVER & Retaining RING
1-61 BAY 'P'

CLEAN & PAINT MINES
1-61 BAY 'P'
49.74 [91.12]

RECEIVE MINES FROM PAINT MACHINE & TRANSFER TO LOWER LEVEL
1-61 BAY 'O' [5.76]

TRANSFER MINES TO 1-85-2
1-61 LOWER LEVEL
18.46 [29.46]

PERIODIC & END OF SHIFT CLEAN-UP
1-61

PREPARE TEST FIRE SAMPLES
1-61

RECEIVE, REST STORE & TRANSFER INERT MATERIALS
1-61

PREPARE FOR ASSEMBLY OPERATIONS
1-61 UPPER LEVEL

TEST & PREPARE ELECTRONIC LENS ASSEMBLY
1-61 BAY 'S' [1.43]

NOTES
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 113.02
2. TOTAL CONSUMPTION (MOBILIZATION) = 184.33
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 36,792 PROJECTILES PER YEAR, MOBILIZATION FIGURES ARE BASED ON 40,000 PROJECTILES PER YEAR.
YEARLY ELECTRICAL CONSUMPTION FOR
M718/ M741, PROJECTILE
FINAL ASSEMBLY

RECEIVE, REST STORE & TRANSFER EXPULSION CHARGES
1-85-2 DOCK BAY 'C'

LOAD MINES INTO PROJECTILE BODIES
1-85-2 BAY 'A'

PRELOAD MINES, GAGE SHIM THICKNESS, INSTALL SHIMS & START BASE
1-85-2 BAY 'A'

TORQUE BASE TO PROJECTILE SUBASSEMBLY
1-85-2

ASSEMBLE EXPULSION CHARGE CUP & EXPULSION CHARGE
1-85-2 BAY 'A'

CLEAN, TOUCH-UP PAINT & PAINT TRIANGLES ON PROJECTILES
3.50 1-85-2 BAY 'A' [3.50]

ZONE WEIGH PROJECTILE
1-85-2 BAY 'A'

STENCIL PROJECTILE & STAKE ZONE SQUARES
1-85-2 BAY 'A'

ASSEMBLE LIFTING LUG
1-85-2 BAY 'A'

RING GAGE & AIR TEST PROJECTILES
1-85-2 BAY 'A'

STENCIL PALLET TOPS
1-85-2 BAY 'A'

PALLETIZE PROJECTILES
1-85-2 BAY 'A'

SHRPALLETIZED PROJECTILES
1-85-2 TRUCK DOCK
10.06 [29.46]

PERIODIC & END OF SHIFT CLEAN-UP
1-85-2

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 79.88
2. TOTAL CONSUMPTION (MOBILIZATION) = 120.40
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 38,792 PROJECTILES PER YEAR. MOBILIZATION FIGURES ARE BASED ON 60,000 PROJECTILES PER YEAR.

RECEIVE REST STORE & TRANSFER ENAMELS, FLAMMABLE LIQUIDS & STENCIL INKS
1-85-2 [29.46]

PREPARE PROJECTILE METAL PARTS
1-85-2 BAY 'B'

RECEIVE REST STORE & TRANSFER INERT MATERIALS
1-85-2 [29.46]
YEARY AIR CONSUMPTION FOR
M718/M741, PROJECTILE
PRESS CHARGES

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 163.56
2. TOTAL CONSUMPTION (MOBILIZATION) = 266.73
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 36,792
PROJECTILES PER YEAR. MOBILIZATION FIGURES ARE BASED
ON 60,000 PROJECTILES PER YEAR.
YEARLY AIR CONSUMPTION FOR
M718 / M741, PROJECTILE
MINE ASSEMBLY

RECEIVE, REST STORE & TRANSFER EXPLOSIVE COMPONENTS
TRUCK DOCK, I-61 BAY 'R', 'P'

FLUOROSCOPE S & A DEVICES
0.22
1-61 BAY 'Q'

ASSEMBLE ELECTRONIC LENS, S & A MS PLATE SUBASSEMBLY
0.49
1-61 BAY 'S'

CODE MINE BODY
ASSEMBLE MINE BODY & ELECTRONIC LENS, S & A MS PLATE SUBASSEMBLY
1-61 BAY 'P'

INSTALL 'O' RING & BOOSTER
APPLY ADHESIVE TO MINE BODY
0.68
1-61 BAY 'P'

ASSEMBLE MAIN CHARGE & UPPER 'O' RING
1-61 BAY 'P'

APPLY ADHESIVE TO MAIN CHARGE & ASSEMBLY PLATE IMPACT LENS & COVER
1-61 BAY 'P'

ASSEMBLE IMPACT LENS COVER & RETAINING RING
1-61 BAY 'P'

CLEAN & PAINT MINES
1-61 BAY 'P'

RECEIVE MINES FROM PAINT MACHINE & TRANSFER TO LOWER LEVEL
1-61 BAY 'O'

TRANSFER MINES TO I-85-2
1-61 LOWER LEVEL

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 24.98
2. TOTAL CONSUMPTION (MOBILIZATION) = 40.68
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN BTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 38,792 PROJECTILES PER YEAR. MOBILIZATION FIGURES ARE BASED ON 40,000 PROJECTILES PER YEAR.
YEARLY AIR CONSUMPTION FOR
M718/ M741, PROJECTILE
FINAL ASSEMBLY

NOTES:
1. TOTAL CONSUMPTION (STANDARD PRODUCTION) = 48.44
2. TOTAL CONSUMPTION (MOBILIZATION) = 79.14
3. MOBILIZATION FIGURES ARE IN BRACKETS.
4. ALL CONSUMPTION FIGURES ARE GIVEN IN MBTU.
5. STANDARD PRODUCTION FIGURES ARE BASED ON 36,792 PROJECTILES PER YEAR, MOBILIZATION FIGURES ARE BASED ON 60,000 PROJECTILES PER YEAR.
CONSERVATION PROJECTS

INSULATE HAWK BATH AND SUPPLY TANK

Both the hot water supply tank and the HAWK bath for conditioning the HAWK Warhead are uninsulated, allowing excessive heat loss. An analysis was undertaken to determine the economic feasibility of insulation.

INSULATE PROCESS TANK

Existing Conditions:

<table>
<thead>
<tr>
<th>Inside temperature (T1)</th>
<th>190°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside temperature (T2)</td>
<td>70°F</td>
</tr>
<tr>
<td>Surface area (A)</td>
<td>166 ft²</td>
</tr>
<tr>
<td>Bare metal heat loss (q)</td>
<td>150 BTU/hr-ft²</td>
</tr>
<tr>
<td>Operating time</td>
<td>17 hr/day</td>
</tr>
<tr>
<td></td>
<td>3 days/week</td>
</tr>
<tr>
<td></td>
<td>50 weeks/year</td>
</tr>
</tbody>
</table>

Present heat loss:

\[Q = A \times q \times 17 \times 3 \times 50 \div 10^6 \]
\[= 166 \times 150 \times 17 \times 3 \times 50 \div 10^6 = 63.5 \text{ MBTU/year} \]

Proposed - add 1/8" calcium silicate, \(U = 0.25 \text{ BTU/hr - Ft}^2\text{-°F} \)

\[Q = A \times U \times (T_1 - T_2) \times 15 \times 3 \times 50 \div 10^6 \]
\[= 166 \times 0.25 \times (190 - 70) \times 17 \times 3 \times 50 \div 10^6 = 12.7 \text{ MBTU/year} \]

Net savings:

63.5 - 12.7 = 50.8 MBTU/year

Gross Savings (heating system efficiency = 80%) = 63.5 MBTU/year

INSULATE HAWK BATH

Existing conditions:

<table>
<thead>
<tr>
<th>Lid</th>
<th>78 ft²</th>
<th>300°F</th>
<th>9 hours</th>
<th>300 BTU/hr-ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank</td>
<td>650 ft²</td>
<td>190°F</td>
<td>9 hours</td>
<td>150 BTU/hr-ft²</td>
</tr>
<tr>
<td>Tank</td>
<td>728 ft²</td>
<td>130°F</td>
<td>8 hours</td>
<td>100 BTU/hr-ft²</td>
</tr>
</tbody>
</table>
Present heat loss:

Lid - 78 x 300 x 9 x 3 x 50 / 10^6 = 31.6 MBTU/year
Tank - 650 x 150 x 9 x 3 x 50 / 10^6 = 131.6 MBTU/year
Tank - 728 x 100 x 8 x 3 x 50 / 10^6 = 87.4 MBTU/year
Total = 250.6 MBTU/year

Proposed - add 1 1/4" calcium silicate; U = 0.25 BTU/hr·ft·°F

Lid - 78 x .25 x (300 - 70) x 9 x 3 x 50 / 10^6 = 6.1 MBTU/year
Tank - 650 x .25 x (190 - 70) x 9 x 3 x 50 / 10^6 = 26.3 MBTU/year
Tank - 728 x .25 x (130 - 70) x 8 x 3 x 50 / 10^6 = 13.1 MBTU/year
Total = 45.5 MBTU/year

Net savings = 250.6 - 45.5 = 205.1 MBTU/year

Gross Savings = 256.4 MBTU/year

The HAWK conditioning insulation project would provide a total of 319.9 MBTU per year in steam savings. At a present cost of approximately $5/MBTU, the cost savings would be $1,600 per year. Material and installation costs would be approximately $7,500. This would provide a payback of 4.7 years.
INSULATE KETTLES AND PROCESS PIPING

Presently, the melt kettles and process piping for the three melt buildings surveyed in this phase of the project are uninsulated. An economic analysis was undertaken to determine the feasibility of adding 1.5" of calcium silicate insulation. The following calculations are for one melt building.

PROCESS PIPING

1500 lineal feet - 2" pipe
80 BTU/hr-LF heat loss - uninsulated
27 BTU/hr-LF heat loss - insulated
2080 hours per year
Savings = (80 - 27) x 1500 x 2080 ÷ 10^6 = 165 MBTU/year

KETTLES

400 ft^2
150 BTU/ft^2 hr - uninsulated
25 BTU/ft^2 hr - insulated
2080 hours per year
Savings = (150 - 25) x 400 x 2080 ÷ 10^6 = 104 MBTU/year
Total Savings = 165 + 104 = 269 MBTU/year

Due to irregular shapes and the need for waterproof covers, the cost for installation is estimated to be approximately $15,000. This would indicate a payback of 11.15 years.
AUTOMATICALLY CONTROL PROCESS HEAT

In order for heat producing equipment to be at the proper temperature when a shift begins, steam must be left on during off-shift hours. This results in approximately 128 hours per week of steam use when it is not required. The following table shows the pounds of steam per hour and per week consumed during non-use hours.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Hour</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preheat Oven, 1-05-2, CHAPARRAL, STINGER</td>
<td>30</td>
<td>3,840</td>
</tr>
<tr>
<td>Hot Water Probe, 1-05-2, CHAPARRAL</td>
<td>50</td>
<td>6,400</td>
</tr>
<tr>
<td>Melt Kettle, 1-05-2, HAWK, CHAPARRAL, STINGER, DRAGON</td>
<td>50</td>
<td>6,400</td>
</tr>
<tr>
<td>Melt Kettle, 2-05-2, COPPERHEAD</td>
<td>50</td>
<td>6,400</td>
</tr>
<tr>
<td>Grid Melt Unit, 3A-05-1, M549A1</td>
<td>35</td>
<td>4,480</td>
</tr>
<tr>
<td>Dopp Kettle, 3A-05-1, M549A1</td>
<td>25</td>
<td>3,200</td>
</tr>
</tbody>
</table>

By utilizing a timer/controller to heat the equipment to the proper temperature by the beginning of a shift, substantial energy could be saved. The following table shows the potential savings in pounds of steam per week and per year (assuming 85% of the non-shift steam could be saved and 50 weeks per year of production).

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Week</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPARRAL</td>
<td>14,144</td>
<td>707,200</td>
</tr>
<tr>
<td>STINGER</td>
<td>8,704</td>
<td>435,200</td>
</tr>
<tr>
<td>HAWK</td>
<td>5,440</td>
<td>272,000</td>
</tr>
<tr>
<td>DRAGON</td>
<td>5,400</td>
<td>272,000</td>
</tr>
<tr>
<td>COPPERHEAD</td>
<td>5,440</td>
<td>272,000</td>
</tr>
<tr>
<td>M549A1</td>
<td>6,528</td>
<td>326,400</td>
</tr>
</tbody>
</table>
Using $6.00 per thousand pounds of steam, the following savings could be realized per year:

<table>
<thead>
<tr>
<th></th>
<th>Savings (Dollars)</th>
<th>Savings (MBTU)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPARRAL</td>
<td>4,243</td>
<td>818</td>
</tr>
<tr>
<td>STINGER</td>
<td>2,611</td>
<td>503</td>
</tr>
<tr>
<td>HAWK</td>
<td>1,632</td>
<td>315</td>
</tr>
<tr>
<td>DRAGON</td>
<td>1,632</td>
<td>315</td>
</tr>
<tr>
<td>COPPERHEAD</td>
<td>1,632</td>
<td>315</td>
</tr>
<tr>
<td>M549A1</td>
<td>1,958</td>
<td>377</td>
</tr>
</tbody>
</table>

*5 psig steam at 1156.3 BTU/lb.

The acquisition and installation cost of a timer/controller would be approximately $5,000. Payback would vary from 1.2 years to 3.1 years, depending upon the item in production.

Automatic timer/controllers have been installed on equipment at Buildings 1-63-4 and 1-63-5 (M718/M741 Main Charge Pressing Area) and at Building 1-10 (I-TOW Presses).

The following table shows the steam consumed during non-use hours (i.e., before installation of timer/controllers) for both 1-63-4 and 1-63-5:

<table>
<thead>
<tr>
<th>Pounds/ Hour</th>
<th>Pounds/ Week</th>
<th>Pounds/ Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>208.74</td>
<td>26,718.72</td>
<td>1,335,936</td>
</tr>
</tbody>
</table>

Basis: 128 non-use hours per week; 50 weeks of production per year.

The following table shows the savings resulting from the installation of automatic timer/controllers at Buildings 1-63-4 and 1-63-5, based on a steam cost of $6.00 per 1,000 pounds and a latent heat of vaporization equal to 945.71 BTU/LB for 15 PSIG steam:
The following table shows the steam consumed by the I-TOW pressing operation at Building 1-10 during non-use hours prior to the installation of automatic timer/controllers:

<table>
<thead>
<tr>
<th>Pounds/Year</th>
<th>Dollars Per Year</th>
<th>MBTU/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,231,566</td>
<td>7,389.40</td>
<td>1,164.70</td>
</tr>
</tbody>
</table>

(Basis: 128 nonuse hours per week; 50 weeks of production per year.)

The following table shows the savings resulting from the installation of timer/controllers, based on a steam cost of $6.00 per 1,000 pounds and a latent heat of vaporization equal to 903.91 BTU/LB for 60 PSIG steam:

<table>
<thead>
<tr>
<th>Pounds/Year</th>
<th>Dollars Per Year</th>
<th>MBTU/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>871,938</td>
<td>5,231.63</td>
<td>788.15</td>
</tr>
</tbody>
</table>
An engineering study was made during the Line 3 phase of this project. It is repeated here with revised costs to emphasize the potential of this project.

Each L/A/P production line has two melt buildings which utilize 150 psig steam to heat water for building heat. The average melt building requires 5,776 MBTU per year for heating. An average heating season is 5,088 hours.

Average - 5776 MBTU
5088 Hours = 1,135,220 BTU
Hr

\[
\frac{1,135,220 \text{ BTU}}{857.2 \text{ BTU/Lb}} = \frac{1,324 \text{ Lb}}{\text{Hr}}
\]

\[
1324 \text{ Lb/Hr} \times \frac{.80}{h_{fg}} = \frac{1650 \text{ Lb}}{\text{Hr}}
\]

\[
\text{Efficiency} = 80\%
\]

Condensate from 150 psig steam has a heat content of 339 BTU/Lb. Since the condensate is presently not utilized, the maximum potential for savings would be:

\[
1650 \text{ Lb/HR} \times 339 \text{ BTU/Lb} = 559,350 \text{ BTU/Hr}
\]

\[
559,350 \text{ BTU/Hr} \times 5088 \text{ Hr/year} = 2,846 \text{ MBTU/year}
\]

Process steam (5 psig) could be supplemented by using a flash tank and also a heat exchanger to recover the heat from the remaining condensate. A 150 psig-to-5 psig flash tank has the capability to flash 14% of the hot condensate to 5 psig steam.

\[
1650 \text{ Lb/HR} \times .14 = 231 \text{ Lb/Hr}
\]

\[
231 \text{ Lb/Hr} \times 1156.4 = 267,128 \text{ BTU/Hr}
\]
The remaining condensate could be utilized in a heat exchanger to preheat incoming air or process water. The maximum heat available would be:

\[
\frac{559,350 \text{ BTU}}{\text{Hr}} - \frac{267,128 \text{ BTU}}{\text{Hr}} = \frac{292,222 \text{ BTU}}{\text{Hr}}
\]

A conservative estimate of the savings of this remaining heat would be 30 - 50,000 BTU/hr. Therefore, total savings would total approximately 300,000 BTU/hr or 1,526 MBTU/Yr (flash steam plus hot condensate recovery). Using August 1982 steam costs of $5.00 per MBTU, a savings of $7,630 per year could be realized.

Costs involved in installing the flash tank, heat exchanger and all necessary piping would be approximately $5,000. Therefore, this project could self-amortize in one heating season. Assuming 2,000 hours per year of actual production time, this would equate to 534 MBTU per year of direct process energy savings. The remainder of the savings would be realized in building heat savings.
INSULATE PRESSES

Introduction Note:

It is understood that a project to develop a method of pressing the I-TOW and M718/M741 charges at room temperature (i.e., with unheated presses) is currently in the preliminary stages. Significant savings would result if this method of pressing could be perfected, as the process steam required to heat the presses would be eliminated and the air conditioning load would be greatly reduced (possibly eliminated at I-TOW press bays). It is therefore recommended that every effort be made to successfully complete this project; however, if it is found that it is not possible for the pressing operations to be carried out at room temperature, it is recommended that a project to find a feasible method of insulating the presses be undertaken.

As noted in our initial report, the main problems encountered in attempting to insulate process equipment such as melt kettles are irregularity of surface shape and "wash down", the cleaning of equipment by spraying with steam/hot water. In trying to insulate the presses, the latter is not applicable as presses are not "washed down" but are "vacuumed" with a contaminated vacuum system for clean-up. Irregularity of surface shape is still a factor, although not as severe as with a melt kettle. Any insulation applied to the press would have to have a smooth outer surface or cover that would prevent damage and pieces of insulation from flaking or breaking off, and also prevent the absorption or collection of explosives.

The advantages gained by insulating the presses are reduction of process heat requirement, reduction of cooling load, and improved work environment.

The heat loss for one I-TOW press is approximately 10,000 BTUH. Assuming a 1.5 inch layer of calcium silicate or equivalent insulation could be applied, the heat loss with insulation is estimated to be around 2,000 BTUH.
per press, for a savings of 8,000 BTUH per press. Assuming 2,000 hours of
production per year, this comes to a saving of 16 MRTU per year for each
I-TOW press.

Costs for installing the insulation were estimated to be around $200
per press, resulting in an amortization period of about two years.
CONCLUSIONS

1. Energy consumption baselines were established for eight production items: the Hawk, Stinger, Chaparral, Dragon, Copperhead and Improved TOW Warheads, the M549A1 RA Projectile and the M718/M741 AT Projectile.

2. A number of potential energy saving measures amounting to 7,455 MBTU per year were defined and evaluated for present production rates.

RECOMMENDATIONS

1. Consideration should be given to implementation of the energy saving measures proposed.

2. Investigate presently available hardware and/or develop in-house a device to install on exhaust fan controls to shut off exhaust fan when it is not required. A device of this nature could be installed on items such as paint booths, acetone and other fume removal hoods, inspection table hoods, etc.

One possibility would be a pneumatic switch and pressure-electric relay automatically actuated by the operator standing on a contact plate. When the operator moves off the plate for an extended period of time, the fan would be shut down. A timer should be incorporated so that the fan would not be shut off every time the operator steps off the plate for only a few seconds, to pick up supplies, for example. The potential exists for a significant amount of savings to be realized by the installation of this type of device due to the large number of fume removal systems, paint booths, and similar equipment employed in production areas. The savings would result from decreased electrical consumption and decreased heating (or cooling) load.
Any device to be installed would, of course, have to be approved by the Safety Department for installation in hazardous areas.

3. On all new and replacement equipment, purchased for installation, it is suggested that all electric motors be specified to be of the new "Energy Efficient" type. Such motors generally return substantial savings in energy charges and additional savings from reduced maintenance costs, compared to conventional, less efficient motors. As an adjunct, synchronous drives (rather than conventional V-belt drives) should be considered for installation with energy efficient motors. A recent magazine article indicated synchronous drives can be 5 to 6 percent more efficient than V-belt drives of proper design. It also asks why one would spend the additional money for an energy efficient motor and then "throw the savings away with an inefficient (V-belt) drive."

4. Certain process equipment such as hydraulic units, vacuum pumps, etc., are presently water cooled. While the existing equipment is installed in locations which would preclude the possibility of a changeover, it is recommended that, if this equipment should ever be relocated or if similar equipment is purchased for new installations, air cooling rather than water cooling be considered. Possible savings from reduced operating and maintenance costs would result.

It is felt that in the future water will come to be considered in a manner similar to steam, electricity, and compressed air for conservation purposes. In certain areas, water conservation is important now. In this event, a change from water to air cooled equipment would also be a conservation technique of great value.
Distribution List

Commander
U.S. Army Armament Research and Development Command
ATTN: DRDAR-LCM-S (10)
DRDAR-TSS (5)
Dover, NJ 07801

Administrator
Defense Technical Information Center
ATTN: Accessions Division (12)
Cameron Station
Alexandria, VA 22314

Director
U.S. Army Materiel Systems Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005

Director
Ballistics Research Laboratory
U.S. Army Armament Research and Development Command
ATTN: DRDAR-TSB-S
Aberdeen Proving Ground, MD 21005

Chief
Benet Weapons Laboratory, LCWSL
U.S. Army Armament Research and Development Command
ATTN: DRDAR-LCB-TL
Watervliet, NY 12189

Commander
U.S. Army Armament Materiel Readiness Command
ATTN: DRSAR-IR
DRSAR-IS
DRSAR-LEP-L
Rock Island, IL 61299
Commander
Holston Army Ammunition Plant
ATTN: SARHO
Kingsport, TN 37662

Commander
Indiana Army Ammunition Plant
ATTN: SARIN
Charlestown, IN 47111

Commander
Iowa Army Ammunition Plant
ATTN: SARIO (5)
Middletown, IA 52638

Commander
Kansas Army Ammunition Plant
ATTN: SARKA
Parsons, KS 67537

Commander
Lone Star Army Ammunition Plant
ATTN: SARLS
Texarkana, TX 57701

Commander
Longhorn Army Ammunition Plant
ATTN: SARLO
Marshall, TX 75670

Commander
Louisiana Army Ammunition Plant
ATTN: SARLA
Shreveport, LA 71102

Commander
McAlester Army Ammunition Plant
ATTN: SARMC
McAlester, OK 74501
Commander
Milan Army Ammunition Plant
ATTN: SARML
Milan, TN 38358

Commander
Mississippi Army Ammunition Plant
ATTN: SARMS
Picayune, MS 39466

Commander
Pine Bluff Arsenal
ATTN: SARPB-ETA
Pine Bluff, AR 71601

Commander
Radford Army Ammunition Plant
ATTN: SARRA
Radford, VA 24141

Commander
Scranton Army Ammunition Plant
ATTN: SARSC
Scranton, PA 18501