HIGH EFFICIENCY PICOSECOND PULSE GENERATION IN THE 675-930 NM REGION FROM (U) CALIFORNIA UNIV SAN DIEGO LA JOLLA DEPT OF CHEMISTRY P BADO ET AL. APR 83 TR-13
Title: High efficiency picosecond pulse generation in the 675-930 nm region from a dye laser synchronously pumped by an Argon-ion laser

Authors:
- Philippe Bado, Charles Dupuy and Kent R. Wilson
- Richard Boggy, John Bowen and Sicco Westra

Performing Organization:
Department of Chemistry, University of California, San Diego, La Jolla, CA 92093

Report Date: April, 1983

Number of Pages: 5

DISTRIBUTION STATEMENT:
This document has been approved for public release and sale; its distribution is unlimited.

ABSTRACT:
Picosecond pulses tunable from 675 to 930 nm have been obtained from a dye laser synchronously pumped at 514.5 nm by a mode-locked Argon-ion laser. Peak energy conversion efficiencies between 10% and 29% are observed with pulse durations between 1.7 ps and 16 ps as measured by autocorrelation.
HIGH EFFICIENCY PICOSECOND PULSE GENERATION
IN THE 675 - 930 NM REGION FROM A DYE LASER
SYNCHRONOUSLY PUMPED BY AN ARGON-ION LASER

BY
Philippe Bado, Charles Dupuy and Kent R. Wilson
Department of Chemistry
University of California San Diego
La Jolla, CA 92039

AND
Richard Boggy, John Bowen and Sicco Westra
Spectra-Physics, Inc.
Mountain View, CA 94042

Prepared for Publication
in
Optics Communications

Reproduction in whole or in part is permitted for any purposes of the United States
Government.

This document has been approved for public release and sale; its distribution is unlimited.
HIGH EFFICIENCY PICOSECOND PULSE GENERATION IN THE 675 - 930 NM REGION FROM A DYE LASER SYNCHRONOUSLY PUMPED BY AN ARGON-ION LASER

Philippe Bado, Charles Dupuy and Kent R. Wilson
Départment of Chemistry, University of California San Diego, La Jolla, California 92093.

Richard Boggy, John Bowen and Sicco Westra
Spectra-Physics, Inc., Mountain View, California 94042

ABSTRACT

Picosecond pulses tunable from 675 to 930 nm have been obtained from a dye-laser synchronously pumped at 514.5 nm by a mode-locked Argon-ion laser. Peak energy conversion efficiencies between 10% and 29% are observed with pulse durations between 1.7 ps and 16 ps as measured by autocorrelation.

Submitted to Optics Communications
HIGH EFFICIENCY PICOSECOND PULSE GENERATION IN THE 675 - 930 NM REGION FROM A DYE LASER SYNCHRONOUSLY PUMPED BY AN ARGON-ION LASER

Philippe Bado, Charles Dupuy and Kent R. Wilson
Department of Chemistry, University of California San Diego, La Jolla, California 92093.

Richard Boggy, John Bowen and Sicco Westra
Spectra-Physics, Inc., Mountain View, California 94042

INTRODUCTION

In this letter we describe the generation of wavelength-tunable picosecond pulses in the far-red to near-infrared by synchronously pumping a dye laser with the 514.5 nm line of a mode-locked Argon-ion laser. Near IR picosecond pulse generation by synch-pumping has been reported earlier,1 using the less intense 647.1 nm line of a Krypton laser. An alternative technique for obtaining infrared laser emission with an Argon-ion laser is to cascade two dye-lasers, so that the output of the first dye laser (typically in the orange-red) is used to pump the second dye-laser.2,3 This technique however suffers from low overall efficiency and stability. Generation of picosecond pulses at even longer wavelengths is possible by pumping at 1.06 μm with the fundamental of a Nd laser, as shown recently by Seilmeier et al.4

Several new commercially available dyes5 can now provide deep red to near-infrared dye laser operation with green pump light. Figure 1 shows the absorption spectrum, measured with a Hewlett Packard model 8450 parallel-detector spectrometer, of four such dyes: Pyridine-1 (also designated LDS-698), Styryl-8 (LDS-751), Styryl-9 (LDS-820) and LDS-821 (a dye very similar to Styryl-9 but with a longer lifetime under photochemical excitation). Earlier reports6,7 indicate that these new compounds lase extremely efficiently in the deep red to the near-
infrared when continuously pumped in the green, with efficiency as high as 25% reported\(^6\) for Pyridine-1.

We report here the characterization of the efficient synch-pumped operation of these dyes using standard commercial equipment.

EXPERIMENT AND RESULTS

The pump laser in this experiment is an Argon-ion laser, Spectra-Physics (SP) model 171, mode-locked at 514.5 nm to produce 150 ps (FWHM) pulses at \(^8\)0 MHz (output power 0.8 watt) or \(^\sim\)240 MHz (output power 1.8 watts). The dye laser (SP model 375) uses a tuning wedge or a one (or two)-plate birefringent filter. Internal reflectors and output coupler mirrors are matched to the spectral band of interest for maximum power or shortest pulse as shown in Table 1.

Alignment of the dye-laser does not present any major problems. Dye fluorescence up to 850 nm can still be seen with the naked eye in a dark room. Above 850 nm alignment of the cavity requires the use of an IR phosphor coated card.\(^8\)

Table 1. Dye-laser operating parameters.

<table>
<thead>
<tr>
<th>Dye</th>
<th>Concentration (mmole/liter)</th>
<th>Optics</th>
<th>Range (nm)</th>
<th>Output Power (mW)</th>
<th>Pulse Width (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyridine-1</td>
<td>1.8</td>
<td>G3845-008 G0058-006</td>
<td>694-773</td>
<td>145**</td>
<td>10.5</td>
</tr>
<tr>
<td>(LDS-698)</td>
<td></td>
<td>G3845-008 G0058-006</td>
<td>673-773</td>
<td>343</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3845-008 G0058-006</td>
<td>***</td>
<td>125**</td>
<td>1.7</td>
</tr>
<tr>
<td>Styryl-8</td>
<td>2.0</td>
<td>G3845-008 G0058-905</td>
<td>700-812</td>
<td>190</td>
<td>12.0</td>
</tr>
<tr>
<td>(LDS-751)</td>
<td></td>
<td>G3845-008 G0058-905</td>
<td>700-812</td>
<td>190</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G0058-905</td>
<td>700-812</td>
<td>190</td>
<td>12.0</td>
</tr>
<tr>
<td>Styryl-9</td>
<td>1.85</td>
<td>G3845-011 G0058-905</td>
<td>775-840</td>
<td>180*</td>
<td>10.5</td>
</tr>
<tr>
<td>(LDS-820)</td>
<td></td>
<td>G3845-010 G0058-S9-B</td>
<td>790-913</td>
<td>180*</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3845-011 G0058-905</td>
<td>781-840</td>
<td>740</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3845-010 G0058-905</td>
<td>792-880</td>
<td>740</td>
<td>16.0</td>
</tr>
<tr>
<td>LDS-821</td>
<td>1.85</td>
<td>G3845-011 G0058-905</td>
<td>785-840</td>
<td>630</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3845-010 G0058-905</td>
<td>790-931</td>
<td>630</td>
<td>16.0</td>
</tr>
</tbody>
</table>

* Operation at 80 MHz with a one-plate birefringent filter.
** Operation at 80 MHz with a two-plate birefringent filter.
***Recorded at peak power.

All others at 240 MHz with a tuning wedge.

The pulse widths are measured with an autocorrelator (SP model 409) with angle phase-matched KDP. They are always shorter when operating at 80 MHz. The wavelengths are measured using a calibrated 1/4 m grating spectrometer with 0.5 nm resolution, the power is recorded with a Scientech model 30-0001 laser power meter.

The dyes dissolve easily in dimethyl sulfoxide (DMSO) and propylene carbonate (PC), but have a limited solubility in ethylene glycol (EG), the standard solvent for jet-stream dye laser operation. Due to health hazards\(^9\) associated with DMSO/dye solutions, we avoided their use. A mixture of 15% PC (Aldrich, 99%) and 85% EG (Mallinkrodt, analytical reagent) was found to support the requisite concentration of dye without precipitation. This solvent mixture,
when maintained at room temperature, possesses sufficient viscosity for a stable jet stream.10

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{fig2}
\caption{Output power versus wavelength for mode-locked operation (240 MHz) with 1.8 W pump power and wedge tuning.}
\end{figure}

In Fig. 2 the average mode-locked output power is plotted as a function of the lasing wavelength. For 1.8 W of pump power at 240 MHz we observe an average output power peaking at 520 mW for both Styryl-9 and LDS-821. The maximum efficiency for Pyridine-1 is only 19% when sync-pumped, which is less than the 25% reported6 when pumped CW all-lines. This is probably due to the fact that Pyridine-1 absorbs more in the blue than in the green, as shown in Fig. 1.

Typically, the average power decreases by a factor of 2.5 when operating at 80 MHz with 0.8 W pump power instead of at 240 MHz and 1.8 W. In general, power goes up by \textasciitilde 20\% and temporal pulse width increases when using the birefringent filter (one or two plates) instead of the tuning wedge. The concentration has been optimized for maximum output power, but concentration changes of \pm 10\% do not materially affect the efficiency.

Pyridine-1 and LDS-821 show no noticeable photochemical degradation after 550 watts-hours. The Styryl-9 power output dropped by \textasciitilde 15\% after 100 watts-hours. Degradation measurements were not made for Styryl-8.

CONCLUSION

In summary, we have demonstrated the generation of picosecond pulses in the 675-930 nm spectral range, using an Argon-ion laser as a pump. This range has been previously accessible only to the less intense Krypton-ion laser. Peak efficiency as high as 29\% is measured for both Styryl-9 and LDS-821 at 809 nm, making them some of the most efficient argon-ion pumped laser dyes.

We thank the National Science Foundation, Chemistry and the Office of Naval Research, Chemistry for the financial support which has made this work possible, and the Swiss National Foundation for fellowship support to P. Bado. The authors thank R. Steppel of Exciton Chemical Co. for helpful discussions.

References

5. Exciton Chemical Co., Dayton, OH.
8. IR phosphor coated cards from Banner Engineering Corp., Minneapolis, MN, were found superior to other similar products.
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Professor K. Wilson
Dept. of Chemistry, B014
University of California,
San Diego
La Jolla, California 92093 | 1 | Dr. J. Telford
University of Nevada System
Desert Research Institute
Lab of Atmospheric Physics
Reno, Nevada 89507 | 1 |
| Professor C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907 | 1 | Dr. B. Vonnegut
State University of New York
Earth Science Building
1400 Washington Avenue
Albany, New York 12203 | 1 |
| Professor P. Meijer
Department of Physics
Catholic University of America
Washington, D.C. 20064 | 1 | Dr. Hank Loos
Laguna Research Laboratory
21421 Stans Lane
Laguna Beach, California 92651 | 1 |
| Dr. S. Greer
Chemistry Department
University of Maryland
College Park, Maryland 20742 | 1 | Dr. John Latham
University of Manchester
Institute of Science & Technology
P.O. Box 88
Manchester, England M601QD | 1 |
| Professor P. Delahay
New York University
100 Washington Square East
New York, New York 10003 | 1 | Dr. T. Ashworth
Department of Physics
South Dakota School of
Mines & Technology
Rapid City, South Dakota 57701 | 1 |
| Dr. G. Gross
New Mexico Institute of
Mining & Technology
Socorro, New Mexico 87801 | 1 | Dr. J. Kassner
Space Science Research Center
University of Missouri - Rolla
Rolla, Missouri 65401 | 1 |
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Code 413</td>
<td>800 North Quincy Street</td>
<td>ATTN: Mr. Joe McCartney</td>
<td>San Diego, California 92152</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>ONR Pasadena Detachment</td>
<td>1</td>
<td>ATTN: Dr. R. J. Marcus</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>ATTN: Dr. R. J. Marcus</td>
<td>1030 East Green Street</td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California 91106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Code 310C (H. Rosemwater)</td>
<td>Department of the Navy</td>
<td>ATTN: Dr. R. W. Drisko</td>
<td>Port Hueneme, California 93401</td>
</tr>
<tr>
<td>Washington, D. C. 20360</td>
<td>Naval Postgraduate School</td>
<td>Dean William Tolles</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Monterey, California 93940</td>
<td></td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Scientific Advisor</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>(Code RD-1)</td>
<td>Washington, D. C. 20380</td>
</tr>
<tr>
<td>Dr. Fred Saalfeld</td>
<td>1</td>
<td>Naval Ship Research and Development Center</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Naval Research Laboratory</td>
<td>ATTN: Dr. G. Bosmajian, Applied</td>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td>Washington, D. C. 20375</td>
<td></td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
<td></td>
<td>Mr. John Boyle</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>ATTN: CRD-AA-IP</td>
<td>1</td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 12211</td>
<td>Research Triangle Park, N. C. 27709</td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Mr. Vincent Schaper</td>
<td></td>
<td>Mr. A. M. Anzalone</td>
<td>Administrative Librarian</td>
</tr>
<tr>
<td>DTNSRDC Code 2803</td>
<td>1</td>
<td>PLASTEC/ARRADCOM</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21402</td>
<td></td>
<td>Bldg. 3401</td>
<td>Dover, New Jersey 07801</td>
</tr>
</tbody>
</table>
END
FILMED
6-83
DTIC