A LOWER BOUND FOR THE BAYES RISK FOR TESTING SEQUENTIALLY
THE SIGN OF THE DRIFT PARAMETER OF A WIENER PROCESS

By

Ashim Mallik
And
Yi-Ching Yao

Massachusetts Institute of Technology

Technical Report No. ONR 26
March 1983

Prepared under contract
N00014-75-C-0555 (NR-609-001)
for the office of naval research

Reproduction in whole or in part is permitted for
any purpose of the United States government

This document has been approved for public release
and sale; its distribution is unlimited
A LOWER BOUND FOR THE BAYES RISK FOR TESTING SEQUENTIALLY THE SIGN OF THE DRIFT PARAMETER OF A WIENER PROCESS

by

Ashim Mallik and Yi-Ching Yao
Massachusetts Institute of Technology

ABSTRACT

Let $X(t)$ be a Wiener process with drift u and variance 1 per unit of time. For testing $H: u \leq 0$ vs $H: u > 0$ with the loss function $|u|$ if the wrong decision is made and 0 otherwise, c cost of observation per unit time and u has a prior distribution which is normal with mean 0 and variance σ^2_u, we followed an idea of Bickel and Palu to obtain a lower bound for the Bayes risk and showed that this lower bound is strict as $\sigma^2_u \to \infty$ for all c.

Key Words: Sequential tests, S.P.R.T. Bayes, stopping times, lower bound, asymptotic expansion.

AMS 1980 Subject Classification: Primary 62L10; Secondary 62C10
By considering the above testing problem with the additional information of the magnitude of \(u \), Bickel and Yahav [1] obtained a lower bound for the Bayes risk for the case of \(u \) having the improper prior distribution and conjectured that the lower bound can be attained as \(c \to 0 \). In this note we assume that \(u \) has a normal prior distribution with mean 0 and variance \(\sigma^2 \). By using similar techniques as in Bickel and Yahav [1], we obtained a lower bound for the Bayes risk, then showed that this lower bound is not asymptotically achievable as \(\sigma^2 \to 0 \) for all \(c > 0 \).

2. Lower Bound For Bayes Risk: From Chernoff [3], the posterior cost of wrong decision is given by

\[
T_c = \left(c + \frac{1}{2} \right) \left[\frac{1}{2} \log \left(\frac{1}{2} \right) + \frac{1}{2} \log \left(\frac{1}{2} \right) \right] + \frac{1}{2} \log \left(\frac{1}{2} \right)
\]

where \(\alpha = \left(c + \frac{1}{2} \right) \delta(t) \). Let the posterior risk at time \(t \) be,

\[
R(c, t) = T_c + \beta t
\]

We are interested in a stopping rule \(T_0 \) for which

\[
E[R(c, T_0)] = \inf_{T \in Y} E[R(c, T)]
\]

where \(Y \) is the class of all stopping times.

Using the idea of Bickel and Yahav [1], let us consider the following problem of testing,

\[
H_0: u = \nu_0 \quad \text{vs} \quad H_1: u = \nu_0
\]

with \(|u_0| \) for cost of wrong decision and prior distribution \(P(u = \nu_0) = P(u = -\nu_0) = \frac{1}{2} \). Then the posterior cost of wrong decision is

\[
\tilde{T}_c = |u_0| \cdot P(X(t) = \nu_0 | X(t))
\]

Let

\[
R(c, t) = \tilde{T}_c + \beta t
\]

To solve the above Bayes problem, we have to find a stopping rule \(\tilde{T}^* \) such that

\[
E[R(c, \tilde{T}^*)] = \inf_{T \in Y} E[R(c, T)]
\]

From the property of S.P.R.T we have the following lemma.
Lemma 2.1: The stopping rule \(I \): Stop the first \(R(t) = a \) where \(a \) is determined by the minimization of

\[
E_0 \left((1 + \exp(2a_0))^{-1} + c_0 a_0^{-1} (1 - (1 + \exp(2a_0)))^{-1} \right)
\]

is the optimal stopping rule for the above problem.

Proof: Let

\[
x' = \left(2v \right)^{1/2} \int_0^1 E_0 \left(2v \right)^{-1/2} \exp(-v^2/2v_0^2) dv \leq E_0 (c, c_0^2)
\]

where \(a' \) is the solution of the minimization problem in Lemma 2.1. Then \(a' \) should satisfy the relation

\[
2a' = c(2a'^{-1} + 2 \ln a')
\]

We have by using (2.3), (2.4) and Lemma 2.1,

\[
\int_0^1 E_0 \left(2v \right)^{-1/2} \exp(-v^2/2v_0^2) dv
\]

\[
= \left(2^{1/2} \pi^{1/2} \right) \int_0^1 (2a'^{-1} + 2 \ln a') \frac{1}{1 + 2a'^{-1} + a'^2} \exp(-a'^2/2a_0^2) a'^{-1/2} \, da'
\]

Theorem: Let

\[
E_0 \left((1 + \exp(2a_0))^{-1} + c_0 a_0^{-1} (1 - (1 + \exp(2a_0)))^{-1} \right)
\]

From it the lemma follows.
Let
\[\gamma = 2^{-5/3} e^{2/3} \rho^{-2} \]
\[f(s) = (s-x^{-1} + 2 \ln s)^{-2/3}(1 + \ln s-x^{-1} + 2 \ln s^{-1} + x^{-2}) \]

We have

(2.5) \[\int_0^1 \frac{h(s,x^2 s^2)}{x^2 \rho} \exp(-\frac{s^{-2}}{2 \rho^2 \rho^2}) ds = 2^{1/3} \gamma^{-1} e^{2/3} \]

Lemma 2.2:
\[\int_1^{1/\gamma} f(s) \exp(-\gamma(s-x^{-1} + 2 \ln s)^{-2/3}) ds \]
\[= \int_1^{1/\gamma} f(s) ds + \gamma^{-1} \frac{1}{2} \left(-\frac{1}{3} \ln \gamma - \frac{1}{2} + \frac{1}{3} + \rho^{-2/3}(1 + \rho^{-1/3}(\gamma - 1)) \right) \]

Proof:
\[\int_1^{1/\gamma} f(s) \exp(-\gamma(s-x^{-1} + 2 \ln s)^{-2/3}) ds \]
\[= 2^{-5/3} e^{2/3} \rho^{-2} \gamma^{-1} \frac{1}{2} \left(-\frac{1}{3} \ln \gamma - \frac{1}{2} + \frac{1}{3} + \rho^{-2/3}(1 + \rho^{-1/3}(\gamma - 1)) \right) \]

\[= \gamma^{-1} \int_1^{1/\gamma} f(s) ds - \gamma^{-1} \int_1^{1/\gamma} f(s) ds - \gamma^{-1} \int_1^{1/\gamma} f(s) ds - \gamma^{-1} \left(\frac{1}{3} \ln \gamma - \frac{1}{2} + \frac{1}{3} + \rho^{-2/3}(1 + \rho^{-1/3}(\gamma - 1)) \right) \]

Proof: Let \(w = \gamma(s-x^{-1} + 2 \ln s)^{-2/3} \)
\[= \gamma^{-1} \int_1^{1/\gamma} f(s) ds - \gamma^{-1} \int_1^{1/\gamma} f(s) ds - \gamma^{-1} \left(\frac{1}{3} \ln \gamma - \frac{1}{2} + \frac{1}{3} + \rho^{-2/3}(1 + \rho^{-1/3}(\gamma - 1)) \right) \]

\[= \gamma^{-1} \int_1^{1/\gamma} f(s) ds - \gamma^{-1} \int_1^{1/\gamma} f(s) ds - \gamma^{-1} \left(\frac{1}{3} \ln \gamma - \frac{1}{2} + \frac{1}{3} + \rho^{-2/3}(1 + \rho^{-1/3}(\gamma - 1)) \right) \]

Proof: Let \(w = \gamma(s-x^{-1} + 2 \ln s)^{-2/3} \)
\[= \gamma^{-1} \int_1^{1/\gamma} f(s) ds - \gamma^{-1} \int_1^{1/\gamma} f(s) ds - \gamma^{-1} \left(\frac{1}{3} \ln \gamma - \frac{1}{2} + \frac{1}{3} + \rho^{-2/3}(1 + \rho^{-1/3}(\gamma - 1)) \right) \]
From (1.1), Lemma 2.2 and the Theorem, we have the following corollary to the Theorem.

Corollary: \(\text{for } \lambda > 0 \)

Remark: Consider the case of \(u \) having a prior distribution of Lebesgue measure. For any stopping rule \(T \),

\[
\int_{\Omega} R(u, v) \, du = \lim_{\omega \to \infty} \left(\frac{1}{2} - \int_{0}^{\infty} R(u, v) \, du \right)
\]

So the Bayes risk with respect to Lebesgue measure

\[
\inf_{\omega} \int R(u, v) \, du = \omega \cdot \frac{1}{2} \cdot \pi^{3/2}
\]

for all \(\omega > 0 \).

Here, \(\omega \cdot \pi^{3/2} \) is the lower bound derived in [11].

Therefore, we have shown that Bickel and Yahav's lower bound cannot be attained.
References

A Lower Bound For The Bayes Risk For Testing Sequentially The Sign Of The Drift Parameter Of A Wiener Process

AUTHOR:
Ashim Mallik and Yi-Ching Yao

PERFORMING ORGANIZATION NAME AND ADDRESS:
Statistics Center
Massachusetts Institute of Technology
Cambridge, MA 02139

CONTRollNg OFFICE NAME AND ADDRESS:
Office of Naval Research
Statistics and Probability Code 436
Arlington, VA 22217

REPORT DATE:
March 1983

NUMBER OF PAGES:
9

DISTRIBUTION STATEMENT (of this report):
This document has been approved for public release and sale; its distribution is unlimited

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report):

SUPPLEMENTARY NOTES:

Key Words:
Sequential tests, S.P.R.T, Bayes, stopping times, lower bound, asymptotic expansion

ADDEd
See reverse side.
Let $x(t)$ be a Wiener process with drift μ and variance σ^2 per unit of time. For testing $H_0: \mu < 0$ vs $H_1: \mu > 0$ with the loss function $|\mu|$ if the wrong decision is made and 0 otherwise, c cost of observation per unit time and μ has a prior distribution which is normal with mean 0 and variance σ^2. We followed an idea of Bickel and Yahav to obtain a lower bound for the Bayes risk and showed that this lower bound is strict as $\sigma_0 \to \infty$ for all c.
END

DATE FILMED

7 83

DT