Title: Generation of Enhanced-Scalelength Plasmas and Zeeman Study of Magnetic Fields

Keywords: Plasmas, Magnetic Fields, Zeeman Effect

Abstract: Using nonuniform laser illumination on flat targets, with moderate laser energies (200 J), we have produced enhanced density scalelengths, e.g., in excess of 0.5 mm at 0.1 of critical density. These enhanced scalelengths are of interest in simulating large, high-gain pellets, and investigating the potential impact of longer scalelengths on a variety of convective plasma instabilities. The nonuniform laser irradiation also affects the spontaneous magnetic fields. These fields were measured for the first time using the Zeeman effect. Space-and-time-resolved measurements, for both polarizations, were made of the 227I-227g CV triplet ($2s^2S_1 - 2p^3P_{2,1,0}$) emission. A comparison with theory gave fields around 200 kG.
CONTENTS

I. INTRODUCTION ... 1

II. GENERATION OF ENHANCED-SCALELENGTH PLASMAS 1

III. ZEEMAN STUDY OF MAGNETIC FIELDS ... 1

IV. CONCLUSION .. 3

V. ACKNOWLEDGMENTS .. 4
GENERATION OF ENHANCED-SCALELENGTH PLASMAS AND
ZEEMAN STUDY OF MAGNETIC FIELDS

I. INTRODUCTION

For the past few years at NRL, we have been studying the physics of ablatively accelerated thin-foil targets in order to understand the physics of ablatively-imploded ICF pellets.

Recently, we have taken a new direction placing emphasis on the physics of long scalelength plasmas; ones that more closely simulate the physics of large, high-gain full-size ICF reactor pellets. Phenomena such as convective instabilities including stimulated backscatter are of particular interest.

A promising approach for producing these long-scalelength plasmas is to use nonuniform irradiation of the targets. A brief description of the production of these long-scalelength plasmas is given here and Mark Herbst in a separate paper describes some of our initial experiments in this area.

Nonuniform irradiation may also affect the spontaneous magnetic fields, and we have looked for these fields both with Faraday rotation and the Zeeman effect. We have, for the first time, been able to measure these fields with the Zeeman effect and most of the discussion is devoted to the Zeeman study.

II. GENERATION OF ENHANCED-SCALELENGTH PLASMAS

A 10-cm mask is placed in front of the focusing lens. Since the target is in the quasi-near field of the focused laser beam, the mask produces an intensity minimum at the center of the laser profile. This is depicted schematically in Fig. 1. The density profile then has a maximum near the center and has an enhanced density scalelength. Apparently, the central part of the plasma is hydrodynamically confined by a converging peripheral plasma flow. Such a flow is seen with tracer dots.

An actual radial laser profile is shown in Fig. 2, along with the corresponding radial density profile obtained from a shearing interferogram using a third harmonic laser probe. This was for a half-power shot ($\sim 5 \times 10^{12}$ W/cm2). Note the steep density maximum near the center with densities just above three-tenths of critical density.

The axial density variation of the on-axis density is shown in Fig. 3 for a full-power ($\sim 10^{13}$ W/cm2) shot. It is plotted in tenth-critical units of density (note 10^{-1} on ordinate). The axial density scalelengths at one-tenth critical is about 600 microns.

III. ZEEMAN STUDY OF MAGNETIC FIELDS

As noted earlier, we have used the Zeeman effect to look for spontaneous magnetic fields when we use this nonuniform irradiation. Generally speaking, we had expected that these fields would be much smaller for multinanosecond irradiation of large focal spots that for the tightly focused, sub-nanosecond pulses where Faraday rotation showed fields in the megagauss range.

Manuscript approved November 15, 1982.
The Zeeman study requires that we choose a suitable spectral line. We chose a helium-like carbon triplet because it was in the quartz UV range where optical components were available, because it had a small Stark width, and because it was present at a relatively high-temperature—around 100 eV. This is the CV 1s 2s^2S_1 - 1s2p^3P_{2,1,0} transition near 2270 Å. We have data for the complete triplet but have chosen the relatively isolated \(J = 2 \) components at 2271 Å for a quantitative analysis in order to evaluate the magnetic field.

In order to understand the observed structure in this line, let us look at the target along the main laser beam as shown in Fig. 4, and consider three regions. The observed helium-like carbon emission comes from ions in an expanding conical annulus shown in dark shade. There is a region inside affected by the masking and there is a region outside. The radial expansion of \(1.4 \times 10^7 \) cm/sec causes a 1.1 Å Doppler shift of the entire triplet. The red-shifted triplet from the location opposite to the side-on observer is not seen—indicating absorption by a relatively cool inside region. The blue-shifted triplet is partially absorbed—particularly at later times—by the outside region.

For purposes of illustration, the magnetic field is shown in a clockwise direction, but our experiment does not distinguish a clockwise from a counter clockwise field. Note, however, that the observer is looking at the laser axis so that observations are perpendicular to the magnetic field. Zeeman theory then shows that the emitted light has two linear polarizations: the pi components are polarized parallel to the magnetic field while the sigma components are polarized perpendicular to the field.

The experimental set-up used in the study is shown in Fig. 5. The laser beam, (35 to 40 J in 5 nsec) shown incident from the left, has its central region blocked by a 7-cm diameter mask. It is focused with an \(f/10 \) lens into a 50-micron thick carbon target. An \(f/1.6 \) parabolic mirror is used to collect light emitted parallel to the target surface. The light is directed with a series of mirrors into the spectrograph, allowing only small angles of incidence with respect to the mirror normals in order to minimize polarization effects. A 1-m McPherson spectrograph is used, with the grating blazed at 2000 Å. As shown in the side view, in the upper-left, the beam passes through a Wollaston prism before entering the spectrograph. The physical separation (8") of the Wollaston from the entrance slit causes a vertical separation of the two polarizations at the exit slit. Since the entrance slit is imaged, one-to-one on to the exit slit, the same separation occurs at the exit slit. Mirrors are used at the exit slit to deflect the two polarizations into two photomultipliers. We then record, simultaneously and separately, the time history of the pi and sigma emissions.

In order to measure the magnetic field, we must compare these measurements with a theoretical Zeeman profile. This calculation was done with a small computer code which allowed a magnetic field input in increments of 100 kG and was only done for the \(J = 2 \) component. The magnetic field input determines the relative amplitude and center wavelengths for each of the 9 component profiles: the three pi components (parallel to \(B \)) and six sigma components (perpendicular to \(B \)). Intermediate-field corrections calculated by Griem, were included. The optically-thin profiles \(\sigma(\lambda) \) are obtained by adding these components at each wavelength. As noted earlier, it is necessary to include opacity effects in order to calculate the actual emitted-line profiles \(\sigma(\lambda) \). This is done for the emitting and outside regions by modelling with input parameters, \(C_1 \) and \(C_2 \).

\[
\sigma(\lambda) = (1/C_1) \{ 1 - \exp(C_1 \sigma(\lambda)) \} \exp(- (C_2 \sigma(\lambda)))
\]

Emission Region Outside Region

Finally, in order to calculate the "observed" line profiles, one must convolve the emitted profiles with the instrument function. Our instrumental function half width of 1.5 Angstroms is greater than some of the Zeeman component separations. Thus, absorption will depend on locally different unresolvable structures for the two polarizations. However, because absorption changes the total intensity it can actually enhance the observability of these unresolvable structure differences.
A comparison is shown in Fig. 6 of the experimental profiles observed 5 nanoseconds after the peak of the laser pulse with a theoretical profile for 200 kilogauss. Broadly speaking, one must account for the widths of the pi and sigma profiles, as well as the ratio of their intensities at profile center. The pi components are noted with crosses and the sigma components with circles. The right-hand point lies above the $J = 2$ theoretical profiles since it also includes a significant $J = 0$ contribution. Considering the normalizations, rather small opacity parameters C_1 and C_2 are required. The agreements at 100 kG and 300 kG were not nearly so close as 200 kG so that the data shows the field to be around 200 kilogauss. Nevertheless, a slightly smaller pi width would agree better with the data, indicating that a field slightly larger than 200 kG would agree somewhat better with the data.

A comparison is shown in Fig. 7 with observations made 8 nsec after the peak of the laser pulse. The striking feature here is that the sigma emission is nearly twice as intense as the pi emission at the center of the profiles. However, a field of 200 kG with a relatively absorbing outside region ($C_2 = 5$) gives a reasonably good fit to the data. In this case, a slightly smaller sigma width would give a better fit to the data, indicating that the field is just under 200 kG.

Thus, the Zeeman data shows fields decreasing from just above 200 kG at +5 nsec to just below 200 kG at +8 nsec.

IV. CONCLUSION

In conclusion, we recall the interest in long-scalelength plasmas and that a promising approach in their production is the use of nonuniform laser irradiation. We have produced density gradient scalelengths of 600 microns in this way.

The Zeeman effect has been used for the first time to observe spontaneous magnetic fields in laser-produced plasmas. The technique was surprisingly sensitive, allowing 200-kG fields to be observed and would allow 100-kG fields to be observed. The Zeeman result is consistent with the Faraday rotation study where the absence of a definite Faraday rotation light pattern indicated that the fields were no larger than around 200 kG. However, it remains to be seen whether these fields are small in the sense that they can be ignored in reactor applications.

V. ACKNOWLEDGMENTS

We wish to acknowledge the technical assistance of M. Fink, N. Nocerimo, and E. Turbyfill. The work was supported by the U.S. Department of Energy and the Defense Nuclear Agency.
Fig. 1 — Enhanced axial density scalelengths from nonuniform irradiation of flat targets
Fig. 2 - Radial laser profile and corresponding radial density profile
AXIAL DENSITY PROFILE WITH NONUNIFORM ILLUMINATION

\[E^{-1} \]

1.40 - \[10^{13} \text{ W/cm}^2\]

1.40 1mm SPOT

~1.20

0.40

0.60 0.80 1.00 MM

AXIAL POSITION (mm)

PLASMA DENSITY (N/N_c)

Fig. 3 — Axial density profile showing a scalelength of 0.6 mm at 0.1 critical density
Fig. 4 - View along main laser beam, showing regions which affect the observed spectral profiles.
Fig. 5 - Experimental arrangement for Zeeman study of spontaneous magnetic fields
EXPERIMENT (AT +5 NSEC)
- PI POL. (∥ B)
- SIGMA POL. (⊥ B)

52 MICRON C TARGET
35-40 J, 5 NSEC
INST. WIDTH 1.5 Å

THEORY
- B = 200 kG
- C1 = 0.3
- C2 = 2

Fig. 6 - A comparison of theoretical profiles for 200 kG with experimental data taken 5 nsec after the peak of the main laser pulse.
EXPERIMENT (AT +8 NSEC)
× PI POL. (|| B)
⊙ SIGMA POL. (⊥ B)
50 MICRON C TARGET
35-40 J, 5 NSEC
WAVE LENGTH 1.5 Å

THEORY —
B = 200 kG
C1 = 3
C2 = 5

INT. (ARB.)

λ (ANGSTROMS)

Fig. 7 — A comparison of theoretical profiles for 200 kG with experimental data taken 8 nsec after the peak of the main laser pulse.
DOE DISTRIBUTION LIST FOR REPORTS

University of California
Lawrence Livermore National Lab
Post Office Box 808
Livermore, CA 94550

Z.N. Zafiris/R. Bredderman
U.S. Department of Energy
San Francisco Operations Office
1333 Broadway
Oakland, CA 94512

H.G. Ahstrom, L-481
J.J. Emmett, L-448
J.F. Holzrichter, L-481
M.J. Monsler, L-479
J.H. Nuckolls, L-477
L.W. Coleman, L-473
J.T. Hunt, L-481
A.B. Langdon, L-477

University of California
Lawrence Livermore National Laboratory
Post Office Box 1333
Livermore, CA 94550

Los Alamos National Laboratory
Post Office Box 1663
Los Alamos, NM 87545

S.D. Rockwood, ICF Prog. Mgr.
DAD/IF, M/5527 (6 cys)

G. Yonas (4 cys)
Sandia National Laboratories
Post Office Box 5880
Albuquerque, NM 87185

S. Bodner
Naval Research Laboratory
Code 4730
Washington, DC 20375

T. Coffey
Naval Research Laboratory
Code 1001
Washington, DC 20375

R. McCrory
University of Rochester
250 East River Road
Rochester, NY 14623

Robert T. Duff
U.S. Department of Energy
Office of Classification
Washington, DC 20545

Rex B. Purcell (2 cys)
U.S. Department of Energy
Nevada Operations Office
Post Office Box 14100
Las Vegas, NV 89114

U.S. Department of Energy
Lawrence Livermore National Laboratory
Post Office Box 808
Livermore, CA 94550

H.G. Ahstrom, L-481
J.J. Emmett, L-448
J.F. Holzrichter, L-481
M.J. Monsler, L-479
J.H. Nuckolls, L-477
L.W. Coleman, L-473
J.T. Hunt, L-481
A.B. Langdon, L-477

U.S. Department of Energy
Office of Inertial Fusion
Washington, DC 20545

L.E. Killian
G. Gibbs
T.F. Godlove
S.L. Kahalas
J.E. Lewis
R.L. Schriever
T.H. Walsh
S.J. Barish

U.S. Dept. of Energy (194 cys)
Technical Information Center
P.O. Box 62
Oak Ridge, TN 37830

Defense Tech. Information Ctr. (2 cys)
Cameron Station
5010 Duke Street
Alexandria, VA 22314

Robert T. Duff
U.S. Department of Energy
Office of Classification
Washington, DC 20545

Rex B. Purcell (2 cys)
U.S. Department of Energy
Nevada Operations Office
Post Office Box 14100
Las Vegas, NV 89114
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
(12 COPIES IF OPEN PUBLICATION,
OTHERWISE 2 COPIES)

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN DDST
03CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
01CY ATTN FCPR

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WWMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113
01CY ATTN JLTW-2
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OS
WWMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE Sands MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO F. NILES
GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP—EASTERN DIV
77 A STREET
NEEDHAM, MA 92194
01CY ATTN MARSHALL CROSS

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

ILLINOIS, UNIVERSITY OF
107 COBLE HALL
150 DAVENPORT HOUSE
CHAMPAIGN, IL 61820
01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES
400 ARMY—NAVY DRIVE
ARLINGTON, VA 22202
01CY ATTN J.M. AFIN
01CY ATTN ERNEST BAUER
01CY ATTN HANS WOLFARD
01CY ATTN JOEL BENGSTON

INTL TEL & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
01CY ATTN TECHNICAL LIBRARY

JAYCOR
11011 TORREYANA ROAD
P.O. BOX 85154
SAN DIEGO, CA 92138
01CY ATTN J.L. SPERLING

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAURAL, MD 20810
01CY ATTN DOCUMENT LIBRARIAN
01CY ATTN THOMAS POTEMRA
01CY ATTN JOHN DASSOULAS

KAMAN SCIENCES CORP
P.O. BOX 7463
COLORADO SPRINGS, CO 80933
01CY ATTN T. MEAGHER
KAMAN TEMPO—CENTER FOR ADVANCED STUDIES
816 STATE STREET (P.O DRAWER QQ)
SANTA BARBARA, CA 93102
01CY ATTN DASIAC
01CY ATTN TIM STEPHANS
01CY ATTN WARREN S. KNAPP
01CY ATTN WILLIAM MCNAMARA
01CY ATTN B. GAMBLIN

LINKABIT CORP
10453 ROSELLE
SAN DIEGO, CA 92121
01CY ATTN IRWIN JACOBS

LOCKHEED MISSILES & SPACE CO., INC
P.O. BOX 504
SUNNYVALE, CA 94088
01CY ATTN DEPT 60—12
01CY ATTN D.R. CHURCHILL

LOCKHEED MISSILES & SPACE CO., INC
3251 HANOVER STREET
PALO ALTO, CA 94304
01CY ATTN MARTIN WALT DEPT 52-12
01CY ATTN W.L. IMHOF DEPT 52-12
01CY ATTN RICHARD G. JOHNSON DEPT 52-1
01CY ATTN J.B. CLADIS DEPT 52-12

LOCKHEED MISSILE & SPACE CO., INC.
HUNTSVILLE RESEARCH & ENGR. CTR.
4800 BRADFORD DRIVE
HUNTSVILLE, AL 35807
ATTN DALE H. DIVIS

MARTIN MARIETTA CORP
ORLANDO DIVISION
P.O. BOX 5837
ORLANDO, FL 32805
01CY ATTN R. HEFFNER

M.I.T. LINCOLN LABORATORY
P.O. BOX 73
LEXINGTON, MA 02173
01CY ATTN DAVID M. TOWLE
01CY ATTN P. WALDRON
01CY ATTN L. LOUGHLIN
01CY ATTN D. CLARK

MCDONNEL DOUGLAS CORPORATION
5301 BOLSA AVENUE
HUNTINGTON BEACH, CA 92647
01CY ATTN N. HARRIS
01CY ATTN J. MOULE
01CY ATTN GEORGE MROZ
01CY ATTN W. OLSON
01CY ATTN R.W. HALPRIN
01CY ATTN TECHNICAL LIBRARY SERVICES
SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025
01CY ATTN DONALD NEILSON
01CY ATTN ALAN BURNS
01CY ATTN G. SMITH
01CY ATTN L.L. COBB
01CY ATTN DAVID A. JOHNSON
01CY ATTN WALTER G. CHESNUT
01CY ATTN CHARLES L. RINO
01CY ATTN WALTER JAYE
01CY ATTN M. BARON
01CY ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTER
01CY ATTN G. PRICE
01CY ATTN J. PETERSON
01CY ATTN R. HAKE, JR.
01CY ATTN V. GONZALES
01CY ATTN D. MCDANIEL

STEWART RADIANCE LABORATORY
UTAH STATE UNIVERSITY
1 DE ANGELO DRIVE
BEDFORD, MA 01730
01CY ATTN J. ULWICK

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730
01CY ATTN W.F. BOQUIST

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278
01CY ATTN R. K. PLEBUCH
01CY ATTN S. ALTSCHULER
01CY ATTN D. DEE
P1CY ATTN D/ Stockwell
SNF/1575

VISIDYNE
SOUTH BEDFORD STREET
BURLINGTON, MASS 01803
01CY ATTN W. REIDY
01CY ATTN J. CARPENTER
01CY ATTN C. HUMPHREY

EOS TECHNOLOGIES, INC.
606 Wilshire Blvd.
Santa Monica, Calif 90401
01CY ATTN C.B. GABBARD