An Analysis of Leader Locus of Control and Influence Behaviors

Avis L. Johnson, Fred Luthans
and Harry Hennessey

University of Nebraska-Lincoln
An Analysis of Leader Locus of Control and Influence Behaviors

Avis L. Johnson, Fred Luthans, and Harry Hennessey

Report Date: May, 1983

Leadership, Locus of Control, Attribution Theory, Persuasiveness, Organizational Effectiveness, Satisfaction.

This study investigated whether the leader's locus of control moderated the relationship between perceived leader influence behaviors such as persuasiveness and influence on superiors and effectiveness and subordinates' perceptions on their units' effectiveness and their satisfaction with supervision. It was found that locus of control significantly moderated the effect of supervisor influence on productivity and subordinate satisfaction with supervision.
Attribution theory in general and locus of control in particular have emerged in recent years as an important theoretical foundation and unit of analysis in the study and research of organizational behavior. Although very popular in behavioral science research as a whole, Spector (1982) recently noted that only relatively few of the well over 600 studies on locus of control are related to attitudinal, motivational, and behavioral variables in *organizational* settings.

The purpose of this study is to increase the understanding of locus of control in work settings. In particular this study investigates whether certain leader behaviors that appear to be closely related to the locus construct are, indeed, related and whether locus of control moderates these leader behaviors in accounting for subordinate perceptions of organizational effectiveness and productivity and satisfaction with supervision. It has been suggested that differentiated behavior may be the critical evidence for the validity of the internal–external (I–E) locus of control construct (Phares, 1973). Thus, this study can not only increase our knowledge and understanding of locus of control in the work place, but also provide validation evidence for the construct.

Background for Locus of Control

Derived from attribution theory (Heider, 1958; Kelley, 1967, 1973; Kelley & Michela, 1980), locus of control is both a generalized, fairly stable expectancy, as well as a more specific expectancy arising from a particular situation. It is developed by the frequency of pervious reward in a specific situation, as well as by the frequency of similar rewards in other situations (Phares, 1973). According to Rotter (1966), when a person expects or perceives reinforcements to be contingent on one's own behavior or relatively
permanent characteristics, an internal locus of control is demonstrated. Conversely, when such reinforcements are perceived or expected to be the result of chance, powerful others, or the complexity of the situation, the locus of control is external.

Since locus of control is portrayed as applicable across all areas of life, its behavioral implications should become important to work settings. Internals, believing that they control reinforcements through their behavior, should behave in ways to control the situation, including other persons (i.e., subordinates) in the situation. Externals, by definition, should be less active in trying to control their environment. Thus, it could be expected that subordinates' rating of leader behavior would differ for internal and external supervisors.

In previous organizational behavior research using the locus of control construct, the focus has been on subordinate locus of control as a moderator of the relation between perceived leader style and subordinate satisfaction. For example, Runyon (1973) and Mitchell, Smyser, and Weed (1973) studied the relationship between directive and participative leader style, moderated by subordinate locus of control, and satisfaction with the leader. Internals were more satisfied with a participatory style and also with supervision regardless of style. Consideration and initiating structure, rated by subordinates through the Leader Behavior Description Questionnaire-XII have also been studied, but the results have been inconclusive (Abdel-Halim, 1981; Evans, 1974).

Although the finding that subordinates, locus of control may affect their perception of leader style, these studies have limitations in that they do not test whether internality or externality is related to one's own behavior nor to behavior that is conceptually more closely related to the control aspect of
the locus construct. An exception to the above is Goodstadt and Hjelle's (1973) laboratory simulation of a factory setting in which college students acted as work group supervisors. Work groups were composed of confederates who caused problems for these supervisors. Rated on the supervisory behavior they used, internal supervisors tended to use persuasion more. This provides some indication that persuasive behavior is a construct relevant variable.

Further investigation is needed to help determine whether persuasiveness is more germane to the locus of control construct than leadership behaviors such as participative-directive and consideration-initiating structure styles. In this study, four influence or control behaviors were of particular interest: (1) persuasiveness (uses persuasion and argument effectively), (2) influence with superiors (maintains cordial relations with superiors, has influence with them), (3) influence on overall effectiveness, and (4) influence on productivity. It was expected that supervisors higher in internality would be perceived by their subordinates as exhibiting more such controlling behaviors. Influence attempts are one means of attempting to exert control. Therefore, subordinates should rate internal supervisors higher on these four influence variables.

A second area of concern was whether locus moderates the effect of leader influence behavior on subordinate satisfaction with supervision and on subordinate perceptions of work unit overall effectiveness and productivity. Previous research has not focused on the effect of a perceived leader behavior x leader locus of control interaction on subordinate satisfaction with supervision. Instead, it has concentrated on the moderating effect of subordinate locus of control on the relation of management style and subordinate satisfaction (Andrisani & Nestel, 1976; Dailey, 1978; Gammill & Heisler, 1972; Lester & Gens, 1978; Mitchell et al., 1975). The supervision
facet of satisfaction also has not received sufficient study (Vecchio, 1981).

Concerning the performance variables, there is some research that indicates that work units of internal supervisors would have higher overall effectiveness and productivity ratings. According to previous research, where rewards are contingent on performance (Evans, 1974; Mitchell et al., 1975), are valued (Broedling, 1975), and where the supervisor has enough freedom to exert control, one could expect the supervisor to exert enough control or influence behavior to increase the level of overall effectiveness and productivity. Actual increases, however, may or may not occur. Regardless, if supervisors exert control or influence behavior, it may affect subordinate perceptions so that they give higher ratings on effectiveness and productivity to work units supervised by internals. Although there is a void of research on the effect of leader behavior x locus of control on work unit performance, several studies exist that support the idea that internals individually put forth more effort and perform better than do externals (Andrisani & Nestel, 1976; Heisler, 1974; Majumder, MacDonald, & Greever, 1977). Therefore, there might be a tendency for internal supervisors to have work units which would be rated higher by subordinates on overall effectiveness and productivity.

In sum, then, it is hypothesized that locus of control will account for a significant amount of the variance in persuasiveness and other influence behavior of supervisors, with internals demonstrating more influence behavior than externals. The second hypothesis is that supervisor locus of control may moderate the relation between supervisor influence behaviors and subordinate satisfaction with supervision as well as subordinate ratings of work unit overall effectiveness and productivity.
Method

Sample

In contrast to the use of college students as subjects in much of the locus of control research, subjects participating in this study consisted of 89 supervisors and their 345 subordinates from the following types of actual organizations: manufacturing (33 percent); service (27 percent); government (12 percent); retail (4 percent) and others (24 percent). The external environment was rated by the supervisors as about what most organizations face: "some instability and uncertainty" (53 percent of respondents) or slightly more stable and certain (25 percent). The technology level was rated as mostly medium ("somewhat sophisticated, requires skilled work", 41 percent), with some rating it's at a level between medium and high (30 percent) or high technology ("heavy commitment to research and development and employs a great number of professionals", 23 percent).

The supervisors in this sample ranged in age from 23 to 62, with a median age of 37. Subordinates' ages had a slightly wider range, from 16 to 67, with a median age of 34. As to educational level, 71 percent of the supervisors completed a college degree or graduate work/degree in contrast to 36 percent of the subordinates. Supervisors were predominantly male, 67 percent, while slightly more subordinates were female (53 percent) than male (47 percent). Forty-eight percent of the subordinates had worked one to three years for the supervisor whose behavior they rated, 14 percent for four to five years, 12 percent for six to fifteen years, 1 percent for more than 15 years, and 25 percent for less than one year. Supervisors had the following position tenure: 44 percent, 1-3 years; 18 percent, 4-5 years; 23 percent, 6-15 years; 9 percent, more than 15 years; and 6 percent for less than one year. Thus, 75 percent of the subordinates had worked for more than one year for the
supervisor they rated and 94 percent of the supervisors had more than one year of experience in the position they held when being rated. This represents a fairly stable reference for rating behaviors.

Measures

A number of measures were used in the study. Supervisor data were gathered on responses to Rotter's I-E scale (1966) and to the Marlowe-Crowne Social Desirability scale (Crowne & Marlowe, 1964). Subordinate data were gathered on responses rating leader influence behaviors, satisfaction with supervision, and overall effectiveness and productivity. Thus, multimethods (with multiple rater sources treated as multiple methods, see Campbell & Fiske, 1959), were used to determine whether locus of control was exhibited through behavior.

The Rotter Internal-External scale (1966) was used to assess supervisor locus of control. This scale has been used in the majority of studies. It is a broad gauge instrument intended to attain low degrees of prediction across a wide range of potential situations, rather than high prediction in specific situations (Rotter, 1975). Because this study investigated generalized behavior, the Rotter I-E measure was felt to be suitable. This measure was used as a continuum with internality and externality at the extremes. Subjects were not dichotomized into internal and external groups through the use of arbitrary cut-off points on the scale. This is in harmony with Rotter's (1975) use of the construct:

In neither the case of situational differences nor individual differences were we hypothesizing a typology or a bimodal distribution. Rather, we assumed that with internal-external control something approximating a normal curve described the populations that we are interested in (p. 57).
Reliability of the I-E scale for this sample was moderately high with a coefficient alpha of .73.

Following the recommendation of Ganster, Hennessey and Luthans (1983), the Marlowe-Crowne Social Desirability Scale (Crowne & Marlow, 1964) was administered to both supervisors and subordinates in order to ascertain whether social desirability (SD) response bias might better explain the results than did locus of control. This was a precaution primarily for subordinate responses, because Rotter's I-E scale was designed with a forced-choice format to reduce correlations with the Marlowe-Crowne (Rotter, 1975). Reliability of the SD scale was sufficiently high, with coefficient alpha for subordinate data at .83 and for supervisors at .81. Because all correlations of SD with any other variable in this study were either nonsignificant or less than .20 (See Table 1), social desirability was not deemed to be a problem and thus was not further utilized in this study.

The entire Leader Behavior Description Questionnaire-XII (Stogdill, 1963) was administered to subordinates. The entire LBDQ-XII was administered to heed Evans' (1974) caution that responses to subscales administered separately may not be psychometrically equivalent to responses made when the entire instrument is administered. Responses to two of the subscales, persuasiveness and influence with superiors, were used for this study. The alphas were .86 and .76, respectively. Since the primary concern in this study was the match between leader behavior and leader locus of control, scores were averaged across subordinates, a procedure thought to have the effect of obscuring the effects of personality differences among subordinates on the perception of leadership behavior (Durand & Nord, 1976). In addition to the LBDQ, subordinates were asked to respond to how much influence they felt their supervisor had on the overall effectiveness and productivity of their unit.
These questions concerning supervisor influence supplemented the Mott scales (1972) and had alphas of .87 and .85 respectively.

The criterion variables consisted of the satisfaction with supervision subscale from the Job Descriptive Index (Smith, Kendall, & Hulin, 1969), with an alpha of .75, and the two performance subscales from Mott's (1972) organizational effectiveness questionnaire. The latter had alphas of .74 for overall effectiveness and .71 for productivity.

Analysis Procedures

The data collected from the above measures were used for correlational and simple and hierarchical multiple regression analyses to investigate the relationship between supervisory locus of control and leader influence behavior, as perceived by subordinates. By utilizing the supervisors' rating of their own locus in relation to subordinates' rating of leader influence behavior, the problem of method variance, which potentially exists in studies utilizing subordinate locus as a moderator of subordinate perceived leader behavior, was avoided.

Correlations were computed for independent and dependent variables. In separate regressions, the four leader influence behaviors were then regressed on locus of control to determine the relationship. Subsequently, in a series of three-stage hierarchical multiple regressions, each of the four dependent variables was regressed on each leader behavior moderated by locus of control.

For the regressions, the group means were used for subordinate data. The average leadership style (ALS), which assumes homogeneity of leader behaviors, is congruent with the generalized locus of control construct which assumes that supervisors will/will not generally exhibit behavior intended to be controlled. The group level of analysis was deemed most appropriate to the nature of this study. Were specific predictions of interest here, then an
analysis of dyadic leader-subordinate relationships would be more appropriate (Vecchio, 1982; Graen & Schiemann, 1978; Dansereau, Cashman, and Graen, 1973). Group means were also intended to control for differences in work group size.

Results

It was first determined whether locus of control (LOC) related to leader influence behavior, as perceived by subordinates. The expectation was that if locus of control governs behavior and discriminates between internals and externals, this difference would be confirmed in subordinate perceptions and ratings of leader behavior.

Correlations of LOC with leader behaviors shown in Table 1 indicates that leaders who were self-rated as internals were also rated by subordinates as significantly higher in persuasiveness, influence on superiors, and influence on overall effectiveness. Although not statistically significant, the correlation \((-0.10, p < .09)\) was in the direction of internality for influence on productivity. The LBDQ measured variables, persuasiveness and influence on superiors, are highly correlated with each other, but do correlate higher with internality than do the variables for performance influence.

Locus of control is most closely related to persuasiveness, accounting for \(0.0853 (p < .001)\) of the variance. Table 2 presents the results of the regressions of the four influence variables on LOC. As shown, LOC accounts for nearly as much of the variance in influence with superiors \((0.0785, p < .001)\) as with persuasiveness, but is not significant for either influence on
overall effectiveness nor productivity.

Insert Table 3 about here

Table 3 presents the results of hierarchical multiple regressions of the criterion variables on the four influence behaviors. As shown, LOC had a moderator effect in only one case, on the relationship of supervisor influence on productivity and subordinate satisfaction with supervision, accounting for an additional \(0.0385 (p < .05)\) of the variance in this facet of satisfaction. LOC also had a significant main effect in explaining overall effectiveness when the independent variables of influence on overall effectiveness and influence on productivity were in the equations. For neither of the LBDQ measures of persuasiveness nor influence with superiors did LOC have a moderator effect, nor did it have a significant main effect.

Discussion and Conclusions

In this study, as in previous research, locus of control was found to account for only a small proportion of the variance in the leader influence behaviors. Phares (1973) previously addressed the criticism that locus accounts for so little variance by responding that even though not a great deal of variance is explained, it consistently does so across studies and that this consistency is evidence of the robustness of the locus of control construct. Since locus of control is only one dimension of cognitive complexity, the small proportion of variance accounted for may be as high as can be expected. To account for more of the variance, according to Phares, we would need more information about the situation and about reinforcement in the situation. Thus, at least from a consistency criterion, this study provides additional support for the robustness of the locus of control construct.
The major concern of the study was whether the leader's locus of control accounted for a significant amount of the variance in construct related leader influence variables as perceived by the subordinates. Of the four examined, locus was more important in explaining persuasiveness than in explaining influence on superiors, overall effectiveness or productivity. Extending the previous laboratory study by Goodstadt and Hjelle (1973) to actual work settings, this study lends support to their research, which indicated that internal supervisors tended to use persuasion more than did externals. Furthermore, supervisor persuasiveness, as an independent variable, accounted for .41 (p < .001) of the variance in subordinate satisfaction with supervision. To understand the complexity of these relationships, further analysis (e.g. path analysis) is suggested for the future.

Although this study adds to the knowledge about locus of control and the supervision facet of satisfaction, other factors cannot be ruled out as possible determinants (e.g., the I-E of subordinates). Further research could address the issue of a subordinate-supervisor I-E match. Situation complexity has also been mentioned as a neglected area of research on locus of control (Rotter, 1975; Spector, 1982).

One important finding in this study was that supervisor locus of control seems to serve as a moderator of the relation between subordinates' perceptions of supervisor influence on productivity and the criterion variable, satisfaction with supervision. This provides some support for the notion that supervisors' locus of control may be congruent with their behavior and thus helps to validate the construct. Data now are needed, such as other indicators of influence on productivity, archival or observational, to further verify the occurrence of the leader influence behavior.
In addition, the significance of this interaction supports previous speculation and research that indicates internals hold expectancies that effort leads to rewards or reinforcements. Spector (1982) notes that internals hold expectancies that effort will lead to good performance and good performance to reward. Given this conclusion, one could expect internals to behave to influence productivity. According to the construct, one could expect the occurrence of this influencing behavior only in situations where rewards are contingent on performance and where the supervisors value the rewards. A weakness of most locus of control studies, including this one, is that no identification was made of rewards valued by the supervisors. Thus, although one could speculate that subordinate satisfaction with supervision is a reinforcement to the supervisor for behaving to influence productivity, the results do not really indicate this to be the case. If the dependent variables in this study are perceived by all supervisors to be salient rewards, one would not expect differentiation of behavior of internals and externals. Of course, other unidentified rewards might still underlie differentiated behavior. Regardless, this study does provide additional support for the locus of control construct that internals and externals demonstrate different degrees of control behavior. It also points up the need for research on the part that the situation plays in research on locus of control.
References

Stogdill, R.M. *Manual for the Leader Behavior Description Questionnaire, Form XII*. Columbus: Ohio State University, 1963.

TABLE 1

Descriptive Statistics and Correlations Among Variables

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Locus of Control(^a)</td>
<td>7.06</td>
<td>3.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Persuasiveness</td>
<td>3.55</td>
<td>0.61</td>
<td>-0.21***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Infl. on Superiors</td>
<td>3.69</td>
<td>0.51</td>
<td>-0.22***</td>
<td>0.63***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Infl. on Overall Effectiveness</td>
<td>3.42</td>
<td>0.75</td>
<td>-0.12*</td>
<td>0.51***</td>
<td>0.44***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Infl. on Productivity</td>
<td>3.40</td>
<td>0.85</td>
<td>-0.10</td>
<td>0.44***</td>
<td>0.38***</td>
<td>0.91***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Overall Effectiveness</td>
<td>3.88</td>
<td>0.50</td>
<td>-0.11*</td>
<td>0.21***</td>
<td>0.24***</td>
<td>0.27***</td>
<td>0.27***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Productivity</td>
<td>3.96</td>
<td>0.57</td>
<td>-0.09</td>
<td>0.09</td>
<td>0.15**</td>
<td>0.14*</td>
<td>0.16**</td>
<td>0.77***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Satis. with Supervis.</td>
<td>37.45</td>
<td>9.70</td>
<td>-0.13*</td>
<td>0.49***</td>
<td>0.36***</td>
<td>0.39***</td>
<td>0.37***</td>
<td>0.29***</td>
<td>0.16***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Superv. Soc. Desir.</td>
<td>19.45</td>
<td>5.53</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Sub. Soc. Desir.</td>
<td>19.01</td>
<td>5.97</td>
<td>0.05</td>
<td>0.08</td>
<td>0.06</td>
<td>0.08</td>
<td>0.05</td>
<td>0.01</td>
<td>0.03</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Lower or negative correlations are indicative of internal locus of control; more positive indicate external locus.

*\(p<0.05\)
**\(p<0.01\)
***\(p<0.001\)

\(N=328\), subordinates
<table>
<thead>
<tr>
<th>Dependent Variables: Leader Influence Behavior</th>
<th>Independent Variable: Supervisor Locus of Control</th>
<th>R^2</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Persuasiveness</td>
<td></td>
<td>.0853</td>
<td>7.742</td>
<td>1,83</td>
</tr>
<tr>
<td>2. Influence on Superiors</td>
<td></td>
<td>.0785</td>
<td>7.073</td>
<td>1,83</td>
</tr>
<tr>
<td>3. Influence on Overall Effectiveness</td>
<td></td>
<td>.0296</td>
<td>2.443</td>
<td>1,80</td>
</tr>
<tr>
<td>4. Influence on Productivity</td>
<td></td>
<td>.0315</td>
<td>2.599</td>
<td>1,80</td>
</tr>
</tbody>
</table>
TABLE 3

Hierarchical Multiple Regressions: Supervisor Locus of Control as a Moderator of Supervisor Influence Behavior as Perceived by Subordinates

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Overall Effectiveness</th>
<th>Productivity</th>
<th>Satis. w. Supervision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Persuasiveness</td>
<td>.12***</td>
<td>.04*</td>
<td>.41***</td>
</tr>
<tr>
<td>2. Locus of Control</td>
<td>.03</td>
<td>.02</td>
<td>.00</td>
</tr>
<tr>
<td>3. Interaction</td>
<td>.01</td>
<td>.00</td>
<td>.02</td>
</tr>
<tr>
<td>1. Influence on Superiors</td>
<td>.09***</td>
<td>.05*</td>
<td>.21***</td>
</tr>
<tr>
<td>2. Locus of Control</td>
<td>.04</td>
<td>.02</td>
<td>.00</td>
</tr>
<tr>
<td>3. Interaction</td>
<td>.00</td>
<td>.00</td>
<td>.01</td>
</tr>
<tr>
<td>1. Infl. on Overall Effect.</td>
<td>.10***</td>
<td>.01</td>
<td>.28***</td>
</tr>
<tr>
<td>2. Locus of Control</td>
<td>.05*</td>
<td>.04</td>
<td>.01</td>
</tr>
<tr>
<td>3. Interaction</td>
<td>.00</td>
<td>.00</td>
<td>.03</td>
</tr>
<tr>
<td>1. Influence on Productivity</td>
<td>.10***</td>
<td>.01</td>
<td>.24***</td>
</tr>
<tr>
<td>2. Locus of Control</td>
<td>.05*</td>
<td>.04</td>
<td>.01</td>
</tr>
<tr>
<td>3. Interaction</td>
<td>.00</td>
<td>.00</td>
<td>.04*</td>
</tr>
</tbody>
</table>

*p<.05

**p<.01

***p<.001

N=85, utilizing group means for subordinate responses.
LIST 1

MANDATORY

Defense Technical Information Center (12 copies)
ATTN: DTIC DDA-2
Selection and Preliminary Cataloging Section
Cameron Station
Alexandria, VA 22314

Library of Congress
Science and Technology Division
Washington, DC 20540

Office of Naval Research (3 copies)
Code 452
800 N. Quincy Street
Arlington, VA 22217

Naval Research Laboratory (6 copies)
Code 2627
Washington, DC 20375

Office of Naval Research
Director, Technology Programs
Code 200
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research
Code 450
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research
Code 458
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research
Code 455
800 N. Quincy Street
Arlington, VA 22217

Dr. James Lester
ONR Boston
495 Summer Street
Boston, MA 02210

LIST 2

ONR FIELD

ONR Western Regional Office
1030 E. Green Street
Pasadena, CA 91106

Psychologist
ONR Western Regional Office
1030 E. Green Street
Pasadena, CA 91106

ONR Regional Office
536 S. Clark Street
Chicago, IL 60605

Psychologist
ONR Regional Office
536 S. Clark Street
Chicago, IL 60605

ONR Eastern/Central Regional Office
Bldg. 114, Section D
666 Summer Street
Boston, MA 02210
Deputy Chief of Naval Operations (Manpower, Personnel, and Training)
Head, Research, Development, and Studies Branch (Op-115)
1812 Arlington Annex
Washington, DC 20350

Director
Civilian Personnel Division (OP-14)
Department of the Navy
1803 Arlington Annex
Washington, DC 20350

Deputy Chief of Naval Operations (Manpower, Personnel, and Training)
Director, Human Resource Management Plans and Policy Branch (Op-150)
Department of the Navy
Washington, DC 20350

Deputy Chief of Naval Operations (Manpower, Personnel, and Training)
Director, Human Resource Management Plans and Policy Branch (Op-150)
Department of the Navy
Washington, DC 20350

Chief of Naval Operations
Head, Manpower, Personnel, Training and Reserves Team (Op-964D)
The Pentagon, 4A478
Washington, DC 20350

Chief of Naval Operations
Assistant, Personnel Logistics Planning (Op-987H)
The Pentagon, 5D772
Washington, DC 20350

MFRDC

Commanding Officer
Naval Personnel R&D Center
San Diego, CA 92152

Naval Personnel R&D Center
Washington Liaison Office
Building 200, 2N
Washington Navy Yard
Washington, DC 20374

Naval Material Command
Management Training Center
NAVMAT 09432
Jefferson Plaza, Bldg #2, Rm 150
1421 Jefferson Davis Highway
Arlington, VA 20360

Naval Material Command
NAVMAT-00K J.W. Tweeddale
Washington, DC 20360

Naval Material Command
NAVMAT-00KS
Washington, DC 20360

Naval Material Command (MAT-03)
Crystal Plaza #5 J.E. Colvard
Room 236
2211 Jefferson Davis Highway
Arlington, VA 20360

Chief of Naval Operations
Assistant, Personnel Logistics Planning (Op-987H)
The Pentagon, 5D772
Washington, DC 20350

Naval Personnel R&D Center
San Diego, CA 92152
Dr. Robert Penn (1 copy)
Ed Aiken (1 copy)
Commanding Officer
Naval Health Research Center
San Diego, CA 92152

CDR William S. Maynard
Psychology Department
Naval Regional Medical Center
San Diego, CA 92134

Naval Submarine Medical Research Laboratory
Naval Submarine Base
New London, Box 900
Groton, CT 06349

Director, Medical Service Corps
Bureau of Medicine and Surgery
Code 23
Department of the Navy
Washington, DC 20372

Naval Aerospace Medical Research Lab
Naval Air Station
Pensacola, FL 32508

Program Manager for Human Performance (code 44)
Naval Medical R&D Command
National Naval Medical Center
Bethesda, MD 20014

Naval Postgraduate School
ATTN: Dr. Richard S. Elster
Department of Administrative Sciences
Monterey, CA 93940

Naval Postgraduate School
ATTN: Professor John Sanger
Operations Research and Administrative Science
Monterey, CA 93940

Superintendent
Naval Postgraduate School
Code 1424
Monterey, CA 93940

Naval Postgraduate School
ATTN: Dr. James Arima
Code 54-Aa
Monterey, CA 93940

Naval Postgraduate School
ATTN: Dr. Richard A. McGonigal
Code 54
Monterey, CA 93940

U.S. Naval Academy
ATTN: CDR J. M. McGrath
Department of Leadership and Law
Annapolis, MD 21402

Professor Carson K. Eoyang
Naval Postgraduate School, Code 54EG
Department of Administration Sciences
Monterey, CA 93940

Superintendent
ATTN: Director of Research
Naval Academy, U.S.
Annapolis, MD 21402
List 7 (Continued)

Officer in Charge
Human Resource Management Detachment
Naval Air Station
Alameda, CA 94591

Officer in Charge
Human Resource Management Detachment
Naval Submarine Base New London
P.O. Box 81
Groton, CT 06340

Officer in Charge
Human Resource Management Division
Naval Air Station
Mayport, FL 32228

Commanding Officer
Human Resource Management Center
Pearl Harbor, HI 96860

Commander in Chief
Human Resource Management Division
U.S. Pacific Fleet
Pearl Harbor, HI 96860

Officer in Charge
Human Resource Management Detachment
Naval Base
Charleston, SC 29408

Commanding Officer
Human Resource Management School
Naval Air Station Memphis
Millington, TN 38054

Human Resource Management School
Naval Air Station Memphis (96)
Millington, TN 38054

Commanding Officer
Human Resource Management Center
1300 Wilson Boulevard
Arlington, VA 22209

Commanding Officer
Human Resource Management Center
5621-23 Tidewater Drive
Norfolk, VA 23511

Commander in Chief
Human Resource Management Division
U.S. Atlantic Fleet
Norfolk, VA 23511

Officer in Charge
Human Resource Management Detachment
Naval Air Station Whidbey Island
Oak Harbor, WA 98278

Commanding Officer
Human Resource Management Center
Box 23
FPO New York 09510

Commander in Chief
Human Resource Management Division
U.S. Naval Force Europe
FPO New York 09510

Officer in Charge
Human Resource Management Detachment
Box 60
FPO San Francisco 96651

Officer in Charge
Human Resource Management Detachment
COMNAVFORJAPAN
FPO Seattle 98762
LIST 8
NAVY MISCELLANEOUS

Naval Military Personnel Command
HRM Department (NMPC-6)
Washington, DC 20350

(2 copies)

Naval Training Analysis
and Evaluation Group
Orlando, FL 32813

Commanding Officer
ATTN: TIC, Bldg. 2068
Naval Training Equipment Center
Orlando, FL 32813

Chief of Naval Education
and Training (N-5)
Director, Research Development,
Test and Evaluation
Naval Air Station
Pensacola, FL 32508

Chief of Naval Technical Training
ATTN: Dr. Norman Kerr, Code 017
NAS Memphis (75)
Millington, TN 38054

Navy Recruiting Command
Head, Research and Analysis Branch
Code 434, Room 8001
801 North Randolph Street
Arlington, VA 22203

Commanding Officer
USS Carl Vinson (CVN-70)
Newport News Shipbuilding &
Drydock Company
Newport News, VA 23607

Headquarters, U.S. Marine Corps
Code MPR-20
Washington, DC 20380

Headquarters, U.S. Marine Corps
ATTN: Dr. A. L. Siafko,
Code RD-1
Washington, DC 20380

Education Advisor
Education Center (E031)
MCDEC
Quantico, VA 22134

Commanding Officer
Education Center (E031)
MCDEC
Quantico, VA 22134

Commanding Officer
U.S. Marine Corps
Command and Staff College
Quantico, VA 22134
LIST 13
AIR FORCE

Air University Library/LSE 76-443
Maxwell AFB, AL 36112

COL John W. Williams, Jr.
Head, Department of Behavioral Science and Leadership
U.S. Air Force Academy, CO 80840

MAJ Robert Gregory
USAFA/DFBL
U.S. Air Force Academy, CO 80840

AFOSR/NL (Dr. Fregly)
Building 410
Bolling AFB
Washington, DC 20332

LTCOL Don L. Presar
Department of the Air Force
AF/MFXHH
Pentagon
Washington, DC 20330

Technical Director
AFHRL/HO(T)
Brooks AFB
San Antonio, TX 78235

AFMPC/MPCYFR
Randolph AFB, TX 78150

LIST 12
ARMY

Headquarters, FORSCOM
ATTN: AFPR-HR
Ft. McPherson, GA 30330

Army Research Institute
Field Unit - Leavenworth
P.O. Box 3122
Fort Leavenworth, KS 66027

Technical Director
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Director
Systems Research Laboratory
5001 Eisenhower Avenue
Alexandria, VA 22333

Director
Army Research Institute
Training Research Laboratory
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. T. O. Jacobs
Code PERI-IM
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

COL Howard Prince
Head, Department of Behavior Science and Leadership
U.S. Military Academy, New York 10996